
Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Synchronous Languages—Lecture 02

Prof. Dr. Reinhard von Hanxleden

Christian-Albrechts Universität Kiel
Department of Computer Science

Real-Time Systems and Embedded Systems Group

9 April 2020
Last compiled: April 6, 2020, 13:04 hrs

Esterel I—Overview

Synchronous Languages Lecture 02 Slide 1

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Overview

Introduction

Signals and Synchrony

The multiform notion of time

A Preview of Esterel

Synchronous Languages Lecture 02 Slide 2

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Introduction to Esterel

I Imperative, textual language

I Concurrent
I Based on synchronous model of time

I Program execution synchronized to an external clock
I Like synchronous digital logic
I Suits the cyclic executive approach

Thanks to Stephen Edwards (Columbia U), Klaus Schneider (U Kaiserslautern) and

Gerald Luettgen (U Bamberg) for providing part of the following material

Synchronous Languages Lecture 02 Slide 3

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

History

I Developed at Centre de Mathématiques Appliquées (CMA),
Ecole des Mines de Paris

I J.-P. Marmorat and J.-P. Rigault built an autonomous vehicle

I They were not satisfied by traditional programming languages
(no adequate support for reactive control flow,
non-determinism due to language and/or OS)

; and developed a first version of Esterel

I Estérel is a mountain area between Cannes and St. Raphaël,
the name sounds like “real-time” in french (temps-réel)

I G. Berry developed a formal semantics for Esterel

Synchronous Languages Lecture 02 Slide 4

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Esterel Dialects

I Esterel v5: Has been stable since late 1990s

I Esterel v7: same principles as in v5, several extensions (e. g.,
multi-clock designs, refined type system). There is an IEEE
standardization draft.

I Sequentially Constructive Esterel (SCEst): Extension of
Esterel, based on Sequentially Constructive Model of
Computation (SC MoC)

Synchronous Languages Lecture 02 Slide 5

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Graphical Variants

There are several graphical languages following a similar MoC as
Esterel, using a Statechart-like syntax:

I Argos: first graphical language

I SyncCharts: successor of Argos

I Safe State Machines (SSMs): equivalent to SyncCharts, the
name of the modeling language supported by the commercial
tool Esterel Studio, which uses Esterel as intermediate step in
code generation

I Sequentially Constructive Statecharts (SCCharts): Extension
of SyncCharts/SSMs based on SC MoC

I In this class, we will mainly consider Esterel v5, SCEst and
SCCharts

Synchronous Languages Lecture 02 Slide 6

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Signals

I Esterel programs/SSMs communicate through signals
I These are like wires

I Each signal is either present or absent in each tick
I Can’t take multiple values within a tick

I Presence/absence not held between ticks
I Broadcast across the program

I Any process can read or write a signal

Synchronous Languages Lecture 02 Slide 7

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Signals

I Status of an input signal is determined by input event, and by
local emissions

I Status of local or output signal is determined per tick
I Default status: absent
I Must execute an “emit S” statement to set signal S present

I await A:
I Waits for A and terminates when A occurs

Synchronous Languages Lecture 02 Slide 8

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Synchrony Hypothesis

I Computations are considered to
I take no time
I be atomic

G. Luettgen 2001

Synchronous Languages Lecture 02 Slide 9

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Perfect Synchrony

Definition [Perfect Synchrony]
A system works in perfect synchrony, if all reactions of the system
are executed in zero time. Hence, outputs are generated at the same
time, when the inputs are read.

I Of course, this is only an idealized programmer’s model

I In practice, ‘zero time’ means before the next interaction

I Physical time between interactions may not always be the
same

I Synchronous programs use natural numbers for logical time,
where only interactions, i. e., macro steps, are counted

Synchronous Languages Lecture 02 Slide 10

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Synchronous Model of Computation

To summarize: the synchronous model of computation of
SSMs/Esterel is characterized by:

1. Computations considered to take no time (synchrony
hypothesis)

2. Time is divided into discrete ticks

3. Signals are either present or absent in each tick

Sometimes, “synchrony” refers to just the first two points (e. g., in
the original Statecharts as implemented in Statemate); to explicitly
include the third requirement as well, we also speak of the strict
synchrony

Synchronous Languages Lecture 02 Slide 11

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Perfect Synchrony and Worst-Case Execution Time

I When are real-time constraints considered?

