
PAKCS 1.8.0

The Portland Aachen Kiel Curry System

User Manual

Version of March 26, 2007

Michael Hanus1 [editor]

Additional Contributors:

Sergio Antoy2

Bernd Braßel3

Martin Engelke4

Klaus Höppner5

Johannes Koj6

Philipp Niederau7

Ramin Sadre8

Frank Steiner9

(1) University of Kiel, Germany, mh@informatik.uni-kiel.de
(2) Portland State University, USA, antoy@cs.pdx.edu

(3) University of Kiel, Germany, bbr@informatik.uni-kiel.de
(4) University of Kiel, Germany, men@informatik.uni-kiel.de
(5) University of Kiel, Germany, klh@informatik.uni-kiel.de

(6) RWTH Aachen, Germany, johannes.koj@sdm.de
(7) RWTH Aachen, Germany, philipp@navigium.de

(8) RWTH Aachen, Germany, ramin@lvs.informatik.rwth-aachen.de
(9) LMU Munich, Germany, fst@bio.informatik.uni-muenchen.de

Contents

Preface 4

1 Overview of PAKCS 5
1.1 General Use . 5
1.2 Restrictions on Curry Programs . 5
1.3 Modules in PAKCS . 6

2 PAKCS/Curry2Prolog: An Interactive Curry Development System 7
2.1 How to Use PAKCS . 7
2.2 Customization . 11
2.3 Emacs Interface . 12

3 Extensions 13
3.1 Recursive Variable Bindings . 13
3.2 Function Patterns . 13
3.3 Records . 14

3.3.1 Record Type Declaration . 14
3.3.2 Record Construction . 15
3.3.3 Field Selection . 16
3.3.4 Field Update . 16
3.3.5 Records in Pattern Matching . 16
3.3.6 Export of Records . 17
3.3.7 Restrictions in the Usage of Records . 17

4 CurryDoc: A Documentation Generator for Curry Programs 19

5 CurryBrowser: A Tool for Analyzing and Browsing Curry Programs 21

6 CurryTest: A Tool for Testing Curry Programs 23

7 Preprocessing FlatCurry Files 25

8 Technical Problems 27

Bibliography 28

A Libraries of the PAKCS Distribution 30
A.1 Constraints, Ports, Meta-Programming . 30

A.1.1 Arithmetic Constraints . 30
A.1.2 Finite Domain Constraints . 31
A.1.3 Ports: Distributed Programming in Curry . 33
A.1.4 AbstractCurry and FlatCurry: Meta-Programming in Curry 35

A.2 General Libraries . 36
A.2.1 Library AllSolutions . 36

1

A.2.2 Library Assertion . 37
A.2.3 Library Char . 38
A.2.4 Library CLPFD . 39
A.2.5 Library CLPR . 42
A.2.6 Library CLPB . 43
A.2.7 Library Combinatorial . 45
A.2.8 Library CSV . 46
A.2.9 Library Database . 46
A.2.10 Library DaVinci . 49
A.2.11 Library Directory . 51
A.2.12 Library Dynamic . 52
A.2.13 Library FileGoodies . 54
A.2.14 Library Float . 55
A.2.15 Library GUI . 57
A.2.16 Library Integer . 67
A.2.17 Library IO . 69
A.2.18 Library IOExts . 71
A.2.19 Library JavaScript . 73
A.2.20 Library KeyDatabase . 75
A.2.21 Library KeyDB . 76
A.2.22 Library List . 77
A.2.23 Library Maybe . 79
A.2.24 Library Parser . 80
A.2.25 Library Ports . 81
A.2.26 Library PropertyFile . 84
A.2.27 Library Read . 84
A.2.28 Library ReadNumeric . 84
A.2.29 Library ReadShowTerm . 85
A.2.30 Library Socket . 87
A.2.31 Library System . 88
A.2.32 Library Time . 89
A.2.33 Library Unsafe . 91

A.3 Data Structures and Algorithms . 94
A.3.1 Library Array . 94
A.3.2 Library Dequeue . 95
A.3.3 Library FiniteMap . 96
A.3.4 Library GraphInductive . 99
A.3.5 Library Random . 105
A.3.6 Library RedBlackTree . 106
A.3.7 Library SetRBT . 107
A.3.8 Library Sort . 108
A.3.9 Library TableRBT . 109

A.4 Libraries for Web Applications . 110
A.4.1 Library CategorizedHtmlList . 110

2

A.4.2 Library HTML . 111
A.4.3 Library HtmlParser . 122
A.4.4 Library Mail . 122
A.4.5 Library WUI . 123
A.4.6 Library URL . 129
A.4.7 Library XML . 129
A.4.8 Library XmlConv . 131

A.5 Libraries for Meta-Programming . 138
A.5.1 Library AbstractCurry . 138
A.5.2 Library AbstractCurryPrinter . 143
A.5.3 Library CompactFlatCurry . 144
A.5.4 Library CurryStringClassifier . 146
A.5.5 Library FlatCurry . 147
A.5.6 Library FlatCurryGoodies . 153
A.5.7 Library FlatCurryRead . 165
A.5.8 Library FlatCurryShow . 166
A.5.9 Library FlatCurryTools . 167
A.5.10 Library FlatCurryXML . 167
A.5.11 Library FlexRigid . 167

B Overview of the PAKCS Distribution 169

C Auxiliary Files 169

D Curry2Java: A Compiler from Curry into Java 172

E The TasteCurry Interpreter 173
E.1 How to Use the TasteCurry Interpreter . 173
E.2 Restrictions on Curry Programs in the TasteCurry Interpreter 175
E.3 Internal TasteCurry Syntax . 175
E.4 Modules in the TasteCurry Interpreter . 178

F Changing the Prelude or System Modules 180

G External Functions 180
G.1 External Functions in Curry2Prolog . 181
G.2 External Functions in TasteCurry . 184

Index 185

3

Preface

This document describes PAKCS (formerly called “PACS”), an implementation of the multi-
paradigm language Curry, jointly developed at the University of Kiel, the Technical University
of Aachen and Portland State University. Curry is a universal programming language aiming at
the amalgamation of the most important declarative programming paradigms, namely functional
programming and logic programming. Curry combines in a seamless way features from functional
programming (nested expressions, lazy evaluation, higher-order functions), logic programming (log-
ical variables, partial data structures, built-in search), and concurrent programming (concurrent
evaluation of constraints with synchronization on logical variables). Moreover, the PAKCS im-
plementation of Curry also supports the high-level implementation of distributed applications,
graphical user interfaces, and web services (as described in more detail in [9, 10, 11]).

We assume familiarity with the ideas and features of Curry as described in the Curry language
definition [16]. Therefore, this document only explains the use of the different components of
PAKCS and the differences and restrictions of PAKCS (see Section 1.2) compared with the language
Curry (Version 0.8.2).

Acknowledgements

This work has been supported in part by the DAAD/NSF grant INT-9981317, the NSF grants
CCR-0110496 and CCR-0218224, the Acción Integrada hispano-alemana HA1997-0073, and the
DFG grants Ha 2457/1-2, Ha 2457/5-1, and Ha 2457/5-2.

Many thanks to the users of PAKCS for bug reports, bug fixes, and improvements, in particular,
to Marco Comini, Sebastian Fischer, Massimo Forni, Carsten Heine, Stefan Junge, Frank Huch,
Parissa Sadeghi.

4

1 Overview of PAKCS

1.1 General Use

This version of PAKCS has been tested on Sun Solaris, Linux, and Mac OS X systems. In principle,
it should be also executable on other platforms on which a Prolog system like SICStus-Prolog or
SWI-Prolog exists (see the file INSTALL.html in the PAKCS directory for a description of the
necessary software to install PAKCS).

All executable files required to use the different components of PAKCS are stored in
the directory pakcshome/bin (where pakcshome is the installation directory of the complete
PAKCS installation). You should add this directory to your path (e.g., by the bash command
“export PATH=pakcshome/bin:$PATH”).

The source code of the Curry program must be stored in a file with the suffix “.curry”, e.g.,
prog.curry. Literate programs must be stored in files with the extension “.lcurry”. They are
automatically converted into corresponding “.curry” files by deleting all lines not starting with
“>” and removing the prefix “> ” of the remaining lines.

Since the translation of Curry programs with PAKCS creates some auxiliary files (see Section C
for details), you need write permission in the directory where you have stored your Curry programs.
The auxiliary files for all Curry programs in the current directory can be deleted by the command

cleancurry

(this is a shell script stored in the bin directory of the PAKCS installation, see above). The
command

cleancurry -r

also deletes the auxiliary files in all subdirectories.

1.2 Restrictions on Curry Programs

There are a few minor restrictions on Curry programs when they are processed with PAKCS:

• Singleton variables, i.e., variables that occur only once in a rule, should be denoted as an
anonymous variable “_”, otherwise the parser will print a warning since this is a typical
source of programming errors.

• PAKCS translates all local declarations into global functions with additional arguments
(“lambda lifting”, see Appendix D of the Curry language report). Thus, in the various
run-time systems, the definition of functions with local declarations look different from their
original definition (in order to see the result of this transformation, you can use the Curry-
Browser, see Section 5).

• Tabulator stops instead of blank spaces in source files are interpreted as stops at columns 9,
17, 25, 33, and so on.

• Threads created by a concurrent conjunction are not executed in a fair manner (usually,
threads corresponding to leftmost constraints are executed with higher priority).

• Encapsulated search: In order to allow the integration of non-deterministic computations in
programs performing I/O at the top-level, PAKCS supports the search operators findall

5

and findfirst. In contrast to the general definition of encapsulated search [15], the current
implementation suspends the evaluation of findall and findfirst until the argument does
not contain unbound global variables. Moreover, the evaluation of findall is strict, i.e., it
computes all solutions before returning the complete list of solutions. It is recommended to
use the system module AllSolutions for encapsulating search.

• There is currently no general connection to external constraint solvers. However, the
Curry2Prolog compiler provides constraint solvers for arithmetic and finite domain constraints
(see Appendix A).

1.3 Modules in PAKCS

The current implementation of PAKCS supports only flat module names, i.e., the notation
Dir.Mod.f is not supported. In order to allow the structuring of modules in different directories,
PAKCS searches for imported modules in various directories. By default, imported modules are
searched in the directory of the main program and the system module directories “pakcshome/lib”
and “pakcshome/lib/meta”. This search path can be extended by setting the environment variable
CURRYPATH (which can be also set in a PAKCS session by the Curry2Prolog command “:set path”,
see below) to a list of directory names separated by colons (“:”). In addition, a local standard
search path can be defined in the “.pakcsrc” file (see Section 2.2). Thus, modules to be loaded
are searched in the following directories (in this order, i.e., the first occurrence of a module file in
this search path is imported):

1. Current working directory (“.”) or directory prefix of the main module (e.g., directory
“/home/joe/curryprogs” if one loads the Curry program “/home/joe/curryprogs/main”).

2. The directories enumerated in the environment variable CURRYPATH.

3. The directories enumerated in the “.pakcsrc” variable “libraries”.

4. The directories “pakcshome/lib” and “pakcshome/lib/meta”.

Note that the standard prelude (pakcshome/lib/Prelude.curry) will be always implicitly im-
ported to all modules if a module does not contain an explicit import declaration for the module
Prelude.

6

2 PAKCS/Curry2Prolog: An Interactive Curry Development

System

PAKCS/Curry2Prolog, in the following just called “PAKCS”, is an interactive system to develop
applications written in Curry.1 It is implemented in Prolog and compiles Curry programs into Pro-
log programs. It contains various tools, a source-level debugger, solvers for arithmetic constraints
over real numbers and finite domain constraints, etc. The compilation process and the execution of
compiled programs is fairly efficient if a good Prolog implementation like SICStus-Prolog is used.

2.1 How to Use PAKCS

To start PAKCS, execute the command “pakcs” (this is a shell script stored in pakcshome/bin

where pakcshome is the installation directory of PAKCS). When the system is ready, the prelude
(pakcshome/lib/Prelude.curry) is already loaded, i.e., all definitions in the prelude are accessi-
ble. Now you can type in various commands. The most important commands are (it is sufficient
to type a unique prefix of a command if it is unique, e.g., one can type “:r” instead of “:reload”):

:help Show a list of all available commands.

:load prog Compile and load the program stored in prog.curry. If this file does not exist, the
system looks for a FlatCurry file prog.fcy and compiles from this intermediate representation.
If the file prog.fcy does not exists, too, the system looks for a file prog_flat.xml containing
a FlatCurry program in XML representation (compare command “:xml”), translates this into
a FlatCurry file prog.fcy and compiles from this intermediate representation.

:reload Repeat the last load command.

expr Evaluate the expression expr to normal form and show the computed results. Since the
PAKCS compiles Curry programs into Prolog programs, non-deterministic computations are
implemented by backtracking. Therefore, computed results are shown one after the other.
After each computed result, you can proceed the computation of the next alternative result
by typing “;” (followed by a CR) or stop the search for alternatives by just typing CR.

Free variables in initial expressions must be declared as in Curry programs (if the free
variable mode is not turned on, see option “+free” below), i.e., either by a “let...free in”
or by a “where...free” declaration. For instance, one can write

let xs,ys free in xs++ys =:= [1,2]

or

xs++ys =:= [1,2] where xs,ys free

Without these declarations, an error is reported in order to avoid the unintended introduction
of free variables in initial expressions by typos.

Note that lambda abstractions, lets and list comprehensions in top-level expressions are not
yet supported in initial expressions typed in the top-level of PAKCS.

1There are also two other implementations of Curry contained in the PAKCS distribution (Curry2Java and

TasteCurry, see Appendix D and E for more details). Since the other implementations are no longer actively supported

and Curry2Prolog is the most advanced implementation, we recommend the use of the Curry2Prolog compiler system.

7

let x = expr Define the identifier x as an abbreviation for the expression expr which can be used
in subsequent expressions. The identifier x is visible until the next load or reload command.

:quit Exit the system.

There are also a number of further commands that are often useful:

:type expr Show the type of the expression expr.

:browse Start the CurryBrowser to analyze the currently loaded module together with all its
imported modules (see Section 5 for more details).

:interface Show the interface of the currently loaded module, i.e., show the names of all im-
ported modules, the fixity declarations of all exported operators, the exported datatypes
declarations and the types of all exported functions.

:interface prog Similar to “:interface” but shows the interface of the module “prog.curry”.
If this module does not exist, this command looks in the system library directory of PAKCS for
a module with this name, e.g., the command “:interface FlatCurry” shows the interface
of the system module FlatCurry for meta-programming (see Appendix A.1.4).

:analyze Analyze the currently loaded program for some properties. Currently, there are the
following analysis options:

functions Check properties of all functions defined in the currently loaded Curry program
(i.e., without the functions defined in the prelude and imported modules). Currently,
the following properties are checked:

1. Which functions are defined by overlapping left-hand sides?

2. Which functions are indeterministic, i.e., contains an indirect/implicit call to a send

constraint on ports (see Appendix A.1.3, which includes an implicit committed
choice)?

icalls Show all calls to imported functions in the currently loaded module. This might be
useful to see which import declarations are really necessary.

igraph Visualize the module dependencies of the currently loaded module (without the
prelude which is used everywhere) as a graph with the daVinci graph drawing tool (see
also the system library DaVinci).

:set option Set or turn on/off a specific option of the PAKCS environment. Options are turned
on by the prefix “+” and off by the prefix “-”. Options that can only be set (e.g., printdepth)
must not contain a prefix. The following options are currently supported:

+/-debug Debug mode. In the debug mode, one can trace the evaluation of an expression,
setting spy points (break points) etc. (see the commands for the debug mode described
below).

8

+/-free Free variable mode. If the free variable mode is off (default), then free variables
occurring in initial expressions entered in the PAKCS environment must always be de-
clared by a “let...free in” or “where...free” declaration (as in Curry programs).
This avoids the introduction of free variables in initial expressions by typos (which might
lead to the exploration of infinite search spaces). If the free variable mode is on, each
undefined symbol in an initial expression is considered as a free variable.

+/-printfail Print failures. If this option is set, failures occurring during evaluation
(i.e., non-reducible demanded subexpressions) are printed. This is useful to see failed
reductions due to partially defined functions or failed unifications. Inside encapsulated
search (e.g., inside evaluations of findall and findfirst), failures are not printed
(since they are a typical programming technique there). Note that this option causes
some overhead in execution time and memory so that it could not be used in larger
applications.

+/-allfails If this option is set, all failures (i.e., also failures on backtracking and failures
of enclosing functions that fail due to the failure of an argument evaluation) are printed if
the option printfail is set. Otherwise, only the first failure (i.e., the first non-reducible
subexpression) is printed.

+/-consfail Print constructor failures. If this option is set, failures due to application
of functions with non-exhaustive pattern matching or failures during unification (ap-
plication of “=:=”) are shown. Inside encapsulated search (e.g., inside evaluations of
findall and findfirst), failures are not printed (since they are a typical programming
technique there). In contrast to the option printfail, this option creates only a small
overhead in execution time and memory use.

+consfail all Similarly to “+consfail”, but the complete trace of all active (and just
failed) function calls from the main function to the failed function are shown.

+consfail file:f Similarly to “+consfail all”, but the complete fail trace is stored in
the file f . This option is useful in non-interactive program executions like web scripts.

+consfail int Similarly to “+consfail all”, but after each failure occurrence, an inter-
active mode for exploring the fail trace is started (see help information in this interactive
mode). When the interactive mode is finished, the program execution proceeds with a
failure.

+/-profile Profile mode. If the profile mode is on, then information about the number
of calls, failures, exits etc. are collected for each function during the debug mode (see
above) and shown after the complete execution (additionaly, the result is stored in the
file prog.profile where prog is the current main program). The profile mode has no
effect outside the debug mode.

+/-suspend Suspend mode (initially, it is off). If the suspend mode is on, all suspended
expressions (if there are any) are shown (in their internal representation) at the end of
a computation.

+/-time Time mode. If the time mode is on, the cpu time and the elapsed time of the
computation is always printed together with the result of an evaluation.

9

+/-verbose Verbose mode (initially, it is off). If the verbose mode is on, the initial ex-
pression of a computation (together with its type) is printed before this expression is
evaluated.

+/-warn Parser warnings. If the parser warnings are turned on (default), the parser will
print warnings about variables that occur only once in a program rule (see Section 1.2)
or locally declared names that shadow the definition of globally declared names. If the
parser warnings are switched off, these warnings are not printed during the reading of a
Curry program.

path path Set the additional search path for loading modules to path. Note that this
search path is only used for loading modules inside this invocation of PAKCS, i.e., the
environment variable “CURRYPATH” (see also Section 1.3) is set to path in this invocation
of PAKCS.

printdepth n Set the depth for printing terms to the value n (initially: 10). In this case
subterms with a depth greater than n are abbreviated by dots when they are printed
as a result of a computation or during debugging. A value of 0 means infinite depth so
that the complete terms are printed.

:set Show a help text on the “:set option” command together with the current values of all
options.

:show Show the source text of the currently loaded Curry program. If the source text is not
available (since the program has been directly compiled from a FlatCurry or XML file), the
loaded program is decompiled and the decompiled Curry program text is shown.

:cd dir Change the current working directory to dir.

:dir Show the names of all Curry programs in the current working directory.

:!cmd Shell escape: execute cmd in a Unix shell.

:save Save the current state of the system (together with the compiled program prog.curry) in
the file prog.state, i.e., you can later start the program again by typing “prog.state” as a
Unix command.

:save expr Similar as “:save” but the expression expr (typically: a call to the main function)
will be executed after restoring the state and the execution of the restored state terminates
when the evaluation of the expression expr terminates.

:fork expr The expression expr, which must be of type “IO ()”, is evaluated in an independent
process which runs in parallel to the current PAKCS process. All output and error messages
from this new process are suppressed. This command is useful to test distributed Curry
programs (see Appendix A.1.3) where one can start a new server process by this command.
The new process will be terminated when the evaluation of the expression expr is finished.

:coosy Start the Curry Object Observation System COOSy, a tool to observe the execution of
Curry programs. This commands starts a graphical user interface to show the observation
results and adds to the load path the directory containing the modules that must be imported

10

in order to annotate a program with observation points. Details about the use of COOSy can
be found in the COOSy interface (under the “Info” button), and details about the general
idea of observation debugging and the implementation of COOSy can be found in [7].

:xml Translate the currently loaded program module into an XML representation according to the
format described in http://www.informatik.uni-kiel.de/~curry/flat/. Actually, this
yields an implementation-independent representation of the corresponding FlatCurry program
(see Appendix A.1.4 for a description of FlatCurry). If prog is the name of the currently
loaded program, the XML representation will be written into the file “prog_flat.xml”.

:peval Translate the currently loaded program module into an equivalent program where some
subexpressions are partially evaluated so that these subexpressions are (hopefully) more ef-
ficiently executed. An expression e to be partially evaluated must be marked in the source
program by (PEVAL e) (where PEVAL is defined as the identity function in the prelude so that
it has no semantical meaning).

The partial evaluator translates a source program prog.curry into the partially evaluated pro-
gram in intermediate representation stored in prog_pe.fcy. The latter program is implicitly
loaded by the peval command so that the partially evaluated program is directly available.
The corresponding source program can be shown by the show command (see above).

The current partial evaluator is an experimental prototype (so it might not work on all
programs) based on the ideas described in [1, 2, 3, 4].

PAKCS can also execute programs in the debug mode. The debug mode is switched on by
setting the debug option with the command “:set +debug”. In order to switch back to normal
evaluation of the program, one has to execute the command “:set -debug”.

In the debug mode, PAKCS offers the following additional options for the “:set” com-
mand:

+/-single Turn on/off single mode for debugging. If the single mode is on, the evaluation of an
expression is stopped after each step and the user is asked how to proceed (see the options
there).

+/-trace Turn on/off trace mode for debugging. If the trace mode is on, all intermediate ex-
pressions occurring during the evaluation of an expressions are shown.

spy f Set a spy point (break point) on the function f . In the single mode, you can “leap” from
spy point to spy point (see the options shown in the single mode).

+/-spy Turn on/off spy mode for debugging. If the spy mode is on, the single mode is automat-
ically activated when a spy point is reached.

2.2 Customization

In order to customize the behavior of PAKCS to your own preferences, there is a configuration file
which is read by PAKCS when it is invoked. When you start PAKCS for the first time, a standard
version of this configuration file is copied with the name “.pakcsrc” into your home directory.

11

http://www.informatik.uni-kiel.de/~curry/flat/

The file contains definitions of various settings, e.g., about showing warnings, progress messages
etc. After you have started PAKCS for the first time, look into this file and adapt it to your own
preferences.

2.3 Emacs Interface

Emacs is a powerful programmable editor suitable for program development. It is freely available
for many platforms (see http://www.emacs.org or http://www.xemacs.org). The distribution of
PAKCS contains also a special Curry mode that supports the development of Curry programs in the
(X)Emacs environment. This mode includes support for syntax highlighting, finding declarations
in the current buffer, and loading Curry programs into the PAKCS/Curry2Prolog compiler system
in an Emacs shell.

The Curry mode has been adapted from a similar mode for Haskell programs. Its installation
is described in the file README in directory “pakcshome/tools/emacs” which also contains the
sources of the Curry mode and a short description about the use of this mode.

12

http://www.emacs.org
http://www.xemacs.org

3 Extensions

PAKCS supports some extensions in Curry programs that are not (yet) part of the definition of
Curry. These extensions are described below.

3.1 Recursive Variable Bindings

Local variable declarations (introduced by let or where) can be (mutually) recursive in PAKCS.
For instance, the declaration

ones5 = let ones = 1 : ones

in take 5 ones

introduces the local variable ones which is bound to a cyclic structure representing an infinite list
of 1’s. Similarly, the definition

onetwo n = take n one2

where

one2 = 1 : two1

two1 = 2 : one2

introduces a local variables one2 that represents an infinite list of alternating 1’s and 2’s so that
the expression (onetwo 6) evaluates to [1,2,1,2,1,2].

3.2 Function Patterns

Function patterns [6] are a useful extension to code operations in a more readable way. Furthermore,
defining operations with function patterns avoids problems caused by strict equality (“=:=”) and
leads to programs that are potentially more efficient.

Consider the definition of an operation to compute the last element of a list xs based on the
prelude operation “++” for list concatenation:

last xs | ys++[y] =:= xs = y where y,ys free

Since the equality constraint “=:=” evaluates both sides to a constructor term, all elements of the
list xs are fully evaluated in order to satisfy the constraint.

Function patterns can help to improve this computational behavior. A function pattern is a
function call at a pattern position. With function patterns, we can define the operation last as
follows:

last (_++[y]) = y

This definition is not only more compact but also avoids the complete evaluation of the list elements:
since a function pattern is considered as an abbreviation for the set of constructor terms obtained
by all evaluations of the function pattern to normal form (see [6] for an exact definition), the
previous definition is conceptually equivalent to the set of rules

last [y] = y

last [_,y] = y

last [_,_,y] = y

...

which shows that the evaluation of the list elements is not demanded by the function pattern.

13

In general, a pattern of the form (f t1...tn) (n > 0) is interpreted as a function pattern if f

is not a visible constructor but a defined function that is visible in the scope of the pattern.

Optimization of programs containing function patterns. Since functions patterns can eval-
uate to non-linear constructor terms, they are dynamically checked for multiple occurrences of vari-
ables which are, if present, replaced by equality constraints so that the constructor term is always
linear (see [6] for details). Since these dynamic checks are costly and not necessary for function
patterns that are guaranteed to evaluate to linear terms, there is an optimizer for function patterns
that checks for occurrences of function patterns that evaluate always to linear constructor terms
and replace such occurrences with a more efficient implementation. This optimizer can be enabled
by the following possibilities:

• Set the environment variable FCYPP to “-fpopt” before starting PAKCS, e.g., by the shell
command

export FCYPP="-fpopt"

Then the function pattern optimization is applied if programs are compiled and loaded in
PAKCS.

• Put an option into the source code: If the source code of a program contains a line with a
comment of the form (the comment must start at the beginning of the line)

{-# PAKCS_OPTION_FCYPP -fpopt #-}
then the function pattern optimization is applied if this program is compiled and loaded in
PAKCS.

The optimizer also report errors in case of wrong uses of function patterns (i.e., in case of a function
f defined with function patterns that recursively depend on f).

3.3 Records

A record is a data structure for bundling several data of various types. It consists of typed data
fields where each field is associated with a unique label. These labels can be used to construct,
select or update fields in a record.

Unlike labeled data fields in Haskell, records are not syntactic sugar but a real extension of the
language2. The basic concept is described in [18] but the current version does not yet provide all
features mentioned there. The restrictions are explained in Section 3.3.7.

3.3.1 Record Type Declaration

It is necessary to declare a record type before a record can be constructed or used. The declaration
has the following form:

type R α1 ... αn = { l1 :: τ1, ..., lm :: τm }
2The current version allows to transform records into abstract data types. Future extensions may not have this

facility.

14

It introduces a new n-ary record type R which represents a record consisting of m fields. Each field
has a unique label li representing a value of the type τi. Labels are identifiers which refer to the
corresponding fields. The following examples define some record types:

type Person = {name :: String, age :: Int}
type Address = {person :: Person, street :: String, city :: String}
type Branch a b = {left :: a, right :: b}

It is possible to summarize different labels which have the same type. For instance, the record
Address can also be declared as follows:

type Address = {person :: Person, street,city :: String}
The fields can occur in an arbitrary order. The example above can also be written as

type Address = {street,city :: String, person :: Person}
The record type can be used in every type expression to represent the corresponding record, e.g.

data BiTree = Node (Branch BiTree BiTree) | Leaf Int

getName :: Person -> String

getName ...

Labels can only be used in the context of records. They do not share the name space with
functions/constructors/variables or type constructors/type variables. For instance it is possible to
use the same identifier for a label and a function at the same time. Label identifiers cannot be
shadowed by other identifiers.

Like in type synonym declarations, recursive or mutually dependent record declarations are not
allowed. Records can only be declared at the top level. Further restrictions are described in section
3.3.7.

3.3.2 Record Construction

The record construction generates a record with initial values for each data field. It has the following
form:

{ l1 = v1, ..., lm = vm }
It generates a record where each label li refers to the value vi. The type of the record results from
the record type declaration where the labels li are defined. A mix of labels from different record
types is not allowed. All labels must be specified with exactly one assignment. Examples for record
constructions are

{name = "Johnson", age = 30} -- generates a record of type ’Person’

{left = True, right = 20} -- generates a record of type ’Branch’

Assignments to labels can occur in an arbitrary order. For instance a record of type Person can
also be generated as follows:

{age = 30, name = "Johnson"} -- generates a record of type ’Person’

Unlike labeled fields in record type declarations, record constructions can be used in expressions
without any restrictions (as well as all kinds of record expressions). For instance the following
expression is valid:

{person = {name = "Smith", age = 20}, -- generates a record of

15

street = "Main Street", -- type ’Address’

city = "Springfield"}

3.3.3 Field Selection

The field selection is used to extract data from records. It has the following form:

r -> l

It returns the value to which the label l refers to from the record expression r. The label must
occur in the declaration of the record type of r. An example for a field selection is:

pers -> name

This returns the value of the label name from the record pers (which has the type Person). Se-
quential application of field selections are also possible:

(addr -> person) -> age

The value of the label age is extracted from a record which itself is the value of the label person
in the record addr (which has the type Address). When a field selection is used in expressions, it
has to be parenthesized.

3.3.4 Field Update

Records can be updated by reassigning a new value to a label:

{l1 := v1, ..., lk := vk | r}
The label li is associated with the new value vi which replaces the current value in the record r.
The labels must occur in the declaration of the record type of r. In contrast to record constructions,
it is not necessary to specify all labels of a record. Assignments can occur in an arbitrary order.
It is not allowed to specify more than one assignment for a label in a record update. Examples for
record updates are:

{name := "Scott", age := 25 | pers}
{person := {name := "Scott", age := 25 | pers} | addr}

In these examples pers is a record of type Person and addr is a record of type Address.

3.3.5 Records in Pattern Matching

It is possible to apply pattern matching to records (e.g., in functions, let expressions or case
branches). Two kinds of record patterns are available:

{l1 = p1, ..., ln = pn}
{l1 = p1, ..., lk = pk | _}

In both cases each label li is specified with a pattern pi. All labels must occur only once in the
record pattern. The first case is used to match the whole record. Thus, all labels of the record must
occur in the pattern. The second case is used to match only a part of the record. Here it is not
necessary to specify all labels. This case is represented by a vertical bar followed by the underscore
(anonymous variable). It is not allowed to use a pattern term instead of the underscore.

When trying to match a record against a record pattern, the patterns of the specified labels
are matched against the corresponding values in the record expression. On success, all pattern

16

variables occurring in the patterns are replaced by their actual expression. If none of the patterns
matches, the computation fails.

Here are some examples of pattern matching with records:

isSmith30 :: Person -> Bool

isSmith30 {name = "Smith", age = 30} = True

startsWith :: Char -> Person -> Bool

startsWith c {name = (d:_) | _} = c == d

getPerson :: Address -> Person

getPerson {person = p | _} = p

As shown in the last example, a field selection can also be obtained by pattern matching.

3.3.6 Export of Records

Exporting record types and labels is very similar to exporting data types and constructors. There
are three ways to specify an export:

• module M (..., R, ...) where

exports the record R without any of its labels.

• module M (..., R(..), ...) where

exports the record R together with all its labels.

• module M (..., R(l1,...,lk), ...) where

exports the record R together with the labels l1, . . . , lk.

Note that imported labels cannot be overwritten in record declarations of the importing module.
It is also not possible to import equal labels from different modules.

3.3.7 Restrictions in the Usage of Records

In contrast to the basic concept in [18], PAKCS/Curry provides a simpler version of records. Some
of the features described there are currently not supported or even restricted.

• Labels must be unique within the whole scope of the program. In particular, it is not allowed
to define the same label within different records, not even when they are imported from other
modules. However, it is possible to use equal identifiers for other entities without restrictions,
since labels have an independent name space.

• The record type representation with labeled fields can only be used as the right-hand-side of
a record type declaration. It is not allowed to use it in any other type annotation.

• Records are not extensible or reducible. The structure of a record is specified in its record
declaration and cannot be modified at the runtime of the program.

• Empty records are not allowed.

• It is not allowed to use a pattern term at the right side of the vertical bar in a record pattern
except for the underscore (anonymous pattern variable).

17

• Labels cannot be sequentially associated with multiple values (record fields do not behave
like stacks).

18

4 CurryDoc: A Documentation Generator for Curry Programs

CurryDoc is a tool in the PAKCS distribution that generates the documentation for a Curry
program (i.e., the main module and all its imported modules) in HTML format. The generated
HTML pages contain information about all data types and functions exported by a module as well
as links between the different entities. Furthermore, some information about the definitional status
of functions (like rigid, flexible, external, complete, or overlapping definitions) are provided and
combined with documentation comments provided by the programmer.

A documentation comment starts at the beginning of a line with “--- ” (also in literate
programs!). All documentation comments immediately before a definition of a datatype or (top-
level) function are kept together.3 The documentation comments for the complete module occur
before the first “module” or “import” line in the module. The comments can also contain several
special tags. These tags must be the first thing on its line (in the documentation comment) and
continues until the next tag is encountered or until the end of the comment. The following tags
are recognized:

@author comment
Specifies the author of a module (only reasonable in module comments).

@version comment
Specifies the version of a module (only reasonable in module comments).

@cons id comment
A comment for the constructor id of a datatype (only reasonable in datatype comments).

@param id comment
A comment for function parameter id (only reasonable in function comments). Due to pattern
matching, this need not be the name of a parameter given in the declaration of the function
but all parameters for this functions must be commented in left-to-right order (if they are
commented at all).

@return comment
A comment for the return value of a function (only reasonable in function comments).

The comment of a documented entity can be any string in HTML format, i.e., special characters
like “<” must be quoted (e.g., “<”). It can also contain HTML tags. However, header tags like
<h1> should not be used since the structuring is generated by CurryDoc. For the same reason,
preformatted text (tag <pre>) should not be used since the formatting is the task of CurryDoc.

The following example text shows a Curry program with some documentation comments:

--- This is an
--- example module.
--- @author Michael Hanus
--- @version 0.1

3The documentation tool recognizes this association from the first identifier in a program line. If one wants to

add a documentation comment to the definition of a function which is an infix operator, the first line of the operator

definition should be a type definition, otherwise the documentation comment is not recognized.

19

module Example where

--- The function conc concatenates two lists. It is defined
--- as flexible so that it can also be used to split a given list.
--- @param xs - the first list
--- @param ys - the second list
--- @return a list containing all elements of xs and ys
conc eval flex
conc [] ys = ys
conc (x:xs) ys = x : conc xs ys
-- this comment will not be included in the documentation

--- The function last computes the last element of a given list.
--- @param xs - the given input list
--- @return last element of the input list
last xs | conc ys [x] =:= xs = x where x,ys free

--- This datatype defines polymorphic trees.
--- @cons Leaf - a leaf of the tree
--- @cons Node - an inner node of the tree
data Tree a = Leaf a | Node [Tree a]

To generate the documentation, execute the command

currydoc -html Example

(currydoc is a command usually stored in pakcshome/bin where pakcshome is the installation
directory of PAKCS; see Section 1.1). This command creates the directory DOC_Example (if it does
not exist) and puts all HTML documentation files for the main program module Example and all
its imported modules in this directory together with a main index file index.html. If one prefers
another directory for the documentation files, one can also execute the command

currydoc -html docdir Example

where docdir is the directory for the documentation files.
In order to generate the common documentation for large collections of Curry modules (e.g., the

libraries contained in the PAKCS distribution), one can call currydoc with the following options:

currydoc -noindexhtml docdir Mod : This command generates the documentation for module
Mod in the directory docdir without the index pages (i.e., main index page and index pages
for all functions and constructors defined in Mod and its imported modules).

currydoc -onlyindexhtml docdir Mod1 Mod2 ...Modn : This command generates only the in-
dex pages (i.e., a main index page and index pages for all functions and constructors defined
in the modules Mod1, M2,. . . ,Modn and their imported modules) in the directory docdir.

20

5 CurryBrowser: A Tool for Analyzing and Browsing Curry Pro-

grams

CurryBrowser is a tool to browse through the modules and functions of a Curry application, show
them in various formats, and analyze their properties.4 Moreover, it is constructed in a way so
that new analyzers can be easily connected to CurryBrowser. A detailed description of the ideas
behind this tool can be found in [12, 13].

CurryBrowser is part of the PAKCS distribution and can be started in two ways:

• In the command shell via the command: pakcshome/bin/currybrowser mod

• In the PAKCS/Curry2Prolog environment after loading the module mod and typing the com-
mand “:browse”.

Here, “mod” is the name of the main module of a Curry application. After the start, CurryBrowser
loads the interfaces of the main module and all imported modules before a GUI is created for
interactive browsing.

To get an impression of the use of CurryBrowser, Figure 1 shows a snapshot of its use on a
particular application (here: the implementation of CurryBrowser). The upper list box in the
left column shows the modules and their imports in order to browse through the modules of an
application. Similarly to directory browsers, the list of imported modules of a module can be opened
or closed by clicking. After selecting a module in the list of modules, its source code, interface, or
various other formats of the module can be shown in the main (right) text area. For instance, one
can show pretty-printed versions of the intermediate flat programs (see below) in order to see how
local function definitions are translated by lambda lifting [17] or pattern matching is translated
into case expressions [8, 20]. Since Curry is a language with parametric polymorphism and type
inference, programmers often omit the type signatures when defining functions. Therefore, one can
also view (and store) the selected module as source code where missing type signatures are added.

Below the list box for selecting modules, there is a menu (“Analyze selected module”) to analyze
all functions of the currently selected module at once. This is useful to spot some functions of a
module that could be problematic in some application contexts, like functions that are impure (i.e.,
the result depends on the evaluation time) or partially defined (i.e., not evaluable on all ground
terms). If such an analysis is selected, the names of all functions are shown in the lower list box
of the left column (the “function list”) with prefixes indicating the properties of the individual
functions.

The function list box can be also filled with functions via the menu “Select functions”. For
instance, all functions or only the exported functions defined in the currently selected module can
be shown there, or all functions from different modules that are directly or indirectly called from a
currently selected function. This list box is central to focus on a function in the source code of some
module or to analyze some function, i.e., showing their properties. In order to focus on a function,
it is sufficient to check the “focus on code” button. To analyze an individually selected function,
one can select an analysis from the list of available program analyses (through the menu “Select
analysis”). In this case, the analysis results are either shown in the text box below the main text

4Although CurryBrowser is implemented in Curry, some functionalities of it require an installed graph visualization

tool (dot http://www.graphviz.org/), otherwise they have no effect.

21

http://www.graphviz.org/

Figure 1: Snapshot of the main window of CurryBorwser

area or visualized by separate tools, e.g., by a graph drawing tool for visualizing call graphs. Some
analyses are local, i.e., they need only to consider the local definition of this function (e.g., “Calls
directly,” “Overlapping rules,” “Pattern completeness”), where other analyses are global, i.e., they
consider the definitions of all functions directly or indirectly called by this function (e.g., “Depends
on,” “Solution complete,” “Set-valued”). Finally, there are a few additional tools integrated into
CurryBrowser, for instance, to visualize the import relation between all modules as a dependency
graph. These tools are available through the “Tools” menu.

