
PAKCS 1.7.1

The Portland Aachen Kiel Curry System

User Manual

Version of February 3, 2006

Michael Hanus1 [editor]

Additional Contributors:

Sergio Antoy2

Bernd Braßel3

Martin Engelke4

Klaus Höppner5

Johannes Koj6

Philipp Niederau7

Ramin Sadre8

Frank Steiner9

(1) University of Kiel, Germany, mh@informatik.uni-kiel.de
(2) Portland State University, USA, antoy@cs.pdx.edu

(3) University of Kiel, Germany, bbr@informatik.uni-kiel.de
(4) University of Kiel, Germany, men@informatik.uni-kiel.de
(5) University of Kiel, Germany, klh@informatik.uni-kiel.de

(6) RWTH Aachen, Germany, johannes.koj@sdm.de
(7) RWTH Aachen, Germany, philipp@navigium.de

(8) RWTH Aachen, Germany, ramin@lvs.informatik.rwth-aachen.de
(9) LMU Munich, Germany, fst@bio.informatik.uni-muenchen.de

Contents

Preface 3

1 Overview of PAKCS 4
1.1 General Use . 4
1.2 Restrictions on Curry Programs . 4
1.3 Modules in PAKCS . 5

2 PAKCS/Curry2Prolog: An Interactive Curry Development System 6
2.1 How to Use PAKCS . 6
2.2 Customization . 10
2.3 Emacs Interface . 10
2.4 Libraries for Application Programming . 10

2.4.1 Arithmetic Constraints . 11
2.4.2 Finite Domain Constraints . 12
2.4.3 Ports: Distributed Programming in Curry . 14
2.4.4 AbstractCurry and FlatCurry: Meta-Programming in Curry 15
2.4.5 Further System Modules . 16

3 Extensions 20
3.1 Function Patterns . 20

4 CurryDoc: A Documentation Generator for Curry Programs 20

5 CurryBrowser: A Tool for Analyzing and Browsing Curry Programs 23

6 CurryTest: A Tool for Testing Curry Programs 25

7 Technical Problems 27

Bibliography 28

A Overview of the PAKCS Distribution 30

B Auxiliary Files 30

C Curry2Java: A Compiler from Curry into Java 33

D The TasteCurry Interpreter 34
D.1 How to Use the TasteCurry Interpreter . 34
D.2 Restrictions on Curry Programs in the TasteCurry Interpreter 36
D.3 Internal TasteCurry Syntax . 36
D.4 Modules in the TasteCurry Interpreter . 39

E Changing the Prelude or System Modules 41

1

F External Functions 41
F.1 External Functions in Curry2Prolog . 42
F.2 External Functions in TasteCurry . 44

Index 46

2

Preface

This document describes PAKCS (formerly called “PACS”), an implementation of the multi-
paradigm language Curry, jointly developed at the University of Kiel, the Technical University
of Aachen and Portland State University. Curry is a universal programming language aiming at
the amalgamation of the most important declarative programming paradigms, namely functional
programming and logic programming. Curry combines in a seamless way features from functional
programming (nested expressions, lazy evaluation, higher-order functions), logic programming (log-
ical variables, partial data structures, built-in search), and concurrent programming (concurrent
evaluation of constraints with synchronization on logical variables). Moreover, the PAKCS im-
plementation of Curry also supports the high-level implementation of distributed applications,
graphical user interfaces, and web services (as described in more detail in [9, 10, 11]).

We assume familiarity with the ideas and features of Curry as described in the Curry language
definition [16]. Therefore, this document only explains the use of the different components of
PAKCS and the differences and restrictions of PAKCS (see Section 1.2) compared with the language
Curry (Version 0.8).

Acknowledgements

This work has been supported in part by the DAAD/NSF grant INT-9981317, the NSF grant CCR-
0110496, the Acción Integrada hispano-alemana HA1997-0073, and the DFG grants Ha 2457/1-2
and Ha 2457/5-1.

3

1 Overview of PAKCS

1.1 General Use

This version of PAKCS has been tested on Sun Solaris, Linux, and Mac OS X systems. In principle,
it should be also executable on other platforms on which a Prolog system like SICStus-Prolog or
SWI-Prolog exists (see the file INSTALL.html in the PAKCS directory for a description of the
necessary software to install PAKCS).

All executable files required to use the different components of PAKCS are stored in
the directory pakcshome/bin (where pakcshome is the installation directory of the complete
PAKCS installation). You should add this directory to your path (e.g., by the bash command
“export PATH=pakcshome/bin:$PATH”).

The source code of the Curry program must be stored in a file with the suffix “.curry”, e.g.,
prog.curry. Literate programs must be stored in files with the extension “.lcurry”. They are
automatically converted into corresponding “.curry” files by deleting all lines not starting with
“>” and removing the prefix “> ” of the remaining lines.

Since the translation of Curry programs with PAKCS creates some auxiliary files (see Section B
for details), you need write permission in the directory where you have stored your Curry programs.
The auxiliary files for all Curry programs in the current directory can be deleted by the command

cleancurry

(this is a shell script stored in the bin directory of the PAKCS installation, see above). The
command

cleancurry -r

also deletes the auxiliary files in all subdirectories.

1.2 Restrictions on Curry Programs

There are a few minor restrictions on Curry programs when they are processed with PAKCS:

• Singleton variables, i.e., variables that occur only once in a rule, should be denoted as an
anonymous variable “_”, otherwise the parser will print a warning since this is a typical
source of programming errors.

• PAKCS translates all local declarations into global functions with additional arguments
(“lambda lifting”, see Appendix D of the Curry language report). Thus, in the various
run-time systems, the definition of functions with local declarations look different from their
original definition (in order to see the result of this transformation, you can use the Curry-
Browser, see Section 5).

• Tabulator stops instead of blank spaces in source files are interpreted as stops at columns 9,
17, 25, 33, and so on.

• Committed choice, i.e., the evaluation annotation choice is not supported.

• Threads created by a concurrent conjunction are not executed in a fair manner (usually,
threads corresponding to leftmost constraints are executed with a higher priority).

4

• Encapsulated search: In order to allow the integration of non-deterministic computations in
programs performing I/O at the top-level, PAKCS supports the search operators findall

and findfirst. In contrast to the general definition of encapsulated search [15], the current
implementation suspends the evaluation of findall and findfirst until the argument does
not contain unbound global variables. Moreover, the evaluation of findall is strict, i.e., it
computes all solutions before returning the complete list of solutions. It is recommended to
use the system module AllSolutions for encapsulating search.

• There is currently no general connection to external constraint solvers. However, the
Curry2Prolog compiler provides constraint solvers for arithmetic and finite domain constraints
(see Sections 2.4.1 and 2.4.2).

1.3 Modules in PAKCS

The current implementation of PAKCS supports only flat module names, i.e., the notation
Dir.Mod.f is not supported. In order to allow the structuring of modules in different directories,
PAKCS searches for imported modules in various directories. By default, imported modules are
searched in the directory of the main program and the system module directories “pakcshome/lib”
and “pakcshome/lib/meta”. This search path can be extended by setting the environment vari-
able CURRYPATH (or by the “:set path” command in Curry2Prolog, see below) to a list of directory
names separated by colons (“:”). In this case, the directory of the main program is added as the
first and the system module directories “pakcshome/lib:pakcshome/lib/meta” as the last direc-
tories to CURRYPATH. Then, each imported module will be searched relative to this search path,
i.e., the first occurrence of a module file in the search path is imported. Note that the standard
prelude (pakcshome/lib/prelude.curry) will be always implicitly imported to all modules.

5

2 PAKCS/Curry2Prolog: An Interactive Curry Development

System

PAKCS/Curry2Prolog, in the following just called “PAKCS”, is an interactive system to develop
applications written in Curry.1 It is implemented in Prolog and compiles Curry programs into Pro-
log programs. It contains various tools, a source-level debugger, solvers for arithmetic constraints
over real numbers and finite domain constraints, etc. The compilation process and the execution of
compiled programs is fairly efficient if a good Prolog implementation like SICStus-Prolog is used.

2.1 How to Use PAKCS

To start PAKCS, execute the command “pakcs” (this is a shell script stored in pakcshome/bin

where pakcshome is the installation directory of PAKCS). When the system is ready, the prelude
(pakcshome/lib/prelude.curry) is already loaded, i.e., all definitions in the prelude are accessi-
ble. Now you can type in various commands. The most important commands are (it is sufficient
to type a unique prefix of a command if it is unique, e.g., one can type “:r” instead of “:reload”):

:help Show a list of all available commands.

:load prog Compile and load the program stored in prog.curry. If this file does not exist, the
system looks for a FlatCurry file prog.fcy and compiles from this intermediate representation.
If the file prog.fcy does not exists, too, the system looks for a file prog_flat.xml containing
a FlatCurry program in XML representation (compare command “:xml”), translates this into
a FlatCurry file prog.fcy and compiles from this intermediate representation.

:reload Repeat the last load command.

expr Evaluate the expression expr to normal form and show the computed results. Since the
PAKCS compiles Curry programs into Prolog programs, non-deterministic computations are
implemented by backtracking. Therefore, computed results are shown one after the other.
After each computed result, you can proceed the computation of the next alternative result
by typing “;” (followed by a CR) or stop the search for alternatives by just typing CR.

Free variables in initial expressions must be declared as in Curry programs (if the free
variable mode is not turned on, see option “+free” below), i.e., either by a “let...free in”
or by a “where...free” declaration. For instance, one can write

let xs,ys free in xs++ys =:= [1,2]

or

xs++ys =:= [1,2] where xs,ys free

Without these declarations, an error is reported in order to avoid the unintended introduction
of free variables in initial expressions by typos.

Note that lambda abstractions, lets and list comprehensions in top-level expressions are not
yet supported in initial expressions typed in the top-level of PAKCS.

1There are also two other implementations of Curry contained in the PAKCS distribution (Curry2Java and

TasteCurry, see Appendix C and D for more details). Since the other implementations are no longer actively supported

and Curry2Prolog is the most advanced implementation, we recommend the use of the Curry2Prolog compiler system.

6

let x = expr Define the identifier x as an abbreviation for the expression expr which can be used
in subsequent expressions. The identifier x is visible until the next load or reload command.

:quit Exit the system.

There are also a number of further commands that are often useful:

:type expr Show the type of the expression expr.

:browse Start the CurryBrowser to analyze the currently loaded module together with all its
imported modules (see Section 5 for more details).

:interface Show the interface of the currently loaded module, i.e., show the names of all im-
ported modules, the fixity declarations of all exported operators, the exported datatypes
declarations and the types of all exported functions.

