PAKCS 1.13.1
The Portland Aachen Kiel Curry System

User Manual

Version of 2015-10-02

Michael Hanus! [editor]
Additional Contributors:

Sergio Antoy?
Bernd Brafiel?
Martin Engelke?
Klaus Hoppner®
Johannes Koj®
Philipp Niederau’
Bjorn Peemoller®

Ramin Sadre?

Frank Steiner!?

(1) University of Kiel, Germany, mh@informatik.uni-kiel.de
(2) Portland State University, USA, antoy@cs.pdx.edu
(3) University of Kiel, Germany, bbr@informatik.uni-kiel.de
(4) University of Kiel, Germany, men@informatik.uni-kiel.de
(5) University of Kiel, Germany, k1h@informatik.uni-kiel.de
(6) RWTH Aachen, Germany, johannes.koj@sdm.de
(7) RWTH Aachen, Germany, philipp@navigium.de
(8) University of Kiel, Germany, bjp@informatik.uni-kiel.de
(9) RWTH Aachen, Germany, ramin@lvs.informatik.rwth-aachen.de
(10) LMU Munich, Germany, fst@bio.informatik.uni-muenchen.de

Contents

Preface

1

Overview of PAKCS

1.1 General Use
1.2 Restrictions
1.3 Modules in PAKCS s

PAKCS: An Interactive Curry Development System

2.1 Invoking PAKCS
2.2 Commands of PAKCS e
2.3 Options of PAKCS e
2.4 Using PAKCS in Batch Mode
2.5 Command Line Editing
2.6 Customization e e e e
2.7 Emacs Interface e
Extensions
3.1 Recursive Variable Bindings
3.2 Functional Patterns
3.3 Order of Pattern Matching
3.4 Datatypes with Field Labels
3.4.1 Declaration of Constructors with Labeled Fields
3.4.2 Field Selection
3.4.3 Construction Using Field Labels
3.4.4 Updates Using Field Labels
3.4.5 Pattern Matching Using Field Labels
3.4.6 Field Labels and Modules

Recognized Syntax of Curry

4.1 Notational Conventions e
4.2 Lexicon e e e e e e e
421 CaseMode
4.2.2 Identifiers and Keywords
423 Comments. e e
4.2.4 Numeric and Character Literals
4.3 Layout e e
4.4 Context Free Grammar e e e e

CurryDoc: A Documentation Generator for Curry Programs
CurryBrowser: A Tool for Analyzing and Browsing Curry Programs

CurryTest: A Tool for Testing Curry Programs

11
14
15
15
15

16
16
16
18
18
18
19
20
20
21
21

22
22
22
22
22
23
23
24
24

28

31

33

8 ERD2Curry: A Tool to Generate Programs from ER Specifications 35

9 Spicey: An ER-based Web Framework 36
10 UI: Declarative Programming of User Interfaces 37
11 Preprocessing FlatCurry Files 38
12 Technical Problems 40
Bibliography 41
A Libraries of the PAKCS Distribution 43
A.1 Constraints, Ports, Meta-Programming 43
A.1.1 Arithmetic Constraints 43