More details about the use of CurryBrowser and all built-in analyses are available through the
“Help” menu of CurryBrowser.

22

6 CurryTest: A Tool for Testing Curry Programs

CurryTest is a simple tool in the PAKCS distribution to write and run repeatable tests. CurryTest
simplifies the task of writing test cases for a module and executing them. The tool is easy to
use. Assume one has implemented a module MyMod and wants to write some test cases to test its
functionality, making regression tests in future versions, etc. For this purpose, there is a system
library Assertion which contains the necessary definitions for writing tests. In particular, it
exports the following datatype:

data Assertion a = AssertTrue String Bool

| AssertEqual String a a

| AssertValues String a [a]

| AssertSolutions String (a->Success) [a]

| AssertIO String (IO a) a

| AssertEqualIO String (IO a) (IO a)

The expression “AssertTrue s b” is an assertion (named s) that the expression b has the value
True. Similarly, the expression “AssertEqual s e1 e2” asserts that the expressions e1 and e2 must
be equal (i.e., e1==e2 must hold), the expression “AssertValues s e vs” asserts that vs is the mul-
tiset of all values of e, and the expression “AssertSolutions s c vs” asserts that the constraint
abstraction c has the multiset of solutions vs. Furthermore, the expression “AssertIO s a v”
asserts that the I/O action a yields the value v whenever it is executed, and the expression
“AssertEqualIO s a1 a2” asserts that the I/O actions a1 and a2 yields equal values. The name
of each assertion is used in the protocol of the test tool.

Now one can define a test program by importing the module to be tested together with the
module Assertion and defining top-level functions of type Assertion in this module (which must
also be exported). As an example, consider the following program that can be used to test some
list processing functions:

import List

import Assertion

test1 = AssertEqual "++" ([1,2]++[3,4]) [1,2,3,4]

test2 = AssertTrue "all" (all (<5) [1,2,3,4])

test3 = AssertSolutions "prefix" (\x -> let y free in x ++ y =:= [1,2])

[[],[1],[1,2]]

For instance, test1 asserts that the result of evaluating the expression ([1,2]++[3,4]) is equal
to [1,2,3,4].

We can execute a test suite by the command

currytest testList

(currytest is a program stored in pakcshome/bin where pakcshome is the installation directory
of PAKCS; see Section 1.1). In our example, “testList.curry” is the program containing the def-
inition of all assertions. This has the effect that all exported top-level functions of type Assertion

are tested (i.e., the corresponding assertions are checked) and the results (“OK” or failure) are re-
ported together with the name of each assertion. For our example above, we obtain the following
successful protocol:

23

Figure 2: Snapshot of CurryTest’s graphical interface

==

Testing module "testList"...

OK: ++

OK: all

OK: prefix

All tests successfully passed.

==

There is also a graphical interface that summarizes the results more nicely.5 In order to start this
interface, one has to add the parameter “-window”, e.g., executing a test suite by

currytest -window testList

A snapshot of the interface is shown in Figure 2.

5Due to a bug in older versions of SICStus-Prolog, it works only with SICStus-Prolog version 3.8.5 (or newer).

24

7 Preprocessing FlatCurry Files

The current parser allows to apply transformations on the intermediate FlatCurry files after they
are generated from the corresponding Curry source file. Currently, only the FlatCurry file corre-
sponding to the main module can be transformed.

A transformation can be specified as follows:

1. Options to pakcs/bin/parsecurry:

-fpopt Apply function pattern optimization (see pakcs/tools/optimize/NonStrictOpt.curry
for details).

-compact Apply code compactification after parsing, i.e., transform the main module and
all its imported into one module and delete all non-accessible functions.

-compactexport Similar to -compact but delete all functions that are not accessible from
the exported functions of the main module.

-compactmain:f Similar to -compact but delete all functions that are not accessible from
the function “f” of the main module.

-fcypp cmd Apply command cmd to the main module after parsing. This is useful to
integrate your own transformation into the compilation process. Note that the command
“cmd prog” should perform a transformation on the FlatCurry file prog.fcy, i.e., it
replaces the FlatCurry file by a new one.

2. Setting the environment variable FCYPP:
For instance, setting FCYPP by

export FCYPP="-fpopt"

will apply the function pattern optimization if programs are compiled and loaded in the
PAKCS programming environment.

3. Putting options into the source code:
If the source code contains a line with a comment of the form (the comment must start at
the beginning of the line)

{-# PAKCS_OPTION_FCYPP <options> #-}
then the transformations specified by <options> are applied after translating the source
code into FlatCurry code. For instance, the function pattern optimization can be set by the
comment

{-# PAKCS_OPTION_FCYPP -fpopt #-}
in the source code. Note that this comment must be in a single line of the source program.
If there are multiple lines containing such comments, only the first one will be considered.

Multiple options: Note that an arbitrary number of transformations can be specified by the
methods described above. If several specifications for preprocessing FlatCurry files are used, they
are executed in the following order:

1. all transformations specified by the environemnt variable FCYPP (from left to right)

25

2. all transformations specified as command line options of parsecurry (from left to right)

3. all transformations specified by a comment line in the source code (from left to right)

26

8 Technical Problems

Due to the fact that Curry is intended to implement distributed systems (see Appendix A.1.3), it
might be possible that some technical problems arise due to the use of sockets for implementing
these features. Therefore, this section gives some information about the technical requirements of
PAKCS and how to solve problems due to these requirements.

There is one fixed port that is used by the implementation of PAKCS:

Port 8766: This port is used by the Curry Port Name Server (CPNS) to implement symbolic
names for ports in Curry (see Appendix A.1.3). If some other process uses this port on the
machine, the distribution facilities defined in the module Ports (see Appendix A.1.3) cannot
be used.

If these features do not work, you can try to find out whether this port is in use by the shell
command “netstat -a | fgrep 8766” (or similar).

The CPNS is implemented as a demon listening on its port 8766 in order to serve requests
about registering a new symbolic name for a Curry port or asking the physical port number of a
Curry port. The demon will be automatically started for the first time on a machine when a user
compiles a program using Curry ports. It can also be manually started and terminated by the
scripts pakcshome/cpns/start and pakcshome/cpns/stop. If the demon is already running, the
command pakcshome/cpns/start does nothing (so it can be always executed before invoking a
Curry program using ports).

If you detect any further technical problem, please write to

mh@informatik.uni-kiel.de

27

References

[1] E. Albert, M. Alpuente, M. Hanus, and G. Vidal. A partial evaluation framework for Curry
programs. In Proc. of the 6th International Conference on Logic for Programming and Auto-
mated Reasoning (LPAR’99), pages 376–395. Springer LNCS 1705, 1999.

[2] E. Albert, M. Hanus, and G. Vidal. Using an abstract representation to specialize functional
logic programs. In Proc. of the 7th International Conference on Logic for Programming and
Automated Reasoning (LPAR 2000), pages 381–398. Springer LNCS 1955, 2000.

[3] E. Albert, M. Hanus, and G. Vidal. A practical partial evaluator for a multi-paradigm declar-
ative language. In Proc. of the 5th International Symposium on Functional and Logic Pro-
gramming (FLOPS 2001), pages 326–342. Springer LNCS 2024, 2001.

[4] E. Albert, M. Hanus, and G. Vidal. A practical partial evaluator for a multi-paradigm declar-
ative language. Journal of Functional and Logic Programming, 2002(1), 2002.

[5] S. Antoy and M. Hanus. Compiling multi-paradigm declarative programs into Prolog. In Proc.
International Workshop on Frontiers of Combining Systems (FroCoS’2000), pages 171–185.
Springer LNCS 1794, 2000.

[6] S. Antoy and M. Hanus. Declarative programming with function patterns. In Proceedings of
the International Symposium on Logic-based Program Synthesis and Transformation (LOP-
STR’05). Springer LNCS (to appear), 2005.

[7] B. Braßel, O. Chitil, M. Hanus, and F. Huch. Observing functional logic computations. In
Proc. of the Sixth International Symposium on Practical Aspects of Declarative Languages
(PADL’04), pages 193–208. Springer LNCS 3057, 2004.

[8] M. Hanus. A unified computation model for functional and logic programming. In Proc. of the
24th ACM Symposium on Principles of Programming Languages (Paris), pages 80–93, 1997.

[9] M. Hanus. Distributed programming in a multi-paradigm declarative language. In Proc. of the
International Conference on Principles and Practice of Declarative Programming (PPDP’99),
pages 376–395. Springer LNCS 1702, 1999.

[10] M. Hanus. A functional logic programming approach to graphical user interfaces. In Inter-
national Workshop on Practical Aspects of Declarative Languages (PADL’00), pages 47–62.
Springer LNCS 1753, 2000.

[11] M. Hanus. High-level server side web scripting in Curry. In Proc. of the Third International
Symposium on Practical Aspects of Declarative Languages (PADL’01), pages 76–92. Springer
LNCS 1990, 2001.

[12] M. Hanus. A generic analysis environment for declarative programs. In Proc. of the ACM SIG-
PLAN 2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005), pages
43–48. ACM Press, 2005.

28

[13] M. Hanus. CurryBrowser: A generic analysis environment for Curry programs. In Proc. of
the 16th Workshop on Logic-based Methods in Programming Environments (WLPE’06), pages
61–74, 2006.

[14] M. Hanus and R. Sadre. An abstract machine for Curry and its concurrent implementation in
Java. Journal of Functional and Logic Programming, 1999(6), 1999.

[15] M. Hanus and F. Steiner. Controlling search in declarative programs. In Principles of Declar-
ative Programming (Proc. Joint International Symposium PLILP/ALP’98), pages 374–390.
Springer LNCS 1490, 1998.

[16] M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.2). Available at
http://www.informatik.uni-kiel.de/~curry, 2006.

[17] T. Johnsson. Lambda lifting: Transforming programs to recursive functions. In Functional
Programming Languages and Computer Architecture, pages 190–203. Springer LNCS 201, 1985.

[18] D. Leijen. Extensible records with scoped labels. In Proceedings of the 2005 Symposium on
Trends in Functional Programming (TFP’05), 2005.

[19] M. Odersky and P. Wadler. Pizza into Java: Translating theory into practice. In Proc. of the
24th ACM Symposium on Principles of Programming Languages (Paris), pages 146–159, 1997.

[20] P. Wadler. Efficient compilation of pattern-matching. In S.L. Peyton Jones, editor, The
Implementation of Functional Programming Languages, pages 78–103. Prentice Hall, 1987.

29

A Libraries of the PAKCS Distribution

The PAKCS/Curry2Prolog compiler system provides an extensive collection of libraries for ap-
plication programming. The libraries for arithmetic constraints over real numbers, finite do-
main constraints, ports for concurrent and distributed programming, and meta-programming
by representing Curry programs in Curry are described in the following subsection in more de-
tail. The complete set of libraries with all exported types and functions are described in the
further subsections. For a more detailed online documentation of all libraries of PAKCS, see
http://www.informatik.uni-kiel.de/~pakcs/lib/index.html.

A.1 Constraints, Ports, Meta-Programming

A.1.1 Arithmetic Constraints

The primitive entities for the use of arithmetic constraints are defined in the system module CLPR

(cf. Section 1.3), i.e., in order to use them, the program must contain the import declaration

import CLPR

Floating point arithmetic is supported in Curry2Prolog via arithmetic constraints, i.e., the equa-
tional constraint “2.3 +. x =:= 5.5” is solved by binding x to 3.2 (rather than suspending the
evaluation of the addition, as in corresponding constraints on integers like “3+x=:=5”). All opera-
tions related to floating point numbers are suffixed by “.”. The following functions and constraints
on floating point numbers are supported in PAKCS:

(+.) :: Float -> Float -> Float

Addition on floating point numbers.

(-.) :: Float -> Float -> Float

Subtraction on floating point numbers.

(*.) :: Float -> Float -> Float

Multiplication on floating point numbers.

(/.) :: Float -> Float -> Float

Division on floating point numbers.

(<.) :: Float -> Float -> Success

Comparing two floating point numbers with the “less than” relation.

(>.) :: Float -> Float -> Success

Comparing two floating point numbers with the “greater than” relation.

(<=.) :: Float -> Float -> Success

Comparing two floating point numbers with the “less than or equal” relation.

(>=.) :: Float -> Float -> Success

Comparing two floating point numbers with the “greater than or equal” relation.

i2f :: Int -> Float

Converting an integer number into a floating point number.

30

http://www.informatik.uni-kiel.de/~pakcs/lib/index.html

As an example, consider a constraint mortgage which relates the principal p, the lifetime of the
mortgage in months t, the monthly interest rate ir, the monthly repayment r, and the outstanding
balance at the end of the lifetime b. The financial calculations can be defined by the following two
rules in Curry (the second rule describes the repeated accumulation of the interest):

import CLPR

mortgage p t ir r b | t >. 0.0 & t <=. 1.0 --lifetime not more than 1 month?

= b =:= p *. (1.0 +. t *. ir) -. t*.r

mortgage p t ir r b | t >. 1.0 --lifetime more than 1 month?

= mortgage (p *. (1.0+.ir)-.r) (t-.1.0) ir r b

Then we can calculate the monthly payment for paying back a loan of $100,000 in 15 years with a
monthly interest rate of 1% by solving the goal

mortgage 100000.0 180.0 0.01 r 0.0

which yields the solution r=1200.17.
Note that only linear arithmetic equalities or inequalities are solved by the constraint solver. Non-
linear constraints like “x *. x =:= 4.0” are suspended until they become linear.

A.1.2 Finite Domain Constraints

Finite domain constraints are constraints where all variables can only take a finite number of
possible values. For simplicity, the domain of finite domain variables are identified with a subset
of the integers, i.e., the type of a finite domain variable is Int. The arithmetic operations related
to finite domain variables are suffixed by “#”. The following functions and constraints for finite
domain constraint solving are currently supported in PAKCS:6

domain :: [Int] -> Int -> Int -> Success

The constraint “domain [x1, . . . , xn] l u” is satisfied if the domain of all variables xi is the
interval [l, u].

(+#) :: Int -> Int -> Int

Addition on finite domain values.

(-#) :: Int -> Int -> Int

Subtraction on finite domain values.

(*#) :: Int -> Int -> Int

Multiplication on finite domain values.

(=#) :: Int -> Int -> Success

Equality of finite domain values.
6Note that this library is based on the corresponding library of SICStus-Prolog but does not implement the

complete functionality of the SICStus-Prolog library. However, using the PAKCS interface for external functions (see

Appendix G), it is relatively easy to provide the complete functionality.

31

(/=#) :: Int -> Int -> Success

Disequality of finite domain values.

(<#) :: Int -> Int -> Success

“less than” relation on finite domain values.

(<=#) :: Int -> Int -> Success

“less than or equal” relation on finite domain values.

(>#) :: Int -> Int -> Success

“greater than” relation on finite domain values.

(>=#) :: Int -> Int -> Success

“greater than or equal” relation on finite domain values.

sum :: [Int] -> (Int -> Int -> Success) -> Int -> Success

The constraint “sum [x1, . . . , xn] op x” is satisfied if all x1 + · · ·+xn op x is satisfied, where
op is one of the above finite domain constraint relations (e.g., “=#”).

scalar_product :: [Int] -> [Int] -> (Int -> Int -> Success) -> Int -> Success

The constraint “scalar_product [c1, . . . , cn] [x1, . . . , xn] op x” is satisfied if all c1x1 +
· · ·+ cnxn op x is satisfied, where op is one of the above finite domain constraint relations.

count :: Int -> [Int] -> (Int -> Int -> Success) -> Int -> Success

The constraint “count k [x1, . . . , xn] op x” is satisfied if all k op x is satisfied, where n is
the number of the xi that are equal to k and op is one of the above finite domain constraint
relations.

all_different :: [Int] -> Success

The constraint “all_different [x1, . . . , xn]” is satisfied if all xi have pairwise different
values.

labeling :: [LabelingOption] -> [Int] -> Success

The constraint “labeling os [x1, . . . , xn]” non-deterministically instantiates all xi to the
values of their domain according to the options os (see the module documentation for further
details about these options).

These entities are defined in the system module CLPFD (cf. Section 1.3), i.e., in order to use it, the
program must contain the import declaration

import CLPFD

As an example, consider the classical “send+more=money” problem where each letter must be
replaced by a different digit such that this equation is valid and there are no leading zeros. The
usual way to solve finite domain constraint problems is to specify the domain of the involved
variables followed by a specification of the constraints and the labeling of the constraint variables
in order to start the search for solutions. Thus, the “send+more=money” problem can be solved as
follows:

32

import CLPFD

smm l =

l =:= [s,e,n,d,m,o,r,y] &

domain l 0 9 &

s ># 0 &

m ># 0 &

all_different l &

1000 *# s +# 100 *# e +# 10 *# n +# d

+# 1000 *# m +# 100 *# o +# 10 *# r +# e

=# 10000 *# m +# 1000 *# o +# 100 *# n +# 10 *# e +# y &

labeling [FirstFail] l

where s,e,n,d,m,o,r,y free

Then we can solve this problem by evaluating the goal “smm [s,e,n,d,m,o,r,y]” which yields
the unique solution {s=9,e=5,n=6,d=7,m=1,o=0,r=8,y=2}.

A.1.3 Ports: Distributed Programming in Curry

To support the development of concurrent and distributed applications, PAKCS supports internal
and external ports as described in [9].7 Since [9] contains a detailed description of this concept
together with various programming examples, we only summarize here the functions and constraints
supported for ports in PAKCS.
The basic datatypes, functions, and constraints for ports are defined in the system module Ports

(cf. Section 1.3), i.e., in order to use ports, the program must contain the import declaration

import Ports

This declaration includes the following entities in the program:

Port a

This is the datatype of a port to which one can send messages of type a.

openPort :: Port a -> [a] -> Success

The constraint “openPort p s” establishes a new internal port p with an associated message
stream s. p and s must be unbound variables, otherwise the constraint fails (and causes a
runtime error).

send :: a -> Port a -> Success

The constraint “send m p” is satisfied if p is constrained to contain the message m, i.e., m will
be sent to the port p so that it appears in the corresponding stream.

doSend :: a -> Port a -> IO ()

The I/O action “doSend m p” solves the constraint “send m p” and returns nothing.
7Ports are also supported by the TasteCurry interpreter, see Appendix E, and by the Curry2Java compiler, see

Appendix D. However, the TasteCurry interpreter allows only to send strings over external ports and the Curry2Java

compiler does not yet support the sending of logical variables over external ports.

33

openNamedPort :: String -> IO [a]

The I/O action “openNamedPort n” opens a new external port with symbolic name n and
returns the associated stream of messages.

connectPort :: String -> IO (Port a)

The I/O action “connectPort n” returns a port with symbolic name n (i.e., n must have the
form “portname@machine) to which one can send messages by the send constraint. Currently,
no dynamic type checking is done for external ports, i.e., sending messages of the wrong type
to a port might lead to a failure of the receiver.

Restrictions: Every expression, possibly containing logical variables, can be sent to a port.
However, as discussed in [9], port communication is strict, i.e., the expression is evaluated to
normal form before sending it by the constraint send. Furthermore, if messages containing logical
variables are sent to external ports, the behavior is as follows:

1. The sender waits until all logical variables in the message have been bound by the receiver.

2. The binding of a logical variable received by a process is sent back to the sender of this
logical variable only if it is bound to a ground term, i.e., as long as the binding contains
logical variables, the sender is not informed about the binding and, therefore, the sender
waits.

External ports on local machines: The implementation of external ports assumes that the
host machine running the application is connected to the Internet (i.e., it uses the standard IP
address of the host machine for message sending). If this is not the case and the application should
be tested by using external ports only on the local host without a connection to the Internet, the
environment variable “PAKCS_LOCALHOST” must be set to “yes” before PAKCS system is started.
In this case, the IP address 127.0.0.1 and the hostname “localhost” are used for identifying the
local machine.

Selection of Unix sockets for external ports: The implementation of ports uses sockets
to communicate messages sent to external ports. Thus, if a Curry program uses the I/O action
openNamedPort to establish an externally visible server, PAKCS selects a Unix socket for the
port communication. Usually, a free socket is selected by the operating system. If the socket
number should be fixed in an application (e.g., because of the use of firewalls that allow only
communication over particular sockets), then one can set the environment variable “PAKCS_SOCKET”
to a distinguished socket number before the PAKCS system is started. This has the effect that
PAKCS uses only this socket number for communication (even for several external ports used in
the same application program).

Debugging: To debug distributed systems, it is sometimes helpful to see all messages sent to
external ports. This is supported by the environment variable “PAKCS_TRACEPORTS”. If this variable
is set to “yes” before the PAKCS system is started, then all connections to external ports and all
messages sent and received on external ports are printed on the standard error stream.

34

A.1.4 AbstractCurry and FlatCurry: Meta-Programming in Curry

To support meta-programming, i.e., the manipulation of Curry programs in Curry, there are sys-
tem modules FlatCurry and AbstractCurry (stored in the directory “pakcshome/lib/meta”)
which define datatypes for the representation of Curry programs. AbstractCurry is a more direct
representation of a Curry program, whereas FlatCurry is a simplified representation where local
function definitions are replaced by global definitions (i.e., lambda lifting has been performed) and
pattern matching is translated into explicit case/or expressions. Thus, FlatCurry can be used for
more back-end oriented program manipulations (or, for writing new back ends for Curry), whereas
AbstractCurry is intended for manipulations of programs that are more oriented towards the
source program.
Both modules contain predefined I/O actions to read programs in the AbstractCurry (readCurry)
or FlatCurry (readFlatCurry) format. These actions parse the corresponding source program
and return a data term representing this program (according to the definitions in the modules
AbstractCurry and FlatCurry).
Since all datatypes are explained in detail in these modules, we refer to the online documentation8

of these modules.
As an example, consider a program file “test.curry” containing the following two lines:

rev [] = []

rev (x:xs) = (rev xs) ++ [x]

Then the I/O action (FlatCurry.readFlatCurry "test") returns the following term:

(Prog "test"

["Prelude"]

[]

[Func ("test","rev") 1 Public

(FuncType (TCons ("Prelude","[]") [(TVar 0)])

(TCons ("Prelude","[]") [(TVar 0)]))

(Rule [0]

(Case Flex (Var 0)

[Branch (Pattern ("Prelude","[]") [])

(Comb ConsCall ("Prelude","[]") []),

Branch (Pattern ("Prelude",":") [1,2])

(Comb FuncCall ("Prelude","++")

[Comb FuncCall ("test","rev") [Var 2],

Comb ConsCall ("Prelude",":")

[Var 1,Comb ConsCall ("Prelude","[]") []]

])

]))]

[]

)

8http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/FlatCurry.html and http://www.informatik.

uni-kiel.de/~pakcs/lib/CDOC/AbstractCurry.html

35

http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/FlatCurry.html
http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/AbstractCurry.html
http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/AbstractCurry.html

A.2 General Libraries

A.2.1 Library AllSolutions

This module contains a collection of functions for obtaining lists of solutions to constraints. These
operations are useful to encapsulate non-deterministic operations between I/O actions in order to
connects the worlds of logic and functional programming and to avoid non-determinism failures on
the I/O level.
In contrast the ”old” concept of encapsulated search (which could be applied to any subexpression
in a computation), the operations to encapsulate search in this module are I/O actions in order to
avoid some anomalities in the old concept.

Exported types:

data SearchTree

A search tree for representing search structures.

Exported constructors:

• SearchBranch :: [(b,SearchTree a b)] → SearchTree a b

• Solutions :: [a] → SearchTree a b

Exported functions:

getAllSolutions :: (a → Success) → IO [a]

Gets all solutions to a constraint (currently, via an incomplete depth-first left-to-right
strategy). Conceptually, all solutions are computed on a copy of the constraint, i.e.,
the evaluation of the constraint does not share any results. Moreover, this evaluation
suspends if the constraints contain unbound variables. Similar to Prolog’s findall.

getOneSolution :: (a → Success) → IO (Maybe a)

Gets one solution to a constraint (currently, via an incomplete left-to-right strategy).
Returns Nothing if the search space is finitely failed.

getOneValue :: a → IO (Maybe a)

Gets one value of an expression (currently, via an incomplete left-to-right strategy).
Returns Nothing if the search space is finitely failed.

getAllFailures :: a → (a → Success) → IO [a]

Returns a list of values that do not satisfy a given constraint.

getSearchTree :: [a] → (b → Success) → IO (SearchTree b a)

Computes a tree of solutions where the first argument determines the branching level
of the tree. For each element in the list of the first argument, the search tree contains
a branch node with a child tree for each value of this element. Moreover, evaluations of
elements in the branch list are shared within corresponding subtrees.

36

A.2.2 Library Assertion

This module defines the datatype and operations for the Curry module tester ”currytest”.

Exported types:

data Assertion

Datatype for defining test cases.

Exported constructors:

• AssertTrue :: String → Bool → Assertion a

AssertTrue s b - assert (with name s) that b must be true

• AssertEqual :: String → a → a → Assertion a

AssertEqual s e1 e2 - assert (with name s) that e1 and e2 must be equal (w.r.t. ==)

• AssertValues :: String → a → [a] → Assertion a

AssertValues s e vs - assert (with name s) that vs is the multiset of all values of e (i.e.,
all values of e are compared with the elements in vs w.r.t. ==)

• AssertSolutions :: String → (a → Success) → [a] → Assertion a

AssertSolutions s c vs - assert (with name s) that constraint abstraction c has the mul-
tiset of solutions vs (i.e., the solutions of c are compared with the elements in vs w.r.t. ==)

• AssertIO :: String → (IO a) → a → Assertion a

AssertIO s a r - assert (with name s) that I/O action a yields the result value r

• AssertEqualIO :: String → (IO a) → (IO a) → Assertion a

AssertEqualIO s a1 a2 - assert (with name s) that I/O actions a1 and a2 yield equal (w.r.t.
==) results

data ProtocolMsg

The messages sent to the test GUI. Used by the currytest tool.

Exported constructors:

• TestModule :: String → ProtocolMsg

• TestCase :: String → Bool → ProtocolMsg

• TestFinished :: ProtocolMsg

• TestCompileError :: ProtocolMsg

37

Exported functions:

seqStrActions :: IO (String,Bool) → IO (String,Bool) → IO (String,Bool)

Combines two actions and combines their results. Used by the currytest tool.

checkAssertion :: ((String,Bool) → IO (String,Bool)) → Assertion a → IO

(String,Bool)

Executes and checks an assertion, and process the result by an I/O action. Used by the
currytest tool.

writeAssertResult :: (String,Bool) → IO ()

Writes the results of assertion checking into a file and stdout, if the results are non-
empty. Used by the currytest tool.

showTestMod :: String → String → IO ()

Sends message to GUI for showing test of a module. Used by the currytest tool.

showTestCase :: String → (String,Bool) → IO (String,Bool)

Sends message to GUI for showing result of executing a test case. Used by the currytest
tool.

showTestEnd :: String → IO ()

Sends message to GUI for showing end of module test. Used by the currytest tool.

showTestCompileError :: String → IO ()

Sends message to GUI for showing compilation errors in a module test. Used by the
currytest tool.

A.2.3 Library Char

Library with some useful functions on characters.

Exported functions:

isUpper :: Char → Bool

Returns true if the argument is an uppercase letter.

isLower :: Char → Bool

Returns true if the argument is an lowercase letter.

isAlpha :: Char → Bool

Returns true if the argument is a letter.

isDigit :: Char → Bool

38

Returns true if the argument is a decimal digit.

isAlphaNum :: Char → Bool

Returns true if the argument is a letter or digit.

isOctDigit :: Char → Bool

Returns true if the argument is an octal digit.

isHexDigit :: Char → Bool

Returns true if the argument is a hexadecimal digit.

isSpace :: Char → Bool

Returns true if the argument is a white space.

toUpper :: Char → Char

Converts lowercase into uppercase letters.

toLower :: Char → Char

Converts uppercase into lowercase letters.

digitToInt :: Char → Int

Converts a (hexadecimal) digit character into an integer.

intToDigit :: Int → Char

Converts an integer into a (hexadecimal) digit character.

A.2.4 Library CLPFD

Library for finite domain constraint solving.
The general structure of a specification of an FD problem is as follows:
domain constraint & fd constraint & labeling

where:
domain constraint specifies the possible range of the FD variables (see constraint domain)
fd constraint specifies the constraint to be satisfied by a valid solution (see constraints #+, #-,
allDifferent, etc below)
labeling is a labeling function to search for a concrete solution.
Note: This library is based on the corresponding library of Sicstus-Prolog but does not implement
the complete functionality of the Sicstus-Prolog library. However, using the PAKCS interface for
external functions, it is relatively easy to provide the complete functionality.

39

Exported types:

data LabelingOption

This datatype contains all options to control the instantiated of FD variables with the
enumeration constraint labeling.

Exported constructors:

• LeftMost :: LabelingOption

LeftMost - The leftmost variable is selected for instantiation (default)

• FirstFail :: LabelingOption

FirstFail - The leftmost variable with the smallest domain is selected (also known as first-
fail principle)

• FirstFailConstrained :: LabelingOption

FirstFailConstrained - The leftmost variable with the smallest domain and the most con-
straints on it is selected.

• Min :: LabelingOption

Min - The leftmost variable with the smalled lower bound is selected.

• Max :: LabelingOption

Max - The leftmost variable with the greatest upper bound is selected.

• Step :: LabelingOption

Step - Make a binary choice between x=#b and x/=#b for the selected variable x where b is
the lower or upper bound of x (default).

• Enum :: LabelingOption

Enum - Make a multiple choice for the selected variable for all the values in its domain.

• Bisect :: LabelingOption

Bisect - Make a binary choice between x<=#m and x>#m for the selected variable x where m

is the midpoint of the domain x (also known as domain splitting).

• Up :: LabelingOption

Up - The domain is explored for instantiation in ascending order (default).

• Down :: LabelingOption

Down - The domain is explored for instantiation in descending order.

• All :: LabelingOption

All - Enumerate all solutions by backtracking (default).

40

• Minimize :: Int → LabelingOption

Minimize v - Find a solution that minimizes the domain variable v (using a branch-and-
bound algorithm).

• Maximize :: Int → LabelingOption

Maximize v - Find a solution that maximizes the domain variable v (using a branch-and-
bound algorithm).

• Assumptions :: Int → LabelingOption

Assumptions x - The variable x is unified with the number of choices made by the selected
enumeration strategy when a solution is found.

Exported functions:

domain :: [Int] → Int → Int → Success

Constraint to specify the domain of all finite domain variables.

(+#) :: Int → Int → Int

Addition of FD variables.

(-#) :: Int → Int → Int

Subtraction of FD variables.

(*#) :: Int → Int → Int

Multiplication of FD variables.

(=#) :: Int → Int → Success

Equality of FD variables.

(/=#) :: Int → Int → Success

Disequality of FD variables.

(<#) :: Int → Int → Success

”Less than” constraint on FD variables.

(<=#) :: Int → Int → Success

”Less than or equal” constraint on FD variables.

(>#) :: Int → Int → Success

”Greater than” constraint on FD variables.

(>=#) :: Int → Int → Success

”Greater than or equal” constraint on FD variables.

41

sum :: [Int] → (Int → Int → Success) → Int → Success

Relates the sum of FD variables with some integer of FD variable.

scalarProduct :: [Int] → [Int] → (Int → Int → Success) → Int → Success

(scalarProduct cs vs relop v) is satisfied if ((cs*vs) relop v) is satisfied. The first
argument must be a list of integers. The other arguments are as in sum.

count :: Int → [Int] → (Int → Int → Success) → Int → Success

(count v vs relop c) is satisfied if (n relop c), where n is the number of elements in the
list of FD variables vs that are equal to v, is satisfied. The first argument must be an
integer. The other arguments are as in sum.

allDifferent :: [Int] → Success

”All different” constraint on FD variables.

all different :: [Int] → Success

For backward compatibility. Use allDifferent.

indomain :: Int → Success

Instantiate a single FD variable to its values in the specified domain.

labeling :: [LabelingOption] → [Int] → Success

Instantiate FD variables to their values in the specified domain.

A.2.5 Library CLPR

Library for constraint programming with arithmetic constraints over reals.

Exported functions:

(+.) :: Float → Float → Float

Addition on floats in arithmetic constraints.

(-.) :: Float → Float → Float

Subtraction on floats in arithmetic constraints.

(*.) :: Float → Float → Float

Multiplication on floats in arithmetic constraints.

(/.) :: Float → Float → Float

Division on floats in arithmetic constraints.

(<.) :: Float → Float → Success

42

”Less than” constraint on floats.

(>.) :: Float → Float → Success

”Greater than” constraint on floats.

(<=.) :: Float → Float → Success

”Less than or equal” constraint on floats.

(>=.) :: Float → Float → Success

”Greater than or equal” constraint on floats.

i2f :: Int → Float

Conversion function from integers to floats. Rigid in the first argument, i.e., suspends
until the first argument is ground.

minimumFor :: (a → Success) → (a → Float) → a

Computes the minimum with respect to a given constraint. (minimumFor g f) evaluates
to x if (g x) is satisfied and (f x) is minimal. The evaluation fails if such a minimal value
does not exist. The evaluation suspends if it contains unbound non-local variables.

minimize :: (a → Success) → (a → Float) → a → Success

Minimization constraint. (minimize g f x) is satisfied if (g x) is satisfied and (f x) is
minimal. The evaluation suspends if it contains unbound non-local variables.

maximumFor :: (a → Success) → (a → Float) → a

Computes the maximum with respect to a given constraint. (maximumFor g f) evaluates
to x if (g x) is satisfied and (f x) is maximal. The evaluation fails if such a maximal value
does not exist. The evaluation suspends if it contains unbound non-local variables.

maximize :: (a → Success) → (a → Float) → a → Success

Maximization constraint. (maximize g f x) is satisfied if (g x) is satisfied and (f x) is
maximal. The evaluation suspends if it contains unbound non-local variables.

A.2.6 Library CLPB

This library provides a Boolean Constraint Solver based on BDDs.

Exported types:

data Boolean

Exported constructors:

43

Exported functions:

true :: Boolean

The always satisfied constraint

false :: Boolean

The never satisfied constraint

neg :: Boolean → Boolean

Result is true iff argument is false.

(.&&) :: Boolean → Boolean → Boolean

Result is true iff both arguments are true.

(.||) :: Boolean → Boolean → Boolean

Result is true iff at least one argument is true.

(./=) :: Boolean → Boolean → Boolean

Result is true iff exactly one argument is true.

(.==) :: Boolean → Boolean → Boolean

Result is true iff both arguments are equal.

(.<=) :: Boolean → Boolean → Boolean

Result is true iff the first argument implies the second.

(.>=) :: Boolean → Boolean → Boolean

Result is true iff the second argument implies the first.

(.<) :: Boolean → Boolean → Boolean

Result is true iff the first argument is false and the second is true.

(.>) :: Boolean → Boolean → Boolean

Result is true iff the first argument is true and the second is false.

count :: [Boolean] → [Int] → Boolean

Result is true iff the count of valid constraints in the first list is an element of the second
list.

exists :: Boolean → Boolean → Boolean

Result is true, if the first argument is a variable which can be instantiated such that
the second argument is true.

44

satisfied :: Boolean → Success

Checks the consistency of the constraint with regard to the accumulated constraints,
and, if the check succeeds, tells the constraint.

check :: Boolean → Bool

Asks whether the argument (or its negation) is now entailed by the accumulated con-
straints. Fails if it is not.

bound :: [Boolean] → Success

Instantiates given variables with regard to the accumulated constraints.

simplify :: Boolean → Boolean

Simplifies the argument with regard to the accumulated constraints.

evaluate :: Boolean → Bool

Evaluates the argument with regard to the accumulated constraints.

A.2.7 Library Combinatorial

A collection of common non-deterministic and/or combinatorial operations. Many operations are
intended to operate on sets. The representation of these sets is not hidden; rather sets are repre-
sented as lists. Ideally these lists contains no duplicate elements and the order of their elements
cannot be observed. In practice, these conditions are not enforced.

Exported functions:

permute :: [a] → [a]

Compute any permutation of a list. For example, [1,2,3,4] may give [1,3,4,2].

subset :: [a] → [a]

Compute any sublist of a list. The sublist contains some of the elements of the list
in the same order. For example, [1,2,3,4] may give [1,3], and [1,2,3] gives [1,2,3], [1,2],
[1,3], [1], [2,3], [2], [3], or [].

splitSet :: [a] → ([a],[a])

Split a list into any two sublists. For example, [1,2,3,4] may give ([1,3,4],[2]).

sizedSubset :: Int → [a] → [a]

Compute any sublist of fixed length of a list. Similar to subset, but the length of the
result is fixed.

partition :: [a] → [[a]]

Compute any partition of a list. The output is a list of non-empty lists such that their
concatenation is a permutation of the input list. No guarantee is made on the order of
the arguments in the output. For example, [1,2,3,4] may give [[4],[2,3],[1]], and [1,2,3]
gives [[1,2,3]], [[2,3],[1]], [[1,3],[2]], [[3],[1,2]], or [[3],[2],[1]].

45

A.2.8 Library CSV

Library for reading/writing files in CSV format. Files in CSV (comma separated values) format
can be imported and exported by most spreadsheed and database applications.

Exported functions:

writeCSVFile :: String → [[String]] → IO ()

Writes a list of records (where each record is a list of strings) into a file in CSV format.

showCSV :: [[String]] → String

Shows a list of records (where each record is a list of strings) as a string in CSV format.

readCSVFile :: String → IO [[String]]

Reads a file in CSV format and returns the list of records (where each record is a list
of strings).

readCSVFileWithDelims :: String → String → IO [[String]]

Reads a file in CSV format and returns the list of records (where each record is a list
of strings).

readCSV :: String → [[String]]

Reads a string in CSV format and returns the list of records (where each record is a list
of strings).

readCSVWithDelims :: String → String → [[String]]

Reads a string in CSV format and returns the list of records (where each record is a list
of strings).

A.2.9 Library Database

Library for accessing and storing data in databases. It is based on the library Dynamic but ensures
that all changes to the database are only performed inside a transaction. All functions in this
library distinguishes between queries that access the database and transactions that manipulates
data in the database. Transactions have a monadic structure. Both queries and transactions can
be executed as I/O actions. However, arbitrary I/O actions cannot be embedded in transactions.

Exported types:

data Query

Abstract datatype to represent database queries.

Exported constructors:

data Transaction

Abstract datatype for representing transactions.

Exported constructors:

46

Exported functions:

queryAll :: (a → Dynamic) → Query [a]

A database query that returns all answers to an abstraction on a dynamic expression.

queryOne :: (a → Dynamic) → Query (Maybe a)

A database query that returns a single answer to an abstraction on a dynamic expres-
sion. It returns Nothing if no answer exists.

queryOneWithDefault :: (a → Dynamic) → a → Query a

A database query that returns a single answer to an abstraction on a dynamic expres-
sion. It returns the second argument if no answer exists.

queryJustOne :: (a → Dynamic) → Query a

A database query that returns a single answer to an abstraction on a dynamic expres-
sion. It fails if no answer exists.

dynamicExists :: Dynamic → Query Bool

A database query that returns True if there exists the argument facts (without free
variables!) and False, otherwise.

transformQ :: (a → b) → Query a → Query b

Transforms a database query from one result type to another according to a given
mapping.

runQ :: Query a → IO a

Executes a database query on the current state of dynamic predicates. If other processes
made changes to persistent predicates, these changes are read and made visible to the
currently running program.

addDB :: Dynamic → Transaction ()

Adds new facts (without free variables!) about dynamic predicates. Conditional dy-
namics are added only if the condition holds.

deleteDB :: Dynamic → Transaction ()

Deletes facts (without free variables!) about dynamic predicates. Conditional dynamics
are deleted only if the condition holds.

getDB :: Query a → Transaction a

Returns the result of a database query in a transaction.

returnT :: a → Transaction a

The empty transaction that directly returns its argument.