I Macro steps consist of only finitely many micro steps, i. e.,
there are no data dependent loops in a macro step

I Hence, the runtime of a single macro step can be easily
checked (at least compared to non-synchronous languages) for
a specific platform (processor)

; Low-level worst case execution time analysis (WCET), also
called worst case reaction time analysis (WCRT)

I Additionally, one can check how many macro steps are
required from one system state to another (high-level WCET
analysis)

Synchronous Languages Lecture 02 Slide 12

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

The Multiform Notion of Time

I Some “classical” programming languages already include a
concept of real-time

I Consider the following Ada code fragment, which signals
minutes to a task B:

loop

delay 60;

B.Minute

end

I This works in principle

I However, it is not deterministic!

Synchronous Languages Lecture 02 Slide 13

I There are several sources of non-determinism in this code
fragment:

I The delay statement only imposes a minimal delay— how long
the delay really is depends on several factors, such as timer
resolution, OS overhead, etc.

I The process receiving the signal—B—must be ready to do so

I The actual time of when the rendezvous takes place is not
specified

I Furthermore, the signal cannot be broadcast—if there is
another process that wants to be notified every minute, then
we must explicitly send it another signal—different processes
may therefore have different views of the global state of the
program

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

The Multiform Notion of Time

I A design goal of synchronous languages:
I Fully deterministic behavior
I Applies to functionality and (logical) timing

I Approach:
I Replace notion of physical time with notion of order
I Only consider simultaneity and precedence of events

I Hence, physical time does not play any special role
I Is handled like any other event from program environment
I This is called multiform notion of time

Synchronous Languages Lecture 02 Slide 14

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

The Multiform Notion of Time

I Consider following requirements:
I “The train must stop within 10 seconds”
I “The train must stop within 100 meters”

I These are conceptually of the same nature!

I In languages where physical time plays particular role, these
requirements are typically expressed completely differently

I In synchronous model, use similar precedence constraints:
I “The event stop must precede the 10th (respectively, 100th)

next occurrence of the event second (respectively, meter)”

Synchronous Languages Lecture 02 Slide 15

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

The Multiform Notion of Time

I History of system is a totally ordered sequence of logical ticks

I At each tick, an arbitrary number of events (including 0)
occurs

I Event occurrences that happen at the same logical tick are
considered simultaneous

I Other events are ordered as their instances of occurrences

Synchronous Languages Lecture 02 Slide 16

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Basic Esterel Statements

emit S

I Make signal S present in the current instant

I A signal is absent unless it is emitted

pause

I Stop and resume after the next cycle after the pause

present S then stmt1 else stmt2 end

I If signal S is present in the current instant, immediately run
stmt1, otherwise run stmt2

Synchronous Languages Lecture 02 Slide 17

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Esterel’s Model of Time

I The standard CS model (e.g., Java’s) is asynchronous
I Threads run at their own rate
I Synchronization is done (for example) through calls to wait()

and notify()

I Esterel’s model of time is synchronous like that used in
hardware. Threads march in lockstep to a global clock.

Time

Clock tick

Synchronous Languages Lecture 02 Slide 18

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Basic Esterel Statements

module EXAMPLE1:

output A, B, C;

emit A;

present A then emit B end;

pause;

emit C

end module

A
B

C

EXAMPLE1 makes signals A &
B present the first instant, C
present the second

Synchronous Languages Lecture 02 Slide 19

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Signal Coherence Rules

I Each signal is only present or absent in a cycle, never both

I All writers run before any readers do

I Thus

present A else

emit A

end

is an erroneous program

I Sneak Preview: Unlike Esterel, SCEst allows this, as it allows
sequential update of A!