A.1.2 Finite Domain Constraints 44

A.1.3 Ports: Distributed Programming in Curry 46

A.1.4 AbstractCurry and FlatCurry: Meta-Programming in Curry 47

A2 General Libraries L 48
A.2.1 Library AllSolutions 48

A.2.2 Library Assertion Lo 49

A.2.3 Library Char 51

A2.4 Library CHR e 53

A.2.,5 Library CHRcompiled 55

A.2.6 Library CLP.FD 57

A.2.7 Library CLPEFD e 61

A.2.8 Library CLPR e 66

A.2.9 Library CLPB 67

A.2.10 Library Combinatorial 68

A.2.11 Library Constraint 69

A.2.12 Library CPNS o 70

A.2.13 Library CSV o e 71

A.2.14 Library Database 71

A.2.15 Library Debug 75

A.2.16 Library Directory 76

A.2.17 Library Distribution 7

A.2.18 Library Dynamic 82

A.2.19 Library Either 84

A.2.20 Library FileGoodies 85

A.2.21 Library FilePath 86

A.2.22 Library Findall 0 90

A.2.23 Library Float 92

A.2.24 Library Function e 94

A.2.25 Library Functionlnversion L. 95

A.2.26 Library GetOpt 96

A3

A4

A.2.27 Library Global 97

A.2.28 Library GlobalVariable 98
A.2.29 Library GUIL 00 0 99
A.2.30 Library Integer 111
A.2.31 Library IO 0 oo 113
A.2.32 Library IOExts 116
A.2.33 Library JavaScript 117
A.2.34 Library KeyDatabase 120
A.2.35 Library KeyDatabaseSQLite 121
A.2.36 Library KeyDB o 126
A2.37 Library List o . o e 127
A.2.38 Library Maybe 131
A.2.39 Library NamedSocket 133
A.2.40 Library Parser 134
A.2.41 Library Ports 135
A.2.42 Library Pretty 137
A.2.43 Library Profile 150
A.2.44 Library Prolog 153
A.2.45 Library PropertyFile 154
A.2.46 Library Read 154
A.2.47 Library ReadNumeric 155
A.2.48 Library ReadShowTerm 156
A.2.49 Library SetFunctions L 157
A.2.50 Library Socket 160
A.2.51 Library System 161
A.2.52 Library Time e 163
A.2.53 Library Unsafe 165
Data Structures and Algorithms 167
A3.1 Library Array e 167
A.3.2 Library Dequeue e 168
A.3.3 Library FiniteMap 170
A.3.4 Library Graphlnductive L L 173
A.3.,5 Library Random 179
A.3.6 Library RedBlackTree 180
A.3.7 Library SetRBT 181
A3.8 Library Sort. 182
A.3.9 Library TableRBT 182
A.3.10 Library Traversal L 183
Libraries for Web Applications 185
A.4.1 Library CategorizedHtmlList 185
A.4.2 Library HTML oo o 186
A.4.3 Library HtmlCgio 199
A.4.4 Library HtmlParser 200
A.45 Library Mail e 201

D

E

A.4.6 Library Markdown
AA4.7 Library URL o0 o
A48 Library WUIL00 o
A4.9 Library WUIjs o e
A4.10 Library XML 0o e
A4.11 Library XmlConv
A5 Libraries for Meta-Programming
A.5.1 Library AbstractCurry.Types
A.5.2 Library AbstractCurry.Files
A.5.3 Library AbstractCurry.Select L L.
A.5.4 Library AbstractCurry.Build 0 oo
A.5.5 Library AbstractCurry.Pretty
A.5.6 Library AnnotatedFlatCurry
A.5.7 Library AnnotatedFlatCurryGoodies
A.5.8 Library CompactFlatCurry
A.5.9 Library CurryStringClassifier
A.5.10 Library FlatCurry
A.5.11 Library FlatCurryGoodies
A.5.12 Library FlatCurryRead
A.5.13 Library FlatCurryShow
A.5.14 Library FlatCurryXML oo
A.5.15 Library FlexRigid

Markdown Syntax

B.1 Paragraphs and Basic Formatting,
B.2 Lists and Block Formatting
B.3 Headers

Overview of the PAKCS Distribution
Auxiliary Files

External Functions

Index

283
283
284
286

287

289

290

294

Preface

This document describes PAKCS (formerly called “PACS”), an implementation of the multi-
paradigm language Curry, jointly developed at the University of Kiel, the Technical University
of Aachen and Portland State University. Curry is a universal programming language aiming at
the amalgamation of the most important declarative programming paradigms, namely functional
programming and logic programming. Curry combines in a seamless way features from functional
programming (nested expressions, lazy evaluation, higher-order functions), logic programming (log-
ical variables, partial data structures, built-in search), and concurrent programming (concurrent
evaluation of constraints with synchronization on logical variables). Moreover, the PAKCS im-
plementation of Curry also supports constraint programming over various constraint domains, the
high-level implementation of distributed applications, graphical user interfaces, and web services
(as described in more detail in [12, 13, 141]). Since PAKCS compiles Curry programs into Prolog
programs, the availability of some of these features might depend on the underlying Prolog system.