47

doneT :: Transaction ()

The empty transaction that returns nothing.

(|>>=) :: Transaction a → (a → Transaction b) → Transaction b

Sequential composition of transactions.

(|>>) :: Transaction a → Transaction b → Transaction b

Sequential composition of transactions.

sequenceT :: [Transaction a] → Transaction [a]

Executes a sequence of transactions and collects all results in a list.

sequenceT :: [Transaction a] → Transaction ()

Executes a sequence of transactions and ignores the results.

mapT :: (a → Transaction b) → [a] → Transaction [b]

Maps a transaction function on a list of elements. The results of all transactions are
collected in a list.

mapT :: (a → Transaction b) → [a] → Transaction ()

Maps a transaction function on a list of elements. The results of all transactions are
ignored.

runT :: Transaction a → IO (Maybe a)

Executes a possibly composed transaction on the current state of dynamic predicates
as a single transaction.

Before the transaction is executed, the access to all persistent predicates is locked (i.e.,
no other process can perform a transaction in parallel). After the successful transac-
tion, the access is unlocked so that the updates performed in this transaction become
persistent and visible to other processes. Otherwise (i.e., in case of a failure or abort
of the transaction), the changes of the transaction to persistent predicates are ignored
and Nothing is returned.

In general, a transaction should terminate and all failures inside a transaction should
be handled (execept for an explicit fail that leads to an abort of the transaction). If a
transaction is externally interrupted (e.g., by killing the process), some locks might never
be removed. However, they can be explicitly removed by deleting the corresponding
lock files reported at startup time.

48

A.2.10 Library DaVinci

Binding for the daVinci graph visualization tool.
This library supports the visualization of graphs by the daVinci graph drawing tool9 through the
following features:

• Graphs are displayed by the main functions dvDisplay or dvDisplayInit

• Graphs to be displayed are constructed by the functions:

dvNewGraph: takes a list of nodes to construct a graph

dvSimpleNode: a node without outgoing edges

dvNodeWithEdges: a node with a list of outgoing edges

dvSimpleEdge: an edge to a particular node

The constructors dvSimpleNode/dvNodeWithEdges/dvSimpleEdge have a graph identifier
(type DvId) as a first argument. This identifier is a free variable (since type DvId is abstract)
and can be used in other functions to refer to this node or edge.

• The constructor functions for graph entities take an event handler (of type ”DvWindow ->
Success”) as the last argument. This event handler is executed whenever the user clicks on
the corresponding graph entity.

• There are a number of predefined event handlers to manipulate existing graphs (see func-
tions dvSetNodeColor, dvAddNode, dvSetEdgeColor, dvAddEdge, dvDelEdge, dvSetClick-
Handler). dvEmptyH is the ”empty handler” which does nothing.

For a correct installation of this library, the constant ”dvStartCmd” defined below must be correctly
set to start your local installation of DaVinci.

Exported types:

type DvWindow = Port DvScheduleMsg

data DvId

The abstract datatype for identifying nodes in a graph. Used by the various functions
to create and manipulate graphs.

Exported constructors:

• DvId :: String → DvId

data DvGraph

The abstract datatype for graphs represented by daVinci. Such graphs are constructed
from a list of nodes by the function dvNewGraph.

9http://www.tzi.de/daVinci/

49

Exported constructors:

• DvGraph :: [DvNode] → DvGraph

data DvNode

The abstract datatype for nodes in a graph represented by daVinci. Nodes are con-
structed by the functions dvSimpleNode and dvNodeWithEdges.

Exported constructors:

• DvNode :: DvId → String → [DvAttribute] → [DvEdge] → [DvEventH] → DvNode

data DvEdge

The abstract datatype for edges in a graph represented by daVinci. Edges are con-
structed by the function dvSimpleEdge.

Exported constructors:

• DvEdge :: DvId → String → [DvAttribute] → DvNode → [DvEventH] → DvEdge

data DvScheduleMsg

The abstract datatype for communicating with the daVinci visualization tool. The
constructors of this datatype are not important since all communications are wrapped
in this library. The only relevant point is that Port DvScheduleMsg -> Success is
the type of an event handler that can manipulate a graph visualized by daVinci (see
dvSetNodeColor, dvAddNode etc).

Exported constructors:

Exported functions:

dvDisplay :: DvGraph → IO ()

Displays a graph with daVinci and run the scheduler for handling events.

dvDisplayInit :: DvGraph → (Port DvScheduleMsg → Success) → IO ()

Displays a graph with daVinci and run the scheduler for handling events after perform-
ing some initialization events.

dvNewGraph :: [DvNode] → DvGraph

Constructs a new graph from a list of nodes.

dvSimpleNode :: DvId → String → (Port DvScheduleMsg → Success) → DvNode

A node without outgoing edges.

50

dvNodeWithEdges :: DvId → String → [DvEdge] → (Port DvScheduleMsg → Success)

→ DvNode

A node with a list of outgoing edges.

dvSimpleEdge :: DvId → DvId → (Port DvScheduleMsg → Success) → DvEdge

An edge to a particular node.

dvSetNodeColor :: DvId → String → Port DvScheduleMsg → Success

An event handler that sets the color (second argument) of a node.

dvAddNode :: DvId → String → (Port DvScheduleMsg → Success) → Port

DvScheduleMsg → Success

An event handler that adds a new node to the graph.

dvSetEdgeColor :: DvId → String → Port DvScheduleMsg → Success

An event handler that sets the color (second argument) of an edge.

dvAddEdge :: DvId → DvId → DvId → (Port DvScheduleMsg → Success) → Port

DvScheduleMsg → Success

An event handler that adds a new edge to the graph.

dvDelEdge :: DvId → Port DvScheduleMsg → Success

An event handler that deletes an existing edge from the graph.

dvSetClickHandler :: DvId → (Port DvScheduleMsg → Success) → Port

DvScheduleMsg → Success

An event handler that changes the event handler of a node or edge.

dvEmptyH :: Port DvScheduleMsg → Success

The ”empty” event handler.

A.2.11 Library Directory

Library for accessing the directory structure of the underlying operating system.

Exported functions:

doesFileExist :: String → IO Bool

Returns true if the argument is the name of an existing file.

doesDirectoryExist :: String → IO Bool

Returns true if the argument is the name of an existing directory.

51

fileSize :: String → IO Int

Returns the size of the file.

getModificationTime :: String → IO ClockTime

Returns the modification time of the file.

getCurrentDirectory :: IO String

Returns the current working a directory.

getDirectoryContents :: String → IO [String]

Returns the list of all entries in a directory.

createDirectory :: String → IO ()

Creates a new directory with the given name.

A.2.12 Library Dynamic

Library for dynamic predicates. This paper10 contains a description of the basic ideas behind
this library.
Currently, it is still experimental so that its interface might be slightly changed in the future.
A dynamic predicate p with arguments of type t1,...,tn must be declared by:
p :: t1 -> ... -> tn -> Dynamic

p = dynamic

A dynamic predicate where all facts should be persistently stored in the directory DIR must be
declared by:
p :: t1 -> ... -> tn -> Dynamic

p = persistent "file:DIR"

Exported types:

data Dynamic

The general type of dynamic predicates.

Exported constructors:

• Dynamic :: DynSpec → Dynamic

10http://www.informatik.uni-kiel.de/~mh/publications/papers/JFLP04 dyn.html

52

Exported functions:

dynamic :: a

dynamic is only used for the declaration of a dynamic predicate and should not be used
elsewhere.

persistent :: String → a

persistent is only used for the declaration of a persistent dynamic predicate and should
not be used elsewhere.

(<>) :: Dynamic → Dynamic → Dynamic

Combine two dynamics.

(|>) :: Dynamic → Bool → Dynamic

Restrict a dynamic with a condition.

(|&>) :: Dynamic → Success → Dynamic

Restrict a dynamic with a constraint.

assert :: Dynamic → IO ()

Asserts new facts (without free variables!) about dynamic predicates. Conditional
dynamics are asserted only if the condition holds.

retract :: Dynamic → IO Bool

Deletes facts (without free variables!) about dynamic predicates. Conditional dynamics
are retracted only if the condition holds. Returns True if all facts to be retracted exist,
otherwise False is returned.

getKnowledge :: IO (Dynamic → Success)

Returns the knowledge at a particular point of time about dynamic predicates. If other
processes made changes to persistent predicates, these changes are read and made visible
to the currently running program.

getDynamicSolutions :: (a → Dynamic) → IO [a]

Returns all answers to an abstraction on a dynamic expression. If other processes
made changes to persistent predicates, these changes are read and made visible to the
currently running program.

getDynamicSolution :: (a → Dynamic) → IO (Maybe a)

Returns an answer to an abstraction on a dynamic expression. Returns Nothing if no
answer exists. If other processes made changes to persistent predicates, these changes
are read and made visible to the currently running program.

53

isKnown :: Dynamic → IO Bool

Returns True if there exists the argument facts (without free variables!) and False,
otherwise.

transaction :: IO a → IO (Maybe a)

Perform an action (usually containing updates of various dynamic predicates) as a single
transaction. This is the preferred way to execute any changes to persistent dynamic
predicates if there might be more than one process that may modify the definition of
such predicates in parallel.

Before the transaction is executed, the access to all persistent predicates is locked (i.e.,
no other process can perform a transaction in parallel). After the successful transac-
tion, the access is unlocked so that the updates performed in this transaction become
persistent and visible to other processes. Otherwise (i.e., in case of a failure or abort
of the transaction), the changes of the transaction to persistent predicates are ignored
and Nothing is returned.

In general, a transaction should terminate and all failures inside a transaction should
be handled (execept for abortTransaction). If a transaction is externally interrupted
(e.g., by killing the process), some locks might never be removed. However, they can
be explicitly removed by deleting the corresponding lock files reported at startup time.

Nested transactions are not supported and lead to a failure.

abortTransaction :: IO a

Aborts the current transaction. If a transaction is aborted, the remaining actions of the
transaction are not executed and all changes to persistent dynamic predicates made
in this transaction are ignored.

abortTransaction should only be used in a transaction. Although the execution of
abortTransaction always fails (basically, it writes an abort record in log files, unlock
them and then fails), the failure is handled inside transaction.

A.2.13 Library FileGoodies

A collection of useful operations when dealing with files.

Exported functions:

separatorChar :: Char

The character for separating hierarchies in file names. On UNIX systems the value is
’/’.

pathSeparatorChar :: Char

The character for separating names in path expressions. On UNIX systems the value is
’:’.

54

suffixSeparatorChar :: Char

The character for separating suffixes in file names. On UNIX systems the value is ’.’.

isAbsolute :: String → Bool

Is the argument an absolute name?

dirName :: String → String

Extracts the directoy prefix of a given (Unix) file name. Returns ”.” if there is no prefix.

baseName :: String → String

Extracts the base name without directoy prefix of a given (Unix) file name.

splitDirectoryBaseName :: String → (String,String)

Splits a (Unix) file name into the directory prefix and the base name. The directory
prefix is ”.” if there is no real prefix in the name.

stripSuffix :: String → String

Strips a suffix (the last suffix starting with a dot) from a file name.

fileSuffix :: String → String

Yields the suffix (the last suffix starting with a dot) from given file name.

splitBaseName :: String → (String,String)

Splits a file name into prefix and suffix (the last suffix starting with a dot and the rest).

splitPath :: String → [String]

Splits a path string into list of directory names.

findFileInPath :: String → [String] → [String] → IO (Maybe String)

Included for backward compatibility. Use lookupFileInPath instead!

lookupFileInPath :: String → [String] → [String] → IO (Maybe String)

Looks up the first file with a possible suffix in a list of directories. Returns Nothing if
such a file does not exist.

getFileInPath :: String → [String] → [String] → IO String

Gets the first file with a possible suffix in a list of directories. An error message is
delivered if there is no such file.

A.2.14 Library Float

A collection of operations on floating point numbers.

55

Exported functions:

(+.) :: Float → Float → Float

Addition on floats.

(-.) :: Float → Float → Float

Subtraction on floats.

(*.) :: Float → Float → Float

Multiplication on floats.

(/.) :: Float → Float → Float

Division on floats.

i2f :: Int → Float

Conversion function from integers to floats.

truncate :: Float → Int

Conversion function from floats to integers. The result is the closest integer between
the argument and 0.

round :: Float → Int

Conversion function from floats to integers. The result is the nearest integer to the
argument. If the argument is equidistant between two integers, it is rounded to the
closest even integer value.

sqrt :: Float → Float

Square root.

log :: Float → Float

Natural logarithm.

exp :: Float → Float

Natural exponent.

sin :: Float → Float

Sine.

cos :: Float → Float

Cosine.

tan :: Float → Float

Tangent.

56

A.2.15 Library GUI

Library for GUI programming in Curry (based on Tcl/Tk). This paper11 contains a description
of the basic ideas behind this library.
This library is an improved and updated version of the library Tk. The latter might not be
supported in the future.

Exported types:

data GuiPort

The port to a GUI is just the stream connection to a GUI where Tcl/Tk communication
is done.

Exported constructors:

• GuiPort :: Handle → GuiPort

data Widget

The type of possible widgets in a GUI.

Exported constructors:

• PlainButton :: [ConfItem] → Widget

PlainButton - a button in a GUI whose event handler is activated if the user presses the
button

• Canvas :: [ConfItem] → Widget

Canvas - a canvas to draw pictures containing CanvasItems

• CheckButton :: [ConfItem] → Widget

CheckButton - a check button: it has value ”0” if it is unchecked and value ”1” if it is checked

• Entry :: [ConfItem] → Widget

Entry - an entry widget for entering single lines

• Label :: [ConfItem] → Widget

Label - a label for showing a text

• ListBox :: [ConfItem] → Widget

ListBox - a widget containing a list of items for selection

• Message :: [ConfItem] → Widget

Message - a message for showing simple string values
11http://www.informatik.uni-kiel.de/~mh/publications/papers/PADL00.html

57

• MenuButton :: [ConfItem] → Widget

MenuButton - a button with a pull-down menu

• Scale :: Int → Int → [ConfItem] → Widget

Scale - a scale widget to input values by a slider

• ScrollH :: WidgetRef → [ConfItem] → Widget

ScrollH - a horizontal scroll bar

• ScrollV :: WidgetRef → [ConfItem] → Widget

ScrollV - a vertical scroll bar

• TextEdit :: [ConfItem] → Widget

TextEdit - a text editor widget to show and manipulate larger text paragraphs

• Row :: [ConfCollection] → [Widget] → Widget

Row - a horizontal alignment of widgets

• Col :: [ConfCollection] → [Widget] → Widget

Col - a vertical alignment of widgets

• Matrix :: [ConfCollection] → [[Widget]] → Widget

Matrix - a 2-dimensional (matrix) alignment of widgets

data ConfItem

The data type for possible configurations of a widget.

Exported constructors:

• Active :: Bool → ConfItem

Active - define the active state for buttons, entries, etc.

• Anchor :: String → ConfItem

Anchor - alignment of information inside a widget where the argument must be: n, ne, e, se,
s, sw, w, nw, or center

• Background :: String → ConfItem

Background - the background color

• Foreground :: String → ConfItem

Foreground - the foreground color

• Handler :: Event → (GuiPort → IO [ReconfigureItem]) → ConfItem

Handler - an event handler associated to a widget. The event handler returns a list of widget
ref/configuration pairs that are applied after the handler in order to configure GUI widgets

58

• Height :: Int → ConfItem

Height - the height of a widget (chars for text, pixels for graphics)

• CheckInit :: String → ConfItem

CheckInit - initial value for checkbuttons

• CanvasItems :: [CanvasItem] → ConfItem

CanvasItems - list of items contained in a canvas

• List :: [String] → ConfItem

List - list of values shown in a listbox

• Menu :: [MenuItem] → ConfItem

Menu - the items of a menu button

• WRef :: WidgetRef → ConfItem

WRef - a reference to this widget

• Text :: String → ConfItem

Text - an initial text contents

• Width :: Int → ConfItem

Width - the width of a widget (chars for text, pixels for graphics)

• Fill :: ConfItem

Fill - fill widget in both directions

• FillX :: ConfItem

FillX - fill widget in horizontal direction

• FillY :: ConfItem

FillY - fill widget in vertical direction

• TclOption :: String → ConfItem

TclOption - further options in Tcl syntax (unsafe!)

data ReconfigureItem

Data type for describing configurations that are applied to a widget or GUI by some
event handler.

Exported constructors:

• WidgetConf :: WidgetRef → ConfItem → ReconfigureItem

WidgetConf wref conf - reconfigure the widget referred by wref with configuration item
conf

59

• StreamHandler :: Handle → (Handle → GuiPort → IO [ReconfigureItem]) →
ReconfigureItem

StreamHandler hdl handler - add a new handler to the GUI that processes inputs on an
input stream referred by hdl

• RemoveStreamHandler :: Handle → ReconfigureItem

RemoveStreamHandler hdl - remove a handler for an input stream referred by hdl from the
GUI (usually used to remove handlers for closed streams)

data Event

The data type of possible events on which handlers can react. This list is still incomplete
and might be extended or restructured in future releases of this library.

Exported constructors:

• DefaultEvent :: Event

DefaultEvent - the default event of the widget

• MouseButton1 :: Event

MouseButton1 - left mouse button pressed

• MouseButton2 :: Event

MouseButton2 - middle mouse button pressed

• MouseButton3 :: Event

MouseButton3 - right mouse button pressed

• KeyPress :: Event

KeyPress - any key is pressed

• Return :: Event

Return - return key is pressed

data ConfCollection

The data type for possible configurations of widget collections (e.g., columns, rows).

Exported constructors:

• CenterAlign :: ConfCollection

CenterAlign - centered alignment

• LeftAlign :: ConfCollection

LeftAlign - left alignment

60

• RightAlign :: ConfCollection

RightAlign - right alignment

• TopAlign :: ConfCollection

TopAlign - top alignment

• BottomAlign :: ConfCollection

BottomAlign - bottom alignment

data MenuItem

The data type for specifying items in a menu.

Exported constructors:

• MButton :: (GuiPort → IO [ReconfigureItem]) → String → MenuItem

MButton - a button with an associated command and a label string

• MSeparator :: MenuItem

MSeparator - a separator between menu entries

• MMenuButton :: String → [MenuItem] → MenuItem

MMenuButton - a submenu with a label string

data CanvasItem

The data type of items in a canvas. The last argument are further options in Tcl/Tk
(for testing).

Exported constructors:

• CLine :: [(Int,Int)] → String → CanvasItem

• CPolygon :: [(Int,Int)] → String → CanvasItem

• CRectangle :: (Int,Int) → (Int,Int) → String → CanvasItem

• COval :: (Int,Int) → (Int,Int) → String → CanvasItem

• CText :: (Int,Int) → String → String → CanvasItem

data WidgetRef

The (hidden) data type of references to a widget in a GUI window. Note that the
constructor WRefLabel will not be exported so that values can only be created inside
this module.

Exported constructors:

61

data Style

The data type of possible text styles.

Exported constructors:

• Bold :: Style

Bold - text in bold font

• Italic :: Style

Italic - text in italic font

• Underline :: Style

Underline - underline text

• Fg :: Color → Style

Fg - foreground color, i.e., color of the text font

• Bg :: Color → Style

Bg - background color of the text

data Color

The data type of possible colors.

Exported constructors:

• Black :: Color

• Blue :: Color

• Brown :: Color

• Cyan :: Color

• Gold :: Color

• Gray :: Color

• Green :: Color

• Magenta :: Color

• Navy :: Color

• Orange :: Color

• Pink :: Color

• Purple :: Color

62

• Red :: Color

• Tomato :: Color

• Turquoise :: Color

• Violet :: Color

• White :: Color

• Yellow :: Color

Exported functions:

row :: [Widget] → Widget

Horizontal alignment of widgets.

col :: [Widget] → Widget

Vertical alignment of widgets.

matrix :: [[Widget]] → Widget

Matrix alignment of widgets.

debugTcl :: Widget → IO ()

Prints the generated Tcl commands of a main widget (useful for debugging).

runPassiveGUI :: String → Widget → IO GuiPort

IO action to show a Widget in a new GUI window in passive mode, i.e., ignore all GUI
events.

runGUI :: String → Widget → IO ()

IO action to run a Widget in a new window.

runGUIwithParams :: String → String → Widget → IO ()

IO action to run a Widget in a new window.

runInitGUI :: String → Widget → (GuiPort → IO ()) → IO ()

IO action to run a Widget in a new window. The GUI events are processed after
executing an initial action on the GUI.

runInitGUIwithParams :: String → String → Widget → (GuiPort → IO ()) → IO ()

IO action to run a Widget in a new window. The GUI events are processed after
executing an initial action on the GUI.

runControlledGUI :: String → (Widget,a → GuiPort → IO ()) → [a] → IO ()

63

Runs a Widget in a new GUI window and process GUI events. In addition, an event
handler is provided that process messages received from an external message stream.
This operation is useful to run a GUI that should react on user events as well as messages
sent to an external port.

runConfigControlledGUI :: String → (Widget,a → GuiPort → IO [ReconfigureItem])

→ [a] → IO ()

Runs a Widget in a new GUI window and process GUI events. In addition, an event
handler is provided that process messages received from an external message stream.
This operation is useful to run a GUI that should react on user events as well as messages
sent to an external port.

runInitControlledGUI :: String → (Widget,a → GuiPort → IO ()) → (GuiPort → IO

()) → [a] → IO ()

Runs a Widget in a new GUI window and process GUI events after executing an initial
action on the GUI window. In addition, an event handler is provided that process
messages received from an external message stream. This operation is useful to run a
GUI that should react on user events as well as messages sent to an external port.

runHandlesControlledGUI :: String → (Widget,[Handle → GuiPort → IO ()]) →
[Handle] → IO ()

Runs a Widget in a new GUI window and process GUI events. In addition, a list of
event handlers is provided that process inputs received from a corresponding list of
handles to input streams. Thus, if the i-th handle has some data available, the i-th
event handler is executed with the i-th handle as a parameter. This operation is useful
to run a GUI that should react on inputs provided by other processes, e.g., via sockets.

runInitHandlesControlledGUI :: String → (Widget,[Handle → GuiPort → IO ()]) →
(GuiPort → IO ()) → [Handle] → IO ()

Runs a Widget in a new GUI window and process GUI events after executing an initial
action on the GUI window. In addition, a list of event handlers is provided that process
inputs received from a corresponding list of handles to input streams. Thus, if the i-th
handle has some data available, the i-th event handler is executed with the i-th handle
as a parameter. This operation is useful to run a GUI that should react on inputs
provided by other processes, e.g., via sockets.

setConfig :: WidgetRef → ConfItem → GuiPort → IO ()

Changes the current configuration of a widget (deprecated operation, only included for
backward compatibility). Warning: does not work for Command options!

exitGUI :: GuiPort → IO ()

An event handler for terminating the GUI.

getValue :: WidgetRef → GuiPort → IO String

64

Gets the (String) value of a variable in a GUI.

setValue :: WidgetRef → String → GuiPort → IO ()

Sets the (String) value of a variable in a GUI.

updateValue :: (String → String) → WidgetRef → GuiPort → IO ()

Updates the (String) value of a variable w.r.t. to an update function.

appendValue :: WidgetRef → String → GuiPort → IO ()

Appends a String value to the contents of a TextEdit widget and adjust the view to the
end of the TextEdit widget.

appendStyledValue :: WidgetRef → String → [Style] → GuiPort → IO ()

Appends a String value with style tags to the contents of a TextEdit widget and adjust
the view to the end of the TextEdit widget. Different styles can be combined, e.g., to
get bold blue text on a red background. If Bold, Italic and Underline are combined,
currently all but one of these are ignored. This is an experimental function and might
be changed in the future.

addRegionStyle :: WidgetRef → (Int,Int) → (Int,Int) → Style → GuiPort → IO ()

Adds a style value in a region of a TextEdit widget. The region is specified a start and
end position similarly to getCursorPosition. Different styles can be combined, e.g., to
get bold blue text on a red background. If Bold, Italic and Underline are combined,
currently all but one of these are ignored. This is an experimental function and might
be changed in the future.

removeRegionStyle :: WidgetRef → (Int,Int) → (Int,Int) → Style → GuiPort → IO

()

Removes a style value in a region of a TextEdit widget. The region is specified a start
and end position similarly to getCursorPosition. This is an experimental function
and might be changed in the future.

getCursorPosition :: WidgetRef → GuiPort → IO (Int,Int)

Get the position (line,column) of the insertion cursor in a TextEdit widget. Lines are
numbered from 1 and columns are numbered from 0.

seeText :: WidgetRef → (Int,Int) → GuiPort → IO ()

Adjust the view of a TextEdit widget so that the specified line/column character is
visible. Lines are numbered from 1 and columns are numbered from 0.

focusInput :: WidgetRef → GuiPort → IO ()

Sets the input focus of this GUI to the widget referred by the first argument. This is
useful for automatically selecting input entries in an application.

65

addCanvas :: WidgetRef → [CanvasItem] → GuiPort → IO ()

Adds a list of canvas items to a canvas referred by the first argument.

popup message :: String → IO ()

A simple popup message.

Cmd :: (GuiPort → IO ()) → ConfItem

A simple event handler that can be associated to a widget. The event handler takes a
GUI port as parameter in order to read or write values from/into the GUI.

Command :: (GuiPort → IO [ReconfigureItem]) → ConfItem

An event handler that can be associated to a widget. The event handler takes a GUI
port as parameter (in order to read or write values from/into the GUI) and returns a
list of widget reference/configuration pairs which is applied after the handler in order
to configure some GUI widgets.

Button :: (GuiPort → IO ()) → [ConfItem] → Widget

A button with an associated event handler which is activated if the button is pressed.

ConfigButton :: (GuiPort → IO [ReconfigureItem]) → [ConfItem] → Widget

A button with an associated event handler which is activated if the button is pressed.
The event handler is a configuration handler (see Command) that allows the configura-
tion of some widgets.

TextEditScroll :: [ConfItem] → Widget

A text edit widget with vertical and horizontal scrollbars. The argument contains the
configuration options for the text edit widget.

ListBoxScroll :: [ConfItem] → Widget

A list box widget with vertical and horizontal scrollbars. The argument contains the
configuration options for the list box widget.

CanvasScroll :: [ConfItem] → Widget

A canvas widget with vertical and horizontal scrollbars. The argument contains the
configuration options for the text edit widget.

EntryScroll :: [ConfItem] → Widget

An entry widget with a horizontal scrollbar. The argument contains the configuration
options for the entry widget.

getOpenFile :: IO String

Pops up a GUI for selecting an existing file. The file with its full path name will be
returned (or ”” if the user cancels the selection).

66

getOpenFileWithTypes :: [(String,String)] → IO String

Pops up a GUI for selecting an existing file. The parameter is a list of pairs of file types
that could be selected. A file type pair consists of a name and an extension for that
file type. The file with its full path name will be returned (or ”” if the user cancels the
selection).

getSaveFile :: IO String

Pops up a GUI for choosing a file to save some data. If the user chooses an existing
file, she/he will asked to confirm to overwrite it. The file with its full path name will
be returned (or ”” if the user cancels the selection).

getSaveFileWithTypes :: [(String,String)] → IO String

Pops up a GUI for choosing a file to save some data. The parameter is a list of pairs of
file types that could be selected. A file type pair consists of a name and an extension
for that file type. If the user chooses an existing file, she/he will asked to confirm to
overwrite it. The file with its full path name will be returned (or ”” if the user cancels
the selection).

chooseColor :: IO String

Pops up a GUI dialog box to select a color. The name of the color will be returned (or
”” if the user cancels the selection).

A.2.16 Library Integer

A collection of common operations on integer numbers. Most operations make no assumption on
the precision of integers. Operation bitNot is necessarily an exception.

Exported functions:

pow :: Int → Int → Int

The value of pow a b is a raised to the power of b. Fails if b < 0 . Executes in O(log b)
steps.

ilog :: Int → Int

The value of ilog n is the floor of the logarithm in the base 10 of n. Fails if n <= 0 .
For positive integers, the returned value is 1 less the number of digits in the decimal
representation of n.

isqrt :: Int → Int

The value of isqrt n is the floor of the square root of n. Fails if n < 0 . Executes in
O(log n) steps, but there must be a better way.

factorial :: Int → Int

67

The value of factorial n is the factorial of n. Fails if n < 0 .

binomial :: Int → Int → Int

The value of binomial n m is n*(n-1)*...*(n-m+1)/m*(m-1)*...1 Fails if m <= 0 or n
< m.

abs :: Int → Int

The value of abs n is the absolute value of n.

max3 :: a → a → a → a

Returns the maximum of the three arguments.

min3 :: a → a → a → a

Returns the minimum of the three arguments.

maxlist :: [a] → a

Returns the maximum of a list of integer values. Fails if the list is empty.

minlist :: [a] → a

Returns the minimum of a list of integer values. Fails if the list is empty.

bitTrunc :: Int → Int → Int

The value of bitTrunc n m is the value of the n least significant bits of m.

bitAnd :: Int → Int → Int

Returns the bitwise AND of the two arguments.

bitOr :: Int → Int → Int

Returns the bitwise inclusive OR of the two arguments.

bitNot :: Int → Int

Returns the bitwise NOT of the argument. Since integers have unlimited precision, only
the 32 least significant bits are computed.

bitXor :: Int → Int → Int

Returns the bitwise exclusive OR of the two arguments.

even :: Int → Bool

Returns whether an integer is even

odd :: Int → Bool

Returns whether an integer is odd

68

A.2.17 Library IO

Library for IO operations like reading and writing files that are not already contained in the prelude.

Exported types:

data Handle

The abstract type of a handle for a stream.

Exported constructors:

data IOMode

The modes for opening a file.

Exported constructors:

• ReadMode :: IOMode

• WriteMode :: IOMode

• AppendMode :: IOMode

data SeekMode

The modes for positioning with hSeek in a file.

Exported constructors:

• AbsoluteSeek :: SeekMode

• RelativeSeek :: SeekMode

• SeekFromEnd :: SeekMode

Exported functions:

stdin :: Handle

Standard input stream.

stdout :: Handle

Standard output stream.

stderr :: Handle

Standard error stream.

openFile :: String → IOMode → IO Handle

Opens a file in specified mode and returns a handle to it.

69

hClose :: Handle → IO ()

Closes a file handle and flushes the buffer in case of output file.

hFlush :: Handle → IO ()

Flushes the buffer associated to handle in case of output file.

hIsEOF :: Handle → IO Bool

Is handle at end of file?

isEOF :: IO Bool

Is standard input at end of file?

hSeek :: Handle → SeekMode → Int → IO ()

Set the position of a handle to a seekable stream (e.g., a file). If the second argument
is AbsoluteSeek, SeekFromEnd, or RelativeSeek, the position is set relative to the
beginning of the file, to the end of the file, or to the current position, respectively.

hWaitForInput :: Handle → Int → IO Bool

Waits until input is available on the given handle. If no input is available within t
milliseconds, it returns False, otherwise it returns True.

hWaitForInputs :: [Handle] → Int → IO Int

Waits until input is available on some of the given handles. If no input is available
within t milliseconds, it returns -1, otherwise it returns the index of the corresponding
handle with the available data.

hWaitForInputOrMsg :: Handle → [a] → IO (Either Handle [a])

Waits until input is available on a given handles or a message in the message stream.
Usually, the message stream comes from an external port. Thus, this operation im-
plements a committed choice over receiving input from an IO handle or an external
port.

Note that the implementation of this operation works only with Sicstus-Prolog 3.8.5 or
higher (due to a bug in previous versions of Sicstus-Prolog).

hWaitForInputsOrMsg :: [Handle] → [a] → IO (Either Int [a])

Waits until input is available on some of the given handles or a message in the message
stream. Usually, the message stream comes from an external port. Thus, this operation
implements a committed choice over receiving input from IO handles or an external
port.

Note that the implementation of this operation works only with Sicstus-Prolog 3.8.5 or
higher (due to a bug in previous versions of Sicstus-Prolog).

70

hReady :: Handle → IO Bool

Checks whether an input is available on a given handle.

hGetChar :: Handle → IO Char

Reads a character from an input handle and returns it.

hGetLine :: Handle → IO String

Reads a line from an input handle and returns it.

hGetContents :: Handle → IO String

Reads the complete contents from an input handle and closes the input handle before
returning the contents.

getContents :: IO String

Reads the complete contents from the standard input stream until EOF.

hPutChar :: Handle → Char → IO ()

Puts a character to an output handle.

hPutStr :: Handle → String → IO ()

Puts a string to an output handle.

hPutStrLn :: Handle → String → IO ()

Puts a string with a newline to an output handle.

hPrint :: Handle → a → IO ()

Converts a term into a string and puts it to an output handle.

hIsReadable :: Handle → IO Bool

Is the handle readable?

hIsWritable :: Handle → IO Bool

Is the handle writable?

A.2.18 Library IOExts

Library with some useful extensions to the IO monad.

Exported types:

data IORef

Mutable variables containing values of some type. The values are not evaluated when
they are assigned to an IORef.

Exported constructors:

• IORef :: a → IORef a

71

Exported functions:

execCmd :: String → IO (Handle,Handle,Handle)

Executes a command with a new default shell process. The standard I/O streams
of the new process (stdin,stdout,stderr) are returned as handles so that they can be
explicitly manipulated. They should be closed with IO.hClose since they are not closed
automatically when the process terminates.

connectToCommand :: String → IO Handle

Executes a command with a new default shell process. The input and output streams
of the new process is returned as one handle which is both readable and writable. Thus,
writing to the handle produces input to the process and output from the process can
be retrieved by reading from this handle. The handle should be closed with IO.hClose

since they are not closed automatically when the process terminates.

connectToSocket :: String → Int → IO Handle

Creates a new connection to a Unix socket.

choiceStreamOrMsgs :: Handle → [a] → IO (Either Handle [a])

This function implements a committed choice over the receiving a line of char-
acters from a stream and messages from an external port. Deprecated, use
IO.hWaitForInputsOrMsg !

readCompleteFile :: String → IO String

An action that reads the complete contents of a file and returns it. This action can be
used instead of the (lazy) readFile action if the contents of the file might be changed.

updateFile :: (String → String) → String → IO ()

An action that updates the contents of a file.

exclusiveIO :: String → IO a → IO a

Forces the exclusive execution of an action via a lock file. For instance, (exclusiveIO
”myaction.lock” act) ensures that the action ”act” is not executed by two processes on
the same system at the same time.

setAssoc :: String → String → IO ()

Defines a global association between two strings. Both arguments must be evaluable to
ground terms before applying this operation.

getAssoc :: String → IO (Maybe String)

Gets the value associated to a string. Nothing is returned if there does not exist an
associated value.

72

newIORef :: a → IO (IORef a)

Creates a new IORef with an initial values.

readIORef :: IORef a → IO a

Reads the current value of an IORef.

writeIORef :: IORef a → a → IO ()

Updates the value of an IORef.

A.2.19 Library JavaScript

A library to represent JavaScript programs.

Exported types:

data JSExp

Type of JavaScript expressions.

Exported constructors:

• JSString :: String → JSExp

JSString - string constant

• JSInt :: Int → JSExp

JSInt - integer constant

• JSBool :: Bool → JSExp

JSBool - Boolean constant

• JSIVar :: Int → JSExp

JSIVar - indexed variable

• JSIArrayIdx :: Int → Int → JSExp

JSIArrayIdx - array access to index array variable

• JSOp :: String → JSExp → JSExp → JSExp

JSOp - infix operator expression

• JSFCall :: String → [JSExp] → JSExp

JSFCall - function call

• JSApply :: JSExp → JSExp → JSExp

JSApply - function call where the function is an expression

73

• JSLambda :: [Int] → [JSStat] → JSExp

JSLambda - (anonymous) function with indexed variables as arguments

data JSStat

Type of JavaScript statements.

Exported constructors:

• JSAssign :: JSExp → JSExp → JSStat

JSAssign - assignment

• JSIf :: JSExp → [JSStat] → [JSStat] → JSStat

JSIf - conditional

• JSSwitch :: JSExp → [JSBranch] → JSStat

JSSwitch - switch statement

• JSPCall :: String → [JSExp] → JSStat

JSPCall - procedure call

• JSReturn :: JSExp → JSStat

JSReturn - return statement

• JSVarDecl :: Int → JSStat

JSVarDecl - local variable declaration

data JSBranch

Exported constructors:

• JSCase :: String → [JSStat] → JSBranch

JSCase - case branch

• JSDefault :: [JSStat] → JSBranch

JSDefault - default branch

data JSFDecl

Exported constructors:

• JSFDecl :: String → [Int] → [JSStat] → JSFDecl

74

Exported functions:

showJSExp :: JSExp → String

Shows a JavaScript expression as a string in JavaScript syntax.

showJSStat :: Int → JSStat → String

Shows a JavaScript statement as a string in JavaScript syntax with indenting.

showJSFDecl :: JSFDecl → String

Shows a JavaScript function declaration as a string in JavaScript syntax.

jsConsTerm :: String → [JSExp] → JSExp

Representation of constructor terms in JavaScript.

A.2.20 Library KeyDatabase

This module provides a general interface for databases (persistent predicates) where each entry
consists of a key and an info part. The key is an integer and the info is arbitrary. All functions are
parameterized with a dynamic predicate that takes an integer key as a first parameter.

Exported functions:

existsDBKey :: (Int → a → Dynamic) → Int → Query Bool

Exists an entry with a given key in the database?

allDBKeys :: (Int → a → Dynamic) → Query [Int]

Query that returns all keys of entries in the database.

allDBInfos :: (Int → a → Dynamic) → Query [a]

Query that returns all infos of entries in the database.

allDBKeyInfos :: (Int → a → Dynamic) → Query [(Int,a)]

Query that returns all key/info pairs of the database.

getDBInfo :: (Int → a → Dynamic) → Int → Query a

Gets the information about an entry in the database.

index :: a → [a] → Int

compute the position of an entry in a list fail, if given entry is not an element.

sortByIndex :: [(Int,a)] → [a]

Sorts a given list by associated index .

groupByIndex :: [(Int,a)] → [[a]]

75

Sorts a given list by associated index and group for identical index. Empty lists are
added for missing indexes

getDBInfos :: (Int → a → Dynamic) → [Int] → Query [a]

Gets the information about a list of entries in the database.

deleteDBEntry :: (Int → a → Dynamic) → Int → Transaction ()

Deletes an entry with a given key in the database.

updateDBEntry :: (Int → a → Dynamic) → Int → a → Transaction ()

Overwrites an existing entry in the database.

newDBEntry :: (Int → a → Dynamic) → a → Transaction Int

Stores a new entry in the database and return the key of the new entry.

cleanDB :: (Int → a → Dynamic) → Transaction ()

Deletes all entries in the database.