:interface prog Similar to “:interface” but shows the interface of the module “prog.curry”.
If this module does not exist, this command looks in the system library directory of PAKCS for
a module with this name, e.g., the command “:interface FlatCurry” shows the interface
of the system module FlatCurry for meta-programming (see Section 2.4.4).

:analyze Analyze the currently loaded program for some properties. Currently, there are the
following analysis options:

functions Check properties of all functions defined in the currently loaded Curry program
(i.e., without the functions defined in the prelude and imported modules). Currently,
the following properties are checked:

1. Which functions are defined by overlapping left-hand sides?

2. Which functions are indeterministic, i.e., contains an indirect/implicit call to a com-
mitted choice (or a send constraint on ports, see Section 2.4.3, which includes also
an implicit committed choice)?

icalls Show all calls to imported functions in the currently loaded module. This might be
useful to see which import declarations are really necessary.

igraph Visualize the module dependencies of the currently loaded module (without the
prelude which is used everywhere) as a graph with the daVinci graph drawing tool (see
also the system library DaVinci).

:set option Set or turn on/off a specific option of the PAKCS environment. Options are turned
on by the prefix “+” and off by the prefix “-”. Options that can only be set (e.g., printdepth)
must not contain a prefix. The following options are currently supported:

+/-debug Debug mode. In the debug mode, one can trace the evaluation of an expression,
setting spy points (break points) etc. (see the commands for the debug mode described
below).

7

+/-free Free variable mode. If the free variable mode is off (default), then free variables
occurring in initial expressions entered in the PAKCS environment must always be de-
clared by a “let...free in” or “where...free” declaration (as in Curry programs).
This avoids the introduction of free variables in initial expressions by typos (which might
lead to the exploration of infinite search spaces). If the free variable mode is on, each
undefined symbol in an initial expression is considered as a free variable.

+/-printfail Print failures. If this option is set, failures occurring during evaluation
(i.e., non-reducible demanded subexpressions) are printed. This is useful to see failed
reductions due to partially defined functions or failed unifications. Inside encapsulated
search (e.g., inside evaluations of findall and findfirst), failures are not printed (since
they are a typical programming technique there).

+/-allfails If this option is set, all failures (i.e., also failures on backtracking and failures
of enclosing functions that fail due to the failure of an argument evaluation) are printed if
the option printfail is set. Otherwise, only the first failure (i.e., the first non-reducible
subexpression) is printed.

+/-profile Profile mode. If the profile mode is on, then information about the number
of calls, failures, exits etc. are collected for each function during the debug mode (see
above) and shown after the complete execution (additionaly, the result is stored in the
file prog.profile where prog is the current main program). The profile mode has no
effect outside the debug mode.

+/-suspend Suspend mode (initially, it is off). If the suspend mode is on, all suspended
expressions (if there are any) are shown (in their internal representation) at the end of
a computation.

+/-time Time mode. If the time mode is on, the cpu time and the elapsed time of the
computation is always printed together with the result of an evaluation.

+/-verbose Verbose mode (initially, it is off). If the verbose mode is on, the initial ex-
pression of a computation (together with its type) is printed before this expression is
evaluated.

+/-warn Parser warnings. If the parser warnings are turned on (default), the parser will
print warnings about variables that occur only once in a program rule (see Section 1.2)
or locally declared names that shadow the definition of globally declared names. If the
parser warnings are switched off, these warnings are not printed during the reading of a
Curry program.

path path Set the additional search path for loading modules to path. Note that this search
path is only used for loading modules inside this invocation of PAKCS and not in applica-
tion programs (e.g., Curry programs using the operation System.getLoadPathForFile).

printdepth n Set the depth for printing terms to the value n (initially: 0). In this case
subterms with a depth greater than n are abbreviated by dots when they are printed
as a result of a computation or during debugging. A value of 0 means infinite depth so
that the complete terms are printed.

:set Show a help text on the “:set option” command together with the current values of all
options.

8

:show Show the source text of the currently loaded Curry program. If the source text is not
available (since the program has been directly compiled from a FlatCurry or XML file), the
loaded program is decompiled and the decompiled Curry program text is shown.

:cd dir Change the current working directory to dir.

:dir Show the names of all Curry programs in the current working directory.

:!cmd Shell escape: execute cmd in a Unix shell.

:save Save the current state of the system (together with the compiled program prog.curry) in
the file prog.state, i.e., you can later start the program again by typing “prog.state” as a
Unix command.

:save expr Similar as “:save” but the expression expr (typically: a call to the main function)
will be executed after restoring the state and the execution of the restored state terminates
when the evaluation of the expression expr terminates.

:fork expr The expression expr, which must be of type “IO ()”, is evaluated in an independent
process which runs in parallel to the current PAKCS process. All output and error messages
from this new process are suppressed. This command is useful to test distributed Curry
programs (see Section 2.4.3) where one can start a new server process by this command. The
new process will be terminated when the evaluation of the expression expr is finished.

:xml Translate the currently loaded program module into an XML representation according to
the format described in http://www.informatik.uni-kiel.de/~curry/flat/. Actually,
this yields an implementation-independent representation of the corresponding FlatCurry
program (see Section 2.4.4 for a description of FlatCurry). If prog is the name of the currently
loaded program, the XML representation will be written into the file “prog_flat.xml”.

:peval Translate the currently loaded program module into an equivalent program where some
subexpressions are partially evaluated so that these subexpressions are (hopefully) more ef-
ficiently executed. An expression e to be partially evaluated must be marked in the source
program by (PEVAL e) (where PEVAL is defined as the identity function in the prelude so that
it has no semantical meaning).

The partial evaluator translates a source program prog.curry into the partially evaluated pro-
gram in intermediate representation stored in prog_pe.fcy. The latter program is implicitly
loaded by the peval command so that the partially evaluated program is directly available.
The corresponding source program can be shown by the show command (see above).

The current partial evaluator is an experimental prototype (so it might not work on all
programs) based on the ideas described in [1, 2, 3, 4].

PAKCS can also execute programs in the debug mode. The debug mode is switched on by
setting the debug option with the command “:set +debug”. In order to switch back to normal
evaluation of the program, one has to execute the command “:set -debug”.

In the debug mode, PAKCS offers the following additional options for the “:set” com-
mand:

9

http://www.informatik.uni-kiel.de/~curry/flat/

+/-single Turn on/off single mode for debugging. If the single mode is on, the evaluation of an
expression is stopped after each step and the user is asked how to proceed (see the options
there).

+/-trace Turn on/off trace mode for debugging. If the trace mode is on, all intermediate ex-
pressions occurring during the evaluation of an expressions are shown.

spy f Set a spy point (break point) on the function f . In the single mode, you can “leap” from
spy point to spy point (see the options shown in the single mode).

+/-spy Turn on/off spy mode for debugging. If the spy mode is on, the single mode is automat-
ically activated when a spy point is reached.

2.2 Customization

In order to customize the behavior of PAKCS to your own preferences, there is a configuration file
which is read by PAKCS when it is invoked. When you start PAKCS for the first time, a standard
version of this configuration file is copied with the name “.pakcsrc” into your home directory.
The file contains definitions of various settings, e.g., about showing warnings, progress messages
etc. After you have started PAKCS for the first time, look into this file and adapt it to your own
preferences.

2.3 Emacs Interface

Emacs is a powerful programmable editor suitable for program development. It is freely available
for many platforms (see http://www.emacs.org or http://www.xemacs.org). The distribution of
PAKCS contains also a special Curry mode that supports the development of Curry programs in the
(X)Emacs environment. This mode includes support for syntax highlighting, finding declarations
in the current buffer, and loading Curry programs into the PAKCS/Curry2Prolog compiler system
in an Emacs shell.

The Curry mode has been adapted from a similar mode for Haskell programs. Its installation
is described in the file README in directory “pakcshome/tools/emacs” which also contains the
sources of the Curry mode and a short description about the use of this mode.

2.4 Libraries for Application Programming

The PAKCS/Curry2Prolog compiler system provides a number of system libraries for application
programming. In particular, it has libraries for

• arithmetic constraints over real numbers,

• finite domain constraints,

• ports for concurrent and distributed programming,

• meta-programming by representing Curry programs in Curry,

and many more. These libraries are sketched in the following sections. For a more detailed online
documentation of all libraries of PAKCS, see http://www.informatik.uni-kiel.de/~pakcs/lib/
index.html.

10

http://www.emacs.org
http://www.xemacs.org
http://www.informatik.uni-kiel.de/~pakcs/lib/index.html
http://www.informatik.uni-kiel.de/~pakcs/lib/index.html

2.4.1 Arithmetic Constraints

The primitive entities for the use of arithmetic constraints are defined in the system module CLPR

(cf. Section 1.3), i.e., in order to use them, the program must contain the import declaration

import CLPR

Floating point arithmetic is supported in Curry2Prolog via arithmetic constraints, i.e., the equa-
tional constraint “2.3 +. x =:= 5.5” is solved by binding x to 3.2 (rather than suspending the
evaluation of the addition, as in corresponding constraints on integers like “3+x=:=5”). All opera-
tions related to floating point numbers are suffixed by “.”. The following functions and constraints
on floating point numbers are supported in PAKCS:

(+.) :: Float -> Float -> Float

Addition on floating point numbers.

(-.) :: Float -> Float -> Float

Subtraction on floating point numbers.

(*.) :: Float -> Float -> Float

Multiplication on floating point numbers.

(/.) :: Float -> Float -> Float

Division on floating point numbers.

(<.) :: Float -> Float -> Success

Comparing two floating point numbers with the “less than” relation.

(>.) :: Float -> Float -> Success

Comparing two floating point numbers with the “greater than” relation.

(<=.) :: Float -> Float -> Success

Comparing two floating point numbers with the “less than or equal” relation.

(>=.) :: Float -> Float -> Success

Comparing two floating point numbers with the “greater than or equal” relation.

i2f :: Int -> Float

Converting an integer number into a floating point number.

As an example, consider a constraint mortgage which relates the principal p, the lifetime of the
mortgage in months t, the monthly interest rate ir, the monthly repayment r, and the outstanding
balance at the end of the lifetime b. The financial calculations can be defined by the following two
rules in Curry (the second rule describes the repeated accumulation of the interest):

import CLPR

mortgage p t ir r b | t >. 0.0 & t <=. 1.0 --lifetime not more than 1 month?

= b =:= p *. (1.0 +. t *. ir) -. t*.r

mortgage p t ir r b | t >. 1.0 --lifetime more than 1 month?

11

= mortgage (p *. (1.0+.ir)-.r) (t-.1.0) ir r b

Then we can calculate the monthly payment for paying back a loan of $100,000 in 15 years with a
monthly interest rate of 1% by solving the goal

mortgage 100000.0 180.0 0.01 r 0.0

which yields the solution r=1200.17.
Note that only linear arithmetic equalities or inequalities are solved by the constraint solver.