Synchronous Languages Lecture 02 Slide 20

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Advantage of Synchrony

I Easy to control time

I Synchronization comes for free

I Speed of actual computation nearly uncontrollable

I Allows function and timing to be specified independently

I Makes for deterministic concurrency

I Explicit control of “before” “after” “at the same time”

Synchronous Languages Lecture 02 Slide 21

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Time Can Be Controlled Precisely

This guarantees every 60th S an M is emitted:

every 60 S do every invokes its body every 60th S
emit M emit takes no time (cycles)

end

S S S S S
M M

1 · · · 59 60 61 · · · 120

Synchronous Languages Lecture 02 Slide 22

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

The || Operator

Groups of statements separated by || run concurrently and
terminate when all groups have terminated

[

emit A;

pause; emit B;

||

pause; emit C;

pause; emit D

];

emit E

A B
C D

E

Synchronous Languages Lecture 02 Slide 23

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Communication Is Instantaneous

A signal emitted in a cycle is visible immediately

[

pause; emit A;

pause; emit A

||

pause;

present A then

emit B end

]

A A
B

Synchronous Languages Lecture 02 Slide 24

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Bidirectional Communication

Processes can communicate back and forth in the same cycle

[

pause; emit A;

present B then

emit C end;

pause; emit A

||

pause;

present A then

emit B end

]

A A
B
C

Synchronous Languages Lecture 02 Slide 25

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Concurrency and Determinism

I Signals are the only way for concurrent processes to
communicate

I Esterel does have variables, which (unlike signals) can be
sequentially modified within a tick, but they cannot be shared

I Signal coherence rules ensure deterministic behavior

I Language semantics clearly defines who must communicate
with whom when

Synchronous Languages Lecture 02 Slide 26

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

The Await Statement

I The await statement waits for a particular cycle

I await S waits for the next cycle in which S is present

[

emit A;

pause;

pause; emit A

||

await A; emit B

]

A A
B

Synchronous Languages Lecture 02 Slide 27

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

The Await Statement

I await normally waits for a cycle before beginning to check

I await immediate also checks the initial cycle

[

emit A;

pause;

pause; emit A

||

await immediate A;

emit B

]

A A
B

Synchronous Languages Lecture 02 Slide 28

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Loops

I Esterel has an infinite loop statement
I Rule: loop body cannot terminate instantly

I Needs at least one pause, await, etc.
I Can’t do an infinite amount of work in a single cycle

loop

emit A;

pause;

pause;

emit B

end

A A A A
B B B

Synchronous Languages Lecture 02 Slide 29

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Loops and Synchronization
Instantaneous nature of loops plus await provide very powerful
synchronization mechanisms

loop

await 60 S;

emit M

end

S S S S S
M M

1 · · · 59 60 61 · · · 120

Synchronous Languages Lecture 02 Slide 30

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Preemption

I Often want to stop doing something and start doing
something else

I E.g., Ctrl-C in Unix: stop the currently-running program

I Esterel has many constructs for handling preemption

Synchronous Languages Lecture 02 Slide 31

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

The Abort Statement

I Basic preemption mechanism

I General form:

abort

statement

when condition

I Runs statement to completion

I If condition ever holds, abort terminates immediately.

Synchronous Languages Lecture 02 Slide 32

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

The Abort Statement

abort

pause;

pause;

emit A

when B;

emit C

A
C

Normal termination

B
C

Aborted termination

B
C

Aborted termination;
emit A preempted

B A
C

Normal termination
B not checked
in first cycle
(like await)

Synchronous Languages Lecture 02 Slide 33

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Strong vs. Weak Preemption

I Strong preemption:
I The body does not run when the preemption condition holds
I The previous example illustrated strong preemption

I Weak preemption:
I The body is allowed to run even when the preemption

condition holds, but is terminated thereafter
I weak abort implements this in Esterel

Synchronous Languages Lecture 02 Slide 34

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Strong vs. Weak Abort

Strong abortabort

pause;

pause;

emit A;

pause

when B;

emit C

B
C

emit A not allowed to run

Weak abortweak abort

pause;

pause;

emit A;

pause

when B;

emit C

A
B
C

emit A does run, body
terminated afterwards

Synchronous Languages Lecture 02 Slide 35

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Strong vs. Weak Preemption

I Important distinction

I Something cannot cause its own strong preemption

abort

pause;

emit A

when A

Erroneous!

weak abort

pause;

emit A

when A

Ok!