A.2.21 Library KeyDB

This module provides a general interface for databases (persistent predicates) where each entry
consists of a key and an info part. The key is an integer and the info is arbitrary. All functions are
parameterized with a dynamic predicate that takes an integer key as a first parameter.

Exported functions:

existsDBKey :: (Int → a → Dynamic) → Int → IO Bool

Exists an entry with a given key in the database?

allDBKeys :: (Int → a → Dynamic) → IO [Int]

Returns all keys of entries in the database.

getDBInfo :: (Int → a → Dynamic) → Int → IO a

Gets the information about an entry in the database.

index :: a → [a] → Int

compute the position of an entry in a list fail, if given entry is not an element.

sortByIndex :: [(Int,a)] → [a]

Sorts a given list by associated index .

groupByIndex :: [(Int,a)] → [[a]]

76

Sorts a given list by associated index and group for identical index. Empty lists are
added for missing indexes

getDBInfos :: (Int → a → Dynamic) → [Int] → IO [a]

Gets the information about a list of entries in the database.

deleteDBEntry :: (Int → a → Dynamic) → Int → IO ()

Deletes an entry with a given key in the database.

updateDBEntry :: (Int → a → Dynamic) → Int → a → IO ()

Overwrites an existing entry in the database.

newDBEntry :: (Int → a → Dynamic) → a → IO Int

Stores a new entry in the database and return the key of the new entry.

cleanDB :: (Int → a → Dynamic) → IO ()

Deletes all entries in the database.

A.2.22 Library List

Library with some useful operations on lists.

Exported functions:

elemIndex :: a → [a] → Maybe Int

Returns the index i of the first occurrence of an element in a list as (Just i), otherwise
Nothing is returned.

elemIndices :: a → [a] → [Int]

Returns the list of indices of occurrences of an element in a list.

find :: (a → Bool) → [a] → Maybe a

Returns the first element e of a list satisfying a predicate as (Just e), otherwise Nothing
is returned.

findIndex :: (a → Bool) → [a] → Maybe Int

Returns the index i of the first occurrences of a list element satisfying a predicate as
(Just i), otherwise Nothing is returned.

findIndices :: (a → Bool) → [a] → [Int]

Returns the list of indices of list elements satisfying a predicate.

nub :: [a] → [a]

77

Removes all duplicates in the argument list.

nubBy :: (a → a → Bool) → [a] → [a]

Removes all duplicates in the argument list according to an equivalence relation.

delete :: a → [a] → [a]

Deletes the first occurrence of an element in a list.

(\\) :: [a] → [a] → [a]

Computes the difference of two lists.

union :: [a] → [a] → [a]

Computes the union of two lists.

intersect :: [a] → [a] → [a]

Computes the intersection of two lists.

intersperse :: a → [a] → [a]

Puts a separator element between all elements in a list.

Example: (intersperse 9 [1,2,3,4]) = [1,9,2,9,3,9,4]

transpose :: [[a]] → [[a]]

Transposes the rows and columns of the argument.

Example: (transpose [[1,2,3],[4,5,6]]) = [[1,4],[2,5],[3,6]]

partition :: (a → Bool) → [a] → ([a],[a])

Partitions a list into a pair of lists where the first list contains those elements that
satisfy the predicate argument and the second list contains the remaining arguments.

Example: (partition (<4)></4)>

group :: [a] → [[a]]

Splits the list argument into a list of lists of equal adjacent elements.

Example: (group [1,2,2,3,3,3,4]) = [[1],[2,2],[3,3,3],[4]]

groupBy :: (a → a → Bool) → [a] → [[a]]

Splits the list argument into a list of lists of related adjacent elements.

replace :: a → Int → [a] → [a]

Replaces an element in a list.

isPrefixOf :: [a] → [a] → Bool

78

Checks whether a list is a prefix of another.

isSuffixOf :: [a] → [a] → Bool

Checks whether a list is a suffix of another.

sortBy :: (a → a → Bool) → [a] → [a]

Sorts a list w.r.t. an ordering relation by the insertion method.

insertBy :: (a → a → Bool) → a → [a] → [a]

Inserts an object into a list according to an ordering relation.

last :: [a] → a

Returns the last element of a non-empty list.

A.2.23 Library Maybe

Library with some useful functions on the Maybe datatype

Exported functions:

isJust :: Maybe a → Bool

isNothing :: Maybe a → Bool

fromJust :: Maybe a → a

fromMaybe :: a → Maybe a → a

maybeToList :: Maybe a → [a]

listToMaybe :: [a] → Maybe a

catMaybes :: [Maybe a] → [a]

mapMaybe :: (a → Maybe b) → [a] → [b]

79

(>>-) :: Maybe a → (a → Maybe b) → Maybe b

Monadic bind for Maybe. Maybe can be interpreted as a monad where Nothing is
interpreted as the error case by this monadic binding.

sequenceMaybe :: [Maybe a] → Maybe [a]

monadic sequence for maybe

mapMMaybe :: (a → Maybe b) → [a] → Maybe [b]

monadic map for maybe

A.2.24 Library Parser

Library with functional logic parser combinators.
Adapted from: Rafael Caballero and Francisco J. Lopez-Fraguas: A Functional Logic Perspective
of Parsing. In Proc. FLOPS’99, Springer LNCS 1722, pp. 85-99, 1999

Exported types:

type Parser a = [a] → [a]

type ParserRep a b = a → [b] → [b]

Exported functions:

(<|>) :: ([a] → [a]) → ([a] → [a]) → [a] → [a]

Combines two parsers without representation in an alternative manner.

(<||>) :: (a → [b] → [b]) → (a → [b] → [b]) → a → [b] → [b]

Combines two parsers with representation in an alternative manner.

(<*>) :: ([a] → [a]) → ([a] → [a]) → [a] → [a]

Combines two parsers (with or without representation) in a sequential manner.

(>>>) :: ([a] → [a]) → b → b → [a] → [a]

Attaches a representation to a parser without representation.

empty :: [a] → [a]

The empty parser which recognizes the empty word.

terminal :: a → [a] → [a]

A parser recognizing a particular terminal symbol.

80

satisfy :: (a → Bool) → a → [a] → [a]

A parser (with representation) recognizing a terminal satisfying a given predicate.

star :: (a → [b] → [b]) → [a] → [b] → [b]

A star combinator for parsers. The returned parser repeats zero or more times a parser
p with representation and returns the representation of all parsers in a list.

some :: (a → [b] → [b]) → [a] → [b] → [b]

A some combinator for parsers. The returned parser repeats the argument parser (with
representation) at least once.

A.2.25 Library Ports

Library for distributed programming with ports. This paper12 contains a description of the basic
ideas behind this library.

Exported types:

data Port

The internal constructor for the port datatype is not visible to the user.

Exported constructors:

data SP_Msg

A ”stream port” is an adaption of the port concept to model the communication with
bidirectional streams, i.e., a stream port is a port connection to a bidirectional stream
(e.g., opened by openProcessPort) where the communication is performed via the fol-
lowing stream port messages.

Exported constructors:

• SP_Put :: String → SP_Msg

SP_Put s - write the argument s on the output stream

• SP_GetLine :: String → SP_Msg

SP_GetLine s - unify the argument s with the next text line of the input stream

• SP_GetChar :: Char → SP_Msg

SP_GetChar c - unify the argument c with the next character of the input stream

• SP_EOF :: Bool → SP_Msg

SP_EOF b - unify the argument b with True if we are at the end of the input stream, otherwise
with False

12http://www.informatik.uni-kiel.de/~mh/publications/papers/PPDP99.html

81

• SP_Close :: SP_Msg

SP_Close - close the input/output streams

data CPNS_Message

Type of messages to be processed by the Curry Port Name Server. Although these
messages are not intended for public use, this type must be public so that any machine
in the world can send these messages.

Exported constructors:

• CPNS_Put :: String → Int → Int → Int → Bool → CPNS_Message

CPNS_Put name pid sn pn ack - assign the values pid, sn, and pn to name (pid is the
process number of the registered process (should be 0 if it is unknown) and ack is instantiated
to True if registration had no problems)

• CPNS_Get :: String → Int → Int → CPNS_Message

CPNS_Get name sn pn - instantiate sn and pn with the values assigned to name

• CPNS_Show :: CPNS_Message

CPNS_Show - show the current port registrations

• CPNS_Close :: CPNS_Message

CPNS_Close - terminate the CPNS demon

Exported functions:

openPort :: Port a → [a] → Success

Opens an internal port for communication.

send :: a → Port a → Success

Sends a message to a port.

doSend :: a → Port a → IO ()

I/O action that sends a message to a port.

ping :: Int → Port a → IO (Maybe Int)

Checks whether port p is still reachable.

timeoutOnStream :: Int → [a] → Maybe [a]

Checks for instantiation of a stream within some amount of time.

openProcessPort :: String → IO (Port SP_Msg)

Opens a new connection to a process that executes a shell command.

82

openNamedPort :: String → IO [a]

Opens an external port with a symbolic name.

connectPortRepeat :: Int → IO a → Int → String → IO (Maybe (Port b))

Waits for connection to an external port. In contrast to connectPortNow, this action
waits until the external port has been registered with its symbolic name.

connectPortWait :: String → IO (Port a)

Waits for connection to an external port and return the connected port. This action
waits (possibly forever) until the external port is registered.

connectPort :: String → IO (Port a)

Connects to an external port. The external port must be already registered, otherwise
an error is reported.

choiceSPEP :: Port SP_Msg → [a] → Either String [a]

This function implements a committed choice over the receiving of messages via a stream
port and an external port.

Note that the implementation of choiceSPEP works only with Sicstus-Prolog 3.8.5 or
higher (due to a bug in previous versions of Sicstus-Prolog).

newObject :: (a → [b] → Success) → a → Port b → Success

Creates a new object (of type State -> [msg] -> Success) with an initial state and
a port to which messages for this object can be sent.

newNamedObject :: (a → [b] → Success) → a → String → IO ()

Creates a new object (of type State -> [msg] -> Success) with a symbolic port
name to which messages for this object can be sent.

runNamedServer :: ([a] → IO b) → String → IO b

Runs a new server (of type [msg] -> IO a) on a named port to which messages can
be sent.

cpns start :: IO ()

Starts the ”Curry Port Name Server” (CPNS) running on the local machine. The CPNS
is responsible to resolve symbolic names for ports into physical socket numbers so that
a port can be reached under its symbolic name from any machine in the world.

cpns stop :: IO ()

Terminates the ”Curry Port Name Server” running on the local machine.

cpns show :: IO ()

Shows the currently registered ports at the ”Curry Port Name Server” running on the
local machine.

83

A.2.26 Library PropertyFile

A library to read and update files containing properties in the usual equational syntax, i.e., a
property is defined by a line of the form prop=value where prop starts with a letter. All other lines
(e.g., blank lines or lines starting with ’#’ are considered as comment lines and are ignored.

Exported functions:

readPropertyFile :: String → IO [(String,String)]

Reads a property file and returns the list of properties. Returns empty list if the
property file does not exist.

updatePropertyFile :: String → String → String → IO ()

Update a property in a property file or add it, if it is not already there.

A.2.27 Library Read

Library with some functions for reading special tokens.
This library is included for backward compatibility. You should use the library ReadNumeric which
provides a better interface for these functions.

Exported functions:

readNat :: String → Int

Read a natural number in a string. The string might contain leadings blanks and the
the number is read up to the first non-digit.

readInt :: String → Int

Read a (possibly negative) integer in a string. The string might contain leadings blanks
and the the integer is read up to the first non-digit.

readHex :: String → Int

Read a hexadecimal number in a string. The string might contain leadings blanks and
the the integer is read up to the first non-heaxdecimal digit.

A.2.28 Library ReadNumeric

Library with some functions for reading and converting numeric tokens.

Exported functions:

readInt :: String → Maybe (Int,String)

Read a (possibly negative) integer as a first token in a string. The string might contain
leadings blanks and the integer is read up to the first non-digit. If the string does not
start with an integer token, Nothing is returned, otherwise the result is (Just (v,s))
where v is the value of the integer and s is the remaing string without the integer token.

84

readNat :: String → Maybe (Int,String)

Read a natural number as a first token in a string. The string might contain leadings
blanks and the number is read up to the first non-digit. If the string does not start with
a natural number token, Nothing is returned, otherwise the result is (Just (v,s)) where
v is the value of the number and s is the remaing string without the number token.

readHex :: String → Maybe (Int,String)

Read a hexadecimal number as a first token in a string. The string might contain
leadings blanks and the number is read up to the first non-hexadecimal digit. If the
string does not start with a hexadecimal number token, Nothing is returned, otherwise
the result is (Just (v,s)) where v is the value of the number and s is the remaing string
without the number token.

readOct :: String → Maybe (Int,String)

Read an octal number as a first token in a string. The string might contain leadings
blanks and the number is read up to the first non-octal digit. If the string does not start
with an octal number token, Nothing is returned, otherwise the result is (Just (v,s))
where v is the value of the number and s is the remaing string without the number
token.

A.2.29 Library ReadShowTerm

Library for converting ground terms to strings and vice versa.

Exported functions:

showTerm :: a → String

Transforms a ground(!) term into a string representation in standard prefix notation.
Thus, showTerm suspends until its argument is ground. This function is similar to
the prelude function show but can read the string back with readUnqualifiedTerm

(provided that the constructor names are unique without the module qualifier).

showQTerm :: a → String

Transforms a ground(!) term into a string representation in standard prefix notation.
Thus, showTerm suspends until its argument is ground. Note that this function differs
from the prelude function show since it prefixes constructors with their module name
in order to read them back with readQTerm.

readsUnqualifiedTerm :: [String] → String → [(a,String)]

Transform a string containing a term in standard prefix notation without module qual-
ifiers into the corresponding data term. The first argument is a non-empty list of
module qualifiers that are tried to prefix the constructor in the string in order to get
the qualified constructors (that must be defined in the current program!). In case of a
successful parse, the result is a one element list containing a pair of the data term and
the remaining unparsed string.

85

readUnqualifiedTerm :: [String] → String → a

Transforms a string containing a term in standard prefix notation without module
qualifiers into the corresponding data term. The first argument is a non-empty list of
module qualifiers that are tried to prefix the constructor in the string in order to get
the qualified constructors (that must be defined in the current program!).

Example: readUnqualifiedTerm ["Prelude"] "Just 3" evaluates to (Just 3)

readsTerm :: String → [(a,String)]

For backward compatibility. Should not be used since their use can be problematic in
case of constructors with identical names in different modules.

readTerm :: String → a

For backward compatibility. Should not be used since their use can be problematic in
case of constructors with identical names in different modules.

readsQTerm :: String → [(a,String)]

Transforms a string containing a term in standard prefix notation with qualified con-
structor names into the corresponding data term. In case of a successful parse, the
result is a one element list containing a pair of the data term and the remaining un-
parsed string.

readQTerm :: String → a

Transforms a string containing a term in standard prefix notation with qualified con-
structor names into the corresponding data term.

readQTermFile :: String → IO a

Reads a file containing a string representation of a term in standard prefix notation and
returns the corresponding data term.

readQTermListFile :: String → IO [a]

Reads a file containing lines with string representations of terms of the same type and
returns the corresponding list of data terms.

writeQTermFile :: String → a → IO ()

Writes a ground term into a file in standard prefix notation.

writeQTermListFile :: String → [a] → IO ()

Writes a list of ground terms into a file. Each term is written into a separate line which
might be useful to modify the file with a standard text editor.

86

A.2.30 Library Socket

Library to support network programming with sockets. In standard applications, the server side
uses the operations listenOn and socketAccept to provide some service on a socket, and the client
side uses the operation connectToSocket to request a service.

Exported types:

data Socket

The abstract type of sockets.

Exported constructors:

Exported functions:

listenOn :: Int → IO Socket

Creates a server side socket bound to a port number. If the port number is a free
variable, the system picks a port number and binds the variable to it.

socketAccept :: Socket → IO (String,Handle)

Returns a connection of a client to a socket. The connection is returned as a pair
consisting of a string identifying the client (the format of this string is implementation-
dependent) and a handle to a stream communication with the client. The handle is
both readable and writable.

waitForSocketAccept :: Socket → Int → IO (Maybe (String,Handle))

Waits until a connection of a client to a socket is available. If no connection is available
within the time limit, it returns Nothing, otherwise the connection is returned as a pair
consisting of a string identifying the client (the format of this string is implementation-
dependent) and a handle to a stream communication with the client.

socketINET :: IO Socket

Creates a new INET socket. Use socketBind, socketListen, and socketAccept for
establishing a server for this socket.

socketBind :: Socket → Int → IO ()

Binds a socket to a port number. If the port number is a free variable, the system picks
a port number and binds the variable to it.

socketListen :: Socket → Int → IO ()

Defines the maximum backlog queue of a port.

connectToSocket :: String → Int → IO Handle

Creates a new connection to a Unix socket.

87

A.2.31 Library System

Library to access parts of the system environment.

Exported functions:

getCPUTime :: IO Int

Returns the current cpu time of the process in milliseconds.

getElapsedTime :: IO Int

Returns the current elapsed time of the process in milliseconds.

getArgs :: IO [String]

Returns the list of the program’s command line arguments. The program name is not
included.

getEnviron :: String → IO String

Returns the value of an environment variable. The empty string is returned for unde-
fined environment variables.

setEnviron :: String → String → IO ()

Set an environment variable to a value. The new value will be passed to subsequent
shell commands (see system) and visible to subsequent calls to getEnviron (but it is
not visible in the environment of the process that started the program execution).

unsetEnviron :: String → IO ()

Removes an environment variable that has been set by setEnviron.

getHostname :: IO String

Returns the hostname of the machine running this process.

getPID :: IO Int

Returns the process identifier of the current Curry process.

getProgName :: IO String

Returns the name of the current program, i.e., the name of the main module currently
executed.

system :: String → IO Int

Executes a shell command and return with the exit code of the command. An exit
status of zero means successful execution.

exitWith :: Int → IO a

88

Terminates the execution of the current Curry program and returns the exit code given
by the argument. An exit code of zero means successful execution.

sleep :: Int → IO ()

The evaluation of the action (sleep n) puts the Curry process asleep for n seconds.

evalTime :: a → a

Evaluates the argument to normal form (and return the normal form) and print the
time needed for this evaluation on standard error.

evalSpace :: a → a

Evaluates the argument to normal form (and return the normal form) and print the
time and space needed for this evaluation on standard error. During the evaluation, the
garbage collector is turned off.

A.2.32 Library Time

Library for handling date and time information.

Exported types:

data ClockTime

ClockTime represents a clock time in some internal representation.

Exported constructors:

data CalendarTime

A calendar time is presented in the following form: (CalendarTime year month day
hour minute second timezone) where timezone is an integer representing the timezone
as a difference to UTC time in seconds.

Exported constructors:

• CalendarTime :: Int → Int → Int → Int → Int → Int → Int → CalendarTime

Exported functions:

ctYear :: CalendarTime → Int

The year of a calendar time.

ctMonth :: CalendarTime → Int

The month of a calendar time.

ctDay :: CalendarTime → Int

89

The day of a calendar time.

ctHour :: CalendarTime → Int

The hour of a calendar time.

ctMin :: CalendarTime → Int

The minute of a calendar time.

ctSec :: CalendarTime → Int

The second of a calendar time.

ctTZ :: CalendarTime → Int

The time zone of a calendar time. The value of the time zone is the difference to UTC
time in seconds.

getClockTime :: IO ClockTime

Returns the current clock time.

getLocalTime :: IO CalendarTime

Returns the local calendar time.

toCalendarTime :: ClockTime → IO CalendarTime

Transforms a clock time into a calendar time according to the local time (if possible).
Since the result depends on the local environment, it is an I/O operation.

toUTCTime :: ClockTime → CalendarTime

Transforms a clock time into a standard UTC calendar time. Thus, this operationa is
independent on the local time.

toClockTime :: CalendarTime → ClockTime

Transforms a calendar time (interpreted as UTC time) into a clock time.

calendarTimeToString :: CalendarTime → String

Transforms a calendar time into a readable form.

toDayString :: CalendarTime → String

Transforms a calendar time into a string containing the day, e.g., ”September 23, 2006”.

toTimeString :: CalendarTime → String

Transforms a calendar time into a string containing the time.

addSeconds :: Int → ClockTime → ClockTime

90

Adds seconds to a given time.

addMinutes :: Int → ClockTime → ClockTime

Adds minutes to a given time.

addHours :: Int → ClockTime → ClockTime

Adds hours to a given time.

addDays :: Int → ClockTime → ClockTime

Adds days to a given time.

addMonths :: Int → ClockTime → ClockTime

Adds months to a given time.

addYears :: Int → ClockTime → ClockTime

Adds years to a given time.

daysOfMonth :: Int → Int → Int

Gets the days of a month in a year.

validDate :: Int → Int → Int → Bool

Is a date consisting of year/month/day valid?

compareDate :: CalendarTime → CalendarTime → Ordering

Compares two dates (don’t use it, just for backward compatibility!).

compareCalendarTime :: CalendarTime → CalendarTime → Ordering

Compares two calendar times.

compareClockTime :: ClockTime → ClockTime → Ordering

Compares two clock times.

A.2.33 Library Unsafe

Library containing unsafe operations. These operations should be carefully used (e.g., for testing
or debugging). These operations should not be used in application programs!

91

Exported functions:

unsafePerformIO :: IO a → a

Performs and hides an I/O action in a computation (use with care!).

trace :: String → a → a

Prints the first argument as a side effect and behaves as identity on the second argument.

spawnConstraint :: Success → a → a

Spawns a constraint and returns the second argument. This function can be consid-
ered as defined by ”spawnConstraint c x | c = x”. However, the evaluation of the
constraint and the right-hand side are performed concurrently, i.e., a suspension of the
constraint does not imply a blocking of the right-hand side and the right-hand side
might be evaluated before the constraint is successfully solved. Thus, a computation
might return a result even if some of the spawned constraints are suspended (use the
PAKCS/Curry2Prolog option ”+suspend” to show such suspended goals).

isVar :: a → Bool

Tests whether the first argument evaluates to a currently unbound variable (use with
care!).

identicalVar :: a → a → Bool

Tests whether both arguments evaluate to the identical currently unbound variable
(use with care!). For instance, identicalVar (id x) (fst (x,1)) evaluates to True

whereas identicalVar x y and let x=1 in identicalVar x x evaluate to False

showAnyTerm :: a → String

Transforms the normal form of a term into a string representation in stan-
dard prefix notation. Thus, showAnyTerm evaluates its argument to normal
form. This function is similar to the function ReadShowTerm.showTerm but it also
transforms logic variables into a string representation that can be read back by
Unsafe.read(s)AnyUnqualifiedTerm. Thus, the result depends on the evaluation and
binding status of logic variables so that it should be used with care!

showAnyQTerm :: a → String

Transforms the normal form of a term into a string representation in standard prefix
notation. Thus, showAnyQTerm evaluates its argument to normal form. This function
is similar to the function ReadShowTerm.showQTerm but it also transforms logic variables
into a string representation that can be read back by Unsafe.read(s)AnyQTerm. Thus,
the result depends on the evaluation and binding status of logic variables so that it
should be used with care!

readsAnyUnqualifiedTerm :: [String] → String → [(a,String)]

92

Transform a string containing a term in standard prefix notation without module qual-
ifiers into the corresponding data term. The string might contain logical variable en-
codings produced by showAnyTerm. In case of a successful parse, the result is a one
element list containing a pair of the data term and the remaining unparsed string.

readAnyUnqualifiedTerm :: [String] → String → a

Transforms a string containing a term in standard prefix notation without module
qualifiers into the corresponding data term. The string might contain logical variable
encodings produced by showAnyTerm.

readsAnyQTerm :: String → [(a,String)]

Transforms a string containing a term in standard prefix notation with qualified con-
structor names into the corresponding data term. The string might contain logical
variable encodings produced by showAnyQTerm. In case of a successful parse, the re-
sult is a one element list containing a pair of the data term and the remaining unparsed
string.

readAnyQTerm :: String → a

Transforms a string containing a term in standard prefix notation with qualified con-
structor names into the corresponding data term. The string might contain logical
variable encodings produced by showAnyQTerm.

showAnyExpression :: a → String

Transforms any expression (even not in normal form) into a string representation in
standard prefix notation without module qualifiers. The result depends on the evalua-
tion and binding status of logic variables so that it should be used with care!

showAnyQExpression :: a → String

Transforms any expression (even not in normal form) into a string representation in
standard prefix notation with module qualifiers. The result depends on the evaluation
and binding status of logic variables so that it should be used with care!

readsAnyQExpression :: String → [(a,String)]

Transforms a string containing an expression in standard prefix notation with qualified
constructor names into the corresponding expression. The string might contain logical
variable and defined function encodings produced by showAnyQExpression. In case of
a successful parse, the result is a one element list containing a pair of the expression
and the remaining unparsed string.

readAnyQExpression :: String → a

Transforms a string containing an expression in standard prefix notation with qualified
constructor names into the corresponding expression. The string might contain logical
variable and defined function encodings produced by showAnyQExpression.

93

A.3 Data Structures and Algorithms

A.3.1 Library Array

Implementation of Arrays with Braun Trees. Conceptually, Braun trees are always infinite. Con-
sequently, there is no test on emptiness.

Exported types:

data Array

Exported constructors:

• Array :: (Int → a) → (Entry a) → Array a

Exported functions:

emptyErrorArray :: Array a

Creates an empty array which generates errors for non-initialized indexes.

emptyDefaultArray :: (Int → a) → Array a

Creates an empty array, call given function for non-initialized indexes.

(//) :: Array a → [(Int,a)] → Array a

Inserts a list of entries into an array.

update :: Array a → Int → a → Array a

Inserts a new entry into an array.

applyAt :: Array a → Int → (a → a) → Array a

Applies a function to an element.

(!) :: Array a → Int → a

Yields the value at a given position.

listToDefaultArray :: (Int → a) → [a] → Array a

Creates a default array from a list of entries.

listToErrorArray :: [a] → Array a

Creates an error array from a list of entries.

combine :: (a → b → c) → Array a → Array b → Array c

combine two arbitrary arrays

combineSimilar :: (a → a → a) → Array a → Array a → Array a

the combination of two arrays with identical default function and a combinator which
is neutral in the default can be implemented much more efficient

94

A.3.2 Library Dequeue

An implementation of double-ended queues supporting access at both ends in constant amortized
time.

Exported types:

data Queue

The datatype of a queue.

Exported constructors:

Exported functions:

empty :: Queue a

The empty queue.

isEmpty :: Queue a → Bool

Is the queue empty?

deqHead :: Queue a → a

The first element of the queue.

deqLast :: Queue a → a

The last element of the queue.

cons :: a → Queue a → Queue a

Inserts an element at the front of the queue.

deqTail :: Queue a → Queue a

Removes an element at the front of the queue.

snoc :: a → Queue a → Queue a

Inserts an element at the end of the queue.

deqInit :: Queue a → Queue a

Removes an element at the end of the queue.

deqReverse :: Queue a → Queue a

Reverses a double ended queue.

listToDeq :: [a] → Queue a

Transforms a list to a double ended queue.

95

deqToList :: Queue a → [a]

Transforms a double ended queue to a list.

deqLength :: Queue a → Int

Returns the number of elements in the queue.

rotate :: Queue a → Queue a

Moves the first element to the end of the queue.

matchHead :: Queue a → Maybe (a,Queue a)

Matches the front of a queue. matchHead q is equivalent to if isEmpty q then

Nothing else Just (deqHead q,deqTail q) but more efficient.

matchLast :: Queue a → Maybe (a,Queue a)

Matches the end of a queue. matchLast q is equivalent to if isEmpty q then

Nothing else Just (deqLast q,deqInit q) but more efficient.

A.3.3 Library FiniteMap

A finite map is an efficient purely functional data structure to store a mapping from keys to values.
In order to store the mapping efficiently, an irreflexive(!) order predicate has to be given, i.e., the
order predicate le should not satisfy (le x x) for some key x.
Example: To store a mapping from Int -> String, the finite map needs a Boolean predicate like
(<). This version was ported from a corresponding Haskell library

Exported types:

data FM

Exported constructors:

• FM :: (a → a → Bool) → (FiniteMap a b) → FM a b

Exported functions:

emptyFM :: (a → a → Bool) → FM a b

The empty finite map.

unitFM :: (a → a → Bool) → a → b → FM a b

Construct a finite map with only a single element.

listToFM :: (a → a → Bool) → [(a,b)] → FM a b

96

Builts a finite map from given list of tuples (key,element). For multiple occurences of
key, the last corresponding element of the list is taken.

addToFM :: FM a b → a → b → FM a b

Throws away any previous binding and stores the new one given.

addListToFM :: FM a b → [(a,b)] → FM a b

Throws away any previous bindings and stores the new ones given. The items are added
starting with the first one in the list

addToFM C :: (a → a → a) → FM b a → b → a → FM b a

Instead of throwing away the old binding, addToFM C combines the new element with
the old one.

addListToFM C :: (a → a → a) → FM b a → [(b,a)] → FM b a

Combine with a list of tuples (key,element), cf. addToFM C

delFromFM :: FM a b → a → FM a b

Deletes key from finite map. Deletion doesn’t complain if you try to delete something
which isn’t there

delListFromFM :: FM a b → [a] → FM a b

Deletes a list of keys from finite map. Deletion doesn’t complain if you try to delete
something which isn’t there

updFM :: FM a b → a → (b → b) → FM a b

Applies a function to element bound to given key.

splitFM :: FM a b → a → Maybe (FM a b,(a,b))

Combines delFrom and lookup.

plusFM :: FM a b → FM a b → FM a b

Efficiently add key/element mappings of two maps into a single one. Bindings in right
argument shadow those in the left

plusFM C :: (a → a → a) → FM b a → FM b a → FM b a

Efficiently combine key/element mappings of two maps into a single one, cf. addToFM C

minusFM :: FM a b → FM a b → FM a b

(minusFM a1 a2) deletes from a1 any bindings which are bound in a2

intersectFM :: FM a b → FM a b → FM a b

97

Filters only those keys that are bound in both of the given maps. The elements will be
taken from the second map.

intersectFM C :: (a → a → b) → FM c a → FM c a → FM c b

Filters only those keys that are bound in both of the given maps and combines the
elements as in addToFM C.

foldFM :: (a → b → c → c) → c → FM a b → c

Folds finite map by given function.

mapFM :: (a → b → c) → FM a b → FM a c

Applies a given function on every element in the map.

filterFM :: (a → b → Bool) → FM a b → FM a b

Yields a new finite map with only those key/element pairs matching the given predicate.

sizeFM :: FM a b → Int

How many elements does given map contain?

eqFM :: FM a b → FM a b → Bool

Do two given maps contain the same key/element pairs?

isEmptyFM :: FM a b → Bool

Is the given finite map empty?

elemFM :: a → FM a b → Bool

Does given map contain given key?

lookupFM :: FM a b → a → Maybe b

Retrieves element bound to given key

lookupWithDefaultFM :: FM a b → b → a → b

Retrieves element bound to given key. If the element is not contained in map, return
default value.

keyOrder :: FM a b → a → a → Bool

Retrieves the ordering on which the given finite map is built.

minFM :: FM a b → Maybe (a,b)

Retrieves the smallest key/element pair in the finite map according to the basic key
ordering.

maxFM :: FM a b → Maybe (a,b)

98

Retrieves the greatest key/element pair in the finite map according to the basic key
ordering.

fmToList :: FM a b → [(a,b)]

Builds a list of key/element pairs. The list is ordered by the initially given irreflexive
order predicate on keys.

keysFM :: FM a b → [a]

Retrieves a list of keys contained in finite map. The list is ordered by the initially given
irreflexive order predicate on keys.

eltsFM :: FM a b → [b]

Retrieves a list of elements contained in finite map. The list is ordered by the initially
given irreflexive order predicate on keys.

fmToListPreOrder :: FM a b → [(a,b)]

Retrieves list of key/element pairs in preorder of the internal tree. Useful for lists that
will be retransformed into a tree or to match any elements regardless of basic order.

fmSortBy :: (a → a → Bool) → [a] → [a]

Sorts a given list by inserting and retrieving from finite map. Duplicates are deleted.

A.3.4 Library GraphInductive

Library for inductive graphs (port of a Haskell library by Martin Erwig).
In this library, graphs are composed and decomposed in an inductive way.
The key idea is as follows:
A graph is either empty or it consists of node context and a graph g’ which are put together by a
constructor (:&).
This constructor (:&), however, is not a constructor in the sense of abstract data type, but more
basically a defined constructing funtion.
A context is a node together withe the edges to and from this node into the nodes in the graph g’.
For examples of how to use this library, cf. the module ”GraphAlgorithms”.

Exported types:

type Node = Int

Nodes and edges themselves (in contrast to their labels) are coded as integers.

For both of them, there are variants as labeled, unlabelwd and quasi unlabeled (labeled
with ()).

Unlabeled node

type LNode a = (Int,a)

99

Labeled node

type UNode = (Int,())

Quasi-unlabeled node

type Edge = (Int,Int)

Unlabeled edge

type LEdge a = (Int,Int,a)

Labeled edge

type UEdge = (Int,Int,())

Quasi-unlabeled edge

type Context a b = ([(b,Int)],Int,a,[(b,Int)])

The context of a node is the node itself (along with label) and its adjacent nodes. Thus,
a context is a quadrupel, for node n it is of the form (edges to n,node n,n’s label,edges
from n)

type MContext a b = Maybe ([(b,Int)],Int,a,[(b,Int)])

maybe context

type Context’ a b = ([(b,Int)],a,[(b,Int)])

context with edges and node label only, without the node identifier itself

type UContext = ([Int],Int,[Int])

Unlabeled context.

type GDecomp a b = (([(b,Int)],Int,a,[(b,Int)]),Graph a b)

A graph decompostion is a context for a node n and the remaining graph without that
node.

type Decomp a b = (Maybe ([(b,Int)],Int,a,[(b,Int)]),Graph a b)

a decomposition with a maybe context

type UDecomp a = (Maybe ([Int],Int,[Int]),a)

Unlabeled decomposition.

type Path = [Int]

Unlabeled path

type LPath a = [(Int,a)]

100

Labeled path

type UPath = [(Int,())]

Quasi-unlabeled path

type UGr = Graph () ()

a graph without any labels

data Graph

The type variables of Graph are nodeLabel and edgeLabel. The internal representation
of Graph is hidden.

Exported constructors:

Exported functions:

(:&) :: ([(a,Int)],Int,b,[(a,Int)]) → Graph b a → Graph b a

(:&) takes a node-context and a Graph and yields a new graph.

The according key idea is detailed at the beginning.

nl is the type of the node labels and el the edge labels.

Note that it is an error to induce a context for a node already contained in the graph.

matchAny :: Graph a b → (([(b,Int)],Int,a,[(b,Int)]),Graph a b)

decompose a graph into the ’Context’ for an arbitrarily-chosen ’Node’ and the remaining
’Graph’.

In order to use graphs as abstract data structures, we also need means to decompose a
graph. This decompostion should work as much like pattern matching as possible. The
normal matching is done by the function matchAny, which takes a graph and yields a
graph decompostion.

According to the main idea, matchAny . (:&) should be an identity.

empty :: Graph a b

An empty ’Graph’.

mkGraph :: [(Int,a)] → [(Int,Int,b)] → Graph a b

Create a ’Graph’ from the list of ’LNode’s and ’LEdge’s.

buildGr :: [([(a,Int)],Int,b,[(a,Int)])] → Graph b a

Build a ’Graph’ from a list of ’Context’s.

mkUGraph :: [Int] → [(Int,Int)] → Graph () ()

Build a quasi-unlabeled ’Graph’ from the list of ’Node’s and ’Edge’s.

101

insNode :: (Int,a) → Graph a b → Graph a b

Insert a ’LNode’ into the ’Graph’.

insEdge :: (Int,Int,a) → Graph b a → Graph b a

Insert a ’LEdge’ into the ’Graph’.

delNode :: Int → Graph a b → Graph a b

Remove a ’Node’ from the ’Graph’.

delEdge :: (Int,Int) → Graph a b → Graph a b

Remove an ’Edge’ from the ’Graph’.

insNodes :: [(Int,a)] → Graph a b → Graph a b

Insert multiple ’LNode’s into the ’Graph’.

insEdges :: [(Int,Int,a)] → Graph b a → Graph b a

Insert multiple ’LEdge’s into the ’Graph’.

delNodes :: [Int] → Graph a b → Graph a b

Remove multiple ’Node’s from the ’Graph’.

delEdges :: [(Int,Int)] → Graph a b → Graph a b

Remove multiple ’Edge’s from the ’Graph’.

isEmpty :: Graph a b → Bool

test if the given ’Graph’ is empty.

match :: Int → Graph a b → (Maybe ([(b,Int)],Int,a,[(b,Int)]),Graph a b)

match is the complement side of (:&), decomposing a ’Graph’ into the ’MContext’ found
for the given node and the remaining ’Graph’.

noNodes :: Graph a b → Int

The number of ’Node’s in a ’Graph’.

nodeRange :: Graph a b → (Int,Int)

The minimum and maximum ’Node’ in a ’Graph’.

context :: Graph a b → Int → ([(b,Int)],Int,a,[(b,Int)])

Find the context for the given ’Node’. In contrast to ”match”, ”context” causes an
error if the ’Node’ is not present in the ’Graph’.

lab :: Graph a b → Int → Maybe a

102

Find the label for a ’Node’.

neighbors :: Graph a b → Int → [Int]

Find the neighbors for a ’Node’.

suc :: Graph a b → Int → [Int]

Find all ’Node’s that have a link from the given ’Node’.

pre :: Graph a b → Int → [Int]

Find all ’Node’s that link to to the given ’Node’.

lsuc :: Graph a b → Int → [(Int,b)]

Find all Nodes and their labels, which are linked from the given ’Node’.

lpre :: Graph a b → Int → [(Int,b)]

Find all ’Node’s that link to the given ’Node’ and the label of each link.

out :: Graph a b → Int → [(Int,Int,b)]

Find all outward-bound ’LEdge’s for the given ’Node’.

inn :: Graph a b → Int → [(Int,Int,b)]

Find all inward-bound ’LEdge’s for the given ’Node’.

outdeg :: Graph a b → Int → Int

The outward-bound degree of the ’Node’.

indeg :: Graph a b → Int → Int

The inward-bound degree of the ’Node’.

deg :: Graph a b → Int → Int

The degree of the ’Node’.

gelem :: Int → Graph a b → Bool

’True’ if the ’Node’ is present in the ’Graph’.

equal :: Graph a b → Graph a b → Bool

graph equality

node’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The ’Node’ in a ’Context’.

lab’ :: ([(a,Int)],Int,b,[(a,Int)]) → b

103

The label in a ’Context’.

labNode’ :: ([(a,Int)],Int,b,[(a,Int)]) → (Int,b)

The ’LNode’ from a ’Context’.

neighbors’ :: ([(a,Int)],Int,b,[(a,Int)]) → [Int]

All ’Node’s linked to or from in a ’Context’.

suc’ :: ([(a,Int)],Int,b,[(a,Int)]) → [Int]

All ’Node’s linked to in a ’Context’.

pre’ :: ([(a,Int)],Int,b,[(a,Int)]) → [Int]

All ’Node’s linked from in a ’Context’.

lpre’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,a)]

All ’Node’s linked from in a ’Context’, and the label of the links.

lsuc’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,a)]

All ’Node’s linked from in a ’Context’, and the label of the links.

out’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,Int,a)]

All outward-directed ’LEdge’s in a ’Context’.

inn’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,Int,a)]

All inward-directed ’LEdge’s in a ’Context’.

outdeg’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The outward degree of a ’Context’.

indeg’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The inward degree of a ’Context’.

deg’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The degree of a ’Context’.

labNodes :: Graph a b → [(Int,a)]

A list of all ’LNode’s in the ’Graph’.

labEdges :: Graph a b → [(Int,Int,b)]

A list of all ’LEdge’s in the ’Graph’.

nodes :: Graph a b → [Int]

104

List all ’Node’s in the ’Graph’.

edges :: Graph a b → [(Int,Int)]

List all ’Edge’s in the ’Graph’.

newNodes :: Int → Graph a b → [Int]

List N available ’Node’s, ie ’Node’s that are not used in the ’Graph’.

ufold :: (([(a,Int)],Int,b,[(a,Int)]) → c → c) → c → Graph b a → c

Fold a function over the graph.

gmap :: (([(a,Int)],Int,b,[(a,Int)]) → ([(c,Int)],Int,d,[(c,Int)])) → Graph b a

→ Graph d c

Map a function over the graph.

nmap :: (a → b) → Graph a c → Graph b c

Map a function over the ’Node’ labels in a graph.

emap :: (a → b) → Graph c a → Graph c b

Map a function over the ’Edge’ labels in a graph.

labUEdges :: [(a,b)] → [(a,b,())]

add label () to list of edges (node,node)

labUNodes :: [a] → [(a,())]

add label () to list of nodes

showGraph :: Graph a b → String

Represent Graph as String

A.3.5 Library Random

Library for pseudo-random number generation in Curry.
This library provides operations for generating pseudo-random number sequences. For any given
seed, the sequences generated by the operations in this module should be identical to the sequnces
generated by the java.util.Random package.
The algorithm is a linear congruential pseudo-random number generator described in Donald E.
Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms, section 3.2.1.