Non-linear constraints like “x *. x =:= 4.0” are suspended until they become linear.

2.4.2 Finite Domain Constraints

Finite domain constraints are constraints where all variables can only take a finite number of
possible values. For simplicity, the domain of finite domain variables are identified with a subset
of the integers, i.e., the type of a finite domain variable is Int. The arithmetic operations related
to finite domain variables are suffixed by “#”. The following functions and constraints for finite
domain constraint solving are currently supported in PAKCS:2

domain :: [Int] -> Int -> Int -> Success

The constraint “domain [x1, . . . , xn] l u” is satisfied if the domain of all variables xi is the
interval [l, u].

(+#) :: Int -> Int -> Int

Addition on finite domain values.

(-#) :: Int -> Int -> Int

Subtraction on finite domain values.

(*#) :: Int -> Int -> Int

Multiplication on finite domain values.

(=#) :: Int -> Int -> Success

Equality of finite domain values.

(/=#) :: Int -> Int -> Success

Disequality of finite domain values.

(<#) :: Int -> Int -> Success

“less than” relation on finite domain values.

(<=#) :: Int -> Int -> Success

“less than or equal” relation on finite domain values.

(>#) :: Int -> Int -> Success

“greater than” relation on finite domain values.
2Note that this library is based on the corresponding library of SICStus-Prolog but does not implement the

complete functionality of the SICStus-Prolog library. However, using the PAKCS interface for external functions (see

Appendix F), it is relatively easy to provide the complete functionality.

12

(>=#) :: Int -> Int -> Success

“greater than or equal” relation on finite domain values.

sum :: [Int] -> (Int -> Int -> Success) -> Int -> Success

The constraint “sum [x1, . . . , xn] op x” is satisfied if all x1 + · · ·+xn op x is satisfied, where
op is one of the above finite domain constraint relations (e.g., “=#”).

scalar_product :: [Int] -> [Int] -> (Int -> Int -> Success) -> Int -> Success

The constraint “scalar_product [c1, . . . , cn] [x1, . . . , xn] op x” is satisfied if all c1x1 +
· · · + cnxn op x is satisfied, where op is one of the above finite domain constraint relations.

count :: Int -> [Int] -> (Int -> Int -> Success) -> Int -> Success

The constraint “count k [x1, . . . , xn] op x” is satisfied if all k op x is satisfied, where n is
the number of the xi that are equal to k and op is one of the above finite domain constraint
relations.

all_different :: [Int] -> Success

The constraint “all_different [x1, . . . , xn]” is satisfied if all xi have pairwise different
values.

labeling :: [LabelingOption] -> [Int] -> Success

The constraint “labeling os [x1, . . . , xn]” non-deterministically instantiates all xi to the
values of their domain according to the options os (see the module documentation for further
details about these options).

These entities are defined in the system module CLPFD (cf. Section 1.3), i.e., in order to use it, the
program must contain the import declaration

import CLPFD

As an example, consider the classical “send+more=money” problem where each letter must be
replaced by a different digit such that this equation is valid and there are no leading zeros. The
usual way to solve finite domain constraint problems is to specify the domain of the involved
variables followed by a specification of the constraints and the labeling of the constraint variables
in order to start the search for solutions. Thus, the “send+more=money” problem can be solved as
follows:

import CLPFD

smm l =

l =:= [s,e,n,d,m,o,r,y] &

domain l 0 9 &

s ># 0 &

m ># 0 &

all_different l &

1000 *# s +# 100 *# e +# 10 *# n +# d

+# 1000 *# m +# 100 *# o +# 10 *# r +# e

=# 10000 *# m +# 1000 *# o +# 100 *# n +# 10 *# e +# y &

13

labeling [FirstFail] l

where s,e,n,d,m,o,r,y free

Then we can solve this problem by evaluating the goal “smm [s,e,n,d,m,o,r,y]” which yields
the unique solution {s=9,e=5,n=6,d=7,m=1,o=0,r=8,y=2}.

2.4.3 Ports: Distributed Programming in Curry

To support the development of concurrent and distributed applications, PAKCS supports internal
and external ports as described in [9].3 Since [9] contains a detailed description of this concept
together with various programming examples, we only summarize here the functions and constraints
supported for ports in PAKCS.

The basic datatypes, functions, and constraints for ports are defined in the system module
Ports (cf. Section 1.3), i.e., in order to use ports, the program must contain the import declaration

import Ports

This declaration includes the following entities in the program:

Port a

This is the datatype of a port to which one can send messages of type a.

openPort :: Port a -> [a] -> Success

The constraint “openPort p s” establishes a new internal port p with an associated message
stream s. p and s must be unbound variables, otherwise the constraint fails (and causes a
runtime error).

send :: a -> Port a -> Success

The constraint “send m p” is satisfied if p is constrained to contain the message m, i.e., m will
be sent to the port p so that it appears in the corresponding stream.

doSend :: a -> Port a -> IO ()

The I/O action “doSend m p” solves the constraint “send m p” and returns nothing.

openNamedPort :: String -> IO [a]

The I/O action “openNamedPort n” opens a new external port with symbolic name n and
returns the associated stream of messages.

connectPort :: String -> IO (Port a)

The I/O action “connectPort n” returns a port with symbolic name n (i.e., n must have the
form “portname@machine) to which one can send messages by the send constraint. Currently,
no dynamic type checking is done for external ports, i.e., sending messages of the wrong type
to a port might lead to a failure of the receiver.

3Ports are also supported by the TasteCurry interpreter, see Appendix D, and by the Curry2Java compiler, see

Appendix C. However, the TasteCurry interpreter allows only to send strings over external ports and the Curry2Java

compiler does not yet support the sending of logical variables over external ports.

14

Restrictions: Every expression, possibly containing logical variables, can be sent to a port.
However, as discussed in [9], port communication is strict, i.e., the expression is evaluated to
normal form before sending it by the constraint send. Furthermore, if messages containing logical
variables are sent to external ports, the behavior is as follows:

1. The sender waits until all logical variables in the message have been bound by the receiver.

2. The binding of a logical variable received by a process is sent back to the sender of this
logical variable only if it is bound to a ground term, i.e., as long as the binding contains
logical variables, the sender is not informed about the binding and, therefore, the sender
waits.

External ports on local machines: The implementation of external ports assumes that the
host machine running the application is connected to the Internet (i.e., it uses the standard IP
address of the host machine for message sending). If this is not the case and the application should
be tested by using external ports only on the local host without a connection to the Internet, the
environment variable “PAKCS_LOCALHOST” must be set to “yes” before PAKCS system is started.
In this case, the IP address 127.0.0.1 and the hostname “localhost” are used for identifying the
local machine.

Selection of Unix sockets for external ports: The implementation of ports uses sockets
to communicate messages sent to external ports. Thus, if a Curry program uses the I/O action
openNamedPort to establish an externally visible server, PAKCS selects a Unix socket for the
port communication. Usually, a free socket is selected by the operating system. If the socket
number should be fixed in an application (e.g., because of the use of firewalls that allow only
communication over particular sockets), then one can set the environment variable “PAKCS_SOCKET”
to a distinguished socket number before the PAKCS system is started. This has the effect that
PAKCS uses only this socket number for communication (even for several external ports used in
the same application program).

Debugging: To debug distributed systems, it is sometimes helpful to see all messages sent to
external ports. This is supported by the environment variable “PAKCS_TRACEPORTS”. If this variable
is set to “yes” before the PAKCS system is started, then all connections to external ports and all
messages sent and received on external ports are printed on the standard error stream.

2.4.4 AbstractCurry and FlatCurry: Meta-Programming in Curry

To support meta-programming, i.e., the manipulation of Curry programs in Curry, there are sys-
tem modules FlatCurry and AbstractCurry (stored in the directory “pakcshome/lib/meta”)
which define datatypes for the representation of Curry programs. AbstractCurry is a more direct
representation of a Curry program, whereas FlatCurry is a simplified representation where local
function definitions are replaced by global definitions (i.e., lambda lifting has been performed) and
pattern matching is translated into explicit case/or expressions. Thus, FlatCurry can be used for
more back-end oriented program manipulations (or, for writing new back ends for Curry), whereas

15

AbstractCurry is intended for manipulations of programs that are more oriented towards the
source program.

Both modules contain predefined I/O actions to read programs in the AbstractCurry

(readCurry) or FlatCurry (readFlatCurry) format. These actions parse the corresponding source
program and return a data term representing this program (according to the definitions in the mod-
ules AbstractCurry and FlatCurry).

Since all datatypes are explained in detail in these modules, we refer to the online documenta-
tion4 of these modules.

As an example, consider a program file “test.curry” containing the following two lines:

rev [] = []

rev (x:xs) = (rev xs) ++ [x]

Then the I/O action (FlatCurry.readFlatCurry "test") returns the following term:

(Prog "test"

["prelude"]

[]

[Func ("test","rev") 1 Public

(FuncType (TCons ("prelude","[]") [(TVar 0)])

(TCons ("prelude","[]") [(TVar 0)]))

(Rule [0]

(Case Flex (Var 0)

[Branch (Pattern ("prelude","[]") [])

(Comb ConsCall ("prelude","[]") []),

Branch (Pattern ("prelude",":") [1,2])

(Comb FuncCall ("prelude","++")

[Comb FuncCall ("test","rev") [Var 2],

Comb ConsCall ("prelude",":")

[Var 1,Comb ConsCall ("prelude","[]") []]

])

]))]

[]

)

2.4.5 Further System Modules

There are a number of other system modules supported by PAKCS which are only listed but
not described in detail here. Look into the system module directories “pakcshome/lib” (and
subdirectories) for their definitions.

AbstractCurryPrinter: This library contains a pretty printer for AbstractCurry programs in
order to show an AbstractCurry program (or part of it) in standard Curry syntax.

AllSolutions: This library contains a collection of functions for obtaining lists of solutions to
constraints. These operations are useful to encapsulate non-deterministic operations between

4http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/FlatCurry.html and http://www.informatik.

uni-kiel.de/~pakcs/lib/CDOC/AbstractCurry.html

16

http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/FlatCurry.html
http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/AbstractCurry.html
http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/AbstractCurry.html

I/O actions in order to connect the worlds of logic and functional programming and to avoid
non-determinism failures on the I/O level.

Array: An implementation of arrays with Braun Trees.

Char: Some useful functions on characters.

CSV: This library supports reading/writing files in CSV (comma separated values) format that can
be imported and exported by most spreadsheed and database applications.

Combinatorial: This library contains a collection of common non-deterministic and/or combina-
torial operations.

DaVinci: This library supports the visualization of graphs by a binding to the daVinci graph
drawing tool5.

Dequeue: This library contains an implementation of double-ended queues supporting access at
both ends in constant amortized time.