Synchronous Languages Lecture 02 Slide 36

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Nested Preemption

module RUNNER

input LAP, METER, MORNING, SECOND, STEP;

output ... ;

every MORNING do

abort

loop

abort run RUNSLOWLY when 15 SECOND;

abort

every STEP do

run JUMP || run BREATHE

end every

when 100 METER;

run FULLSPEED

each LAP

when 2 LAP

end every

end module

Synchronous Languages Lecture 02 Slide 37

I In a LAP, the full sequence is executed only if the LAP is
longer than 15 SECOND plus 100 METER

I If the LAP is shorter than 15 SECOND, one only does
RUNSLOWLY

I If the LAP is shorter than 15 SECOND plus 100 METER, one
never runs full speed

I The same happens if MORNINGs occurs very often

I Notice that any input can serve as a time unit in a preemption.
In reactive programming, timing constraints should not be
expressed only in seconds. When driving a car, if there is an
obstacle at 30 meters, the timing constraint is “stop in less
than 30 meters”, no matter the time it takes to stop

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Exceptions—The Trap Statement

I Esterel provides an exception facility for weak preemption

I Interacts nicely with concurrency

I Rule: outermost trap takes precedence

Synchronous Languages Lecture 02 Slide 38

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

The Trap Statement

trap T in

[

pause;

emit A;

pause;

exit T

||

await B;

emit C

]

end trap;

emit D

A D Normal termination
from first process

A
B
C D emit C also runs

A B
C
D

Second process
allowed to run even
though first process
has exited

Synchronous Languages Lecture 02 Slide 39

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Nested Traps

trap T1 in

trap T2 in

[

exit T1

||

exit T2

]

end;

emit A

end;

emit B

I Outer trap takes precedence; control
transferred directly to the outer trap
statement.

I emit A not allowed to run.

B

Synchronous Languages Lecture 02 Slide 40

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Combining Abortion and Exceptions

trap HEARTATTACK in

abort

loop

abort RUNSLOWLY when 15 SECOND;

abort

every STEP do

JUMP || BREATHE || CHECKHEART

end every

when 100 METER;

FULLSPEED

each LAP

when 2 LAP

handle HEARTATTACK do

GOTOHOSPITAL

end trap

Synchronous Languages Lecture 02 Slide 41

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

The Suspend Statement

I Preemption (abort, trap) terminate something, but what if
you want to pause it?

I Like the POSIX Ctrl-Z

I Esterel’s suspend statement pauses the execution of a group
of statements

I Only strong preemption: statement does not run when
condition holds

Synchronous Languages Lecture 02 Slide 42

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

The Suspend Statement
suspend

loop

emit A;

pause;

pause

end

when B

A A B A B A

B delays emission
of A by one cycle

B prevents A
from being emitted here;
resumed next cycle

Synchronous Languages Lecture 02 Slide 43

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

Summary

I Esterel assumes perfect synchrony, with reactions discretized
into ticks

I Information in Esterel is passed via broadcast of signals, which
(unlike in SCEst) cannot be sequentially updated within a tick

I Esterel includes various preemption mechanisms

I Distinguish strong and weak preemption

I Orthogonally distinguish delayed (default) and immediate
preemption

Synchronous Languages Lecture 02 Slide 44

Introduction
Signals and Synchrony

The multiform notion of time
A Preview of Esterel

To Go Further

I Gérard Berry, The Foundations of Esterel,
Proof, Language and Interaction: Essays in Honour of Robin
Milner, G. Plotkin, C. Stirling and M. Tofte, editors,
MIT Press, Foundations of Computing Series, 2000,
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

10.1.1.53.6221

I Gérard Berry, The Esterel v5 Language Primer, Version v5 91,
2000
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

10.1.1.15.8212

Synchronous Languages Lecture 02 Slide 45