105

Exported functions:

nextInt :: Int → [Int]

Returns a sequence of pseudorandom, uniformly distributed 32-bits integer values. All
2³² possible integer values are produced with (approximately) equal prob-
ability.

nextIntRange :: Int → Int → [Int]

Returns a pseudorandom, uniformly distributed sequence of values between 0 (inclusive)
and the specified value (exclusive). Each value is a 32-bits positive integer. All n possible
values are produced with (approximately) equal probability.

nextBoolean :: Int → [Bool]

Returns a pseudorandom, uniformly distributed sequence of boolean values. The values
True and False are produced with (approximately) equal probability.

getRandomSeed :: IO Int

Returns a time-dependent integer number as a seed for really random numbers. Should
only be used as a seed for pseudorandom number sequence and not as a random number
since the precision is limited to milliseconds

A.3.6 Library RedBlackTree

Library with an implementation of red-black trees:
Serves as the base for both TableRBT and SetRBT All the operations on trees are generic, i.e.,
one has to provide two explicit order predicates (”lessThan” and ”eq”below) on elements.

Exported types:

data RedBlackTree

A red-black tree consists of a tree structure and three order predicates. These predicates
generalize the red black tree. They define 1) equality when inserting into the tree

eg for a set eqInsert is (==), for a multiset it is (“ -> False) for a lookUp-table it
is ((==) . fst) 2) equality for looking up values eg for a set eqLookUp is (==), for a
multiset it is (==) for a lookUp-table it is ((==) . fst) 3) the (less than) relation for
the binary search tree

Exported constructors:

• RedBlackTree :: (a → a → Bool) → (a → a → Bool) → (a → a → Bool) →
(Tree a) → RedBlackTree a

106

Exported functions:

empty :: (a → a → Bool) → (a → a → Bool) → (a → a → Bool) → RedBlackTree

a

The three relations are inserted into the structure by function empty. Returns an empty
tree, i.e., an empty red-black tree augmented with the order predicates.

isEmpty :: RedBlackTree a → Bool

Test on emptyness

newTreeLike :: RedBlackTree a → RedBlackTree a

Creates a new empty red black tree from with the same ordering as a give one.

lookup :: a → RedBlackTree a → Maybe a

Returns an element if it is contained in a red-black tree.

update :: a → RedBlackTree a → RedBlackTree a

Updates/inserts an element into a RedBlackTree.

delete :: a → RedBlackTree a → RedBlackTree a

Deletes entry from red black tree.

tree2list :: RedBlackTree a → [a]

Transforms a red-black tree into an ordered list of its elements.

sort :: (a → a → Bool) → [a] → [a]

Generic sort based on insertion into red-black trees. The first argument is the order for
the elements.

setInsertEquivalence :: (a → a → Bool) → RedBlackTree a → RedBlackTree a

For compatibility with old version only

A.3.7 Library SetRBT

Library with an implementation of sets as red-black trees.
All the operations on sets are generic, i.e., one has to provide an explicit order predicate (”cmp”
below) on elements.

Exported types:

type SetRBT a = RedBlackTree a

107

Exported functions:

emptySetRBT :: (a → a → Bool) → RedBlackTree a

Returns an empty set, i.e., an empty red-black tree augmented with an order predicate.

elemRBT :: a → RedBlackTree a → Bool

Returns true if an element is contained in a (red-black tree) set.

insertRBT :: a → RedBlackTree a → RedBlackTree a

Inserts an element into a set if it is not already there.

insertMultiRBT :: a → RedBlackTree a → RedBlackTree a

Inserts an element into a multiset. Thus, the same element can have several occurrences
in the multiset.

deleteRBT :: a → RedBlackTree a → RedBlackTree a

delete an element from a set. Deletes only a single element from a multi set

setRBT2list :: RedBlackTree a → [a]

Transforms a (red-black tree) set into an ordered list of its elements.

unionRBT :: RedBlackTree a → RedBlackTree a → RedBlackTree a

Computes the union of two (red-black tree) sets. This is done by inserting all elements
of the first set into the second set.

intersectRBT :: RedBlackTree a → RedBlackTree a → RedBlackTree a

Computes the intersection of two (red-black tree) sets. This is done by inserting all
elements of the first set contained in the second set into a new set, which order is taken
from the first set.

sortRBT :: (a → a → Bool) → [a] → [a]

Generic sort based on insertion into red-black trees. The first argument is the order for
the elements.

A.3.8 Library Sort

A collection of useful functions for sorting and comparing characters, strings, and lists.

108

Exported functions:

quickSort :: (a → a → Bool) → [a] → [a]

Quicksort.

mergeSort :: (a → a → Bool) → [a] → [a]

Bottom-up mergesort.

leqList :: (a → a → Bool) → [a] → [a] → Bool

Less-or-equal on lists.

cmpList :: (a → a → Ordering) → [a] → [a] → Ordering

Comparison of lists.

leqChar :: Char → Char → Bool

Less-or-equal on characters (deprecated, use Prelude.<=).></=).>

cmpChar :: Char → Char → Ordering

Comparison of characters (deprecated, use Prelude.compare).

leqCharIgnoreCase :: Char → Char → Bool

Less-or-equal on characters ignoring case considerations.

leqString :: String → String → Bool

Less-or-equal on strings (deprecated, use Prelude.<=).></=).>

cmpString :: String → String → Ordering

Comparison of strings (deprecated, use Prelude.compare).

leqStringIgnoreCase :: String → String → Bool

Less-or-equal on strings ignoring case considerations.

leqLexGerman :: String → String → Bool

Lexicographical ordering on German strings. Thus, upper/lowercase are not distin-
guished and Umlauts are sorted as vocals.

A.3.9 Library TableRBT

Library with an implementation of tables as red-black trees:
A table is a finite mapping from keys to values. All the operations on tables are generic, i.e.,
one has to provide an explicit order predicate (”cmp” below) on elements. Each inner node in the
red-black tree contains a key-value association.

109

Exported types:

type TableRBT a b = RedBlackTree (a,b)

Exported functions:

emptyTableRBT :: (a → a → Bool) → RedBlackTree (a,b)

Returns an empty table, i.e., an empty red-black tree.

isEmptyTable :: RedBlackTree (a,b) → Bool

tests whether a given table is empty

lookupRBT :: a → RedBlackTree (a,b) → Maybe b

Looks up an entry in a table.

updateRBT :: a → b → RedBlackTree (a,b) → RedBlackTree (a,b)

Inserts or updates an element in a table.

tableRBT2list :: RedBlackTree (a,b) → [(a,b)]

Transforms the nodes of red-black tree into a list.

deleteRBT :: a → RedBlackTree (a,b) → RedBlackTree (a,b)

A.4 Libraries for Web Applications

A.4.1 Library CategorizedHtmlList

This library provides functions to categorize a list of entities into a HTML page with an index
access (e.g., ”A-Z”) to these entities.

Exported functions:

list2CategorizedHtml :: [(a,[HtmlExp])] → [(b,String)] → (a → b → Bool) →
[HtmlExp]

General categorization of a list of entries.

The item will occur in every category for which the boolean function categoryFun yields
True.

categorizeByItemKey :: [(String,[HtmlExp])] → [HtmlExp]

Categorize a list of entries with respect to the inial keys.

The categories are named as all initial characters of the keys of the items.

stringList2ItemList :: [String] → [(String,[HtmlExp])]

Convert a string list into an key-item list The strings are used as keys and for the simple
text layout.

110

A.4.2 Library HTML

Library for HTML and CGI programming. This paper13 contains a description of the basic ideas
behind this library.
The installation of a cgi script written with this library can be done by the command
makecurrycgi -m initialForm -o /home/joe/public html/prog.cgi prog

where prog is the name of the Curry program with the cgi script,
/home/joe/public html/prog.cgi is the desired location of the compiled cgi script, and
initialForm is the Curry expression (of type IO HtmlForm) computing the HTML form (where
makecurrycgi is a shell script stored in pakcshome/bin).

Exported types:

type CgiEnv = CgiRef → String

The type for representing cgi environments (i.e., mappings from cgi references to the
corresponding values of the input elements).

type HtmlHandler = (CgiRef → String) → IO HtmlForm

The type of event handlers in HTML forms.

data CgiRef

The (abstract) data type for representing references to input elements in HTML forms.

Exported constructors:

• CgiRef :: String → CgiRef

data HtmlExp

The data type for representing HTML expressions.

Exported constructors:

• HtmlText :: String → HtmlExp

HtmlText s - a text string without any further structure

• HtmlStruct :: String → [(String,String)] → [HtmlExp] → HtmlExp

HtmlStruct t as hs - a structure with a tag, attributes, and HTML expressions inside the
structure

• HtmlCRef :: HtmlExp → CgiRef → HtmlExp

HtmlCRef h ref - an input element (described by the first argument) with a cgi reference

• HtmlEvent :: HtmlExp → ((CgiRef → String) → IO HtmlForm) → HtmlExp

HtmlEvent h hdlr - an input element (first arg) with an associated event handler (tpyically,
a submit button)

13http://www.informatik.uni-kiel.de/~mh/publications/papers/PADL01.html

111

data HtmlForm

The data type for representing HTML forms (active web pages) and return values of
HTML forms.

Exported constructors:

• HtmlForm :: String → [FormParam] → [HtmlExp] → HtmlForm

HtmlForm t ps hs - an HTML form with title t, optional parameters (e.g., cookies) ps, and
contents hs

• HtmlAnswer :: String → String → HtmlForm

HtmlAnswer t c - an answer in an arbitrary format where t is the content type (e.g.,
”text/plain”) and c is the contents

data FormParam

The possible parameters of an HTML form. The parameters of a cookie (FormCookie)
are its name and value and optional parameters (expiration date, domain, path (e.g.,
the path ”/” makes the cookie valid for all documents on the server), security) which
are collected in a list.

Exported constructors:

• FormCookie :: String → String → [CookieParam] → FormParam

FormCookie name value params - a cookie to be sent to the client’s browser

• FormCSS :: String → FormParam

FormCSS s - a URL for a CSS file for this form

• FormJScript :: String → FormParam

FormJScript s - a URL for a Javascript file for this form

• FormOnSubmit :: String → FormParam

FormOnSubmit s - a JavaScript statement to be executed when the form is submitted (i.e.,
<form ... onsubmit=”s”>)

• FormTarget :: String → FormParam

FormTarget s - a name of a target frame where the output of the script should be represented
(should only be used for scripts running in a frame)

• FormEnc :: String → FormParam

FormEnc - the encoding scheme of this form

• HeadInclude :: HtmlExp → FormParam

HeadInclude he - HTML expression to be included in form header

112

• BodyAttr :: (String,String) → FormParam

BodyAttr ps - optional attribute for the body element (more than one occurrence is allowed)

data CookieParam

The possible parameters of a cookie.

Exported constructors:

• CookieExpire :: ClockTime → CookieParam

• CookieDomain :: String → CookieParam

• CookiePath :: String → CookieParam

• CookieSecure :: CookieParam

data HtmlPage

The data type for representing HTML pages. The constructor arguments are the title,
the parameters, and the contents (body) of the web page.

Exported constructors:

• HtmlPage :: String → [PageParam] → [HtmlExp] → HtmlPage

data PageParam

The possible parameters of an HTML page.

Exported constructors:

• PageEnc :: String → PageParam

PageEnc - the encoding scheme of this page

• PageCSS :: String → PageParam

PageCSS s - a URL for a CSS file for this page

• PageJScript :: String → PageParam

PageJScript s - a URL for a Javascript file for this page

Exported functions:

idOfCgiRef :: CgiRef → String

Internal identifier of a CgiRef (intended only for internal use in other libraries!).

HtmlElem :: String → [(String,String)] → HtmlExp

A single HTML element with a tag, attributes, but no contents (deprecated, included
only for backward compatibility).

113

formEnc :: String → FormParam

An encoding scheme for a HTML form.

formCSS :: String → FormParam

A URL for a CSS file for a HTML form.

form :: String → [HtmlExp] → HtmlForm

A basic HTML form for active web pages.

Form :: String → [HtmlExp] → HtmlForm

A basic HTML form for active web pages (deprecated, included only for backward
compatibility).

standardForm :: String → [HtmlExp] → HtmlForm

A standard HTML form for active web pages where the title is included in the body as
the first header.

cookieForm :: String → [(String,String)] → [HtmlExp] → HtmlForm

An HTML form with simple cookies. The cookies are sent to the client’s browser
together with this form.

addCookies :: [(String,String)] → HtmlForm → HtmlForm

Add simple cookie to HTML form. The cookies are sent to the client’s browser together
with this form.

answerText :: String → HtmlForm

A textual result instead of an HTML form as a result for active web pages.

addFormParam :: HtmlForm → FormParam → HtmlForm

Adds a parameter to an HTML form.

redirect :: Int → String → HtmlForm → HtmlForm

Adds redirection to given HTML form.

expires :: Int → HtmlForm → HtmlForm

Adds expire time to given HTML form.

addSound :: String → Bool → HtmlForm → HtmlForm

Adds sound to given HTML form. The functions adds two different declarations for
sound, one invented by Microsoft for the internet explorer, one introduced for netscape.
As neither is an official part of HTML, addsound might not work on all systems and
browsers. The greatest chance is by using sound files in MID-format.

114

pageEnc :: String → PageParam

An encoding scheme for a HTML page.

pageCSS :: String → PageParam

A URL for a CSS file for a HTML page.

page :: String → [HtmlExp] → HtmlPage

A basic HTML web page.

standardPage :: String → [HtmlExp] → HtmlPage

A standard HTML web page where the title is included in the body as the first header.

addPageParam :: HtmlPage → PageParam → HtmlPage

Adds a parameter to an HTML page.

htxt :: String → HtmlExp

Basic text as HTML expression. The text may contain special HTML chars (like
<,>,&,”) which will be quoted so that they appear as in the parameter string.

htxts :: [String] → [HtmlExp]

A list of strings represented as a list of HTML expressions. The strings may contain
special HTML chars that will be quoted.

hempty :: HtmlExp

An empty HTML expression.

nbsp :: HtmlExp

Non breaking Space

h1 :: [HtmlExp] → HtmlExp

Header 1

h2 :: [HtmlExp] → HtmlExp

Header 2

h3 :: [HtmlExp] → HtmlExp

Header 3

h4 :: [HtmlExp] → HtmlExp

Header 4

h5 :: [HtmlExp] → HtmlExp

115

Header 5

par :: [HtmlExp] → HtmlExp

Paragraph

emphasize :: [HtmlExp] → HtmlExp

Emphasize

bold :: [HtmlExp] → HtmlExp

Boldface

italic :: [HtmlExp] → HtmlExp

Italic

code :: [HtmlExp] → HtmlExp

Program code

center :: [HtmlExp] → HtmlExp

Centered text

blink :: [HtmlExp] → HtmlExp

Blinking text

teletype :: [HtmlExp] → HtmlExp

Teletype font

pre :: [HtmlExp] → HtmlExp

Unformatted input, i.e., keep spaces and line breaks and don’t quote special characters.

verbatim :: String → HtmlExp

Verbatim (unformatted), special characters (<,>,&,”) are quoted.

address :: [HtmlExp] → HtmlExp

Address

href :: String → [HtmlExp] → HtmlExp

Hypertext reference

anchor :: String → [HtmlExp] → HtmlExp

An anchor for hypertext reference inside a document

ulist :: [[HtmlExp]] → HtmlExp

116

Unordered list

olist :: [[HtmlExp]] → HtmlExp

Ordered list

litem :: [HtmlExp] → HtmlExp

A single list item (usually not explicitly used)

dlist :: [([HtmlExp],[HtmlExp])] → HtmlExp

Description list

table :: [[[HtmlExp]]] → HtmlExp

Table with a matrix of items where each item is a list of HTML expressions.

headedTable :: [[[HtmlExp]]] → HtmlExp

Similar to table but introduces header tags for the first row.

addHeadings :: HtmlExp → [[HtmlExp]] → HtmlExp

Add a row of items (where each item is a list of HTML expressions) as headings to a
table. If the first argument is not a table, the headings are ignored.

hrule :: HtmlExp

Horizontal rule

breakline :: HtmlExp

Break a line

image :: String → String → HtmlExp

Image

styleSheet :: String → HtmlExp

Defines a style sheet to be used in this HTML document.

style :: String → [HtmlExp] → HtmlExp

Provides a style for HTML elements. The style argument is the name of a style class
defined in a style definition (see styleSheet) or in an external style sheet (see form
and page parameters FormCSS and PageCSS).

textstyle :: String → String → HtmlExp

Provides a style for a basic text. The style argument is the name of a style class defined
in an external style sheet.

blockstyle :: String → [HtmlExp] → HtmlExp

117

Provides a style for a block of HTML elements. The style argument is the name of
a style class defined in an external style sheet. This element is used (in contrast to
”style”) for larger blocks of HTML elements since a line break is placed before and
after these elements.

inline :: [HtmlExp] → HtmlExp

Joins a list of HTML elements into a single HTML element. Although this construction
has no rendering, it is sometimes useful for programming when several HTML elements
must be put together.

block :: [HtmlExp] → HtmlExp

Joins a list of HTML elements into a block. A line break is placed before and after
these elements.

button :: String → ((CgiRef → String) → IO HtmlForm) → HtmlExp

Submit button with a label string and an event handler

resetbutton :: String → HtmlExp

Reset button with a label string

imageButton :: String → ((CgiRef → String) → IO HtmlForm) → HtmlExp

Submit button in form of an imag.

textfield :: CgiRef → String → HtmlExp

Input text field with a reference and an initial contents

password :: CgiRef → HtmlExp

Input text field (where the entered text is obscured) with a reference

textarea :: CgiRef → (Int,Int) → String → HtmlExp

Input text area with a reference, height/width, and initial contents

checkbox :: CgiRef → String → HtmlExp

A checkbox with a reference and a value. The value is returned if checkbox is on,
otherwise ”” is returned.

checkedbox :: CgiRef → String → HtmlExp

A checkbox that is initially checked with a reference and a value. The value is returned
if checkbox is on, otherwise ”” is returned.

radio main :: CgiRef → String → HtmlExp

118

A main button of a radio (initially ”on”) with a reference and a value. The value is
returned of this button is on. A complete radio button suite always consists of a main
button (radio main) and some further buttons (radio others) with the same reference.
Initially, the main button is selected (or nothing is selected if one uses radio main off
instead of radio main). The user can select another button but always at most one
button of the radio can be selected. The value corresponding to the selected button is
returned in the environment for this radio reference.

radio main off :: CgiRef → String → HtmlExp

A main button of a radio (initially ”off”) with a reference and a value. The value is
returned of this button is on.

radio other :: CgiRef → String → HtmlExp

A further button of a radio (initially ”off”) with a reference (identical to the main
button of this radio) and a value. The value is returned of this button is on.

selection :: CgiRef → [(String,String)] → HtmlExp

A selection button with a reference and a list of name/value pairs. The names are
shown in the selection and the value is returned for the selected name.

selectionInitial :: CgiRef → [(String,String)] → Int → HtmlExp

A selection button with a reference, a list of name/value pairs, and a preselected item
in this list. The names are shown in the selection and the value is returned for the
selected name.

multipleSelection :: CgiRef → [(String,String,Bool)] → HtmlExp

A selection button with a reference and a list of name/value/flag pairs. The names are
shown in the selection and the value is returned if the corresponding name is selected.
If flag is True, the corresonding name is initially selected. If more than one name has
been selected, all values are returned in one string where the values are separated by
’“n’ characters.

hiddenfield :: String → String → HtmlExp

A hidden field to pass a value referenced by a fixed name. This function should be
used with care since it may cause conflicts with the CGI-based implementation of this
library.

htmlQuote :: String → String

Quotes special characters (<,></,>,&,”, umlauts) in a string as HTML special charac-
ters.

addAttr :: HtmlExp → (String,String) → HtmlExp

Adds an attribute (name/value pair) to an HTML element.

119

addAttrs :: HtmlExp → [(String,String)] → HtmlExp

Adds a list of attributes (name/value pair) to an HTML element.

showHtmlExps :: [HtmlExp] → String

Transforms a list of HTML expressions into string representation.

showHtmlExp :: HtmlExp → String

Transforms a single HTML expression into string representation.

showHtmlDoc :: String → [HtmlExp] → String

Transforms HTML expressions into string representation of complete HTML document
with title (deprecated, included only for backward compatibility).

showHtmlDocCSS :: String → String → [HtmlExp] → String

Transforms HTML expressions into string representation of complete HTML document
with title and a URL for a style sheet file (deprecated, included only for backward
compatibility).

showHtmlPage :: HtmlPage → String

Transforms HTML page into string representation.

getUrlParameter :: IO String

Gets the parameter attached to the URL of the script. For instance, if the script is
called with URL ”http://.../script.cgi?parameter”, then ”parameter” is returned by
this I/O action. Note that an URL parameter should be ”URL encoded” to avoid the
appearance of characters with a special meaning. Use the functions ”urlencoded2string”
and ”string2urlencoded” to decode and encode such parameters, respectively.

urlencoded2string :: String → String

Translates urlencoded string into equivalent ASCII string.

string2urlencoded :: String → String

Translates arbitrary strings into equivalent urlencoded string.

getCookies :: IO [(String,String)]

Gets the cookies sent from the browser for the current CGI script. The cookies are
represented in the form of name/value pairs since no other components are important
here.

coordinates :: (CgiRef → String) → Maybe (Int,Int)

For image buttons: retrieve the coordinates where the user clicked within the image.

runFormServerWithKey :: String → String → IO HtmlForm → IO ()

120

The server implementing an HTML form (possibly containing input fields). It receives
a message containing the environment of the client’s web browser, translates the HTML
form w.r.t. this environment into a string representation of the complete HTML doc-
ument and sends the string representation back to the client’s browser by binding the
corresponding message argument.

runFormServerWithKeyAndFormParams :: String → String → [FormParam] → IO

HtmlForm → IO ()

The server implementing an HTML form (possibly containing input fields). It receives
a message containing the environment of the client’s web browser, translates the HTML
form w.r.t. this environment into a string representation of the complete HTML doc-
ument and sends the string representation back to the client’s browser by binding the
corresponding message argument.

showLatexExps :: [HtmlExp] → String

Transforms HTML expressions into LaTeX string representation.

showLatexExp :: HtmlExp → String

Transforms an HTML expression into LaTeX string representation.

showLatexDoc :: [HtmlExp] → String

Transforms HTML expressions into a string representation of a complete LaTeX docu-
ment.

showLatexDocWithPackages :: [HtmlExp] → [String] → String

Transforms HTML expressions into a string representation of a complete LaTeX doc-
ument. The variable ”packages” holds the packages to add to the latex document e.g.
”ngerman”

showLatexDocs :: [[HtmlExp]] → String

Transforms a list of HTML expressions into a string representation of a complete LaTeX
document where each list entry appears on a separate page.

showLatexDocsWithPackages :: [[HtmlExp]] → [String] → String

Transforms a list of HTML expressions into a string representation of a complete LaTeX
document where each list entry appears on a separate page. The variable ”packages”
holds the packages to add to the latex document (e.g., ”ngerman”).

germanLatexDoc :: [HtmlExp] → String

show german latex document

intForm :: IO HtmlForm → IO ()

Execute an HTML form in ”interactive” mode.

intFormMain :: String → String → String → String → Bool → String → IO

HtmlForm → IO ()

Execute an HTML form in ”interactive” mode with various parameters.

121

A.4.3 Library HtmlParser

This module contains a very simple parser for HTML documents.

Exported functions:

readHtmlFile :: String → IO [HtmlExp]

Reads a file with HTML text and returns the corresponding HTML expressions.

parseHtmlString :: String → [HtmlExp]

Transforms an HTML string into a list of HTML expressions. If the HTML string is
a well structured document, the list of HTML expressions should contain exactly one
element.

A.4.4 Library Mail

This library contains functions for sending emails. The implementation might need to be adapted
to the local environment.

Exported types:

data MailOption

Options for sending emails.

Exported constructors:

• CC :: String → MailOption

CC - recipient of a carbon copy

• BCC :: String → MailOption

BCC - recipient of a blind carbon copy

• TO :: String → MailOption

TO - recipient of the email

Exported functions:

sendMail :: String → String → String → String → IO ()

Sends an email via mailx command.

sendMailWithOptions :: String → String → [MailOption] → String → IO ()

Sends an email via mailx command and various options. Note that multiple options are
allowed, e.g., more than one CC option for multiple recipient of carbon copies.

122

A.4.5 Library WUI

A library to support the type-oriented construction of Web User Interfaces (WUIs).
The ideas behind the application and implementation of WUIs are described in a paper that is
available via this web page14 .

Exported types:

type Rendering = [HtmlExp] → HtmlExp

A rendering is a function that combines the visualization of components of a data
structure into some HTML expression.

data WuiHandler

A handler for a WUI is an event handler for HTML forms possibly with some specific
code attached (for future extensions).

Exported constructors:

data WuiSpec

The type of WUI specifications. The first component are parameters specifying the
behavior of this WUI type (rendering, error message, and constraints on inputs). The
second component is a ”show” function returning an HTML expression for the edit fields
and a WUI state containing the CgiRefs to extract the values from the edit fields. The
third component is ”read” function to extract the values from the edit fields for a given
cgi environment (returned as (Just v)). If the value is not legal, Nothing is returned.
The second component of the result contains an HTML edit expression together with
a WUI state to edit the value again.

Exported constructors:

• WuiSpec :: ([HtmlExp] → HtmlExp,String,a → Bool) → (([HtmlExp] →
HtmlExp,String,a → Bool) → a → (HtmlExp,WuiState)) → (([HtmlExp] →
HtmlExp,String,a → Bool) → (CgiRef → String) → WuiState → (Maybe

a,(HtmlExp,WuiState))) → WuiSpec a

data WTree

A simple tree structure to demonstrate the construction of WUIs for tree types.

Exported constructors:

• WLeaf :: a → WTree a

• WNode :: [WTree a] → WTree a

14http://www.informatik.uni-kiel.de/~pakcs/WUI

123

Exported functions:

wuiHandler2button :: String → WuiHandler → HtmlExp

Transform a WUI handler into a submit button with a given label string.

withRendering :: WuiSpec a → ([HtmlExp] → HtmlExp) → WuiSpec a

Puts a new rendering function into a WUI specification.

withError :: WuiSpec a → String → WuiSpec a

Puts a new error message into a WUI specification.

withCondition :: WuiSpec a → (a → Bool) → WuiSpec a

Puts a new condition into a WUI specification.

transformWSpec :: (a → b,b → a) → WuiSpec a → WuiSpec b

Transforms a WUI specification from one type to another.

adaptWSpec :: (a → b) → WuiSpec a → WuiSpec b

Adapt a WUI specification to a new type. For this purpose, the first argument must
be a transformation mapping values from the old type to the new type. This function
must be bijective and operationally invertible (i.e., the inverse must be computable by
narrowing). Otherwise, use transformWSpec!

wHidden :: WuiSpec a

A hidden widget for a value that is not shown in the WUI. Usually, this is used in
components of larger structures, e.g., internal identifiers, data base keys.

wConstant :: (a → HtmlExp) → WuiSpec a

A widget for values that are shown but cannot be modified. The first argument is a
mapping of the value into a HTML expression to show this value.

wInt :: WuiSpec Int

A widget for editing integer values.

wString :: WuiSpec String

A widget for editing string values.

wStringSize :: Int → WuiSpec String

A widget for editing string values with a size attribute.

wRequiredString :: WuiSpec String

A widget for editing string values that are required to be non-empty.

124

wRequiredStringSize :: Int → WuiSpec String

A widget with a size attribute for editing string values that are required to be non-empty.

wTextArea :: (Int,Int) → WuiSpec String

A widget for editing string values in a text area. The argument specifies the height and
width of the text area.

wSelect :: (a → String) → [a] → WuiSpec a

A widget to select a value from a given list of values. The current value should be
contained in the value list and is preselected. The first argument is a mapping from
values into strings to be shown in the selection widget.

wSelectInt :: [Int] → WuiSpec Int

A widget to select a value from a given list of integers (provided as the argument). The
current value should be contained in the value list and is preselected.

wSelectBool :: String → String → WuiSpec Bool

A widget to select a Boolean value via a selection box. The arguments are the strings
that are shown for the values True and False in the selection box, respectively.

wCheckBool :: [HtmlExp] → WuiSpec Bool

A widget to select a Boolean value via a check box. The first argument are HTML
expressions that are shown after the check box. The result is True if the box is checked.

wMultiCheckSelect :: (a → [HtmlExp]) → [a] → WuiSpec [a]

A widget to select a list of values from a given list of values via check boxes. The current
values should be contained in the value list and are preselected. The first argument is
a mapping from values into HTML expressions that are shown for each item after the
check box.

wRadioSelect :: (a → [HtmlExp]) → [a] → WuiSpec a

A widget to select a value from a given list of values via a radio button. The current
value should be contained in the value list and is preselected. The first argument is
a mapping from values into HTML expressions that are shown for each item after the
radio button.

wRadioBool :: [HtmlExp] → [HtmlExp] → WuiSpec Bool

A widget to select a Boolean value via a radio button. The arguments are the lists of
HTML expressions that are shown after the True and False radio buttons, respectively.

wPair :: WuiSpec a → WuiSpec b → WuiSpec (a,b)

WUI combinator for pairs.

125

wCons2 :: (a → b → c) → WuiSpec a → WuiSpec b → WuiSpec c

WUI combinator for constructors of arity 2. The first argument is the binary con-
structor. The second and third arguments are the WUI specifications for the argument
types.

wTriple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec (a,b,c)

WUI combinator for triples.

wCons3 :: (a → b → c → d) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d

WUI combinator for constructors of arity 3. The first argument is the ternary construc-
tor. The further arguments are the WUI specifications for the argument types.

w4Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec (a,b,c,d)

WUI combinator for tuples of arity 4.

wCons4 :: (a → b → c → d → e) → WuiSpec a → WuiSpec b → WuiSpec c →
WuiSpec d → WuiSpec e

WUI combinator for constructors of arity 4. The first argument is the ternary construc-
tor. The further arguments are the WUI specifications for the argument types.

w5Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec (a,b,c,d,e)

WUI combinator for tuples of arity 5.

wCons5 :: (a → b → c → d → e → f) → WuiSpec a → WuiSpec b → WuiSpec c →
WuiSpec d → WuiSpec e → WuiSpec f

WUI combinator for constructors of arity 5. The first argument is the ternary construc-
tor. The further arguments are the WUI specifications for the argument types.

w6Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec (a,b,c,d,e,f)

WUI combinator for tuples of arity 6.

wCons6 :: (a → b → c → d → e → f → g) → WuiSpec a → WuiSpec b → WuiSpec c

→ WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g

WUI combinator for constructors of arity 6. The first argument is the ternary construc-
tor. The further arguments are the WUI specifications for the argument types.

w7Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec (a,b,c,d,e,f,g)

WUI combinator for tuples of arity 7.

126

wCons7 :: (a → b → c → d → e → f → g → h) → WuiSpec a → WuiSpec b →
WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h

WUI combinator for constructors of arity 7. The first argument is the ternary construc-
tor. The further arguments are the WUI specifications for the argument types.

w8Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec (a,b,c,d,e,f,g,h)

WUI combinator for tuples of arity 8.

wCons8 :: (a → b → c → d → e → f → g → h → i) → WuiSpec a → WuiSpec b

→ WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h →
WuiSpec i

WUI combinator for constructors of arity 8. The first argument is the ternary construc-
tor. The further arguments are the WUI specifications for the argument types.

w9Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec (a,b,c,d,e,f,g,h,i)

WUI combinator for tuples of arity 9.

wCons9 :: (a → b → c → d → e → f → g → h → i → j) → WuiSpec a → WuiSpec

b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h →
WuiSpec i → WuiSpec j

WUI combinator for constructors of arity 9. The first argument is the ternary construc-
tor. The further arguments are the WUI specifications for the argument types.

w10Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e

→ WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec

(a,b,c,d,e,f,g,h,i,j)

WUI combinator for tuples of arity 10.

wCons10 :: (a → b → c → d → e → f → g → h → i → j → k) → WuiSpec a →
WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g →
WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k

WUI combinator for constructors of arity 10. The first argument is the ternary con-
structor. The further arguments are the WUI specifications for the argument types.

w11Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k →
WuiSpec (a,b,c,d,e,f,g,h,i,j,k)

WUI combinator for tuples of arity 11.

wCons11 :: (a → b → c → d → e → f → g → h → i → j → k → l) → WuiSpec a

→ WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g →
WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k → WuiSpec l

127

WUI combinator for constructors of arity 11. The first argument is the ternary con-
structor. The further arguments are the WUI specifications for the argument types.

wList :: WuiSpec a → WuiSpec [a]

WUI combinator for list structures where the list elements are vertically aligned in a
table.

wListWithHeadings :: [String] → WuiSpec a → WuiSpec [a]

Add headings to a standard WUI for list structures:

wHList :: WuiSpec a → WuiSpec [a]

WUI combinator for list structures where the list elements are horizontally aligned in
a table.

wMatrix :: WuiSpec a → WuiSpec [[a]]

WUI for matrices, i.e., list of list of elements visualized as a matrix.

wMaybe :: WuiSpec Bool → WuiSpec a → a → WuiSpec (Maybe a)

WUI for Maybe values. It is constructed from a WUI for Booleans and a WUI for the
potential values. Nothing corresponds to a selection of False in the Boolean WUI. The
value WUI is shown after the Boolean WUI.

wCheckMaybe :: WuiSpec a → [HtmlExp] → a → WuiSpec (Maybe a)

A WUI for Maybe values where a check box is used to select Just. The value WUI is
shown after the check box.

wRadioMaybe :: WuiSpec a → [HtmlExp] → [HtmlExp] → a → WuiSpec (Maybe a)

A WUI for Maybe values where radio buttons are used to switch between Nothing and
Just. The value WUI is shown after the radio button WUI.

wEither :: WuiSpec a → WuiSpec b → WuiSpec (Either a b)

WUI for union types. Here we provide only the implementation for Either types since
other types with more alternatives can be easily reduced to this case.

wTree :: WuiSpec a → WuiSpec (WTree a)

WUI for tree types. The rendering specifies the rendering of inner nodes. Leaves are
shown with their default rendering.

mainWUI :: WuiSpec a → a → (a → IO HtmlForm) → IO HtmlForm

Generates an HTML form from a WUI data specification, an initial value and an update
form.

wui2html :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp,WuiHandler)

128

Generates HTML editors and a handler from a WUI data specification, an initial value
and an update form.

wuiInForm :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp → WuiHandler →
HtmlForm) → IO HtmlForm

Puts a WUI into a HTML form containing ”holes” for the WUI and the handler.

wuiWithErrorForm :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp → WuiHandler

→ HtmlForm) → (HtmlExp,WuiHandler)

Generates HTML editors and a handler from a WUI data specification, an initial value
and an update form. In addition to wui2html, we can provide a skeleton form used to
show illegal inputs.

A.4.6 Library URL

Library for dealing with URLs (Uniform Resource Locators).

Exported functions:

getContentsOfUrl :: String → IO String

Reads the contents of a document located by a URL. This action requires that the
program ”wget” is in your path, otherwise the implementation must be adapted to the
local installation.

A.4.7 Library XML

Library for processing XML data.
Warning: the structure of this library is not stable and might be changed in the future!

Exported types:

data XmlExp

The data type for representing XML expressions.

Exported constructors:

• XText :: String → XmlExp

XText - a text string (PCDATA)

• XElem :: String → [(String,String)] → [XmlExp] → XmlExp

XElem - an XML element with tag field, attributes, and a list of XML elements as contents

data Encoding

The data type for encodings used in the XML document.

129

Exported constructors:

• StandardEnc :: Encoding

• Iso88591Enc :: Encoding

data XmlDocParams

The data type for XML document parameters.

Exported constructors:

• Enc :: Encoding → XmlDocParams

Enc - the encoding for a document

• DtdUrl :: String → XmlDocParams

DtdUrl - the url of the DTD for a document

Exported functions:

xtxt :: String → XmlExp

Basic text (maybe containing special XML chars).

xml :: String → [XmlExp] → XmlExp

XML element without attributes.

writeXmlFile :: String → XmlExp → IO ()

Writes a file with a given XML document.

writeXmlFileWithParams :: String → [XmlDocParams] → XmlExp → IO ()

Writes a file with a given XML document and XML parameters.

showXmlDoc :: XmlExp → String

Show an XML document in indented format as a string.

showXmlDocWithParams :: [XmlDocParams] → XmlExp → String

readXmlFile :: String → IO XmlExp

Reads a file with an XML document and returns the corresponding XML expression.

readUnsafeXmlFile :: String → IO (Maybe XmlExp)

Tries to read a file with an XML document and returns the corresponding XML expres-
sion, if possible. If file or parse errors occur, Nothing is returned.

130

readFileWithXmlDocs :: String → IO [XmlExp]

Reads a file with an arbitrary sequence of XML documents and returns the list of
corresponding XML expressions.

parseXmlString :: String → [XmlExp]

Transforms an XML string into a list of XML expressions. If the XML string is a well
structured document, the list of XML expressions should contain exactly one element.

textOfXml :: [XmlExp] → String

Extracts the textual contents of a list of XML expressions. Useful auxiliary function
when transforming XML expression into other data structures.