Directory: This library supports the access to the directory structure of the underlying operating
system.

Dynamic: This library supports the manipulation of dynamic predicates, i.e., predicates that are
defined by facts than can change over time and can be persistently stored. The ideas of this
library are described in [12].

FileGoodies: A collection of useful operations when dealing with files.

FiniteMap: An implementation of finite maps. A finite map is an efficient purely functional data
structure to store a mapping from keys to values.

FlatCurryGoodies: Library containing selector functions, test and update operations as well as
some useful auxiliary functions for manipulating FlatCurry data terms.

FlatCurryShow: Library containing some functions to transform FlatCurry programs into string
representations, either in a FlatCurry format or in a Curry-like syntax.

FlatCurryXML: This library contains functions to convert FlatCurry programs into XML terms
and vice versa. A detailed specification of the XML format used here can be found in http:

//www.informatik.uni-kiel.de/~curry/flat/.

Float: A collection of operations on floating point numbers.

GUI: A library for GUI programming in Curry. The concept behind this library exploits the
functional and logical features of Curry. It is described in [10]. However, this library is an
improved and updated version of the older library Tk. The latter might not be supported in
the future.

5http://www.tzi.de/daVinci/

17

http://www.informatik.uni-kiel.de/~curry/flat/
http://www.informatik.uni-kiel.de/~curry/flat/
http://www.tzi.de/daVinci/

HTML: Library for HTML and CGI programming. A detailed description of this library and its
basic ideas can be found in [11].

HTML_Parser: Library for parsing HTML documents. It mainly exports a function containing a
file name or URL containing an HTML document and returns an HTML term (as defined in
module HTML) representing this document.

Integer: A collection of common operations on integer numbers.

IO: This library contains some I/O operations, like reading and writing files, that are not already
contained in the prelude.

IOExts: This library contains some useful extensions to the IO monad, in particular, the imple-
mentation of a global state.

List: Some useful operations on lists that are not contained in the prelude.

Maybe: This library contains some useful operations on the Maybe type which are not contained in
the prelude.

Parser: A library of functional logic parser combinators. This has been adapted from [7] where
you can find a detailed description of the ideas behind these parser combinators.

Random: A library for generating pseudo-random numbers sequences.

Read: A library with functions for reading special tokens in strings, e.g., converting strings into
natural or integer numbers.

ReadShowTerm: A library with functions for converting ground data terms to strings and vice versa.
This is useful for storing data terms in files and reading them back.

SetRBT: This library provides an efficient implementation of sets as red-black trees. The implemen-
tation is generic in the types of elements and the set operations require an ordering predicate
on elements. The library also contains a generic sort function with complexity O(n log(n))
based on insertion into red-black trees.

Sort: A collection of useful functions for sorting and comparing characters, strings, and lists.

System: A library to access parts of the system environment (like date, environment variables,
system calls etc).

TableRBT: This library provides an efficient implementation of tables (i.e., finite mappings from
keys to values) as red-black trees. The implementation is generic in the types of keys and
values and the table operations require an ordering predicate on keys.

Time: This library contains definitions and functions to handle date and time information.

Tk: A (deprecated) library for GUI programming in Curry. This library might not be supported
in the future (see library GUI for the current library for GUI programming).

Unsafe: This library contains unsafe operations which should not be used.

18

URL: This library contains functions related to URLs, in particular, downloading of documents
accessible by a URL.

XML: Library for processing data in XML format. It contains a definition of a datatype for repre-
senting XML terms and a parser and pretty printing for converting strings into such XML
terms and vice versa.

19

3 Extensions

PAKCS supports some extensions in Curry programs that are not (yet) part of the definition of
Curry. These extensions are described below.

3.1 Function Patterns

Function patterns [6] are a useful extension the write operations in a more readable way. Further-
more, defining operations with function patterns avoids problems caused by strict equality (“=:=”)
and leads to programs that are potentially more efficient.

Consider the definition of an operation to compute the last element of a list xs based on the
prelude operation “++” for list concatenation:

last xs | ys++[y] =:= xs = y where y,ys free

Since the equality constraint “=:=” evaluates both sides to a constructor term, all elements of the
list xs are fully evaluated in order to satisfy the constraint.

Function patterns can help to improve this computational behavior. A function pattern is a
function call at a pattern position. With function patterns, we can define the operation last as
follows:

last (_++[y]) = y

This definition is not only more compact but also avoids the complete evaluation of the list elements:
since a function pattern is considered as an abbreviation for the set of constructor terms obtained
by all evaluations of the function pattern to normal form (see [6] for an exact definition), the
previous definition is conceptually equivalent to the set of rules

last [y] = y

last [_,y] = y

last [_,_,y] = y

...

which shows that the evaluation of the list elements (except for the last one) is not demanded.
In general, a pattern of the form (f t1...tn) (n > 0) is interpreted as a function pattern if f

is not a visible constructor but a defined function that is visible in the scope of the pattern.

4 CurryDoc: A Documentation Generator for Curry Programs

CurryDoc is a tool in the PAKCS distribution that generates the documentation for a Curry
program (i.e., the main module and all its imported modules) in HTML format. The generated
HTML pages contain information about all data types and functions exported by a module as well
as links between the different entities. Furthermore, some information about the definitional status
of functions (like rigid, flexible, external, complete, or overlapping definitions) are provided and
combined with documentation comments provided by the programmer.

A documentation comment starts at the beginning of a line with “--- ” (also in literate
programs!). All documentation comments immediately before a definition of a datatype or (top-
level) function are kept together.6 The documentation comments for the complete module occur

6The documentation tool recognizes this association from the first identifier in a program line. If one wants to

20

before the first “module” or “import” line in the module. The comments can also contain several
special tags. These tags must be the first thing on its line (in the documentation comment) and
continues until the next tag is encountered or until the end of the comment. The following tags
are recognized:

@author comment
Specifies the author of a module (only reasonable in module comments).

@version comment
Specifies the version of a module (only reasonable in module comments).

@cons id comment
A comment for the constructor id of a datatype (only reasonable in datatype comments).

@param id comment
A comment for function parameter id (only reasonable in function comments). Due to pattern
matching, this need not be the name of a parameter given in the declaration of the function
but all parameters for this functions must be commented in left-to-right order (if they are
commented at all).

@return comment
A comment for the return value of a function (only reasonable in function comments).

The following example text shows a Curry program with some documentation comments:

--- This is an
--- example module.
--- @author Michael Hanus
--- @version 0.1

module Example where

--- The function conc concatenates two lists. It is defined
--- as flexible so that it can also be used to split a given list.
--- @param xs - the first list
--- @param ys - the second list
--- @return a list containing all elements of xs and ys
conc eval flex
conc [] ys = ys
conc (x:xs) ys = x : conc xs ys
-- this comment will not be included in the documentation

--- The function last computes the last element of a given list.
--- @param xs - the given input list
--- @return last element of the input list
last xs | conc ys [x] =:= xs = x where x,ys free

add a documentation comment to the definition of a function which is an infix operator, the first line of the operator

definition should be a type definition or an evaluation annotation, otherwise the documentation comment is not

recognized.

21

--- This datatype defines polymorphic trees.
--- @cons Leaf - a leaf of the tree
--- @cons Node - an inner node of the tree
data Tree a = Leaf a | Node [Tree a]

To generate the documentation, execute the command

currydoc Example

(currydoc is a command usually stored in pakcshome/bin where pakcshome is the installation
directory of PAKCS; see Section 1.1). This command creates the directory DOC_Example (if it does
not exist) and puts all HTML documentation files for the main program module Example and all
its imported modules in this directory together with a main index file index.html. If one prefers
another directory for the documentation files, one can also execute the command

currydoc docdir Example

where docdir is the directory for the documentation files.
In order to generate the common documentation for large collections of Curry modules (e.g., the

libraries contained in the PAKCS distribution), one can call currydoc with the following options:

currydoc noindex docdir Mod : This command generates the documentation for module Mod in
the directory docdir without the index pages (i.e., main index page and index pages for all
functions and constructors defined in Mod and its imported modules).

currydoc onlyindex docdir Mod1 Mod2 ...Modn : This command generates only the index
pages (i.e., a main index page and index pages for all functions and constructors defined
in the modules Mod1, M2,. . . ,Modn and their imported modules) in the directory docdir.

22

Figure 1: Snapshot of the main window of CurryBorwser

5 CurryBrowser: A Tool for Analyzing and Browsing Curry Pro-

grams

CurryBrowser is a tool to browse through the modules and functions of a Curry application, show
them in various formats, and analyze their properties.7 Moreover, it is constructed in a way so
that new analyzers can be easily connected to CurryBrowser. A detailed description of the ideas
behind this tool can be found in [13].

CurryBrowser is part of the PAKCS distribution and can be started in two ways:

• In the command shell via the command: pakcshome/bin/currybrowser mod

• In the PAKCS/Curry2Prolog environment after loading the module mod and typing the com-
mand “:browse”.

Here, “mod” is the name of the main module of a Curry application. After the start, CurryBrowser
loads the interfaces of the main module and all imported modules before a GUI is created for
interactive browsing.

7Although CurryBrowser is implemented in Curry, some functionalities of it require an installed graph visualization

tool (dot http://www.graphviz.org/), otherwise they have no effect.

23

http://www.graphviz.org/

To get an impression of the use of CurryBrowser, Figure 1 shows a snapshot of its use on a
particular application (here: the implementation of CurryBrowser). The upper list box in the
left column shows the modules and their imports in order to browse through the modules of an
application. Similarly to directory browsers, the list of imported modules of a module can be opened
or closed by clicking. After selecting a module in the list of modules, its source code, interface, or
various other formats of the module can be shown in the main (right) text area. For instance, one
can show pretty-printed versions of the intermediate flat programs (see Section 2.4.4) in order to see
how local function definitions are translated by lambda lifting [17] or pattern matching is translated
into case expressions [8, 19]. Since Curry is a language with parametric polymorphism and type
inference, programmers often omit the type signatures when defining functions. Therefore, one can
also view (and store) the selected module as source code where missing type signatures are added.

The lower list box of the left column shows the list of exported or all functions defined in
the selected module. This list box is central for the analysis of functions, i.e., showing their
properties. For this purpose, the lower list box of the middle column offers a list of available
program analyses that can be applied to individual functions. Their results are either shown in the
text box below the main text area or visualized by separate tools, e.g., by a graph drawing tool for
visualizing call graphs. Some analyses are local, i.e., they need only to consider the local definition
of this function (e.g., “Calls directly,” “Overlapping rules,” “Pattern completeness”), where other
analyses are global, i.e., they consider the definitions of all functions directly or indirectly called
by this function (e.g., “Depends on,” “Solution complete,” “Set-valued”). The middle list box of
the middle column allows to analyze all functions of the current module at once (in order to see
some “critical” functions, like impure or incompletely defined ones). Finally, the upper list box
is useful to focus on a function in the source code of some module. For this purpose, one can
put there the list of all functions of the current module or all imported modules, or the list of all
functions directly or indirectly called from the currently selected function. Selecting a function in
this list shows its source code in the main text area. Furthermore, there are a few additional tools
integrated into CurryBrowser, for instance, to visualize the import relation between all modules as
a dependency graph.

More details about the use of CurryBrowser and all built-in analyses are available through the
“Help” menu of CurryBrowser.

24

6 CurryTest: A Tool for Testing Curry Programs

CurryTest is a simple tool in the PAKCS distribution to write and run repeatable tests. CurryTest
simplifies the task of writing test cases for a module and executing them. The tool is easy to
use. Assume one has implemented a module MyMod and wants to write some test cases to test its
functionality, making regression tests in future versions, etc. For this purpose, there is a system
library Assertion which contains the necessary definitions for writing tests. In particular, it
exports the following datatype:

data Assertion a = AssertTrue String Bool

| AssertEqual String a a

| AssertValues String a [a]

| AssertSolutions String (a->Success) [a]

| AssertIO String (IO a) a

| AssertEqualIO String (IO a) (IO a)

The expression “AssertTrue s b” is an assertion (named s) that the expression b has the value
True. Similarly, the expression “AssertEqual s e1 e2” asserts that the expressions e1 and e2 must
be equal (i.e., e1==e2 must hold), the expression “AssertValues s e vs” asserts that vs is the mul-
tiset of all values of e, and the expression “AssertSolutions s c vs” asserts that the constraint
abstraction c has the multiset of solutions vs. Furthermore, the expression “AssertIO s a v”
asserts that the I/O action a yields the value v whenever it is executed, and the expression
“AssertEqualIO s a1 a2” asserts that the I/O actions a1 and a2 yields equal values. The name
of each assertion is used in the protocol of the test tool.

Now one can define a test program by importing the module to be tested together with the
module Assertion and defining top-level functions of type Assertion in this module (which must
also be exported). As an example, consider the following program that can be used to test some
list processing functions:

import List

import Assertion

test1 = AssertEqual "++" ([1,2]++[3,4]) [1,2,3,4]

test2 = AssertTrue "all" (all (<5) [1,2,3,4])

test3 = AssertSolutions "prefix" (\x -> let y free in x ++ y =:= [1,2])

[[],[1],[1,2]]

For instance, test1 asserts that the result of evaluating the expression ([1,2]++[3,4]) is equal
to [1,2,3,4].

We can execute a test suite by the command

currytest testList

(currytest is a program stored in pakcshome/bin where pakcshome is the installation directory
of PAKCS; see Section 1.1). In our example, “testList.curry” is the program containing the def-
inition of all assertions. This has the effect that all exported top-level functions of type Assertion

are tested (i.e., the corresponding assertions are checked) and the results (“OK” or failure) are re-
ported together with the name of each assertion. For our example above, we obtain the following
successful protocol:

25

Figure 2: Snapshot of CurryTest’s graphical interface

==

Testing module "testList"...

OK: ++

OK: all

OK: prefix

All tests successfully passed.

==

There is also a graphical interface that summarizes the results more nicely.8 In order to start this
interface, one has to add the parameter “-window”, e.g., executing a test suite by

currytest -window testList

A snapshot of the interface is shown in Figure 2.

8Due to a bug in older versions of SICStus-Prolog, it works only with SICStus-Prolog version 3.8.5 (or newer).

26

7 Technical Problems

Due to the fact that Curry is intended to implement distributed systems (see Section 2.4.3), it
might be possible that some technical problems arise due to the use of sockets for implementing
these features. Therefore, this section gives some information about the technical requirements of
PAKCS and how to solve problems due to these requirements.

There is one fixed port that is used by the implementation of PAKCS:

Port 8766: This port is used by the Curry Port Name Server (CPNS) to implement symbolic
names for ports in Curry (see Section 2.4.3). If some other process uses this port on the
machine, the distribution facilities defined in the module Ports (psee Section 2.4.3) cannot
be used.

If these features do not work, you can try to find out whether this port is in use by the shell
command “netstat -a | fgrep 8766” (or similar).

The CPNS is implemented as a demon listening on its port 8766 in order to serve requests
about registering a new symbolic name for a Curry port or asking the physical port number of a
Curry port. The demon will be automatically started for the first time on a machine when a user
compiles a program using Curry ports. It can also be manually started and terminated by the
scripts pakcshome/cpns/start and pakcshome/cpns/stop. If the demon is already running, the
command pakcshome/cpns/start does nothing (so it can be always executed before invoking a
Curry program using ports).

If you detect any further technical problem, please write to

mh@informatik.uni-kiel.de

27

References

[1] E. Albert, M. Alpuente, M. Hanus, and G. Vidal. A partial evaluation framework for Curry
programs. In Proc. of the 6th International Conference on Logic for Programming and Auto-
mated Reasoning (LPAR’99), pages 376–395. Springer LNCS 1705, 1999.

[2] E. Albert, M. Hanus, and G. Vidal. Using an abstract representation to specialize functional
logic programs. In Proc. of the 7th International Conference on Logic for Programming and
Automated Reasoning (LPAR 2000), pages 381–398. Springer LNCS 1955, 2000.

[3] E. Albert, M. Hanus, and G. Vidal. A practical partial evaluator for a multi-paradigm declar-
ative language. In Proc. of the 5th International Symposium on Functional and Logic Pro-
gramming (FLOPS 2001), pages 326–342. Springer LNCS 2024, 2001.

[4] E. Albert, M. Hanus, and G. Vidal. A practical partial evaluator for a multi-paradigm declar-
ative language. Journal of Functional and Logic Programming, 2002(1), 2002.

[5] S. Antoy and M. Hanus. Compiling multi-paradigm declarative programs into Prolog. In Proc.
International Workshop on Frontiers of Combining Systems (FroCoS’2000), pages 171–185.
Springer LNCS 1794, 2000.

[6] S. Antoy and M. Hanus. Declarative programming with function patterns. In Proceedings of
the International Symposium on Logic-based Program Synthesis and Transformation (LOP-
STR’05). Springer LNCS (to appear), 2005.

[7] R. Caballero and F.J. López-Fraguas. A functional-logic perspective of parsing. In Proc.
4th Fuji International Symposium on Functional and Logic Programming (FLOPS’99), pages
85–99. Springer LNCS 1722, 1999.

[8] M. Hanus. A unified computation model for functional and logic programming. In Proc. of the
24th ACM Symposium on Principles of Programming Languages (Paris), pages 80–93, 1997.

[9] M. Hanus. Distributed programming in a multi-paradigm declarative language. In Proc. of the
International Conference on Principles and Practice of Declarative Programming (PPDP’99),
pages 376–395. Springer LNCS 1702, 1999.

[10] M. Hanus. A functional logic programming approach to graphical user interfaces. In Inter-
national Workshop on Practical Aspects of Declarative Languages (PADL’00), pages 47–62.
Springer LNCS 1753, 2000.

[11] M. Hanus. High-level server side web scripting in Curry. In Proc. of the Third International
Symposium on Practical Aspects of Declarative Languages (PADL’01), pages 76–92. Springer
LNCS 1990, 2001.

[12] M. Hanus. Dynamic predicates in functional logic programs. In Proc. 13th International
Workshop on Functional and (Constraint) Logic Programming (WFLP 2004), pages 62–73,
Aachen (Germany), 2004. Technical Report AIB-2004-05, RWTH Aachen.

28

[13] M. Hanus. A generic analysis environment for declarative programs. In Proc. of the ACM SIG-
PLAN 2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005), pages
43–48. ACM Press, 2005.

[14] M. Hanus and R. Sadre. An abstract machine for Curry and its concurrent implementation in
Java. Journal of Functional and Logic Programming, 1999(6), 1999.

[15] M. Hanus and F. Steiner. Controlling search in declarative programs. In Principles of Declar-
ative Programming (Proc. Joint International Symposium PLILP/ALP’98), pages 374–390.
Springer LNCS 1490, 1998.

[16] M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8). Available at
http://www.informatik.uni-kiel.de/~curry, 2003.

[17] T. Johnsson. Lambda lifting: Transforming programs to recursive functions. In Functional
Programming Languages and Computer Architecture, pages 190–203. Springer LNCS 201, 1985.

[18] M. Odersky and P. Wadler. Pizza into Java: Translating theory into practice. In Proc. of the
24th ACM Symposium on Principles of Programming Languages (Paris), pages 146–159, 1997.

[19] P. Wadler. Efficient compilation of pattern-matching. In S.L. Peyton Jones, editor, The
Implementation of Functional Programming Languages, pages 78–103. Prentice Hall, 1987.

29

A Overview of the PAKCS Distribution

A schematic overview of the various components contained in the distribution of PAKCS and the
translation process of programs inside PAKCS is shown in Figure 3 on page 31. In this figure,
boxes denote different components of PAKCS and names in boldface denote files containing various
intermediate representations during the translation process (see Section B below). The PAKCS
distribution contains a common front end for reading (parsing and type checking) Curry programs
and three different back ends for executing them:9

1. The Curry2Prolog compiler is currently the most efficient implementation of Curry inside
PAKCS. Due to its simple user interface (e.g., it can be used without any knowledge about
PAKCS and its translation process) and its advanced debugging features, we recommend
the use of the Curry2Prolog compiler system for most applications. Therefore, the program-
ming environment with the integrated Curry2Prolog compiler is available by the executable
“pakcs” (see Section 1.1 for the general use of PAKCS). Moreover, it also contains constraint
solvers for arithmetic constraints over real numbers and finite domain constraints, and fur-
ther libraries for GUI programming, meta-programming etc. Currently, it does not implement
committed choice, encapsulated search (only a strict version of findall is supported), and
concurrent threads are not executed in a fair manner.

2. The Curry2Java compiler [14] translates Curry programs into Java classes (to be precise,
the Pizza extension [18] of Java is used). The most distinctive feature of this implemen-
tation is the use of Java threads to implement disjunctive computations at the top-level
and concurrent conjunctions of constraints (i.e., it implements OR- and AND-parallelism via
Java threads). These threads are executed in a fair manner in contrast to the Curry2Prolog
compiler. Although the execution speed of the generated programs are acceptable for many
applications, this implementation inherits the lack of efficiency of current Java implementa-
tions. In particular, the Java compiler needs a lot of time to translate Curry programs into
JVM code.