For instance, textOfXml [XText "xy", XElem "a" [] [], XText "ab"] == "xy

ab"

updateXmlFile :: (XmlExp → XmlExp) → String → IO ()

An action that updates the contents of an XML file by some transformation on the
XML document.

A.4.8 Library XmlConv

Provides type-based combinators to construct XML converters. Arbitrary XML data can be rep-
resented as algebraic datatypes and vice versa. See here15 for a description of this library.

Exported types:

type XmlReads a = ([(String,String)],[XmlExp]) → (a,([(String,String)],[XmlExp]))

Type of functions that consume some XML data to compute a result

type XmlShows a = a → ([(String,String)],[XmlExp]) → ([(String,String)],[XmlExp])

Type of functions that extend XML data corresponding to a given value

type XElemConv a = XmlConv Repeatable Elem a

Type of converters for XML elements

type XAttrConv a = XmlConv NotRepeatable NoElem a

Type of converters for attributes

type XPrimConv a = XmlConv NotRepeatable NoElem a

Type of converters for primitive values

type XOptConv a = XmlConv NotRepeatable NoElem a

Type of converters for optional values

type XRepConv a = XmlConv NotRepeatable NoElem a

Type of converters for repetitions
15http://www-ps.informatik.uni-kiel.de/~sebf/projects/xmlconv/

131

Exported functions:

xmlReads :: XmlConv a b c → ([(String,String)],[XmlExp]) →
(c,([(String,String)],[XmlExp]))

Takes an XML converter and returns a function that consumes XML data and returns
the remaining data along with the result.

xmlShows :: XmlConv a b c → c → ([(String,String)],[XmlExp]) →
([(String,String)],[XmlExp])

Takes an XML converter and returns a function that extends XML data with the
representation of a given value.

xmlRead :: XmlConv a Elem b → XmlExp → b

Takes an XML converter and an XML expression and returns a corresponding Curry
value.

xmlShow :: XmlConv a Elem b → b → XmlExp

Takes an XML converter and a value and returns a corresponding XML expression.

int :: XmlConv NotRepeatable NoElem Int

Creates an XML converter for integer values. Integer values must not be used in repe-
titions and do not represent XML elements.

float :: XmlConv NotRepeatable NoElem Float

Creates an XML converter for float values. Float values must not be used in repetitions
and do not represent XML elements.

char :: XmlConv NotRepeatable NoElem Char

Creates an XML converter for character values. Character values must not be used in
repetitions and do not represent XML elements.

string :: XmlConv NotRepeatable NoElem String

Creates an XML converter for string values. String values must not be used in repeti-
tions and do not represent XML elements.

(!) :: XmlConv a b c → XmlConv a b c → XmlConv a b c

Parallel composition of XML converters.

element :: String → XmlConv a b c → XmlConv Repeatable Elem c

Takes an arbitrary XML converter and returns a converter representing an XML element
that contains the corresponding data. XML elements may be used in repetitions.

empty :: a → XmlConv NotRepeatable NoElem a

132

Takes a value and returns an XML converter for this value which is not represented as
XML data. Empty XML data must not be used in repetitions and does not represent
an XML element.

attr :: String → (String → a,a → String) → XmlConv NotRepeatable NoElem a

Takes a name and string conversion functions and returns an XML converter that
represents an attribute. Attributes must not be used in repetitions and do not represent
an XML element.

adapt :: (a → b,b → a) → XmlConv c d a → XmlConv c d b

Converts between arbitrary XML converters for different types.

opt :: XmlConv a b c → XmlConv NotRepeatable NoElem (Maybe c)

Creates a converter for arbitrary optional XML data. Optional XML data must not be
used in repetitions and does not represent an XML element.

rep :: XmlConv Repeatable a b → XmlConv NotRepeatable NoElem [b]

Takes an XML converter representing repeatable data and returns an XML converter
that represents repetitions of this data. Repetitions must not be used in other repeti-
tions and do not represent XML elements.

aInt :: String → XmlConv NotRepeatable NoElem Int

Creates an XML converter for integer attributes. Integer attributes must not be used
in repetitions and do not represent XML elements.

aFloat :: String → XmlConv NotRepeatable NoElem Float

Creates an XML converter for float attributes. Float attributes must not be used in
repetitions and do not represent XML elements.

aChar :: String → XmlConv NotRepeatable NoElem Char

Creates an XML converter for character attributes. Character attributes must not be
used in repetitions and do not represent XML elements.

aString :: String → XmlConv NotRepeatable NoElem String

Creates an XML converter for string attributes. String attributes must not be used in
repetitions and do not represent XML elements.

aBool :: String → String → String → XmlConv NotRepeatable NoElem Bool

Creates an XML converter for boolean attributes. Boolean attributes must not be used
in repetitions and do not represent XML elements.

eInt :: String → XmlConv Repeatable Elem Int

133

Creates an XML converter for integer elements. Integer elements may be used in repe-
titions.

eFloat :: String → XmlConv Repeatable Elem Float

Creates an XML converter for float elements. Float elements may be used in repetitions.

eChar :: String → XmlConv Repeatable Elem Char

Creates an XML converter for character elements. Character elements may be used in
repetitions.

eString :: String → XmlConv Repeatable Elem String

Creates an XML converter for string elements. String elements may be used in repeti-
tions.

eBool :: String → String → XmlConv Repeatable Elem Bool

Creates an XML converter for boolean elements. Boolean elements may be used in
repetitions.

eEmpty :: String → a → XmlConv Repeatable Elem a

Takes a name and a value and creates an empty XML element that represents the given
value. The created element may be used in repetitions.

eOpt :: String → XmlConv a b c → XmlConv Repeatable Elem (Maybe c)

Creates an XML converter that represents an element containing optional XML data.
The created element may be used in repetitions.

eRep :: String → XmlConv Repeatable a b → XmlConv Repeatable Elem [b]

Creates an XML converter that represents an element containing repeated XML data.
The created element may be used in repetitions.

seq1 :: (a → b) → XmlConv c d a → XmlConv c NoElem b

Creates an XML converter representing a sequence of arbitrary XML data. The se-
quence must not be used in repetitions and does not represent an XML element.

repSeq1 :: (a → b) → XmlConv Repeatable c a → XmlConv NotRepeatable NoElem [b]

Creates an XML converter that represents a repetition of a sequence of repeatable
XML data. The repetition may be used in other repetitions but does not represent an
XML element. This combinator is provided because converters for repeatable sequences
cannot be constructed by the seq combinators.

eSeq1 :: String → (a → b) → XmlConv c d a → XmlConv Repeatable Elem b

Creates an XML converter for compound values represented as an XML element with
children that correspond to the values components. The element can be used in repe-
titions.

134

eRepSeq1 :: String → (a → b) → XmlConv Repeatable c a → XmlConv Repeatable

Elem [b]

Creates an XML converter for repetitions of sequences represented as an XML element
that can be used in repetitions.

seq2 :: (a → b → c) → XmlConv d e a → XmlConv f g b → XmlConv NotRepeatable

NoElem c

Creates an XML converter representing a sequence of arbitrary XML data. The se-
quence must not be used in repetitions and does not represent an XML element.

repSeq2 :: (a → b → c) → XmlConv Repeatable d a → XmlConv Repeatable e b →
XmlConv NotRepeatable NoElem [c]

Creates an XML converter that represents a repetition of a sequence of repeatable
XML data. The repetition may be used in other repetitions and does not represent an
XML element. This combinator is provided because converters for repeatable sequences
cannot be constructed by the seq combinators.

eSeq2 :: String → (a → b → c) → XmlConv d e a → XmlConv f g b → XmlConv

Repeatable Elem c

Creates an XML converter for compound values represented as an XML element with
children that correspond to the values components. The element can be used in repe-
titions.

eRepSeq2 :: String → (a → b → c) → XmlConv Repeatable d a → XmlConv

Repeatable e b → XmlConv Repeatable Elem [c]

Creates an XML converter for repetitions of sequences represented as an XML element
that can be used in repetitions.

seq3 :: (a → b → c → d) → XmlConv e f a → XmlConv g h b → XmlConv i j c →
XmlConv NotRepeatable NoElem d

Creates an XML converter representing a sequence of arbitrary XML data. The se-
quence must not be used in repetitions and does not represent an XML element.

repSeq3 :: (a → b → c → d) → XmlConv Repeatable e a → XmlConv Repeatable f b

→ XmlConv Repeatable g c → XmlConv NotRepeatable NoElem [d]

Creates an XML converter that represents a repetition of a sequence of repeatable
XML data. The repetition may be used in other repetitions and does not represent an
XML element. This combinator is provided because converters for repeatable sequences
cannot be constructed by the seq combinators.

eSeq3 :: String → (a → b → c → d) → XmlConv e f a → XmlConv g h b → XmlConv

i j c → XmlConv Repeatable Elem d

135

Creates an XML converter for compound values represented as an XML element with
children that correspond to the values components. The element can be used in repe-
titions.

eRepSeq3 :: String → (a → b → c → d) → XmlConv Repeatable e a → XmlConv

Repeatable f b → XmlConv Repeatable g c → XmlConv Repeatable Elem [d]

Creates an XML converter for repetitions of sequences represented as an XML element
that can be used in repetitions.

seq4 :: (a → b → c → d → e) → XmlConv f g a → XmlConv h i b → XmlConv j k c

→ XmlConv l m d → XmlConv NotRepeatable NoElem e

Creates an XML converter representing a sequence of arbitrary XML data. The se-
quence must not be used in repetitions and does not represent an XML element.

repSeq4 :: (a → b → c → d → e) → XmlConv Repeatable f a → XmlConv Repeatable

g b → XmlConv Repeatable h c → XmlConv Repeatable i d → XmlConv NotRepeatable

NoElem [e]

Creates an XML converter that represents a repetition of a sequence of repeatable
XML data. The repetition may be used in other repetitions and does not represent an
XML element. This combinator is provided because converters for repeatable sequences
cannot be constructed by the seq combinators.

eSeq4 :: String → (a → b → c → d → e) → XmlConv f g a → XmlConv h i b →
XmlConv j k c → XmlConv l m d → XmlConv Repeatable Elem e

Creates an XML converter for compound values represented as an XML element with
children that correspond to the values components. The element can be used in repe-
titions.

eRepSeq4 :: String → (a → b → c → d → e) → XmlConv Repeatable f a → XmlConv

Repeatable g b → XmlConv Repeatable h c → XmlConv Repeatable i d → XmlConv

Repeatable Elem [e]

Creates an XML converter for repetitions of sequences represented as an XML element
that can be used in repetitions.

seq5 :: (a → b → c → d → e → f) → XmlConv g h a → XmlConv i j b → XmlConv

k l c → XmlConv m n d → XmlConv o p e → XmlConv NotRepeatable NoElem f

Creates an XML converter representing a sequence of arbitrary XML data. The se-
quence must not be used in repetitions and does not represent an XML element.

repSeq5 :: (a → b → c → d → e → f) → XmlConv Repeatable g a → XmlConv

Repeatable h b → XmlConv Repeatable i c → XmlConv Repeatable j d → XmlConv

Repeatable k e → XmlConv NotRepeatable NoElem [f]

136

Creates an XML converter that represents a repetition of a sequence of repeatable
XML data. The repetition may be used in other repetitions and does not represent an
XML element. This combinator is provided because converters for repeatable sequences
cannot be constructed by the seq combinators.

eSeq5 :: String → (a → b → c → d → e → f) → XmlConv g h a → XmlConv i j b

→ XmlConv k l c → XmlConv m n d → XmlConv o p e → XmlConv Repeatable Elem f

Creates an XML converter for compound values represented as an XML element with
children that correspond to the values components. The element can be used in repe-
titions.

eRepSeq5 :: String → (a → b → c → d → e → f) → XmlConv Repeatable g a →
XmlConv Repeatable h b → XmlConv Repeatable i c → XmlConv Repeatable j d →
XmlConv Repeatable k e → XmlConv Repeatable Elem [f]

Creates an XML converter for repetitions of sequences represented as an XML element
that can be used in repetitions.

seq6 :: (a → b → c → d → e → f → g) → XmlConv h i a → XmlConv j k b →
XmlConv l m c → XmlConv n o d → XmlConv p q e → XmlConv r s f → XmlConv

NotRepeatable NoElem g

Creates an XML converter representing a sequence of arbitrary XML data. The se-
quence must not be used in repetitions and does not represent an XML element.

repSeq6 :: (a → b → c → d → e → f → g) → XmlConv Repeatable h a → XmlConv

Repeatable i b → XmlConv Repeatable j c → XmlConv Repeatable k d → XmlConv

Repeatable l e → XmlConv Repeatable m f → XmlConv NotRepeatable NoElem [g]

Creates an XML converter that represents a repetition of a sequence of repeatable
XML data. The repetition may be used in other repetitions and does not represent an
XML element. This combinator is provided because converters for repeatable sequences
cannot be constructed by the seq combinators.

eSeq6 :: String → (a → b → c → d → e → f → g) → XmlConv h i a → XmlConv j

k b → XmlConv l m c → XmlConv n o d → XmlConv p q e → XmlConv r s f → XmlConv

Repeatable Elem g

Creates an XML converter for compound values represented as an XML element with
children that correspond to the values components. The element can be used in repe-
titions.

eRepSeq6 :: String → (a → b → c → d → e → f → g) → XmlConv Repeatable h a

→ XmlConv Repeatable i b → XmlConv Repeatable j c → XmlConv Repeatable k d →
XmlConv Repeatable l e → XmlConv Repeatable m f → XmlConv Repeatable Elem [g]

Creates an XML converter for repetitions of sequences represented as an XML element
that can be used in repetitions.

137

A.5 Libraries for Meta-Programming

A.5.1 Library AbstractCurry

Library to support meta-programming in Curry.
This library contains a definition for representing Curry programs in Curry (type ”CurryProg”)
and an I/O action to read Curry programs and transform them into this abstract representation
(function ”readCurry”).
Note this defines a slightly new format for AbstractCurry in comparison to the first proposal of
2003.
Assumption: an abstract Curry program is stored in file with extension .acy

Exported types:

type QName = (String,String)

The data type for representing qualified names. In AbstractCurry all names are qual-
ified to avoid name clashes. The first component is the module name and the second
component the unqualified name as it occurs in the source program.

type CTVarIName = (Int,String)

The data type for representing type variables. They are represented by (i,n) where i is
a type variable index which is unique inside a function and n is a name (if possible, the
name written in the source program).

type CVarIName = (Int,String)

Data types for representing object variables. Object variables occurring in expressions
are represented by (Var i) where i is a variable index.

data CurryProg

Data type for representing a Curry module in the intermediate form. A value of this
data type has the form (CProg modname imports typedecls functions opdecls)

where modname: name of this module, imports: list of modules names that are im-
ported, typedecls, opdecls, functions: see below

Exported constructors:

• CurryProg :: String → [String] → [CTypeDecl] → [CFuncDecl] → [COpDecl] →
CurryProg

data CVisibility

Exported constructors:

• Public :: CVisibility

138

• Private :: CVisibility

data CTypeDecl

Data type for representing definitions of algebraic data types and type synonyms.

A data type definition of the form

data t x1...xn = ...| c t1....tkc |...

is represented by the Curry term

(CType t v [i1,...,in] [...(CCons c kc v [t1,...,tkc])...])

where each ij is the index of the type variable xj.

Note: the type variable indices are unique inside each type declaration and are usually
numbered from 0

Thus, a data type declaration consists of the name of the data type, a list of type
parameters and a list of constructor declarations.

Exported constructors:

• CType :: (String,String) → CVisibility → [(Int,String)] → [CConsDecl] →
CTypeDecl

• CTypeSyn :: (String,String) → CVisibility → [(Int,String)] → CTypeExpr →
CTypeDecl

data CConsDecl

A constructor declaration consists of the name and arity of the constructor and a list
of the argument types of the constructor.

Exported constructors:

• CCons :: (String,String) → Int → CVisibility → [CTypeExpr] → CConsDecl

data CTypeExpr

Data type for type expressions. A type expression is either a type variable, a function
type, or a type constructor application.

Note: the names of the predefined type constructors are ”Int”, ”Float”, ”Bool”, ”Char”,
”IO”, ”Success”, ”()” (unit type), ”(,...,)” (tuple types), ”[]” (list type)

Exported constructors:

• CTVar :: (Int,String) → CTypeExpr

• CFuncType :: CTypeExpr → CTypeExpr → CTypeExpr

• CTCons :: (String,String) → [CTypeExpr] → CTypeExpr

139

data COpDecl

Data type for operator declarations. An operator declaration ”fix p n” in Curry corre-
sponds to the AbstractCurry term (COp n fix p).

Exported constructors:

• COp :: (String,String) → CFixity → Int → COpDecl

data CFixity

Exported constructors:

• CInfixOp :: CFixity

• CInfixlOp :: CFixity

• CInfixrOp :: CFixity

data CFuncDecl

Data type for representing function declarations.

A function declaration in FlatCurry is a term of the form

(CFunc name arity visibility type (CRules eval [CRule rule1,...,rulek]))

and represents the function name defined by the rules rule1,...,rulek.

Note: the variable indices are unique inside each rule

External functions are represented as (CFunc name arity type (CExternal s))

where s is the external name associated to this function.

Thus, a function declaration consists of the name, arity, type, and a list of rules.

Exported constructors:

• CFunc :: (String,String) → Int → CVisibility → CTypeExpr → CRules →
CFuncDecl

data CRules

A rule is either a list of formal parameters together with an expression (i.e., a rule in flat
form), a list of general program rules with an evaluation annotation, or it is externally
defined

Exported constructors:

• CRules :: CEvalAnnot → [CRule] → CRules

• CExternal :: String → CRules

140

data CEvalAnnot

Data type for classifying evaluation annotations for functions. They can be either
flexible (default), rigid, or choice.

Exported constructors:

• CFlex :: CEvalAnnot

• CRigid :: CEvalAnnot

• CChoice :: CEvalAnnot

data CRule

The most general form of a rule. It consists of a list of patterns (left-hand side), a list of
guards (”success” if not present in the source text) with their corresponding right-hand
sides, and a list of local declarations.

Exported constructors:

• CRule :: [CPattern] → [(CExpr,CExpr)] → [CLocalDecl] → CRule

data CLocalDecl

Data type for representing local (let/where) declarations

Exported constructors:

• CLocalFunc :: CFuncDecl → CLocalDecl

• CLocalPat :: CPattern → CExpr → [CLocalDecl] → CLocalDecl

• CLocalVar :: (Int,String) → CLocalDecl

data CExpr

Data type for representing Curry expressions.

Exported constructors:

• CVar :: (Int,String) → CExpr

• CLit :: CLiteral → CExpr

• CSymbol :: (String,String) → CExpr

• CApply :: CExpr → CExpr → CExpr

• CLambda :: [CPattern] → CExpr → CExpr

• CLetDecl :: [CLocalDecl] → CExpr → CExpr

141

• CDoExpr :: [CStatement] → CExpr

• CListComp :: CExpr → [CStatement] → CExpr

• CCase :: CExpr → [CBranchExpr] → CExpr

data CStatement

Data type for representing statements in do expressions and list comprehensions.

Exported constructors:

• CSExpr :: CExpr → CStatement

• CSPat :: CPattern → CExpr → CStatement

• CSLet :: [CLocalDecl] → CStatement

data CPattern

Data type for representing pattern expressions.

Exported constructors:

• CPVar :: (Int,String) → CPattern

• CPLit :: CLiteral → CPattern

• CPComb :: (String,String) → [CPattern] → CPattern

• CPAs :: (Int,String) → CPattern → CPattern

• CPFuncComb :: (String,String) → [CPattern] → CPattern

data CBranchExpr

Data type for representing branches in case expressions.

Exported constructors:

• CBranch :: CPattern → CExpr → CBranchExpr

data CLiteral

Data type for representing literals occurring in an expression. It is either an integer, a
float, or a character constant.

Exported constructors:

• CIntc :: Int → CLiteral

• CFloatc :: Float → CLiteral

• CCharc :: Char → CLiteral

142

Exported functions:

readCurry :: String → IO CurryProg

I/O action which parses a Curry program and returns the corresponding typed Abstract
Curry program. Thus, the argument is the file name without suffix ”.curry” or ”.lcurry”)
and the result is a Curry term representing this program.

readUntypedCurry :: String → IO CurryProg

I/O action which parses a Curry program and returns the corresponding untyped Ab-
stract Curry program. Thus, the argument is the file name without suffix ”.curry” or
”.lcurry”) and the result is a Curry term representing this program.

readCurryWithParseOptions :: String → FrontendParams → IO CurryProg

I/O action which reads a typed Curry program from a file (with extension ”.acy”)
with respect to some parser options. This I/O action is used by the standard action
readCurry. It is currently predefined only in Curry2Prolog.

readUntypedCurryWithParseOptions :: String → FrontendParams → IO CurryProg

I/O action which reads an untyped Curry program from a file (with extension ”.uacy”)
with respect to some parser options. For more details see function ’readCurryWith-
ParseOptions’

readAbstractCurryFile :: String → IO CurryProg

I/O action which reads an AbstractCurry program from a file in ”.acy” format. In
contrast to readCurry, this action does not parse a source program. Thus, the argument
must be the name of an existing file (with suffix ”.acy”) containing an AbstractCurry
program in ”.acy” format and the result is a Curry term representing this program. It
is currently predefined only in Curry2Prolog.

writeAbstractCurryFile :: String → CurryProg → IO ()

Writes an AbstractCurry program into a file in ”.acy” format. The first argument must
be the name of the target file (with suffix ”.acy”).

A.5.2 Library AbstractCurryPrinter

A pretty printer for AbstractCurry programs.
This library defines a function ”showProg” that shows an AbstractCurry program in standard
Curry syntax.

Exported functions:

showProg :: CurryProg → String

Shows an AbstractCurry program in standard Curry syntax.

143

showTypeDecls :: [CTypeDecl] → String

Shows a list of AbstractCurry type declarations in standard Curry syntax.

showTypeDecl :: CTypeDecl → String

Shows an AbstractCurry type declaration in standard Curry syntax.

showTypeExpr :: Bool → CTypeExpr → String

Shows an AbstractCurry type expression in standard Curry syntax. If the first argument
is True, the type expression is enclosed in brackets.

showFuncDecl :: CFuncDecl → String

Shows an AbstractCurry function declaration in standard Curry syntax.

showExpr :: CExpr → String

Shows an AbstractCurry expression in standard Curry syntax.

showPattern :: CPattern → String

A.5.3 Library CompactFlatCurry

This module contains functions to reduce the size of FlatCurry programs by combining the main
module and all imports into a single program that contains only the functions directly or indirectly
called from a set of main functions.

Exported types:

data Option

Options to guide the compactification process.

Exported constructors:

• Verbose :: Option

Verbose - for more output

• Main :: String → Option

Main - optimize for one main (unqualified!) function supplied here

• Exports :: Option

Exports - optimize w.r.t. the exported functions of the module only

• InitFuncs :: [(String,String)] → Option

InitFuncs - optimize w.r.t. given list of initially required functions

144

• Required :: [RequiredSpec] → Option

Required - list of functions that are implicitly required and, thus, should not be deleted if
the corresponding module is imported

• Import :: String → Option

Import - module that should always be imported (useful in combination with option Init-
Funcs)

data RequiredSpec

Data type to specify requirements of functions.

Exported constructors:

Exported functions:

requires :: (String,String) → (String,String) → RequiredSpec

(fun ‘requires‘ reqfun) specifies that the use of the function ”fun” implies the application
of function ”reqfun”.

alwaysRequired :: (String,String) → RequiredSpec

(alwaysRequired fun) specifies that the function ”fun” should be always present if the
corresponding module is loaded.

defaultRequired :: [RequiredSpec]

Functions that are implicitly required in a FlatCurry program (since they might be
generated by external functions like ”==” or ”=:=” on the fly).

generateCompactFlatCurryFile :: [Option] → String → String → IO ()

Computes a single FlatCurry program containing all functions potentially called from
a set of main functions and writes it into a FlatCurry file. This is done by merging all
imported FlatCurry modules and removing the imported functions that are definitely
not used.

computeCompactFlatCurry :: [Option] → String → IO Prog

Computes a single FlatCurry program containing all functions potentially called from a
set of main functions. This is done by merging all imported FlatCurry modules (these
are loaded demand-driven so that modules that contains no potentially called functions
are not loaded) and removing the imported functions that are definitely not used.

145

A.5.4 Library CurryStringClassifier

The Curry string classifier is a simple tool to process strings containing Curry source code. The
source string is classified into the following categories:
(1) moduleHead - module interface, imports, operators
(2) code - the part where the actual program is defined
(3) big comment - parts enclosed in {- ... -}
(4) small comment - from ”–” to the end of a line
(5) text - a string, i.e. text enclosed in ”...”
(6) letter - the given string is the representation of a character
(7) meta - containing information for meta programming
For an example to use the state scanner cf. addtypes, the tool to add function types to a given
program.

Exported types:

type Tokens = [Token]

data Token

The different categories to classify the source code.

Exported constructors:

• SmallComment :: String → Token

• BigComment :: String → Token

• Text :: String → Token

• Letter :: String → Token

• Code :: String → Token

• ModuleHead :: String → Token

• Meta :: String → Token

Exported functions:

isSmallComment :: Token → Bool

test for category ”SmallComment”

isBigComment :: Token → Bool

test for category ”BigComment”

isComment :: Token → Bool

146

test if given token is a comment (big or small)

isText :: Token → Bool

test for category ”Text” (String)

isLetter :: Token → Bool

test for category ”Letter” (Char)

isCode :: Token → Bool

test for category ”Code”

isModuleHead :: Token → Bool

test for category ”ModuleHead”, ie imports and operator declarations

isMeta :: Token → Bool

test for category ”Meta”, ie between {+ and +}

scan :: String → [Token]

Divides the given string into the six categories. For applications it is important to
know whether a given part of code is at the beginning of a line or in the middle. The
state scanner organizes the code in such a way that every string categorized as ”Code”
always starts in the middle of a line.

plainCode :: [Token] → String

Yields the program code without comments (but with the line breaks for small com-
ments).

unscan :: [Token] → String

Inverse function of scan, i.e., unscan (scan x) = x. unscan is used to yield a program
after changing the list of tokens.

readScan :: String → IO [Token]

return tokens for given filename

testScan :: String → IO ()

test whether (unscan . scan) is identity

A.5.5 Library FlatCurry

Library to support meta-programming in Curry.
This library contains a definition for representing FlatCurry programs in Curry (type ”Prog”)
and an I/O action to read Curry programs and transform them into this representation (function
”readFlatCurry”).

147

Exported types:

type QName = (String,String)

The data type for representing qualified names. In FlatCurry all names are qualified to
avoid name clashes. The first component is the module name and the second component
the unqualified name as it occurs in the source program.

type TVarIndex = Int

The data type for representing type variables. They are represented by (TVar i) where
i is a type variable index.

type VarIndex = Int

Data type for representing object variables. Object variables occurring in expressions
are represented by (Var i) where i is a variable index.

data Prog

Data type for representing a Curry module in the intermediate form. A value of this
data type has the form (Prog modname imports typedecls functions opdecls

translation table) where modname: name of this module, imports: list of mod-
ules names that are imported, typedecls, opdecls, functions, translation of type names
and constructor/function names: see below

Exported constructors:

• Prog :: String → [String] → [TypeDecl] → [FuncDecl] → [OpDecl] → Prog

data Visibility

Data type to specify the visibility of various entities.

Exported constructors:

• Public :: Visibility

• Private :: Visibility

data TypeDecl

Data type for representing definitions of algebraic data types.

A data type definition of the form

data t x1...xn = ...| c t1....tkc |...

is represented by the FlatCurry term

(Type t [i1,...,in] [...(Cons c kc [t1,...,tkc])...])

where each ij is the index of the type variable xj.

Note: the type variable indices are unique inside each type declaration and are usually
numbered from 0

Thus, a data type declaration consists of the name of the data type, a list of type
parameters and a list of constructor declarations.

148

Exported constructors:

• Type :: (String,String) → Visibility → [Int] → [ConsDecl] → TypeDecl

• TypeSyn :: (String,String) → Visibility → [Int] → TypeExpr → TypeDecl

data ConsDecl

A constructor declaration consists of the name and arity of the constructor and a list
of the argument types of the constructor.

Exported constructors:

• Cons :: (String,String) → Int → Visibility → [TypeExpr] → ConsDecl

data TypeExpr

Data type for type expressions. A type expression is either a type variable, a function
type, or a type constructor application.

Note: the names of the predefined type constructors are ”Int”, ”Float”, ”Bool”, ”Char”,
”IO”, ”Success”, ”()” (unit type), ”(,...,)” (tuple types), ”[]” (list type)

Exported constructors:

• TVar :: Int → TypeExpr

• FuncType :: TypeExpr → TypeExpr → TypeExpr

• TCons :: (String,String) → [TypeExpr] → TypeExpr

data OpDecl

Data type for operator declarations. An operator declaration ”fix p n” in Curry corre-
sponds to the FlatCurry term (Op n fix p).

Exported constructors:

• Op :: (String,String) → Fixity → Int → OpDecl

data Fixity

Data types for the different choices for the fixity of an operator.

Exported constructors:

• InfixOp :: Fixity

• InfixlOp :: Fixity

• InfixrOp :: Fixity

data FuncDecl

149

Data type for representing function declarations.

A function declaration in FlatCurry is a term of the form

(Func name arity type (Rule [i 1,...,i arity] e))

and represents the function ”name” with definition

name :: type

name x 1...x arity = e

where each i j is the index of the variable x j.

Note: the variable indices are unique inside each function declaration and are usually
numbered from 0

External functions are represented as (Func name arity type (External s)) where
s is the external name associated to this function.

Thus, a function declaration consists of the name, arity, type, and rule.

Exported constructors:

• Func :: (String,String) → Int → Visibility → TypeExpr → Rule → FuncDecl

data Rule

A rule is either a list of formal parameters together with an expression or an ”External”
tag.

Exported constructors:

• Rule :: [Int] → Expr → Rule

• External :: String → Rule

data CaseType

Data type for classifying case expressions. Case expressions can be either flexible or
rigid in Curry.

Exported constructors:

• Rigid :: CaseType

• Flex :: CaseType

data CombType

Data type for classifying combinations (i.e., a function/constructor applied to some
arguments).

Exported constructors:

150

• FuncCall :: CombType

FuncCall - a call to a function where all arguments are provided

• ConsCall :: CombType

ConsCall - a call with a constructor at the top, all arguments are provided

• FuncPartCall :: Int → CombType

FuncPartCall - a partial call to a function (i.e., not all arguments are provided) where the
parameter is the number of missing arguments

• ConsPartCall :: Int → CombType

ConsPartCall - a partial call to a constructor (i.e., not all arguments are provided) where
the parameter is the number of missing arguments

data Expr

Data type for representing expressions.

Remarks:

1. if-then-else expressions are represented as function calls:

(if e1 then e2 else e3)

is represented as

(Comb FuncCall ("Prelude","if then else") [e1,e2,e3])

2. Higher-order applications are represented as calls to the (external) function ”ap-
ply”. For instance, the rule

app f x = f x

is represented as

(Rule [0,1] (Comb FuncCall ("Prelude","apply") [Var 0, Var 1]))

3. A conditional rule is represented as a call to an external function ”cond” where
the first argument is the condition (a constraint). For instance, the rule

equal2 x | x=:=2 = success

is represented as

(Rule [0] (Comb FuncCall ("Prelude","cond") [Comb FuncCall

("Prelude","=:=") [Var 0, Lit (Intc 2)], Comb FuncCall

("Prelude","success") []]))

Exported constructors:

• Var :: Int → Expr

Var - variable (represented by unique index)

• Lit :: Literal → Expr

Lit - literal (Integer/Float/Char constant)

151

• Comb :: CombType → (String,String) → [Expr] → Expr

Comb - application (f e1 ... en) of function/constructor f with n<=arity(f)

• Let :: [(Int,Expr)] → Expr → Expr

• Free :: [Int] → Expr → Expr

Free - introduction of free local variables

• Or :: Expr → Expr → Expr

Or - disjunction of two expressions (used to translate rules with overlapping left-hand sides)

• Case :: CaseType → Expr → [BranchExpr] → Expr

Case - case distinction (rigid or flex)

data BranchExpr

Data type for representing branches in a case expression.

Branches ”(m.c x1...xn) -> e” in case expressions are represented as

(Branch (Pattern (m,c) [i1,...,in]) e)

where each ij is the index of the pattern variable xj, or as

(Branch (LPattern (Intc i)) e)

for integers as branch patterns (similarly for other literals like float or character con-
stants).

Exported constructors:

• Branch :: Pattern → Expr → BranchExpr

data Pattern

Data type for representing patterns in case expressions.

Exported constructors:

• Pattern :: (String,String) → [Int] → Pattern

• LPattern :: Literal → Pattern

data Literal

Data type for representing literals occurring in an expression or case branch. It is either
an integer, a float, or a character constant.

Exported constructors:

• Intc :: Int → Literal

• Floatc :: Float → Literal

• Charc :: Char → Literal

152

Exported functions:

readFlatCurry :: String → IO Prog

I/O action which parses a Curry program and returns the corresponding FlatCurry
program. Thus, the argument is the file name without suffix ”.curry” (or ”.lcurry”) and
the result is a FlatCurry term representing this program.

readFlatCurryWithParseOptions :: String → FrontendParams → IO Prog

I/O action which reads a FlatCurry program from a file with respect to some parser
options. This I/O action is used by the standard action readFlatCurry. It is currently
predefined only in Curry2Prolog.

readFlatCurryFile :: String → IO Prog

I/O action which reads a FlatCurry program from a file in ”.fcy” format. In contrast to
readFlatCurry, this action does not parse a source program. Thus, the argument must
be the name of an existing file (with suffix ”.fcy”) containing a FlatCurry program in
”.fcy” format and the result is a FlatCurry term representing this program.

readFlatCurryInt :: String → IO Prog

I/O action which returns the interface of a Curry program, i.e., a FlatCurry program
containing only ”Public” entities and function definitions without rules (i.e., external
functions). The argument is the file name without suffix ”.curry” (or ”.lcurry”) and the
result is a FlatCurry term representing the interface of this program.

writeFCY :: String → Prog → IO ()

Writes a FlatCurry program into a file in ”.fcy” format. The first argument must be
the name of the target file (with suffix ”.fcy”).

showQNameInModule :: String → (String,String) → String

Translates a given qualified type name into external name relative to a module. Thus,
names not defined in this module (except for names defined in the prelude) are prefixed
with their module name.

A.5.6 Library FlatCurryGoodies

This library provides selector functions, test and update operations as well as some useful auxiliary
functions for FlatCurry data terms. Most of the provided functions are based on general trans-
formation functions that replace constructors with user-defined functions. For recursive datatypes
the transformations are defined inductively over the term structure. This is quite usual for trans-
formations on FlatCurry terms, so the provided functions can be used to implement specific trans-
formations without having to explicitly state the recursion. Essentially, the tedious part of such
transformations - descend in fairly complex term structures - is abstracted away, which hopefully
makes the code more clear and brief.