3. The TasteCurry Interpreter is a slow but fairly complete implementation of Curry. It is
an interpreter written in Prolog and does not implement sharing but uses pure term rewriting
for executing programs. It should only be used to run smaller programs involving advanced
language constructs like committed choice or encapsulated search. Since this interpreter is a
non-sharing implementation, it often evaluates complex terms in a very inefficient way and
computes, in the presence of non-deterministic functions, sometimes results which are not
conform with the language definition.

B Auxiliary Files

During the translation and execution of a Curry program with PAKCS, various intermediate repre-
sentations of the source program are created and stored in different files which are shortly explained
in this section. If you only use the Curry2Prolog compiler system, the Curry2Java compiler, or

9Note that only the Curry2Prolog compiler will be installed in the standard installation. See Appendix C and D

how to install the other back ends.

30

Figure 3: Overview of PAKCS

31

the TasteCurry interpreter, it is not necessary to know about these auxiliary files because they are
automatically generated and updated. You should only remember the command for deleting all
auxiliary files (“cleancurry”, see Section 1.1) to clean up your directories.

The various components of PAKCS create the following auxiliary files.

prog.fl: This file contains the Curry program translated into the internal TasteCurry syntax (see
Section D.3). It is implicitly generated when the TasteCurry interpreter or the Curry2Java
compiler is used. It can be also explicitly generated by the command

parsecurry -fl prog

prog.fcy: This file contains the Curry program in the so-called “FlatCurry” representation where
all functions are global (i.e., lambda lifting has been performed) and pattern matching is
translated into explicit case/or expressions (compare Section 2.4.4). This representation
might be useful for other back ends and compilers for Curry and is the basis doing meta-
programming in Curry. This file is implicitly generated when a program is read by the
Curry2Prolog compiler. It can be also explicitly generated by the command

parsecurry -fcy prog

The FlatCurry representation of a Curry program is usually generated by the front-end after
parsing, type checking and eliminating local declarations.

prog.fint: This file contains the interface of the program in the so-called “FlatCurry” represen-
tation, i.e., it is similar to prog.fcy but contains only exported entities and the bodies of all
functions omitted (i.e., “external”). This representation is useful for providing a fast access
to module interfaces. This file is implicitly generated by the command

parsecurry -fcy prog

prog.pl: This file contains a Prolog program as the result of translating the Curry program with
the Curry2Prolog compiler.

prog.po: This file contains the Prolog program prog.pl in an intermediate format for faster load-
ing.

prog.state: This file contains the saved state after compiling and saving a program in the
Curry2Prolog compiler (see Section 2.1).

prog.def: This file contains an intermediate representation of the Curry program which will be
used by the Curry2Java compiler. This file is implicitly generated when a program is compiled
with this compiler. It can be also explicitly generated by the command

parsecurry -def prog

prog.pizza: This implicitly generated file contains a Java (more precisely, Pizza) program as the
result of translating the Curry program with the Curry2Java compiler.

prog.classes: This directory contains the JVM code of the compiled prog.pizza file.

32

C Curry2Java: A Compiler from Curry into Java

The Curry2Java compiler translates Curry programs into Java programs10 as described in [14] and
contains a runtime system to execute the translated programs with different expressions. This
compiler translates each defined Curry function into a Java class containing instructions of an
abstract machine which is interpreted by the runtime system. Although this indirect execution is
not highly efficient due to the current implementations of Java systems, it has several interesting
features. The most distinctive one is the use of Java threads to implement disjunctive computations
at the top-level and concurrent conjunctions of constraints (i.e., it implements OR- and AND-
parallelism via Java threads). In particular, an infinite derivation branch at the top-level will not
inhibit the computation of solutions by other alternative branches.

The Curry2Java can be installed by executing “make curry2java” in the installation directory
of PAKCS. To start the Curry2Java system, go into the directory where you have stored your Curry
program and execute the command

curry2java prog

(curry2java is a shell script usually stored in pakcshome/bin where pakcshome is the installation
directory of PAKCS; see Section 1.1). This command reads the file prog.curry which must contain
a Curry program (or, if prog.curry does not exist, the file prog.fl which must contain a program
in internal TasteCurry syntax) and performs the following compilation steps:

1. Parse the program in prog.curry and translate it into a corresponding program in internal
TasteCurry syntax which will be stored in prog.fl.

2. Read and check the program file prog.fl and generate an intermediate representation of all
functions in prog.def.

3. Read the function definitions stored in prog.def and translate them into a Java (more pre-
cisely, Pizza) program prog.pizza.

4. Compile the program prog.pizza into Java bytecode (which is stored in the directory
prog.classes) and start the runtime system.

After the successful compilation, you can type in an expression to be evaluated. Expressions have
the usual Curry syntax but there are some restrictions for initial expressions in the Curry2Java
runtime shell:

1. All applications must be written in the prefix notation “f arg1...argn”, i.e., there are no
infix operators. For instance, an arithmetic expression must be written in prefix notation like
“+ 3 (* 5 6)”.

2. Lists can be written in the standard notation [e1,e2,...,en]. Thus, to increment all el-
ements in a list, one can write “map (+ 1) [3,4,5]”. One can also use the constructor
“:” for lists, i.e., the list [3,4,5] can be also written as “: 1 (: 2 (: 3 []))”. Since the
character] can also occur in identifiers, a separator must be inserted if the last element in a
list is an identifier, e.g., one must write “[True,False]”.

10More precisely, Curry2Java uses the Java extension Pizza.

33

3. The concurrent conjunction of constraints is written with the operator /\ (and not with
&). Furthermore, the symbol = is used instead of =:= for equational constraints. For
instance, the constraint x+x=:=y & x=:=3 is written in the Curry2Java runtime shell as
“/\ (= (+ x x) y) (= x 3)”.

To leave the Curry2Java runtime system, type the end-of-file character (Ctrl-D).

Quiet mode. You can also execute the Curry2Java system in a “quiet” mode by

curry2java -q prog

If the program prog was already compiled in a previous session, then no system output is produced
(except for the output computed in the Curry program). This option is useful if you want to write
Curry programs which should act as a filter or which should only generate some textual output
(e.g., in cgi scripts for WWW applications). For instance, if the file hello.curry contains the
simple program

main = putStrLn "Hello world."

which was compiled by a previous curry2java command, then the Unix command
“echo main | curry2java -q hello” echos the string “Hello world.” on the standard output.
If the file hello.curry contains the program

main =

putStrLn "Content-type: text/html" >>

putStrLn "" >>

putStrLn "<HTML>" >>

putStrLn "Hello world.<P>" >>

putStrLn "This web page is generated by a Curry program." >>

putStrLn "</HTML>"

and you execute this program via your web browser (by loading a cgi script containing the shell com-
mands “echo main | curry2java -q hello”) then the corresponding HTML page is produced
by the Curry program.

Restrictions: The predefined function show is not yet implemented and the evaluation annota-
tion choice does not yet work in Curry2Java.

D The TasteCurry Interpreter

D.1 How to Use the TasteCurry Interpreter

The TasteCurry interpreter can be installed by executing “make tastecurry” in the installation
directory of PAKCS. To start the TasteCurry interpreter, go into the directory where you have
stored your Curry program and execute the command “tastecurry” (it is a shell script stored in
pakcshome/bin where pakcshome is the installation directory of PAKCS). When the interpreter
is ready, you can type in the following commands:

read prog. Load the file prog.curry which must contain a valid Curry program. If the name
prog contains other characters than only lower case letters, it must be enclosed in single

34

quotes (e.g., read ’a2b’.). After successful loading and checking, all functions and types
defined in this file (plus the functions defined in the prelude) are known to the interpreter,
i.e., now you can evaluate expressions containing these functions and constructors.

If there is no file prog.curry, then the system searches for the file prog.fl which must
contain a Curry program in the internal TasteCurry syntax (see Section D.3). If there exists
a file prog.curry, it is translated into internal TasteCurry syntax which is subsequently
stored in the file prog.fl.

<expression>. Evaluate the <expression> w.r.t. the functions defined in the current program.
The <expression> must be written in the internal TasteCurry syntax (see Section D.3) and
terminated by a dot. Before the expression is evaluated, it is checked whether it is well typed.
The result (in general, a disjunctive expression which is not further reducible) is printed on
the terminal.

trace. Show each reduction step, i.e., show all intermediate expressions occurring during the
evaluation of an expression.

notrace. Turn off the trace mode.

single. Turn on the single step execution mode. In this mode, the evaluation of an expression
is stopped after each reduction step and the user is asked how to proceed (see the options
there).

nosingle. Turn off the single mode.

time. After the evaluation of an expression, show the time needed to evaluate this expression.

notime. Turn off the time mode.

opt. Generate optimal definitional trees when reading the next Curry program.

noopt. Turn off the opt mode.

type <expression>. Show the type of the expression <expression> (which must be written in
the internal TasteCurry syntax, see Section D.3).

eval f. Show the evaluation annotation (i.e., the complete definitional tree) of the function f .

writeflat file. Write the FlatCurry representation (see Section 2.4.4) of the Curry program
read in before to the file file.flat.

writeprelude file. Write the FlatCurry representation of the prelude to the file file.flat.

exit. Leave the TasteCurry interpreter.

35

D.2 Restrictions on Curry Programs in the TasteCurry Interpreter

There is one additional minor restriction on Curry programs which are loaded into the TasteCurry
interpreter.

The difference between lowercase and uppercase letters is significant in Curry. However, since
the TasteCurry interpreter uses internally a Prolog like syntax (see below), the first character
of function and constructor names is automatically transformed into a lowercase letter (this is
important to know if you use the interactive TasteCurry interpreter, see below). Therefore, two
different objects should not only differ in the case of their first letter. For instance, the following
program produces a type error since the names fun and Fun are both converted into fun which
causes a name clash in the TasteCurry interpreter:

fun = 0

Fun = True

D.3 Internal TasteCurry Syntax

Since the TasteCurry interpreter is implemented in Prolog and uses the Prolog parser for reading
programs and expressions, Curry programs are parsed and translated into a Prolog-like syntax
which is called internal TasteCurry syntax throughout this document. Since one can also write
programs directly in this syntax (then the files must have the suffix “.fl”), we describe in the
following the differences between Curry and the internal TasteCurry syntax:

• Every declaration (datatype, function type, evaluation annotation, and rule) must be termi-
nated by a dot (“.”) followed by a blank or newline.

• The names of functions, constructors and type constructors must start with a lowercase letter
followed by a sequence of letters and digits. The following predefined function names in Curry
are different in TasteCurry:

= instead of =:=

/\ instead of &

{} instead of success

constraint instead of Success

There are some predefined names consisting of special characters which can be used as infix
operators similarly to Curry (e.g., the type constructor ->, and the functions ==, =, /\, &&).

• The names of extra variables, i.e., variables which do not occur in arguments of the left-hand
side of a rule, should start with an underscore (“_”) followed by a sequence of letters and
digits. Otherwise, the TasteCurry interpreter will print a warning since this is a typical source
of programming errors (typos in function names).

• The application of an object ϕ (type constructor, function, or data constructor) to n argu-
ments a1, . . . , an is written as ϕ(a1, . . . , an) (which is denoted in Curry by ϕ a1 . . . an). If the
first argument is not a simple name starting with a lowercase letter, the infix symbol @ must
be used to denote the application. For instance, if the function variable F should be applied

36

to some argument a, it must be written as F@a. @ associates to the left, i.e., an application
of a variable F to two arguments a1, a2 can be written as F@a1@a2.

• A datatype declaration is written in the form

data t(A1,...,An) = c1(τ11,...,τ1n1) ; . . . ; ck(τk1,...,τknk
).

where each τij is a type expression built from the type variables A1, . . . , An and some type
constructors. In contrast to Curry, the single constructors are separated by “;” instead of
“|”.

• The type of lists with elements of type t is denoted by list(t). The data constructor of a
non-empty list is the dot “.” (instead of “:”). This data constructor is not defined as an
infix operator. [X|Xs] is the notation for a non-empty list consisting of the head X and the
tail Xs. Note that [X|Xs] is equivalent to the expressions “.(X,Xs)” and “(.)@X@Xs”.

• Characters are identified with their ASCII values. Thus, the string "Hello" is identical to
the integer list [72,101,108,108,111]. In particular, the standard monadic I/O actions for
reading and writing characters or strings have in TasteCurry the types

getChar :: io(int).

getLine :: io(list(int)).

putChar :: int -> io(unit).

putStr :: list(int) -> io(unit).

putStrLn :: list(int) -> io(unit).

• Tuples are not yet implemented. However, there is a data type pair which is predefined by
the declaration

data pair(A,B) = (A,B).

Thus, (1,2) denotes a pair of integers, and (1,2,3) has type pair(int,pair(int,int))

(i.e., the comma is a right-associative infix operator).

• Constraints must be always enclosed in curly brackets (for an example, see the definition of
member in the next paragraph).

• In a conditional rule, the symbol “|” introducing the condition is replaced by “if”. For
instance, the membership predicate based on list concatenation is defined in the internal
TasteCurry syntax by

member :: T -> list(T) -> bool.

member(E,L) if {append(_,[E|_])=L} = true.

• A lambda abstraction always abstracts a single variable. For instance, the anonymous function
with two arguments that adds its arguments must be written in the form

\X -> (\Y -> X+Y)

In the initial expression (which is typed in after loading the program into the interpreter, see
Section D.1), the use of lambda abstractions is even more restricted: in the initial expression,
every subexpression of the form \X->e must satisfy:

37

1. e must be of type constraint.

2. e does not contain any lambda abstraction.

This is enough to allow the use of search operators in initial expressions. Other uses of lambda
abstractions must always be written into the program.

• Local variables in constraints are introduced by the keywords local...in inside the con-
straint. Thus, the Curry expression

let l1,l2 free in append l1 l2 =:= [0,1]

is written in the internal TasteCurry syntax in the form

{local [_l1,_l2] in append(_l1,_l2) = [0,1]}
The square brackets around the local variables are only necessary if there is more than one
variable. Therefore, the Curry expression

let l free in append [0] l =:= [0,1]

can be written in TasteCurry as

{local _l in append([0],_l) = [0,1]}

• Instead of where-clauses with free variables, one has to introduce such free variables with the
keyword localIn before the constraint. Thus, the Curry rule

last l | append xs [e] =:= l = e where xs,e free

is written in the internal TasteCurry syntax as

last(L) if [Xs,E] localIn {append(Xs,[E])=L} = E.

and the indeterministic merge function is written in the internal TasteCurry syntax as

merge :: list(A) -> list(A) -> list(A).

merge(L1,L2) = choice {L1=[]} -> L2;

{L2=[]} -> L1;

[E,R] localIn {L1=[E|R]} -> [E|merge(R,L2)];

[E,R] localIn {L2=[E|R]} -> [E|merge(L1,R)].

• Positions in evaluation annotations contain the separator “#” instead of the dot, e.g., the
position 1.3.2 is denoted in the internal TasteCurry syntax by 1#3#2.

The following function definitions (concatenation of lists and application of a function to all elements
of a list) show further examples for the internal TasteCurry syntax.

append :: list(T) -> list(T) -> list(T).

append([],X) = X.

append([X|Xs],Ys) = [X|append(Xs,Ys)].

map :: (T1->T2) -> list(T1) -> list(T2).

map(F,[]) = [].

map(F,[X|Xs]) = [F@X|map(F,Xs)].

38

Local Declarations

At the end of each defining equation for a function, local value and function declarations can
be added by a where clause. A where clause is introduced by the keyword where followed by a
semicolon-separated list of equations. Each equation defines either a local function (similar to top-
level equations) or local variables (in this case the left-hand side must be a pattern). The newly
introduced functions and variables can be used in the right-hand side of the equation where the
where clause is added. Thus, a quicksort function by splitting the given list can be defined as
follows:

split(E,[]) = ([],[]).

split(E,[X|Xs]) if E>=X = ([X|L],R)

if E<X = (L,[X|R])

where (L,R) = split(E,Xs).

qsort([]) = [].

qsort([X|Xs]) = qsort(L) ++ [X|qsort(R)] where (L,R) = split(X,Xs).

Nested where clauses are not allowed. Furthermore, local declarations with patterns in the left-
hand side should only contain in its right-hand side argument variables from the globally defined
function and other global functions. The TasteCurry interpreter automatically translates all local
declarations into global functions with additional arguments. Thus, the evaluation annotations for
functions with local declarations look different from the original definition.

D.4 Modules in the TasteCurry Interpreter

In the current implementation of PAKCS, modules are only supported in the internal TasteCurry
syntax. Moreover, the module system slightly differs from the module system described in the
Curry report. Therefore, we give here a complete description of this module system in this section.

A module defines a collection of datatypes, constructors and functions which we call entities
in the following. A module exports some of its entities which can be imported and used by other
modules. An entity which is not exported is not accessible from other modules.

A Curry program is a collection of modules. There is one main module which is loaded into a
Curry system. The modules imported by the main module are implicitly loaded but not visible to
the user. After loading the main module, the user can evaluate expressions which contain entities
exported by the main module.

There is one distinguished module, named prelude, which is implicitly imported into all pro-
grams. Thus, the entities defined in the prelude (basic functions for arithmetic, list processing etc.)
can be always used.

A module always starts with the head which contains at least the name of the module, like

module stack.

If a program does not contain a module head, the standard module head “module main.” is im-
plicitly inserted.

Without any further restrictions in the module head, all entities defined or imported in the
module are exported. In order to restrict the exported entities of a module, an export list can be
added to the module head. For instance, a module with the head

39

module stack(stackType, push, pop, newStack).

exports the entities stackType, push, pop, and newStack. An export list can contain the following
entries:

1. Names of datatypes: This exports only the datatype defined in this module but not the
constructors of the datatype. The export of a datatype without its constructors allows the
definition of abstract datatypes.

2. Datatypes with constructors: If the export list contains the entry t(c1,...,cn), then t must
be a datatype defined in the module and c1,. . . ,cn are constructors of this datatype. In this
case, the datatype t and the constructors c1,. . . ,cn are exported by this module.

3. Datatypes with all constructors: If the export list contains the entry t(..), then t must be
a datatype defined in the module. In this case, the datatype t and all constructors of this
datatype are exported.

4. Names of functions: This exports the corresponding functions defined in this module. The
types occurring in the argument and result type of this function are implicitly exported,
otherwise the function may not be applicable outside this module.

5. Modules: The set of all entities imported from a module m into the current module (see
below) can be exported by a single entry “(module m)” in the export list. For instance, if
the head of the module stack is defined as above, the module head

module queue((module stack), enqueue, dequeue).

specifies that the module queue exports the entities stackType, push, pop, newStack,
enqueue, and dequeue.

If the exported entities from imported modules should be further restricted, one can also
add an export list to the exported module. This list can contain names of datatypes and
functions imported from this module. If a datatype which is imported from another module
is exported, the datatype is exported in the same way (i.e., with or without constructors)
how it is imported into the current module. Thus, a further specification for the exported
constructors is not necessary. For instance, the module head

module queue((module stack(stackType,newStack)), enqueue, dequeue).

specifies that the module queue exports the entities stackType and newStack, which are
imported from stack, and enqueue and dequeue, which are defined in queue.

The entities exported by a module can be brought into the scope of another module by an import

declaration. An import declaration consists of the name of the imported module and (optionally)
a list of entities imported from that module. If the list of imported entities is omitted, all entities
exported by that module are imported. For instance, the import declaration

import stack.

imports all entities exported by the module stack, whereas the declaration

import family(father, grandfather).

imports only the entities father and grandfather from the module family, provided that they
are exported by family.

40

The names of all imported entities are available in the current module, i.e., they are equivalent
to top-level declarations. It is not allowed to write new top-level declarations for an imported
entity, but the names can be shadowed by local declarations inside a function definition. As a
consequence, several imports can only import different names. For instance, the imports

module main.

import m1.

import m2.

are only allowed if the entities exported by m1 and m2 have different names. In case of conflicting
names of imported entities, one can rename imported entities to solve the name conflicts. For
instance, if both m1 and m2 exports functions named f and g, then the conflict can be resolved by
the following imports:

module main.

import m1.

import m2 renaming f to m2_f.

renaming g to m2_g.

In the subsequent body of this module, the name f refers to the entity exported by module m1

and the name m2_f refers to the entity f exported by module m2. Only imported entities can be
renamed, i.e., the import declaration

import m(f) renaming g to mg.

will cause an error. Only entities which are also exported can be renamed.
The import dependencies between modules must be non-circular, i.e., it is not allowed that

module m1 imports module m2 and module m2 also imports (directly or indirectly) module m1.
The explicit import of the prelude as a module is not allowed. For each module m, an interface

stored in the file m.int is automatically generated. This interface describes all entities which are
exported by the module, i.e., the datatypes with their exported constructors and the functions with
their type declarations.

E Changing the Prelude or System Modules

The standard prelude, which is automatically imported into each Curry program, and all system
modules containing datatypes and functions useful for application programming (cf. Section 2.4)
are stored in the system module directory “pakcshome/lib” (and its subdirectories). If you change
any of these modules, you have to recompile the complete system by executing make in the directory
pakcshome.

F External Functions

Currently, PAKCS has no general interface to external functions. Therefore, if a new external func-
tion should be added to the system, this function must be declared as external in the Curry source
code and then an implementation for this external function must be inserted in the corresponding
back end. An external function is defined as follows in the Curry source code:

41

1. Add a type declaration for the external function somewhere in the body of the appropriate
file (usually, the prelude or some system module).