153

Exported types:

type Update a b = (b → b) → a → a

Exported functions:

trProg :: (String → [String] → [TypeDecl] → [FuncDecl] → [OpDecl] → a) →
Prog → a

transform program

progName :: Prog → String

get name from program

progImports :: Prog → [String]

get imports from program

progTypes :: Prog → [TypeDecl]

get type declarations from program

progFuncs :: Prog → [FuncDecl]

get functions from program

progOps :: Prog → [OpDecl]

get infix operators from program

updProg :: (String → String) → ([String] → [String]) → ([TypeDecl] →
[TypeDecl]) → ([FuncDecl] → [FuncDecl]) → ([OpDecl] → [OpDecl]) → Prog →
Prog

update program

updProgName :: (String → String) → Prog → Prog

update name of program

updProgImports :: ([String] → [String]) → Prog → Prog

update imports of program

updProgTypes :: ([TypeDecl] → [TypeDecl]) → Prog → Prog

update type declarations of program

updProgFuncs :: ([FuncDecl] → [FuncDecl]) → Prog → Prog

update functions of program

154

updProgOps :: ([OpDecl] → [OpDecl]) → Prog → Prog

update infix operators of program

allVarsInProg :: Prog → [Int]

get all program variables (also from patterns)

updProgExps :: (Expr → Expr) → Prog → Prog

lift transformation on expressions to program

rnmAllVarsInProg :: (Int → Int) → Prog → Prog

rename programs variables

updQNamesInProg :: ((String,String) → (String,String)) → Prog → Prog

update all qualified names in program

rnmProg :: String → Prog → Prog

rename program (update name of and all qualified names in program)

trType :: ((String,String) → Visibility → [Int] → [ConsDecl] → a) →
((String,String) → Visibility → [Int] → TypeExpr → a) → TypeDecl → a

transform type declaration

typeName :: TypeDecl → (String,String)

get name of type declaration

typeVisibility :: TypeDecl → Visibility

get visibility of type declaration

typeParams :: TypeDecl → [Int]

get type parameters of type declaration

typeConsDecls :: TypeDecl → [ConsDecl]

get constructor declarations from type declaration

typeSyn :: TypeDecl → TypeExpr

get synonym of type declaration

isTypeSyn :: TypeDecl → Bool

is type declaration a type synonym?

updType :: ((String,String) → (String,String)) → (Visibility → Visibility)

→ ([Int] → [Int]) → ([ConsDecl] → [ConsDecl]) → (TypeExpr → TypeExpr) →
TypeDecl → TypeDecl

155

update type declaration

updTypeName :: ((String,String) → (String,String)) → TypeDecl → TypeDecl

update name of type declaration

updTypeVisibility :: (Visibility → Visibility) → TypeDecl → TypeDecl

update visibility of type declaration

updTypeParams :: ([Int] → [Int]) → TypeDecl → TypeDecl

update type parameters of type declaration

updTypeConsDecls :: ([ConsDecl] → [ConsDecl]) → TypeDecl → TypeDecl

update constructor declarations of type declaration

updTypeSynonym :: (TypeExpr → TypeExpr) → TypeDecl → TypeDecl

update synonym of type declaration

updQNamesInType :: ((String,String) → (String,String)) → TypeDecl → TypeDecl

update all qualified names in type declaration

trCons :: ((String,String) → Int → Visibility → [TypeExpr] → a) → ConsDecl →
a

transform constructor declaration

consName :: ConsDecl → (String,String)

get name of constructor declaration

consArity :: ConsDecl → Int

get arity of constructor declaration

consVisibility :: ConsDecl → Visibility

get visibility of constructor declaration

consArgs :: ConsDecl → [TypeExpr]

get arguments of constructor declaration

updCons :: ((String,String) → (String,String)) → (Int → Int) → (Visibility →
Visibility) → ([TypeExpr] → [TypeExpr]) → ConsDecl → ConsDecl

update constructor declaration

updConsName :: ((String,String) → (String,String)) → ConsDecl → ConsDecl

update name of constructor declaration

156

updConsArity :: (Int → Int) → ConsDecl → ConsDecl

update arity of constructor declaration

updConsVisibility :: (Visibility → Visibility) → ConsDecl → ConsDecl

update visibility of constructor declaration

updConsArgs :: ([TypeExpr] → [TypeExpr]) → ConsDecl → ConsDecl

update arguments of constructor declaration

updQNamesInConsDecl :: ((String,String) → (String,String)) → ConsDecl →
ConsDecl

update all qualified names in constructor declaration

tVarIndex :: TypeExpr → Int

get index from type variable

domain :: TypeExpr → TypeExpr

get domain from functional type

range :: TypeExpr → TypeExpr

get range from functional type

tConsName :: TypeExpr → (String,String)

get name from constructed type

tConsArgs :: TypeExpr → [TypeExpr]

get arguments from constructed type

trTypeExpr :: (Int → a) → ((String,String) → [a] → a) → (a → a → a) →
TypeExpr → a

transform type expression

isTVar :: TypeExpr → Bool

is type expression a type variable?

isTCons :: TypeExpr → Bool

is type declaration a constructed type?

isFuncType :: TypeExpr → Bool

is type declaration a functional type?

updTVars :: (Int → TypeExpr) → TypeExpr → TypeExpr

157

update all type variables

updTCons :: ((String,String) → [TypeExpr] → TypeExpr) → TypeExpr → TypeExpr

update all type constructors

updFuncTypes :: (TypeExpr → TypeExpr → TypeExpr) → TypeExpr → TypeExpr

update all functional types

argTypes :: TypeExpr → [TypeExpr]

get argument types from functional type

resultType :: TypeExpr → TypeExpr

get result type from (nested) functional type

rnmAllVarsInTypeExpr :: (Int → Int) → TypeExpr → TypeExpr

rename variables in type expression

updQNamesInTypeExpr :: ((String,String) → (String,String)) → TypeExpr →
TypeExpr

update all qualified names in type expression

trOp :: ((String,String) → Fixity → Int → a) → OpDecl → a

transform operator declaration

opName :: OpDecl → (String,String)

get name from operator declaration

opFixity :: OpDecl → Fixity

get fixity of operator declaration

opPrecedence :: OpDecl → Int

get precedence of operator declaration

updOp :: ((String,String) → (String,String)) → (Fixity → Fixity) → (Int →
Int) → OpDecl → OpDecl

update operator declaration

updOpName :: ((String,String) → (String,String)) → OpDecl → OpDecl

update name of operator declaration

updOpFixity :: (Fixity → Fixity) → OpDecl → OpDecl

update fixity of operator declaration

158

updOpPrecedence :: (Int → Int) → OpDecl → OpDecl

update precedence of operator declaration

trFunc :: ((String,String) → Int → Visibility → TypeExpr → Rule → a) →
FuncDecl → a

transform function

funcName :: FuncDecl → (String,String)

get name of function

funcArity :: FuncDecl → Int

get arity of function

funcVisibility :: FuncDecl → Visibility

get visibility of function

funcType :: FuncDecl → TypeExpr

get type of function

funcRule :: FuncDecl → Rule

get rule of function

updFunc :: ((String,String) → (String,String)) → (Int → Int) → (Visibility →
Visibility) → (TypeExpr → TypeExpr) → (Rule → Rule) → FuncDecl → FuncDecl

update function

updFuncName :: ((String,String) → (String,String)) → FuncDecl → FuncDecl

update name of function

updFuncArity :: (Int → Int) → FuncDecl → FuncDecl

update arity of function

updFuncVisibility :: (Visibility → Visibility) → FuncDecl → FuncDecl

update visibility of function

updFuncType :: (TypeExpr → TypeExpr) → FuncDecl → FuncDecl

update type of function

updFuncRule :: (Rule → Rule) → FuncDecl → FuncDecl

update rule of function

isExternal :: FuncDecl → Bool

159

is function externally defined?

allVarsInFunc :: FuncDecl → [Int]

get variable names in a function declaration

funcArgs :: FuncDecl → [Int]

get arguments of function, if not externally defined

funcBody :: FuncDecl → Expr

get body of function, if not externally defined

funcRHS :: FuncDecl → [Expr]

rnmAllVarsInFunc :: (Int → Int) → FuncDecl → FuncDecl

rename all variables in function

updQNamesInFunc :: ((String,String) → (String,String)) → FuncDecl → FuncDecl

update all qualified names in function

updFuncArgs :: ([Int] → [Int]) → FuncDecl → FuncDecl

update arguments of function, if not externally defined

updFuncBody :: (Expr → Expr) → FuncDecl → FuncDecl

update body of function, if not externally defined

trRule :: ([Int] → Expr → a) → (String → a) → Rule → a

transform rule

ruleArgs :: Rule → [Int]

get rules arguments if it’s not external

ruleBody :: Rule → Expr

get rules body if it’s not external

ruleExtDecl :: Rule → String

get rules external declaration

isRuleExternal :: Rule → Bool

is rule external?

updRule :: ([Int] → [Int]) → (Expr → Expr) → (String → String) → Rule →
Rule

160

update rule

updRuleArgs :: ([Int] → [Int]) → Rule → Rule

update rules arguments

updRuleBody :: (Expr → Expr) → Rule → Rule

update rules body

updRuleExtDecl :: (String → String) → Rule → Rule

update rules external declaration

allVarsInRule :: Rule → [Int]

get variable names in a functions rule

rnmAllVarsInRule :: (Int → Int) → Rule → Rule

rename all variables in rule

updQNamesInRule :: ((String,String) → (String,String)) → Rule → Rule

update all qualified names in rule

trCombType :: a → (Int → a) → a → (Int → a) → CombType → a

transform combination type

isCombTypeFuncCall :: CombType → Bool

is type of combination FuncCall?

isCombTypeFuncPartCall :: CombType → Bool

is type of combination FuncPartCall?

isCombTypeConsCall :: CombType → Bool

is type of combination ConsCall?

isCombTypeConsPartCall :: CombType → Bool

is type of combination ConsPartCall?

missingArgs :: CombType → Int

varNr :: Expr → Int

get internal number of variable

literal :: Expr → Literal

161

get literal if expression is literal expression

combType :: Expr → CombType

get combination type of a combined expression

combName :: Expr → (String,String)

get name of a combined expression

combArgs :: Expr → [Expr]

get arguments of a combined expression

missingCombArgs :: Expr → Int

get number of missing arguments if expression is combined

letBinds :: Expr → [(Int,Expr)]

get indices of varoables in let declaration

letBody :: Expr → Expr

get body of let declaration

freeVars :: Expr → [Int]

get variable indices from declaration of free variables

freeExpr :: Expr → Expr

get expression from declaration of free variables

orExps :: Expr → [Expr]

get expressions from or-expression

caseType :: Expr → CaseType

get case-type of case expression

caseExpr :: Expr → Expr

get scrutinee of case expression

caseBranches :: Expr → [BranchExpr]

get branch expressions from case expression

isVar :: Expr → Bool

is expression a variable?

isLit :: Expr → Bool

162

is expression a literal expression?

isComb :: Expr → Bool

is expression combined?

isLet :: Expr → Bool

is expression a let expression?

isFree :: Expr → Bool

is expression a declaration of free variables?

isOr :: Expr → Bool

is expression an or-expression?

isCase :: Expr → Bool

is expression a case expression?

trExpr :: (Int → a) → (Literal → a) → (CombType → (String,String) → [a] →
a) → ([(Int,a)] → a → a) → ([Int] → a → a) → (a → a → a) → (CaseType →
a → [b] → a) → (Pattern → a → b) → Expr → a

transform expression

updVars :: (Int → Expr) → Expr → Expr

update all variables in given expression

updLiterals :: (Literal → Expr) → Expr → Expr

update all literals in given expression

updCombs :: (CombType → (String,String) → [Expr] → Expr) → Expr → Expr

update all combined expressions in given expression

updLets :: ([(Int,Expr)] → Expr → Expr) → Expr → Expr

update all let expressions in given expression

updFrees :: ([Int] → Expr → Expr) → Expr → Expr

update all free declarations in given expression

updOrs :: (Expr → Expr → Expr) → Expr → Expr

update all or expressions in given expression

updCases :: (CaseType → Expr → [BranchExpr] → Expr) → Expr → Expr

update all case expressions in given expression

163

updBranches :: (Pattern → Expr → BranchExpr) → Expr → Expr

update all case branches in given expression

isFuncCall :: Expr → Bool

is expression a call of a function where all arguments are provided?

isFuncPartCall :: Expr → Bool

is expression a partial function call?

isConsCall :: Expr → Bool

is expression a call of a constructor?

isConsPartCall :: Expr → Bool

is expression a partial constructor call?

isGround :: Expr → Bool

is expression fully evaluated?

allVars :: Expr → [Int]

get all variables (also pattern variables) in expression

rnmAllVars :: (Int → Int) → Expr → Expr

rename all variables (also in patterns) in expression

updQNames :: ((String,String) → (String,String)) → Expr → Expr

update all qualified names in expression

trBranch :: (Pattern → Expr → a) → BranchExpr → a

transform branch expression

branchPattern :: BranchExpr → Pattern

get pattern from branch expression

branchExpr :: BranchExpr → Expr

get expression from branch expression

updBranch :: (Pattern → Pattern) → (Expr → Expr) → BranchExpr → BranchExpr

update branch expression

updBranchPattern :: (Pattern → Pattern) → BranchExpr → BranchExpr

update pattern of branch expression

164

updBranchExpr :: (Expr → Expr) → BranchExpr → BranchExpr

update expression of branch expression

trPattern :: ((String,String) → [Int] → a) → (Literal → a) → Pattern → a

transform pattern

patCons :: Pattern → (String,String)

get name from constructor pattern

patArgs :: Pattern → [Int]

get arguments from constructor pattern

patLiteral :: Pattern → Literal

get literal from literal pattern

isConsPattern :: Pattern → Bool

is pattern a constructor pattern?

updPattern :: ((String,String) → (String,String)) → ([Int] → [Int]) → (Literal

→ Literal) → Pattern → Pattern

update pattern

updPatCons :: ((String,String) → (String,String)) → Pattern → Pattern

update constructors name of pattern

updPatArgs :: ([Int] → [Int]) → Pattern → Pattern

update arguments of constructor pattern

updPatLiteral :: (Literal → Literal) → Pattern → Pattern

update literal of pattern

patExpr :: Pattern → Expr

build expression from pattern

A.5.7 Library FlatCurryRead

This library defines operations to read a FlatCurry programs or interfaces together with all its
imported modules in the current load path.

165

Exported functions:

readFlatCurryWithImports :: String → IO [Prog]

Reads a FlatCurry program together with all its imported modules. The argument is
the name of the main module (possibly with a directory prefix).

readFlatCurryWithImportsInPath :: [String] → String → IO [Prog]

Reads a FlatCurry program together with all its imported modules in a given load path.
The arguments are a load path and the name of the main module.

readFlatCurryIntWithImports :: String → IO [Prog]

Reads a FlatCurry interface together with all its imported module interfaces. The
argument is the name of the main module (possibly with a directory prefix). If there is
no interface file but a FlatCurry file (suffix ”.fcy”), the FlatCurry file is read instead of
the interface.

readFlatCurryIntWithImportsInPath :: [String] → String → IO [Prog]

Reads a FlatCurry interface together with all its imported module interfaces in a given
load path. The arguments are a load path and the name of the main module. If there
is no interface file but a FlatCurry file (suffix ”.fcy”), the FlatCurry file is read instead
of the interface.

A.5.8 Library FlatCurryShow

Some tools to show FlatCurry programs.
This library contains

• show functions for a string representation of FlatCurry programs (showFlatProg, showFlat-
Type, showFlatFunc)

• functions for showing FlatCurry (type) expressions in (almost) Curry syntax (showCurry-
Type, showCurryExpr,...).

Exported functions:

showFlatProg :: Prog → String

Shows a FlatCurry program term as a string (with some pretty printing).

showFlatType :: TypeDecl → String

showFlatFunc :: FuncDecl → String

showCurryType :: ((String,String) → String) → Bool → TypeExpr → String

166

Shows a FlatCurry type in Curry syntax.

showCurryExpr :: ((String,String) → String) → Bool → Int → Expr → String

Shows a FlatCurry expressions in (almost) Curry syntax.

showCurryVar :: a → String

showCurryId :: String → String

Shows an identifier in Curry form. Thus, operators are enclosed in brackets.

A.5.9 Library FlatCurryTools

Note: This library has been renamed into FlatCurryShow. Look there for further documentation.
This module is only included for backward compatibility and might be deleted in future releases.
Note that the function ”writeFLC” contained in previous releases is no longer supported. Use
Flat2Fcy.writeFCY instead and change file suffix into ”.fcy”!

A.5.10 Library FlatCurryXML

This library contains functions to convert FlatCurry programs into corresponding XML expressions
and vice versa. This can be used to store Curry programs in a way independent from PAKCS or
to use the PAKCS back end by other systems.

Exported functions:

flatCurry2XmlFile :: Prog → String → IO ()

Transforms a FlatCurry program term into a corresponding XML file.

flatCurry2Xml :: Prog → XmlExp

Transforms a FlatCurry program term into a corresponding XML expression.

xmlFile2FlatCurry :: String → IO Prog

Reads an XML file with a FlatCurry program and returns the FlatCurry program.

xml2FlatCurry :: XmlExp → Prog

Transforms an XML term into a FlatCurry program.

A.5.11 Library FlexRigid

This library provides a function to compute the rigid/flex status of a FlatCurry expression (right-
hand side of a function definition).

167

Exported types:

data FlexRigidResult

Datatype for representing a flex/rigid status of an expression.

Exported constructors:

• UnknownFR :: FlexRigidResult

• ConflictFR :: FlexRigidResult

• KnownFlex :: FlexRigidResult

• KnownRigid :: FlexRigidResult

Exported functions:

getFlexRigid :: Expr → FlexRigidResult

Computes the rigid/flex status of a FlatCurry expression. This function checks all cases
in this expression. If the expression has rigid as well as flex cases (which cannot be the
case for source level programs but might occur after some program transformations),
the result ConflictFR is returned.

168

B Overview of the PAKCS Distribution

A schematic overview of the various components contained in the distribution of PAKCS and the
translation process of programs inside PAKCS is shown in Figure 3 on page 170. In this figure,
boxes denote different components of PAKCS and names in boldface denote files containing various
intermediate representations during the translation process (see Section C below). The PAKCS
distribution contains a common front end for reading (parsing and type checking) Curry programs
and three different back ends for executing them:16

1. The Curry2Prolog compiler is currently the most efficient implementation of Curry inside
PAKCS. Due to its simple user interface (e.g., it can be used without any knowledge about
PAKCS and its translation process) and its advanced debugging features, we recommend
the use of the Curry2Prolog compiler system for most applications. Therefore, the program-
ming environment with the integrated Curry2Prolog compiler is available by the executable
“pakcs” (see Section 1.1 for the general use of PAKCS). Moreover, it also contains constraint
solvers for arithmetic constraints over real numbers and finite domain constraints, and further
libraries for GUI programming, meta-programming etc. Currently, it does not implement
encapsulated search in full generality (only a strict version of findall is supported), and
concurrent threads are not executed in a fair manner.

2. The Curry2Java compiler [14] translates Curry programs into Java classes (to be precise,
the Pizza extension [19] of Java is used). The most distinctive feature of this implemen-
tation is the use of Java threads to implement disjunctive computations at the top-level
and concurrent conjunctions of constraints (i.e., it implements OR- and AND-parallelism via
Java threads). These threads are executed in a fair manner in contrast to the Curry2Prolog
compiler. Although the execution speed of the generated programs are acceptable for many
applications, this implementation inherits the lack of efficiency of current Java implementa-
tions. In particular, the Java compiler needs a lot of time to translate Curry programs into
JVM code.

3. The TasteCurry Interpreter is a slow but fairly complete implementation of Curry. It is
an interpreter written in Prolog and does not implement sharing but uses pure term rewriting
for executing programs. It should only be used to run smaller programs involving advanced
language constructs like committed choice or encapsulated search. Since this interpreter is a
non-sharing implementation, it often evaluates complex terms in a very inefficient way and
computes, in the presence of non-deterministic functions, sometimes results which are not
conform with the language definition.

C Auxiliary Files

During the translation and execution of a Curry program with PAKCS, various intermediate repre-
sentations of the source program are created and stored in different files which are shortly explained
in this section. If you only use the Curry2Prolog compiler system, the Curry2Java compiler, or

16Note that only the Curry2Prolog compiler will be installed in the standard installation. See Appendix D and E

how to install the other back ends.

169

Figure 3: Overview of PAKCS

170

the TasteCurry interpreter, it is not necessary to know about these auxiliary files because they are
automatically generated and updated. You should only remember the command for deleting all
auxiliary files (“cleancurry”, see Section 1.1) to clean up your directories.

The various components of PAKCS create the following auxiliary files.

prog.fl: This file contains the Curry program translated into the internal TasteCurry syntax (see
Section E.3). It is implicitly generated when the TasteCurry interpreter or the Curry2Java
compiler is used. It can be also explicitly generated by the command

parsecurry -fl prog

prog.fcy: This file contains the Curry program in the so-called “FlatCurry” representation where
all functions are global (i.e., lambda lifting has been performed) and pattern matching is
translated into explicit case/or expressions (compare Appendix A.1.4). This representation
might be useful for other back ends and compilers for Curry and is the basis doing meta-
programming in Curry. This file is implicitly generated when a program is read by the
Curry2Prolog compiler. It can be also explicitly generated by the command

parsecurry -fcy prog

The FlatCurry representation of a Curry program is usually generated by the front-end after
parsing, type checking and eliminating local declarations.

prog.fint: This file contains the interface of the program in the so-called “FlatCurry” represen-
tation, i.e., it is similar to prog.fcy but contains only exported entities and the bodies of all
functions omitted (i.e., “external”). This representation is useful for providing a fast access
to module interfaces. This file is implicitly generated by the command

parsecurry -fcy prog

prog.pl: This file contains a Prolog program as the result of translating the Curry program with
the Curry2Prolog compiler.

prog.po: This file contains the Prolog program prog.pl in an intermediate format for faster load-
ing.

prog.state: This file contains the saved state after compiling and saving a program in the
Curry2Prolog compiler (see Section 2.1).

prog.def: This file contains an intermediate representation of the Curry program which will be
used by the Curry2Java compiler. This file is implicitly generated when a program is compiled
with this compiler. It can be also explicitly generated by the command

parsecurry -def prog

prog.pizza: This implicitly generated file contains a Java (more precisely, Pizza) program as the
result of translating the Curry program with the Curry2Java compiler.

prog.classes: This directory contains the JVM code of the compiled prog.pizza file.

171

D Curry2Java: A Compiler from Curry into Java

The Curry2Java compiler translates Curry programs into Java programs17 as described in [14] and
contains a runtime system to execute the translated programs with different expressions. This
compiler translates each defined Curry function into a Java class containing instructions of an
abstract machine which is interpreted by the runtime system. Although this indirect execution is
not highly efficient due to the current implementations of Java systems, it has several interesting
features. The most distinctive one is the use of Java threads to implement disjunctive computations
at the top-level and concurrent conjunctions of constraints (i.e., it implements OR- and AND-
parallelism via Java threads). In particular, an infinite derivation branch at the top-level will not
inhibit the computation of solutions by other alternative branches.

The Curry2Java can be installed by executing “make curry2java” in the installation directory
of PAKCS. To start the Curry2Java system, go into the directory where you have stored your Curry
program and execute the command

curry2java prog

(curry2java is a shell script usually stored in pakcshome/bin where pakcshome is the installation
directory of PAKCS; see Section 1.1). This command reads the file prog.curry which must contain
a Curry program (or, if prog.curry does not exist, the file prog.fl which must contain a program
in internal TasteCurry syntax) and performs the following compilation steps:

1. Parse the program in prog.curry and translate it into a corresponding program in internal
TasteCurry syntax which will be stored in prog.fl.

2. Read and check the program file prog.fl and generate an intermediate representation of all
functions in prog.def.

3. Read the function definitions stored in prog.def and translate them into a Java (more pre-
cisely, Pizza) program prog.pizza.

4. Compile the program prog.pizza into Java bytecode (which is stored in the directory
prog.classes) and start the runtime system.

After the successful compilation, you can type in an expression to be evaluated. Expressions have
the usual Curry syntax but there are some restrictions for initial expressions in the Curry2Java
runtime shell:

1. All applications must be written in the prefix notation “f arg1...argn”, i.e., there are no
infix operators. For instance, an arithmetic expression must be written in prefix notation like
“+ 3 (* 5 6)”.

2. Lists can be written in the standard notation [e1,e2,...,en]. Thus, to increment all el-
ements in a list, one can write “map (+ 1) [3,4,5]”. One can also use the constructor
“:” for lists, i.e., the list [3,4,5] can be also written as “: 1 (: 2 (: 3 []))”. Since the
character] can also occur in identifiers, a separator must be inserted if the last element in a
list is an identifier, e.g., one must write “[True,False]”.

17More precisely, Curry2Java uses the Java extension Pizza.

172

3. The concurrent conjunction of constraints is written with the operator /\ (and not with
&). Furthermore, the symbol = is used instead of =:= for equational constraints. For
instance, the constraint x+x=:=y & x=:=3 is written in the Curry2Java runtime shell as
“/\ (= (+ x x) y) (= x 3)”.

To leave the Curry2Java runtime system, type the end-of-file character (Ctrl-D).

Quiet mode. You can also execute the Curry2Java system in a “quiet” mode by

curry2java -q prog

If the program prog was already compiled in a previous session, then no system output is produced
(except for the output computed in the Curry program). This option is useful if you want to write
Curry programs which should act as a filter or which should only generate some textual output
(e.g., in cgi scripts for WWW applications). For instance, if the file hello.curry contains the
simple program

main = putStrLn "Hello world."

which was compiled by a previous curry2java command, then the Unix command
“echo main | curry2java -q hello” echos the string “Hello world.” on the standard output.
If the file hello.curry contains the program

main =

putStrLn "Content-type: text/html" >>

putStrLn "" >>

putStrLn "<HTML>" >>

putStrLn "Hello world.<P>" >>

putStrLn "This web page is generated by a Curry program." >>

putStrLn "</HTML>"

and you execute this program via your web browser (by loading a cgi script containing the shell com-
mands “echo main | curry2java -q hello”) then the corresponding HTML page is produced
by the Curry program.

Restrictions: Since the development of Curry2Java is no longer actively supported, the imple-
mented subset of Curry is largely restricted.

E The TasteCurry Interpreter

E.1 How to Use the TasteCurry Interpreter

The TasteCurry interpreter can be installed by executing “make tastecurry” in the installation
directory of PAKCS. To start the TasteCurry interpreter, go into the directory where you have
stored your Curry program and execute the command “tastecurry” (it is a shell script stored in
pakcshome/bin where pakcshome is the installation directory of PAKCS). When the interpreter
is ready, you can type in the following commands:

read prog. Load the file prog.curry which must contain a valid Curry program. If the name
prog contains other characters than only lower case letters, it must be enclosed in single

173

quotes (e.g., read ’a2b’.). After successful loading and checking, all functions and types
defined in this file (plus the functions defined in the prelude) are known to the interpreter,
i.e., now you can evaluate expressions containing these functions and constructors.

If there is no file prog.curry, then the system searches for the file prog.fl which must
contain a Curry program in the internal TasteCurry syntax (see Section E.3). If there exists
a file prog.curry, it is translated into internal TasteCurry syntax which is subsequently
stored in the file prog.fl.

<expression>. Evaluate the <expression> w.r.t. the functions defined in the current program.
The <expression> must be written in the internal TasteCurry syntax (see Section E.3) and
terminated by a dot. Before the expression is evaluated, it is checked whether it is well typed.
The result (in general, a disjunctive expression which is not further reducible) is printed on
the terminal.

trace. Show each reduction step, i.e., show all intermediate expressions occurring during the
evaluation of an expression.

notrace. Turn off the trace mode.

single. Turn on the single step execution mode. In this mode, the evaluation of an expression
is stopped after each reduction step and the user is asked how to proceed (see the options
there).

nosingle. Turn off the single mode.

time. After the evaluation of an expression, show the time needed to evaluate this expression.

notime. Turn off the time mode.

opt. Generate optimal definitional trees when reading the next Curry program.

noopt. Turn off the opt mode.

type <expression>. Show the type of the expression <expression> (which must be written in
the internal TasteCurry syntax, see Section E.3).

eval f. Show the definitional tree of the function f .

writeflat file. Write the FlatCurry representation (see Appendix A.1.4) of the Curry program
read in before to the file file.flat.

writeprelude file. Write the FlatCurry representation of the prelude to the file file.flat.

exit. Leave the TasteCurry interpreter.

174

E.2 Restrictions on Curry Programs in the TasteCurry Interpreter

There is one additional minor restriction on Curry programs which are loaded into the TasteCurry
interpreter.

The difference between lowercase and uppercase letters is significant in Curry. However, since
the TasteCurry interpreter uses internally a Prolog like syntax (see below), the first character
of function and constructor names is automatically transformed into a lowercase letter (this is
important to know if you use the interactive TasteCurry interpreter, see below). Therefore, two
different objects should not only differ in the case of their first letter. For instance, the following
program produces a type error since the names fun and Fun are both converted into fun which
causes a name clash in the TasteCurry interpreter:

fun = 0

Fun = True

E.3 Internal TasteCurry Syntax

Since the TasteCurry interpreter is implemented in Prolog and uses the Prolog parser for reading
programs and expressions, Curry programs are parsed and translated into a Prolog-like syntax
which is called internal TasteCurry syntax throughout this document. Since one can also write
programs directly in this syntax (then the files must have the suffix “.fl”), we describe in the
following the differences between Curry and the internal TasteCurry syntax:

• Every declaration (datatype, function type, and rule) must be terminated by a dot (“.”)
followed by a blank or newline.

• The names of functions, constructors and type constructors must start with a lowercase letter
followed by a sequence of letters and digits. The following predefined function names in Curry
are different in TasteCurry:

= instead of =:=

/\ instead of &

{} instead of success

constraint instead of Success

There are some predefined names consisting of special characters which can be used as infix
operators similarly to Curry (e.g., the type constructor ->, and the functions ==, =, /\, &&).

• The names of extra variables, i.e., variables which do not occur in arguments of the left-hand
side of a rule, should start with an underscore (“_”) followed by a sequence of letters and
digits. Otherwise, the TasteCurry interpreter will print a warning since this is a typical source
of programming errors (typos in function names).

• The application of an object ϕ (type constructor, function, or data constructor) to n argu-
ments a1, . . . , an is written as ϕ(a1, . . . , an) (which is denoted in Curry by ϕ a1 . . . an). If the
first argument is not a simple name starting with a lowercase letter, the infix symbol @ must
be used to denote the application. For instance, if the function variable F should be applied

175

to some argument a, it must be written as F@a. @ associates to the left, i.e., an application
of a variable F to two arguments a1, a2 can be written as F@a1@a2.

• A datatype declaration is written in the form

data t(A1,...,An) = c1(τ11,...,τ1n1) ; . . . ; ck(τk1,...,τknk
).

where each τij is a type expression built from the type variables A1, . . . , An and some type
constructors. In contrast to Curry, the single constructors are separated by “;” instead of
“|”.

• The type of lists with elements of type t is denoted by list(t). The data constructor of a
non-empty list is the dot “.” (instead of “:”). This data constructor is not defined as an
infix operator. [X|Xs] is the notation for a non-empty list consisting of the head X and the
tail Xs. Note that [X|Xs] is equivalent to the expressions “.(X,Xs)” and “(.)@X@Xs”.

• Characters are identified with their ASCII values. Thus, the string "Hello" is identical to
the integer list [72,101,108,108,111]. In particular, the standard monadic I/O actions for
reading and writing characters or strings have in TasteCurry the types

getChar :: io(int).

getLine :: io(list(int)).

putChar :: int -> io(unit).

putStr :: list(int) -> io(unit).

putStrLn :: list(int) -> io(unit).

• Tuples are not yet implemented. However, there is a data type pair which is predefined by
the declaration

data pair(A,B) = (A,B).

Thus, (1,2) denotes a pair of integers, and (1,2,3) has type pair(int,pair(int,int))

(i.e., the comma is a right-associative infix operator).

• Constraints must be always enclosed in curly brackets (for an example, see the definition of
member in the next paragraph).

• In a conditional rule, the symbol “|” introducing the condition is replaced by “if”. For
instance, the membership predicate based on list concatenation is defined in the internal
TasteCurry syntax by

member :: T -> list(T) -> bool.

member(E,L) if {append(_,[E|_])=L} = true.

• A lambda abstraction always abstracts a single variable. For instance, the anonymous function
with two arguments that adds its arguments must be written in the form

\X -> (\Y -> X+Y)

In the initial expression (which is typed in after loading the program into the interpreter, see
Section E.1), the use of lambda abstractions is even more restricted: in the initial expression,
every subexpression of the form \X->e must satisfy:

176

1. e must be of type constraint.

2. e does not contain any lambda abstraction.

This is enough to allow the use of search operators in initial expressions. Other uses of lambda
abstractions must always be written into the program.

• Local variables in constraints are introduced by the keywords local...in inside the con-
straint. Thus, the Curry expression

let l1,l2 free in append l1 l2 =:= [0,1]

is written in the internal TasteCurry syntax in the form

{local [_l1,_l2] in append(_l1,_l2) = [0,1]}
The square brackets around the local variables are only necessary if there is more than one
variable. Therefore, the Curry expression

let l free in append [0] l =:= [0,1]

can be written in TasteCurry as

{local _l in append([0],_l) = [0,1]}

• Instead of where-clauses with free variables, one has to introduce such free variables with the
keyword localIn before the constraint. Thus, the Curry rule

last l | append xs [e] =:= l = e where xs,e free

is written in the internal TasteCurry syntax as

last(L) if [Xs,E] localIn {append(Xs,[E])=L} = E.

and the indeterministic merge function is written in the internal TasteCurry syntax as

merge :: list(A) -> list(A) -> list(A).

merge(L1,L2) = choice {L1=[]} -> L2;

{L2=[]} -> L1;

[E,R] localIn {L1=[E|R]} -> [E|merge(R,L2)];

[E,R] localIn {L2=[E|R]} -> [E|merge(L1,R)].

• Positions in evaluation annotations contain the separator “#” instead of the dot, e.g., the
position 1.3.2 is denoted in the internal TasteCurry syntax by 1#3#2.

The following function definitions (concatenation of lists and application of a function to all elements
of a list) show further examples for the internal TasteCurry syntax.

append :: list(T) -> list(T) -> list(T).

append([],X) = X.

append([X|Xs],Ys) = [X|append(Xs,Ys)].

map :: (T1->T2) -> list(T1) -> list(T2).

map(F,[]) = [].

map(F,[X|Xs]) = [F@X|map(F,Xs)].

177

Local Declarations

At the end of each defining equation for a function, local value and function declarations can
be added by a where clause. A where clause is introduced by the keyword where followed by a
semicolon-separated list of equations. Each equation defines either a local function (similar to top-
level equations) or local variables (in this case the left-hand side must be a pattern). The newly
introduced functions and variables can be used in the right-hand side of the equation where the
where clause is added. Thus, a quicksort function by splitting the given list can be defined as
follows:

split(E,[]) = ([],[]).

split(E,[X|Xs]) if E>=X = ([X|L],R)

if E<X = (L,[X|R])

where (L,R) = split(E,Xs).

qsort([]) = [].

qsort([X|Xs]) = qsort(L) ++ [X|qsort(R)] where (L,R) = split(X,Xs).

Nested where clauses are not allowed. Furthermore, local declarations with patterns in the left-
hand side should only contain in its right-hand side argument variables from the globally defined
function and other global functions. The TasteCurry interpreter automatically translates all local
declarations into global functions with additional arguments. Thus, the evaluation annotations for
functions with local declarations look different from the original definition.

E.4 Modules in the TasteCurry Interpreter

In the current implementation of PAKCS, modules are only supported in the internal TasteCurry
syntax. Moreover, the module system slightly differs from the module system described in the
Curry report. Therefore, we give here a complete description of this module system in this section.

A module defines a collection of datatypes, constructors and functions which we call entities
in the following. A module exports some of its entities which can be imported and used by other
modules. An entity which is not exported is not accessible from other modules.

A Curry program is a collection of modules. There is one main module which is loaded into a
Curry system. The modules imported by the main module are implicitly loaded but not visible to
the user. After loading the main module, the user can evaluate expressions which contain entities
exported by the main module.

There is one distinguished module, named prelude, which is implicitly imported into all pro-
grams. Thus, the entities defined in the prelude (basic functions for arithmetic, list processing etc.)
can be always used.

A module always starts with the head which contains at least the name of the module, like

module stack.

If a program does not contain a module head, the standard module head “module main.” is im-
plicitly inserted.

Without any further restrictions in the module head, all entities defined or imported in the
module are exported. In order to restrict the exported entities of a module, an export list can be
added to the module head. For instance, a module with the head

178

module stack(stackType, push, pop, newStack).

exports the entities stackType, push, pop, and newStack. An export list can contain the following
entries:

1. Names of datatypes: This exports only the datatype defined in this module but not the
constructors of the datatype. The export of a datatype without its constructors allows the
definition of abstract datatypes.

2. Datatypes with constructors: If the export list contains the entry t(c1,...,cn), then t must
be a datatype defined in the module and c1,. . . ,cn are constructors of this datatype. In this
case, the datatype t and the constructors c1,. . . ,cn are exported by this module.

3. Datatypes with all constructors: If the export list contains the entry t(..), then t must be
a datatype defined in the module. In this case, the datatype t and all constructors of this
datatype are exported.

4. Names of functions: This exports the corresponding functions defined in this module. The
types occurring in the argument and result type of this function are implicitly exported,
otherwise the function may not be applicable outside this module.

5. Modules: The set of all entities imported from a module m into the current module (see
below) can be exported by a single entry “(module m)” in the export list. For instance, if
the head of the module stack is defined as above, the module head

module queue((module stack), enqueue, dequeue).

specifies that the module queue exports the entities stackType, push, pop, newStack,
enqueue, and dequeue.

If the exported entities from imported modules should be further restricted, one can also
add an export list to the exported module. This list can contain names of datatypes and
functions imported from this module. If a datatype which is imported from another module
is exported, the datatype is exported in the same way (i.e., with or without constructors)
how it is imported into the current module. Thus, a further specification for the exported
constructors is not necessary. For instance, the module head

module queue((module stack(stackType,newStack)), enqueue, dequeue).

specifies that the module queue exports the entities stackType and newStack, which are
imported from stack, and enqueue and dequeue, which are defined in queue.

The entities exported by a module can be brought into the scope of another module by an import

declaration. An import declaration consists of the name of the imported module and (optionally)
a list of entities imported from that module. If the list of imported entities is omitted, all entities
exported by that module are imported. For instance, the import declaration

import stack.

imports all entities exported by the module stack, whereas the declaration

import family(father, grandfather).

imports only the entities father and grandfather from the module family, provided that they
are exported by family.

179

The names of all imported entities are available in the current module, i.e., they are equivalent
to top-level declarations. It is not allowed to write new top-level declarations for an imported
entity, but the names can be shadowed by local declarations inside a function definition. As a
consequence, several imports can only import different names. For instance, the imports

module main.

import m1.

import m2.

are only allowed if the entities exported by m1 and m2 have different names. In case of conflicting
names of imported entities, one can rename imported entities to solve the name conflicts. For
instance, if both m1 and m2 exports functions named f and g, then the conflict can be resolved by
the following imports:

module main.

import m1.

import m2 renaming f to m2_f.

renaming g to m2_g.

In the subsequent body of this module, the name f refers to the entity exported by module m1

and the name m2_f refers to the entity f exported by module m2. Only imported entities can be
renamed, i.e., the import declaration

import m(f) renaming g to mg.

will cause an error. Only entities which are also exported can be renamed.
The import dependencies between modules must be non-circular, i.e., it is not allowed that

module m1 imports module m2 and module m2 also imports (directly or indirectly) module m1.
The explicit import of the prelude as a module is not allowed. For each module m, an interface

stored in the file m.int is automatically generated. This interface describes all entities which are
exported by the module, i.e., the datatypes with their exported constructors and the functions with
their type declarations.

F Changing the Prelude or System Modules

The standard prelude, which is automatically imported into each Curry program, and all system
modules containing datatypes and functions useful for application programming (cf. Appendix A)
are stored in the system module directory “pakcshome/lib” (and its subdirectories). If you change
any of these modules, you have to recompile the complete system by executing make in the directory
pakcshome.

G External Functions

Currently, PAKCS has no general interface to external functions. Therefore, if a new external func-
tion should be added to the system, this function must be declared as external in the Curry source
code and then an implementation for this external function must be inserted in the corresponding
back end. An external function is defined as follows in the Curry source code:

180

1. Add a type declaration for the external function somewhere in the body of the appropriate
file (usually, the prelude or some system module).

2. For external functions it is not allowed to define any rule since their semantics is determined
by an external implementation. Instead of the defining rules, you have to write

f external

somewhere in the file containing the type declaration for the external function f.

For instance, the addition on integers can be declared as an external function as follows:

(+) :: Int -> Int -> Int

(+) external

The further modifications to be done for an inclusion of an external function depend on the cor-
responding back end. In the following we describe the insertion of new external functions in
Curry2Prolog and in the TasteCurry interpreter.

G.1 External Functions in Curry2Prolog

A new external function is added to the Curry2Prolog compiler system by informing the compiler
about the existence of an external function and adding an implementation of this function in the
run-time system. Therefore, the following items must be added in the Curry2Prolog compiler
system:

1. If the Curry module Mod contains external functions, there must be a file named Mod.prim_c2p

containing the specification of these external functions. The contents of this file is in XML
format and has the following general structure:18

<primitives>

specification of external function f1

...

specification of external function fn

</primitives>

The specification of an external function f with arity n has the form

<primitive name="f" arity="n">

<library>lib</library>

<entry>pred</entry>

</primitive>

where lib is the Prolog library (stored in the directory of the Curry module or in the global
directory pakcshome/curry2prolog/lib_src) containing the code implementing this func-
tion and pred is a predicate name in this library implementing this function. Note that
the function f must be declared in module Mod: either as an external function or defined in
Curry by equations. In the latter case, the Curry definition is not translated but calls to this
function are redirected to the Prolog code specified above.

Furthermore, the list of specifications can also contain entries of the form
18http://www.informatik.uni-kiel.de/~pakcs/primitives.dtd contains a DTD describing the exact structure

of these files.

181

http://www.informatik.uni-kiel.de/~pakcs/primitives.dtd

<ignore name="f" arity="n" />

for functions f with arity n that are declared in module Mod but should be ignored for code
generation, e.g., since they are never called w.r.t. to the current implementation of external
functions. For instance, this is useful when functions that can be defined in Curry should be
(usually more efficiently) are implemented as external functions.

Note that the arguments are passed in their current (possibly unevaluated) form. Thus, if
the external function requires the arguments to be evaluated in a particular form, this must
be done before calling the external function. For instance, the external function for adding
two integers requires that both arguments must be evaluated to non-variable head normal
form (which is identical to the ground constructor normal form). Therefore, the function “+”
is specified in the prelude by

(+) :: Int -> Int -> Int

x + y = (prim_Int_plus $# y) $# x

prim_Int_plus :: Int -> Int -> Int

prim_Int_plus external

where prim_Int_plus is the actual external function implementing the addition on integers.
Consequently, the specification file Prelude.prim_c2p has an entry of the form

<primitive name="prim_Int_plus" arity="2">

<library>prim_standard</library>

<entry>prim_Int_plus</entry>

</primitive>

where the Prolog library prim_standard.pl contains the Prolog code implementing this
function.