2. For external functions it is not allowed to define any rule since their semantics is determined
by an external implementation. Instead of the defining rules, you have to write

f external

somewhere in the file containing the type declaration for the external function f.

For instance, the addition on integers can be declared as an external function as follows:

(+) :: Int -> Int -> Int

(+) external

The further modifications to be done for an inclusion of an external function depend on the cor-
responding back end. In the following we describe the insertion of new external functions in
Curry2Prolog and in the TasteCurry interpreter.

F.1 External Functions in Curry2Prolog

A new external function is added to the Curry2Prolog compiler system by informing the compiler
about the existence of an external function and adding an implementation of this function in the
run-time system. Therefore, the following items must be added in the Curry2Prolog compiler
system:

1. If the Curry module Mod contains external functions, there must be a file named Mod.prim_c2p

containing the specification of these external functions. The contents of this file is in XML
format and has the following general structure:11

<primitives>

specification of external function f1

...

specification of external function fn

</primitives>

The specification of an external function f with arity n has the form

<primitive name="f" arity="n">

<library>lib</library>

<entry>pred</entry>

</primitive>

where lib is the Prolog library (stored in the directory of the Curry module or in the global
directory pakcshome/curry2prolog/lib_src) containing the code implementing this func-
tion and pred is a predicate name (of arity n + 3) in this library implementing this function.
Note that the function f must be declared in module Mod: either as an external function or
defined in Curry by equations. In the latter case, the Curry definition is not translated but
calls to this function are redirected to the Prolog code specified above.

Furthermore, the list of specifications can also contain entries of the form
11http://www.informatik.uni-kiel.de/~pakcs/primitives.dtd contains a DTD describing the exact structure

of these files.

42

http://www.informatik.uni-kiel.de/~pakcs/primitives.dtd

<ignore name="f" arity="n" />

for functions f with arity n that are declared in module Mod but should be ignored for code
generation, e.g., since they are never called w.r.t. to the current implementation of external
functions. For instance, this is useful when functions that can be defined in Curry should be
(usually more efficiently) are implemented as external functions (see below).

Note that the arguments are passed in their current (possibly unevaluated) form. Thus, if
the external function requires the arguments to be evaluated in a particular form, this must
be done before calling the external function. For instance, the external function for adding
two integers requires that both arguments must be evaluated to non-variable head normal
form (which is identical to the ground constructor normal form). Therefore, the function “+”
is specified in the prelude by

(+) :: Int -> Int -> Int

x + y = seq (ensureNotFree x) (seq (ensureNotFree y) (prim_Int_plus x y))

prim_Int_plus :: Int -> Int -> Int

prim_Int_plus external

where prim_Int_plus is the actual external function implementing the addition on integers.
Consequently, the specification file prelude.prim_c2p might contain an entry of the form

<primitive name="prim_Int_plus" arity="2">

<library>prim_standard</library>

<entry>prim_Int_plus</entry>

</primitive>

if the Prolog library prim_standard.pl contains the Prolog code implementing this function.

2. The actual implementation of an n-ary12 external function consists of the definition of an
(n+3)-ary predicate pred. The first n arguments are the corresponding actual arguments. The
(n+1)-th argument is a free variable which must be instantiated to the result of the function
call after successful execution. The last two arguments control the suspension behavior of the
function (see [5] for more details): The code for the predicate pred should only be executed
when the (n + 2)-th argument is not free, i.e., this predicate has always the SICStus-Prolog
block declaration

?- block pred(?,...,?,-,?).

In addition, typical external functions should suspend until the actual arguments are instan-
tiated. This can be ensured by a call to ensureNotFree before calling the external function
or by adding a block declaration with a “-” at the corresponding argument position (and
“?” at all other argument positions). Finally, the last argument (which is a free variable at
call time) must be unified with the (n+2)-th argument when the function call is successfully
evaluated (and not suspended). Thus, an implementation of the external function for adding
integers is as follows:

?- block prim_Int_plus(?,?,?,-,?).

prim_Int_plus(RX,RY,Result,E0,E) :-

12Note that I/O actions have a virtual “world” argument as the last argument which is not explicitly declared,

e.g., putChar is a function with two arguments: the character to be printed and the “current world.”

43

deref(RX,X), deref(RY,Y), Result is X+Y, E0=E.

Here, deref is a predefined predicate for dereferencing the actual argument into a constant
(and derefAll for dereferencing complex structures).

This Prolog code must be accessible to the run-time system of Curry2Prolog by putting it
into the directory pakcshome/curry2prolog. Then it will be automatically loaded into the
run-time environment of each compiled Curry program.

If one wants to implement “+” more efficiently by putting the code for evaluating the argu-
ments to head normal form into the Prolog code, one could put the specification

<primitive name="+" arity="2">

<library>prim_standard</library>

<entry>prim_Int_fastplus</entry>

</primitive>

<ignore name="prim_Int_plus" arity="2" />

(the ignore part informs the compiler that the function prim_Int_plus, although declared as
external in the Curry module, can be ignored for code generation) into the file Mod.prim_c2p
and implement prim_Int_fastplus by the following Prolog code:

?- block prim_Int_fastplus(?,?,?,-,?).

prim_Int_fastplus(X,Y,Result,E0,E) :-

hnf(X,HX,E0,E1), hnf(Y,HY,E1,E2),

prim_Int_fastadd(HX,HY,Result,E2,E).

?- block prim_Int_fastadd(-,?,?,?,?), prim_Int_fastadd(?,-,?,?,?),

prim_Int_fastadd(?,?,?,-,?).

prim_Int_fastadd(X,Y,Result,E0,E) :- Result is X+Y, E0=E.

Note that arbitrary C functions can be connected to the Curry2Prolog compiler system by using
the Prolog/C interface of SICStus-Prolog.

F.2 External Functions in TasteCurry

In the TasteCurry interpreter, you can add external functions only in the prelude. In addition
to the declarations in the source code of the prelude as described above, you must also add the
following in order to include a new external function in the TasteCurry interpreter:

1. The file pakcshome/tastecurry/prelude.flpreface contains standard declarations in the
internal TasteCurry syntax which are added in front of the prelude. Provide a type
declaration in the body of this module prefixed with the keyword external in front
of the type declaration. For instance, the primitive addition on integers is declared in
pakcshome/tastecurry/prelude.flpreface by

external (+) :: int -> int -> int.

Since the defining rules for this implementation are unknown, a call to an external function
is delayed until all arguments are known (i.e., in head normal form). Thus, for each external
function an evaluation annotation with a rigid annotation for each argument is automatically
generated if no other evaluation annotation is provided. For instance, for the function + the
annotation

44

(+) eval 1:rigid(_=>2:rigid(_=>rule))

is generated (the anonymous variable _ denotes that the first argument must be matched
against an arbitrary constant). Thus, in order to evaluate a call t1+t2, first t1 is evaluated
to a head normal form, and if this is not a variable, t2 is evaluated to a head normal form,
followed by a call to the external implementation of + provided that t2 was not evaluated to
a variable.

2. The connection of the implementation of an external function to the TasteCurry interpreter
is done by adding a special clause in the module external.pl of the interpreter’s sources
(stored in the directory pakcshome/tastecurry). To implement an n-ary external function
f , external.pl must contain the following Prolog clause:

external_call(f(X1,...,Xn), Result) :- <code computing the Result>

For instance, the external function + is implemented by the following clause:

external_call(+(X,Y),Result) :- Result is X+Y.

By using the Prolog/C interface of SICStus-Prolog, arbitrary C functions can be connected
to the TasteCurry interpreter.

3. After adding all these declarations, recompile the TasteCurry interpreter by executing make

in the directory pakcshome.

45

Index

---, 20
.pakcsrc, 10
:!, 9
:analyze, 7
:browse, 7
:cd, 9
:dir, 9
:fork, 9
:help, 6
:interface, 7
:load, 6
:peval, 9
:quit, 7
:reload, 6
:save, 9
:set, 7, 8
:set path, 5
:show, 9
:type, 7
:xml, 6, 9
@author, 21
@cons, 21
@param, 21
@return, 21
@version, 21

AbstractCurry, 15
allfails, 8

choice, 4
cleancurry, 4
comment

documentation, 20
committed choice, 4
connectPort, 14
Curry mode, 10
Curry2Java, 30
Curry2Prolog, 6, 30
CurryDoc, 20
currydoc, 22
CURRYPATH, 5
CurryTest, 25

currytest, 25

debug, 7, 9
debug mode, 7, 9
documentation comment, 20
documentation generator, 20
doSend, 14

Emacs, 10
encapsulated search, 5
external function, 41

findall, 5
findfirst, 5
firewall, 15
FlatCurry, 15
free, 8
free variable mode, 6, 8
function

external, 41
function pattern, 20

modules, 5

noindex, 22

onlyindex, 22
openNamedPort, 14, 15
openPort, 14

PAKCS, 6
pakcs, 6
PAKCS_LOCALHOST, 15
PAKCS_SOCKET, 15
PAKCS_TRACEPORTS, 15
pakcsrc, 10
parsecurry, 32
path, 5, 8
pattern

function, 20
Port, 14
ports, 14
printdepth, 8
printfail, 8

46

profile, 8
program

documentation, 20
testing, 25

readCurry, 16
readFlatCurry, 16

send, 14
single, 10
singleton variables, 4
spy, 10

tabulator stops, 4
TasteCurry, 30, 34
testing programs, 25
time, 8
trace, 10

variables
singleton, 4

warn, 8

47

	Title
	Contents
	Preface
	Overview of PAKCS
	General Use
	Restrictions on Curry Programs
	Modules in PAKCS

	PAKCS/Curry2Prolog: An Interactive Curry Development System
	How to Use PAKCS
	Customization
	Emacs Interface
	Libraries for Application Programming
	Arithmetic Constraints
	Finite Domain Constraints
	Ports: Distributed Programming in Curry
	AbstractCurry and FlatCurry: Meta-Programming in Curry
	Further System Modules

	Extensions
	Function Patterns

	CurryDoc: A Documentation Generator for Curry Programs
	CurryBrowser: A Tool for Analyzing and Browsing Curry Programs
	CurryTest: A Tool for Testing Curry Programs
	Technical Problems
	Bibliography
	Overview of the PAKCS Distribution
	Auxiliary Files
	Curry2Java: A Compiler from Curry into Java
	The TasteCurry Interpreter
	How to Use the TasteCurry Interpreter
	Restrictions on Curry Programs in the TasteCurry Interpreter
	Internal TasteCurry Syntax
	Modules in the TasteCurry Interpreter

	Changing the Prelude or System Modules
	External Functions
	External Functions in Curry2Prolog
	External Functions in TasteCurry

	Index