2. For most external functions, a standard interface is generated by the compiler so that an
n-ary function can be implemented by an (n + 1)-ary predicate where the last argument
must be instantiated to the result of evaluating the function. The standard interface can
be used if all arguments are ensured to be fully evaluated (e.g., see definition of (+) above)
and no suspension control is necessary, i.e., it is ensured that the external function call
does not suspend for all arguments. Otherwise, the raw interface (see below) must be used.
For instance, the Prolog code implementing prim_Int_plus contained in the Prolog library
prim_standard.pl is as follows (note that the arguments of (+) are passed in reverse order
to prim_Int_plus in order to ensure a left-to-right evaluation of the original arguments by
the calls to ($#)):

prim_Int_plus(Y,X,R) :- R is X+Y.

3. The standard interface for I/O actions, i.e., external functions with result type IO a, assumes
that the I/O action is implemented as a predicate (with a possible side effect) that instantiates
the last argument to the returned value of type “a”. For instance, the primitive predicate
prim_getChar implementing prelude I/O action getChar can be implemented by the Prolog
code

prim_getChar(C) :- get_code(N), char_int(C,N).

182

where char_int is a predicate relating the internal Curry representation of a character with
its ASCII value.

4. If some arguments passed to the external functions are not fully evaluated or the external
function might suspend, the implementation must follow the structure of the Curry2Prolog
run-time system by using the raw interface. In this case, the name of the external entry must
be suffixed by “[raw]” in the prim_c2p file. For instance, if we want to use the raw interface
for the external function prim_Int_plus, the specification file Prelude.prim_c2p must have
an entry of the form

<primitive name="prim_Int_plus" arity="2">

<library>prim_standard</library>

<entry>prim_Int_plus[raw]</entry>

</primitive>

In the raw interface, the actual implementation of an n-ary external function consists of the
definition of an (n + 3)-ary predicate pred. The first n arguments are the corresponding
actual arguments. The (n + 1)-th argument is a free variable which must be instantiated
to the result of the function call after successful execution. The last two arguments control
the suspension behavior of the function (see [5] for more details): The code for the predicate
pred should only be executed when the (n + 2)-th argument is not free, i.e., this predicate
has always the SICStus-Prolog block declaration

?- block pred(?,...,?,-,?).

In addition, typical external functions should suspend until the actual arguments are instan-
tiated. This can be ensured by a call to ensureNotFree or ($#) before calling the external
function. Finally, the last argument (which is a free variable at call time) must be unified
with the (n + 2)-th argument after the function call is successfully evaluated (and does not
suspend). Additionally, the actual (evaluated) arguments must be dereferenced before they
are accessed. Thus, an implementation of the external function for adding integers is as
follows in the raw interface:

?- block prim_Int_plus(?,?,?,-,?).

prim_Int_plus(RY,RX,Result,E0,E) :-

deref(RX,X), deref(RY,Y), Result is X+Y, E0=E.

Here, deref is a predefined predicate for dereferencing the actual argument into a constant
(and derefAll for dereferencing complex structures).

The Prolog code implementing the external functions must be accessible to the run-time system of
Curry2Prolog by putting it into the directory containing the corresponding Curry module or into
the system directory pakcshome/curry2prolog/lib_src. Then it will be automatically loaded
into the run-time environment of each compiled Curry program.

Note that arbitrary functions implemented in C or Java can be connected to the Curry2Prolog
compiler system by using the corresponding interfaces of underlying Prolog system.

183

G.2 External Functions in TasteCurry

In the TasteCurry interpreter, you can add external functions only in the prelude. In addition
to the declarations in the source code of the prelude as described above, you must also add the
following in order to include a new external function in the TasteCurry interpreter:

1. The file pakcshome/tastecurry/prelude.flpreface contains standard declarations in the
internal TasteCurry syntax which are added in front of the prelude. Provide a type
declaration in the body of this module prefixed with the keyword external in front
of the type declaration. For instance, the primitive addition on integers is declared in
pakcshome/tastecurry/prelude.flpreface by

external (+) :: int -> int -> int.

Since the defining rules for this implementation are unknown, a call to an external function
is delayed until all arguments are known (i.e., in head normal form). Thus, for each external
function an evaluation annotation with a rigid annotation for each argument is automatically
generated if no other evaluation annotation is provided. For instance, for the function + the
annotation

(+) eval 1:rigid(_=>2:rigid(_=>rule))

is generated (the anonymous variable _ denotes that the first argument must be matched
against an arbitrary constant). Thus, in order to evaluate a call t1+t2, first t1 is evaluated
to a head normal form, and if this is not a variable, t2 is evaluated to a head normal form,
followed by a call to the external implementation of + provided that t2 was not evaluated to
a variable.

2. The connection of the implementation of an external function to the TasteCurry interpreter
is done by adding a special clause in the module external.pl of the interpreter’s sources
(stored in the directory pakcshome/tastecurry). To implement an n-ary external function
f , external.pl must contain the following Prolog clause:

external_call(f(X1,...,Xn), Result) :- <code computing the Result>

For instance, the external function + is implemented by the following clause:

external_call(+(X,Y),Result) :- Result is X+Y.

By using the Prolog/C interface of SICStus-Prolog, arbitrary C functions can be connected
to the TasteCurry interpreter.

3. After adding all these declarations, recompile the TasteCurry interpreter by executing make

in the directory pakcshome.

184

Index

<, 80
*., 42, 56
*#, 41
+., 42, 56
+#, 41
---, 19
-., 42, 56
-#, 41
-compact, 25
-fcypp, 25
-fpopt, 25
., 44
./=, 44
.==, 44
.&&, 44
.pakcsrc, 11
.<, 44
.<=, 44
.>, 44
.>=, 44
/., 42, 56
//, 94
/=#, 41
:!, 10
:&, 101
:analyze, 8
:browse, 8
:cd, 10
:coosy, 10
:dir, 10
:fork, 10
:help, 7
:interface, 8
:load, 7
:peval, 11
:quit, 8
:reload, 7
:save, 10
:set, 8, 10
:set path, 6
:show, 10

:type, 8
:xml, 7, 11
=#, 41
@author, 19
@cons, 19
@param, 19
@return, 19
@version, 19
<*>, 80
<., 42
<=., 43
<=#, 41
<#, 41
<>, 53
>., 43
>=., 43
>=#, 41
>#, 41
>>-, 80
>>>, 80
\\, 78

aBool, 133
abortTransaction, 54
abs, 68
AbsoluteSeek, 69
AbstractCurry, 35
aChar, 133
Active, 58
adapt, 133
adaptWSpec, 124
addAttr, 119
addAttrs, 120
addCanvas, 66
addCookies, 114
addDays, 91
addDB, 47
addFormParam, 114
addHeadings, 117
addHours, 91
addListToFM, 97

185

addListToFM C, 97
addMinutes, 91
addMonths, 91
addPageParam, 115
addRegionStyle, 65
address, 116
addSeconds, 90
addSound, 114
addToFM, 97
addToFM C, 97
addYears, 91
aFloat, 133
aInt, 133
All, 40
all different, 42
allDBInfos, 75
allDBKeyInfos, 75
allDBKeys, 75, 76
allDifferent, 42
allfails, 9
allVars, 164
allVarsInFunc, 160
allVarsInProg, 155
allVarsInRule, 161
alwaysRequired, 145
Anchor, 58
anchor, 116
answerText, 114
AppendMode, 69
appendStyledValue, 65
appendValue, 65
applyAt, 94
argTypes, 158
Array, 94
assert, 53
AssertEqual, 37
AssertEqualIO, 37
AssertIO, 37
Assertion, 37
AssertSolutions, 37
AssertTrue, 37
AssertValues, 37
Assumptions, 41
aString, 133

attr, 133

Background, 58
baseName, 55
BCC, 122
Bg, 62
BigComment, 146
binomial, 68
Bisect, 40
bitAnd, 68
bitNot, 68
bitOr, 68
bitTrunc, 68
bitXor, 68
Black, 62
blink, 116
block, 118
blockstyle, 117
Blue, 62
BodyAttr, 113
Bold, 62
bold, 116
Boolean, 43
BottomAlign, 61
bound, 45
Branch, 152
BranchExpr, 152
branchExpr, 164
branchPattern, 164
breakline, 117
Brown, 62
buildGr, 101
Button, 66
button, 118

CalendarTime, 89
calendarTimeToString, 90
Canvas, 57
CanvasItem, 61
CanvasItems, 59
CanvasScroll, 66
CApply, 141
Case, 152
caseBranches, 162

186

caseExpr, 162
CaseType, 150
caseType, 162
categorizeByItemKey, 110
catMaybes, 79
CBranch, 142
CBranchExpr, 142
CC, 122
CCase, 142
CCharc, 142
CChoice, 141
CCons, 139
CConsDecl, 139
CDoExpr, 142
center, 116
CenterAlign, 60
CEvalAnnot, 141
CExpr, 141
CExternal, 140
CFixity, 140
CFlex, 141
CFloatc, 142
CFunc, 140
CFuncDecl, 140
CFuncType, 139
CgiEnv, 111
CgiRef, 111
char, 132
Charc, 152
check, 45
checkAssertion, 38
checkbox, 118
CheckButton, 57
checkedbox, 118
CheckInit, 59
choiceSPEP, 83
choiceStreamOrMsgs, 72
chooseColor, 67
CInfixlOp, 140
CInfixOp, 140
CInfixrOp, 140
CIntc, 142
CLambda, 141
cleancurry, 5

cleanDB, 76, 77
CLetDecl, 141
CLine, 61
CListComp, 142
CLit, 141
CLiteral, 142
CLocalDecl, 141
CLocalFunc, 141
CLocalPat, 141
CLocalVar, 141
ClockTime, 89
Cmd, 66
cmpChar, 109
cmpList, 109
cmpString, 109
Code, 146
code, 116
Col, 58
col, 63
Color, 62
Comb, 152
combArgs, 162
combine, 94
combineSimilar, 94
combName, 162
CombType, 150
combType, 162
Command, 66
comment

documentation, 19
compareCalendarTime, 91
compareClockTime, 91
compareDate, 91
computeCompactFlatCurry, 145
ConfCollection, 60
ConfigButton, 66
ConfItem, 58
ConflictFR, 168
connectPort, 34, 83
connectPortRepeat, 83
connectPortWait, 83
connectToCommand, 72
connectToSocket, 72, 87
Cons, 149

187

cons, 95
consArgs, 156
consArity, 156
ConsCall, 151
ConsDecl, 149
consfail, 9
consName, 156
ConsPartCall, 151
consVisibility, 156
Context, 100
context, 102
Context’, 100
CookieDomain, 113
CookieExpire, 113
cookieForm, 114
CookieParam, 113
CookiePath, 113
CookieSecure, 113
coordinates, 120
COp, 140
COpDecl, 140
cos, 56
count, 42, 44
COval, 61
CPAs, 142
CPattern, 142
CPComb, 142
CPFuncComb, 142
CPLit, 142
cpns show, 83
cpns start, 83
cpns stop, 83
CPNS_Close, 82
CPNS_Get, 82
CPNS_Message, 82
CPNS_Put, 82
CPNS_Show, 82
CPolygon, 61
CPVar, 142
createDirectory, 52
CRectangle, 61
CRigid, 141
CRule, 141
CRules, 140

CSExpr, 142
CSLet, 142
CSPat, 142
CStatement, 142
CSymbol, 141
CTCons, 139
ctDay, 89
CText, 61
ctHour, 90
ctMin, 90
ctMonth, 89
ctSec, 90
ctTZ, 90
CTVar, 139
CTVarIName, 138
ctYear, 89
CType, 139
CTypeDecl, 139
CTypeExpr, 139
CTypeSyn, 139
Curry mode, 12
Curry2Java, 169
Curry2Prolog, 7, 169
CurryDoc, 19
currydoc, 20
CURRYPATH, 6, 10
CurryProg, 138
CurryTest, 23
currytest, 23
CVar, 141
CVarIName, 138
CVisibility, 138
Cyan, 62
cyclic structure, 13

daysOfMonth, 91
debug, 8, 11
debug mode, 8, 11
debugTcl, 63
Decomp, 100
DefaultEvent, 60
defaultRequired, 145
deg, 103
deg’, 104

188

delEdge, 102
delEdges, 102
delete, 78, 107
deleteDB, 47
deleteDBEntry, 76, 77
deleteRBT, 108, 110
delFromFM, 97
delListFromFM, 97
delNode, 102
delNodes, 102
deqHead, 95
deqInit, 95
deqLast, 95
deqLength, 96
deqReverse, 95
deqTail, 95
deqToList, 96
digitToInt, 39
dirName, 55
dlist, 117
documentation comment, 19
documentation generator, 19
doesDirectoryExist, 51
doesFileExist, 51
domain, 41, 157
doneT, 48
doSend, 33, 82
Down, 40
DtdUrl, 130
dvAddEdge, 51
dvAddNode, 51
dvDelEdge, 51
dvDisplay, 50
dvDisplayInit, 50
DvEdge, 50
dvEmptyH, 51
DvGraph, 49, 50
DvId, 49
dvNewGraph, 50
DvNode, 50
dvNodeWithEdges, 51
DvScheduleMsg, 50
dvSetClickHandler, 51
dvSetEdgeColor, 51

dvSetNodeColor, 51
dvSimpleEdge, 51
dvSimpleNode, 50
DvWindow, 49
Dynamic, 52
dynamic, 53
dynamicExists, 47

eBool, 134
eChar, 134
Edge, 100
edges, 105
eEmpty, 134
eFloat, 134
eInt, 133
element, 132
elemFM, 98
elemIndex, 77
elemIndices, 77
elemRBT, 108
eltsFM, 99
Emacs, 12
emap, 105
emphasize, 116
empty, 80, 95, 101, 107, 132
emptyDefaultArray, 94
emptyErrorArray, 94
emptyFM, 96
emptySetRBT, 108
emptyTableRBT, 110
Enc, 130
encapsulated search, 5
Encoding, 129
Entry, 57
EntryScroll, 66
Enum, 40
eOpt, 134
eqFM, 98
equal, 103
eRep, 134
eRepSeq1, 135
eRepSeq2, 135
eRepSeq3, 136
eRepSeq4, 136

189

eRepSeq5, 137
eRepSeq6, 137
eSeq1, 134
eSeq2, 135
eSeq3, 135
eSeq4, 136
eSeq5, 137
eSeq6, 137
eString, 134
evalSpace, 89
evalTime, 89
evaluate, 45
even, 68
Event, 60
exclusiveIO, 72
execCmd, 72
exists, 44
existsDBKey, 75, 76
exitGUI, 64
exitWith, 88
exp, 56
expires, 114
Exports, 144
Expr, 151
External, 150
external function, 180

factorial, 67
false, 44
FCYPP, 25
Fg, 62
fileSize, 52
fileSuffix, 55
Fill, 59
FillX, 59
FillY, 59
filterFM, 98
find, 77
findall, 5
findFileInPath, 55
findfirst, 6
findIndex, 77
findIndices, 77
firewall, 34

FirstFail, 40
FirstFailConstrained, 40
Fixity, 149
FlatCurry, 35
flatCurry2Xml, 167
flatCurry2XmlFile, 167
Flex, 150
FlexRigidResult, 168
float, 132
Floatc, 152
FM, 96
fmSortBy, 99
fmToList, 99
fmToListPreOrder, 99
focusInput, 65
foldFM, 98
Foreground, 58
Form, 114
form, 114
FormCookie, 112
FormCSS, 112
formCSS, 114
FormEnc, 112
formEnc, 114
FormJScript, 112
FormOnSubmit, 112
FormParam, 112
FormTarget, 112
Free, 152
free, 9
free variable mode, 7, 9
freeExpr, 162
freeVars, 162
fromJust, 79
fromMaybe, 79
Func, 150
funcArgs, 160
funcArity, 159
funcBody, 160
FuncCall, 151
FuncDecl, 149
funcName, 159
FuncPartCall, 151
funcRHS, 160

190

funcRule, 159
function

external, 180
function pattern, 13
FuncType, 149
funcType, 159
funcVisibility, 159

GDecomp, 100
gelem, 103
generateCompactFlatCurryFile, 145
germanLatexDoc, 121
getAllFailures, 36
getAllSolutions, 36
getArgs, 88
getAssoc, 72
getClockTime, 90
getContents, 71
getContentsOfUrl, 129
getCookies, 120
getCPUTime, 88
getCurrentDirectory, 52
getCursorPosition, 65
getDB, 47
getDBInfo, 75, 76
getDBInfos, 76, 77
getDirectoryContents, 52
getDynamicSolution, 53
getDynamicSolutions, 53
getElapsedTime, 88
getEnviron, 88
getFileInPath, 55
getFlexRigid, 168
getHostname, 88
getKnowledge, 53
getLocalTime, 90
getModificationTime, 52
getOneSolution, 36
getOneValue, 36
getOpenFile, 66
getOpenFileWithTypes, 67
getPID, 88
getProgName, 88
getRandomSeed, 106

getSaveFile, 67
getSaveFileWithTypes, 67
getSearchTree, 36
getUrlParameter, 120
getValue, 64
gmap, 105
Gold, 62
Graph, 101
Gray, 62
Green, 62
group, 78
groupBy, 78
groupByIndex, 75, 76
GuiPort, 57

h1, 115
h2, 115
h3, 115
h4, 115
h5, 115
Handle, 69
Handler, 58
hClose, 70
headedTable, 117
HeadInclude, 112
Height, 59
hempty, 115
hFlush, 70
hGetChar, 71
hGetContents, 71
hGetLine, 71
hiddenfield, 119
hIsEOF, 70
hIsReadable, 71
hIsWritable, 71
hPrint, 71
hPutChar, 71
hPutStr, 71
hPutStrLn, 71
hReady, 71
href, 116
hrule, 117
hSeek, 70
HtmlAnswer, 112

191

HtmlCRef, 111
HtmlElem, 113
HtmlEvent, 111
HtmlExp, 111
HtmlForm, 112
HtmlHandler, 111
HtmlPage, 113
htmlQuote, 119
HtmlStruct, 111
HtmlText, 111
htxt, 115
htxts, 115
hWaitForInput, 70
hWaitForInputOrMsg, 70
hWaitForInputs, 70
hWaitForInputsOrMsg, 70

i2f, 43, 56
identicalVar, 92
idOfCgiRef, 113
ilog, 67
image, 117
imageButton, 118
Import, 145
indeg, 103
indeg’, 104
index, 75, 76
indomain, 42
InfixlOp, 149
InfixOp, 149
InfixrOp, 149
InitFuncs, 144
inline, 118
inn, 103
inn’, 104
insEdge, 102
insEdges, 102
insertBy, 79
insertMultiRBT, 108
insertRBT, 108
insNode, 102
insNodes, 102
int, 132
Intc, 152

intersect, 78
intersectFM, 97
intersectFM C, 98
intersectRBT, 108
intersperse, 78
intForm, 121
intFormMain, 121
intToDigit, 39
IOMode, 69
IORef, 71
isAbsolute, 55
isAlpha, 38
isAlphaNum, 39
isBigComment, 146
isCase, 163
isCode, 147
isComb, 163
isCombTypeConsCall, 161
isCombTypeConsPartCall, 161
isCombTypeFuncCall, 161
isCombTypeFuncPartCall, 161
isComment, 146
isConsCall, 164
isConsPartCall, 164
isConsPattern, 165
isDigit, 38
isEmpty, 95, 102, 107
isEmptyFM, 98
isEmptyTable, 110
isEOF, 70
isExternal, 159
isFree, 163
isFuncCall, 164
isFuncPartCall, 164
isFuncType, 157
isGround, 164
isHexDigit, 39
isJust, 79
isKnown, 54
isLet, 163
isLetter, 147
isLit, 162
isLower, 38
isMeta, 147

192

isModuleHead, 147
isNothing, 79
Iso88591Enc, 130
isOctDigit, 39
isOr, 163
isPrefixOf, 78
isqrt, 67
isRuleExternal, 160
isSmallComment, 146
isSpace, 39
isSuffixOf, 79
isTCons, 157
isText, 147
isTVar, 157
isTypeSyn, 155
isUpper, 38
isVar, 92, 162
Italic, 62
italic, 116

JSApply, 73
JSAssign, 74
JSBool, 73
JSBranch, 74
JSCase, 74
jsConsTerm, 75
JSDefault, 74
JSExp, 73
JSFCall, 73
JSFDecl, 74
JSIArrayIdx, 73
JSIf, 74
JSInt, 73
JSIVar, 73
JSLambda, 74
JSOp, 73
JSPCall, 74
JSReturn, 74
JSStat, 74
JSString, 73
JSSwitch, 74
JSVarDecl, 74

keyOrder, 98

KeyPress, 60
keysFM, 99
KnownFlex, 168
KnownRigid, 168

lab, 102
lab’, 103
labEdges, 104
Label, 57
labeling, 42
LabelingOption, 40
labNode’, 104
labNodes, 104
labUEdges, 105
labUNodes, 105
last, 79
LEdge, 100
LeftAlign, 60
LeftMost, 40
leqChar, 109
leqCharIgnoreCase, 109
leqLexGerman, 109
leqList, 109
leqString, 109
leqStringIgnoreCase, 109
Let, 152
let, 13
letBinds, 162
letBody, 162
Letter, 146
List, 59
list2CategorizedHtml, 110
ListBox, 57
ListBoxScroll, 66
listenOn, 87
listToDefaultArray, 94
listToDeq, 95
listToErrorArray, 94
listToFM, 96
listToMaybe, 79
Lit, 151
litem, 117
Literal, 152
literal, 161

193

LNode, 99
log, 56
lookup, 107
lookupFileInPath, 55
lookupFM, 98
lookupRBT, 110
lookupWithDefaultFM, 98
LPath, 100
LPattern, 152
lpre, 103
lpre’, 104
lsuc, 103
lsuc’, 104

Magenta, 62
MailOption, 122
Main, 144
mainWUI, 128
mapFM, 98
mapMaybe, 79
mapMMaybe, 80
mapT, 48
mapT , 48
match, 102
matchAny, 101
matchHead, 96
matchLast, 96
Matrix, 58
matrix, 63
Max, 40
max3, 68
maxFM, 98
Maximize, 41
maximize, 43
maximumFor, 43
maxlist, 68
maybeToList, 79
MButton, 61
MContext, 100
Menu, 59
MenuButton, 58
MenuItem, 61
mergeSort, 109
Message, 57

Meta, 146
Min, 40
min3, 68
minFM, 98
Minimize, 41
minimize, 43
minimumFor, 43
minlist, 68
minusFM, 97
missingArgs, 161
missingCombArgs, 162
mkGraph, 101
mkUGraph, 101
MMenuButton, 61
ModuleHead, 146
modules, 6
MouseButton1, 60
MouseButton2, 60
MouseButton3, 60
MSeparator, 61
multipleSelection, 119

Navy, 62
nbsp, 115
neg, 44
neighbors, 103
neighbors’, 104
newDBEntry, 76, 77
newIORef, 73
newNamedObject, 83
newNodes, 105
newObject, 83
newTreeLike, 107
nextBoolean, 106
nextInt, 106
nextIntRange, 106
nmap, 105
Node, 99
node’, 103
nodeRange, 102
nodes, 104
noindex, 20
noNodes, 102
nub, 77

194

nubBy, 78

odd, 68
olist, 117
onlyindex, 20
Op, 149
OpDecl, 149
openFile, 69
openNamedPort, 34, 83
openPort, 33, 82
openProcessPort, 82
opFixity, 158
opName, 158
opPrecedence, 158
opt, 133
Option, 144
Or, 152
Orange, 62
orExps, 162
out, 103
out’, 104
outdeg, 103
outdeg’, 104

page, 115
PageCSS, 113
pageCSS, 115
PageEnc, 113
pageEnc, 115
PageJScript, 113
PageParam, 113
PAKCS, 7
pakcs, 7
PAKCS_LOCALHOST, 34
PAKCS_OPTION_FCYPP, 25
PAKCS_SOCKET, 34
PAKCS_TRACEPORTS, 34
pakcsrc, 11
par, 116
parsecurry, 171
parseHtmlString, 122
Parser, 80
ParserRep, 80
parseXmlString, 131

partition, 45, 78
password, 118
patArgs, 165
patCons, 165
patExpr, 165
Path, 100
path, 6, 10
pathSeparatorChar, 54
patLiteral, 165
Pattern, 152
pattern

function, 13
permute, 45
persistent, 53
ping, 82
Pink, 62
PlainButton, 57
plainCode, 147
plusFM, 97
plusFM C, 97
popup message, 66
Port, 33, 81
ports, 33
pow, 67
pre, 103, 116
pre’, 104
printdepth, 10
printfail, 9
Private, 139, 148
profile, 9
Prog, 148
progFuncs, 154
progImports, 154
progName, 154
progOps, 154
program

documentation, 19
testing, 23

progTypes, 154
ProtocolMsg, 37
Public, 138, 148
Purple, 62

QName, 138, 148

195

Query, 46
queryAll, 47
queryJustOne, 47
queryOne, 47
queryOneWithDefault, 47
Queue, 95
quickSort, 109

radio main, 118
radio main off, 119
radio other, 119
range, 157
readAbstractCurryFile, 143
readAnyQExpression, 93
readAnyQTerm, 93
readAnyUnqualifiedTerm, 93
readCompleteFile, 72
readCSV, 46
readCSVFile, 46
readCSVFileWithDelims, 46
readCSVWithDelims, 46
readCurry, 35, 143
readCurryWithParseOptions, 143
readFileWithXmlDocs, 131
readFlatCurry, 35, 153
readFlatCurryFile, 153
readFlatCurryInt, 153
readFlatCurryIntWithImports, 166
readFlatCurryIntWithImportsInPath, 166
readFlatCurryWithImports, 166
readFlatCurryWithImportsInPath, 166
readFlatCurryWithParseOptions, 153
readHex, 84, 85
readHtmlFile, 122
readInt, 84
readIORef, 73
ReadMode, 69
readNat, 84, 85
readOct, 85
readPropertyFile, 84
readQTerm, 86
readQTermFile, 86
readQTermListFile, 86
readsAnyQExpression, 93

readsAnyQTerm, 93
readsAnyUnqualifiedTerm, 92
readScan, 147
readsQTerm, 86
readsTerm, 86
readsUnqualifiedTerm, 85
readTerm, 86
readUnqualifiedTerm, 86
readUnsafeXmlFile, 130
readUntypedCurry, 143
readUntypedCurryWithParseOptions, 143
readXmlFile, 130
ReconfigureItem, 59
Red, 63
RedBlackTree, 106
redirect, 114
RelativeSeek, 69
removeRegionStyle, 65
RemoveStreamHandler, 60
Rendering, 123
rep, 133
replace, 78
repSeq1, 134
repSeq2, 135
repSeq3, 135
repSeq4, 136
repSeq5, 136
repSeq6, 137
Required, 145
RequiredSpec, 145
requires, 145
resetbutton, 118
resultType, 158
retract, 53
Return, 60
returnT, 47
RightAlign, 61
Rigid, 150
rnmAllVars, 164
rnmAllVarsInFunc, 160
rnmAllVarsInProg, 155
rnmAllVarsInRule, 161
rnmAllVarsInTypeExpr, 158
rnmProg, 155

196

rotate, 96
round, 56
Row, 58
row, 63
Rule, 150
ruleArgs, 160
ruleBody, 160
ruleExtDecl, 160
runConfigControlledGUI, 64
runControlledGUI, 63
runFormServerWithKey, 120
runFormServerWithKeyAndFormParams, 121
runGUI, 63
runGUIwithParams, 63
runHandlesControlledGUI, 64
runInitControlledGUI, 64
runInitGUI, 63
runInitGUIwithParams, 63
runInitHandlesControlledGUI, 64
runNamedServer, 83
runPassiveGUI, 63
runQ, 47
runT, 48

satisfied, 45
satisfy, 81
scalarProduct, 42
Scale, 58
scan, 147
ScrollH, 58
ScrollV, 58
SearchBranch, 36
SearchTree, 36
SeekFromEnd, 69
SeekMode, 69
seeText, 65
selection, 119
selectionInitial, 119
send, 33, 82
sendMail, 122
sendMailWithOptions, 122
separatorChar, 54
seq1, 134
seq2, 135

seq3, 135
seq4, 136
seq5, 136
seq6, 137
seqStrActions, 38
sequenceMaybe, 80
sequenceT, 48
sequenceT , 48
setAssoc, 72
setConfig, 64
setEnviron, 88
setInsertEquivalence, 107
SetRBT, 107
setRBT2list, 108
setValue, 65
showAnyExpression, 93
showAnyQExpression, 93
showAnyQTerm, 92
showAnyTerm, 92
showCSV, 46
showCurryExpr, 167
showCurryId, 167
showCurryType, 166
showCurryVar, 167
showExpr, 144
showFlatFunc, 166
showFlatProg, 166
showFlatType, 166
showFuncDecl, 144
showGraph, 105
showHtmlDoc, 120
showHtmlDocCSS, 120
showHtmlExp, 120
showHtmlExps, 120
showHtmlPage, 120
showJSExp, 75
showJSFDecl, 75
showJSStat, 75
showLatexDoc, 121
showLatexDocs, 121
showLatexDocsWithPackages, 121
showLatexDocWithPackages, 121
showLatexExp, 121
showLatexExps, 121

197

showPattern, 144
showProg, 143
showQNameInModule, 153
showQTerm, 85
showTerm, 85
showTestCase, 38
showTestCompileError, 38
showTestEnd, 38
showTestMod, 38
showTypeDecl, 144
showTypeDecls, 144
showTypeExpr, 144
showXmlDoc, 130
showXmlDocWithParams, 130
simplify, 45
sin, 56
single, 11
singleton variables, 5
sizedSubset, 45
sizeFM, 98
sleep, 89
SmallComment, 146
snoc, 95
Socket, 87
socketAccept, 87
socketBind, 87
socketINET, 87
socketListen, 87
Solutions, 36
some, 81
sort, 107
sortBy, 79
sortByIndex, 75, 76
sortRBT, 108
SP_Close, 82
SP_EOF, 81
SP_GetChar, 81
SP_GetLine, 81
SP_Msg, 81
SP_Put, 81
spawnConstraint, 92
splitBaseName, 55
splitDirectoryBaseName, 55
splitFM, 97

splitPath, 55
splitSet, 45
spy, 11
sqrt, 56
StandardEnc, 130
standardForm, 114
standardPage, 115
star, 81
stderr, 69
stdin, 69
stdout, 69
Step, 40
StreamHandler, 60
string, 132
string2urlencoded, 120
stringList2ItemList, 110
stripSuffix, 55
Style, 62
style, 117
styleSheet, 117
subset, 45
suc, 103
suc’, 104
suffixSeparatorChar, 55
sum, 42
system, 88

table, 117
TableRBT, 110
tableRBT2list, 110
tabulator stops, 5
tan, 56
TasteCurry, 169, 173
TclOption, 59
TCons, 149
tConsArgs, 157
tConsName, 157
teletype, 116
terminal, 80
TestCase, 37
TestCompileError, 37
TestFinished, 37
testing programs, 23
TestModule, 37

198

testScan, 147
Text, 59, 146
textarea, 118
TextEdit, 58
TextEditScroll, 66
textfield, 118
textOfXml, 131
textstyle, 117
time, 9
timeoutOnStream, 82
TO, 122
toCalendarTime, 90
toClockTime, 90
toDayString, 90
Token, 146
Tokens, 146
toLower, 39
Tomato, 63
TopAlign, 61
toTimeString, 90
toUpper, 39
toUTCTime, 90
trace, 11, 92
Transaction, 46
transaction, 54
transformQ, 47
transformWSpec, 124
transpose, 78
trBranch, 164
trCombType, 161
trCons, 156
tree2list, 107
trExpr, 163
trFunc, 159
trOp, 158
trPattern, 165
trProg, 154
trRule, 160
trType, 155
trTypeExpr, 157
true, 44
truncate, 56
Turquoise, 63
TVar, 149

TVarIndex, 148
tVarIndex, 157
Type, 149
typeConsDecls, 155
TypeDecl, 148
TypeExpr, 149
typeName, 155
typeParams, 155
TypeSyn, 149
typeSyn, 155
typeVisibility, 155

UContext, 100
UDecomp, 100
UEdge, 100
ufold, 105
UGr, 101
ulist, 116
Underline, 62
union, 78
unionRBT, 108
unitFM, 96
UnknownFR, 168
UNode, 100
unsafePerformIO, 92
unscan, 147
unsetEnviron, 88
Up, 40
UPath, 101
Update, 154
update, 94, 107
updateDBEntry, 76, 77
updateFile, 72
updatePropertyFile, 84
updateRBT, 110
updateValue, 65
updateXmlFile, 131
updBranch, 164
updBranches, 164
updBranchExpr, 165
updBranchPattern, 164
updCases, 163
updCombs, 163
updCons, 156

199

updConsArgs, 157
updConsArity, 157
updConsName, 156
updConsVisibility, 157
updFM, 97
updFrees, 163
updFunc, 159
updFuncArgs, 160
updFuncArity, 159
updFuncBody, 160
updFuncName, 159
updFuncRule, 159
updFuncType, 159
updFuncTypes, 158
updFuncVisibility, 159
updLets, 163
updLiterals, 163
updOp, 158
updOpFixity, 158
updOpName, 158
updOpPrecedence, 159
updOrs, 163
updPatArgs, 165
updPatCons, 165
updPatLiteral, 165
updPattern, 165
updProg, 154
updProgExps, 155
updProgFuncs, 154
updProgImports, 154
updProgName, 154
updProgOps, 155
updProgTypes, 154
updQNames, 164
updQNamesInConsDecl, 157
updQNamesInFunc, 160
updQNamesInProg, 155
updQNamesInRule, 161
updQNamesInType, 156
updQNamesInTypeExpr, 158
updRule, 160
updRuleArgs, 161
updRuleBody, 161
updRuleExtDecl, 161

updTCons, 158
updTVars, 157
updType, 155
updTypeConsDecls, 156
updTypeName, 156
updTypeParams, 156
updTypeSynonym, 156
updTypeVisibility, 156
updVars, 163
urlencoded2string, 120

validDate, 91
Var, 151
variables

singleton, 5
VarIndex, 148
varNr, 161
verbatim, 116
Verbose, 144
Violet, 63
Visibility, 148

w10Tuple, 127
w11Tuple, 127
w4Tuple, 126
w5Tuple, 126
w6Tuple, 126
w7Tuple, 126
w8Tuple, 127
w9Tuple, 127
waitForSocketAccept, 87
warn, 10
wCheckBool, 125
wCheckMaybe, 128
wCons10, 127
wCons11, 127
wCons2, 126
wCons3, 126
wCons4, 126
wCons5, 126
wCons6, 126
wCons7, 127
wCons8, 127
wCons9, 127

200

wConstant, 124
wEither, 128
where, 13
wHidden, 124
White, 63
wHList, 128
Widget, 57
WidgetConf, 59
WidgetRef, 61
Width, 59
wInt, 124
withCondition, 124
withError, 124
withRendering, 124
WLeaf, 123
wList, 128
wListWithHeadings, 128
wMatrix, 128
wMaybe, 128
wMultiCheckSelect, 125
WNode, 123
wPair, 125
wRadioBool, 125
wRadioMaybe, 128
wRadioSelect, 125
WRef, 59
wRequiredString, 124
wRequiredStringSize, 125
writeAbstractCurryFile, 143
writeAssertResult, 38
writeCSVFile, 46
writeFCY, 153
writeIORef, 73
WriteMode, 69
writeQTermFile, 86
writeQTermListFile, 86
writeXmlFile, 130
writeXmlFileWithParams, 130
wSelect, 125
wSelectBool, 125
wSelectInt, 125
wString, 124
wStringSize, 124
wTextArea, 125

WTree, 123
wTree, 128
wTriple, 126
wui2html, 128
WuiHandler, 123
wuiHandler2button, 124
wuiInForm, 129
WuiSpec, 123
wuiWithErrorForm, 129

XAttrConv, 131
XElem, 129
XElemConv, 131
xml, 130
xml2FlatCurry, 167
XmlDocParams, 130
XmlExp, 129
xmlFile2FlatCurry, 167
xmlRead, 132
XmlReads, 131
xmlReads, 132
xmlShow, 132
XmlShows, 131
xmlShows, 132
XOptConv, 131
XPrimConv, 131
XRepConv, 131
XText, 129
xtxt, 130

Yellow, 63

201

	Title
	Contents
	Preface
	Overview of PAKCS
	General Use
	Restrictions on Curry Programs
	Modules in PAKCS

	PAKCS/Curry2Prolog: An Interactive Curry Development System
	How to Use PAKCS
	Customization
	Emacs Interface

	Extensions
	Recursive Variable Bindings
	Function Patterns
	Records
	Record Type Declaration
	Record Construction
	Field Selection
	Field Update
	Records in Pattern Matching
	Export of Records
	Restrictions in the Usage of Records

	CurryDoc: A Documentation Generator for Curry Programs
	CurryBrowser: A Tool for Analyzing and Browsing Curry Programs
	CurryTest: A Tool for Testing Curry Programs
	Preprocessing FlatCurry Files
	Technical Problems
	Bibliography
	Libraries of the PAKCS Distribution
	Constraints, Ports, Meta-Programming
	Arithmetic Constraints
	Finite Domain Constraints
	Ports: Distributed Programming in Curry
	AbstractCurry and FlatCurry: Meta-Programming in Curry

	General Libraries
	Library AllSolutions
	Library Assertion
	Library Char
	Library CLPFD
	Library CLPR
	Library CLPB
	Library Combinatorial
	Library CSV
	Library Database
	Library DaVinci
	Library Directory
	Library Dynamic
	Library FileGoodies
	Library Float
	Library GUI
	Library Integer
	Library IO
	Library IOExts
	Library JavaScript
	Library KeyDatabase
	Library KeyDB
	Library List
	Library Maybe
	Library Parser
	Library Ports
	Library PropertyFile
	Library Read
	Library ReadNumeric
	Library ReadShowTerm
	Library Socket
	Library System
	Library Time
	Library Unsafe

	Data Structures and Algorithms
	Library Array
	Library Dequeue
	Library FiniteMap
	Library GraphInductive
	Library Random
	Library RedBlackTree
	Library SetRBT
	Library Sort
	Library TableRBT

	Libraries for Web Applications
	Library CategorizedHtmlList
	Library HTML
	Library HtmlParser
	Library Mail
	Library WUI
	Library URL
	Library XML
	Library XmlConv

	Libraries for Meta-Programming
	Library AbstractCurry
	Library AbstractCurryPrinter
	Library CompactFlatCurry
	Library CurryStringClassifier
	Library FlatCurry
	Library FlatCurryGoodies
	Library FlatCurryRead
	Library FlatCurryShow
	Library FlatCurryTools
	Library FlatCurryXML
	Library FlexRigid

	Overview of the PAKCS Distribution
	Auxiliary Files
	Curry2Java: A Compiler from Curry into Java
	The TasteCurry Interpreter
	How to Use the TasteCurry Interpreter
	Restrictions on Curry Programs in the TasteCurry Interpreter
	Internal TasteCurry Syntax
	Modules in the TasteCurry Interpreter

	Changing the Prelude or System Modules
	External Functions
	External Functions in Curry2Prolog
	External Functions in TasteCurry

	Index