We assume familiarity with the ideas and features of Curry as described in the Curry language
definition [20]. Therefore, this document only explains the use of the different components of
PAKCS and the differences and restrictions of PAKCS (see Section 1.2) compared with the language
Curry (Version 0.8.3).

Acknowledgements

This work has been supported in part by the DAAD/NSF grant INT-9981317, the NSF grants
CCR~0110496 and CCR-0218224, the Accién Integrada hispano-alemana HA1997-0073, and the
DFG grants Ha 2457/1-2, Ha 2457/5-1, and Ha 2457/5-2.

Many thanks to the users of PAKCS for bug reports, bug fixes, and improvements, in particular,
to Marco Comini, Sebastian Fischer, Massimo Forni, Carsten Heine, Stefan Junge, Frank Huch,
Parissa Sadeghi.

1 Overview of PAKCS

1.1 General Use

This version of PAKCS has been tested on Sun Solaris, Linux, and Mac OS X systems. In principle,
it should be also executable on other platforms on which a Prolog system like SICStus-Prolog
or SWI-Prolog exists (see the file INSTALL.html in the PAKCS directory for a description of the
necessary software to install PAKCS).

All executable files required to use the different components of PAKCS are stored in
the directory pakcshome/bin (where pakcshome is the installation directory of the complete
PAKCS installation). You should add this directory to your path (e.g., by the bash command
“export PATH=pakcshome /bin:$PATH”).

The source code of the Curry program must be stored in a file with the suffix

“.curry”’, e.g.,

prog.curry. Literate programs must be stored in files with the extension “.lcurry”.

Since the translation of Curry programs with PAKCS creates some auxiliary files (see Section D
for details), you need write permission in the directory where you have stored your Curry programs.
The auxiliary files for all Curry programs in the current directory can be deleted by the command

cleancurry

(this is a shell script stored in the bin directory of the PAKCS installation, see above). The

command
cleancurry -r

also deletes the auxiliary files in all subdirectories.

1.2 Restrictions
There are a few minor restrictions on Curry programs when they are processed with PAKCS:

e Singleton pattern variables, i.e., variables that occur only once in a rule, should be denoted
as an anonymous variable “_”, otherwise the parser will print a warning since this is a typical

source of programming errors.

e PAKCS translates all local declarations into global functions with additional arguments
(“lambda lifting”, see Appendix D of the Curry language report). Thus, in the compiled
target code, the definition of functions with local declarations look different from their origi-
nal definition (in order to see the result of this transformation, you can use the CurryBrowser,

see Section 6).

e Tabulator stops instead of blank spaces in source files are interpreted as stops at columns 9,
17, 25, 33, and so on. In general, tabulator stops should be avoided in source programs.

e Since PAKCS compiles Curry programs into Prolog programs, non-deterministic computa-
tions are treated as in Prolog by a backtracking strategy, which is known to be incomplete.
Thus, the order of rules could influence the ability to find solutions for a given goal.

e Threads created by a concurrent conjunction are not executed in a fair manner (usually,
threads corresponding to leftmost constraints are executed with higher priority).

e Encapsulated search: In order to allow the integration of non-deterministic computations in
programs performing I/O at the top-level, PAKCS supports the search operators findall and
findfirst. These and some other operators are available in the library Findall (i.e., they are
not part of the standard prelude). In contrast to the general definition of encapsulated search
[19], the current implementation suspends the evaluation of findall and findfirst until the
argument does not contain unbound global variables. Moreover, the evaluation of findall is
strict, i.e., it computes all solutions before returning the complete list of solutions.

Since it is known that the result of these search operators might depend on the evaluation
strategy due to the combination of sharing and lazy evaluation (see [9] for a detailed dis-
cussion), it is recommended to use set functions [7] as a strategy-independent encapsulation
of non-deterministic computations. Set functions compute the set of all results of a defined
function but do not encapsulate non-determinism occurring in the actual arguments. See the
library SetFunctions (Section A.2.49) for more details.

e There is currently no general connection to external constraint solvers. However, the PAKCS
compiler provides constraint solvers for arithmetic and finite domain constraints (see Ap-
pendix A).

1.3 Modules in PAKCS

PAKCS searches for imported modules in various directories. By default, imported modules are
searched in the directory of the main program and the system module directories “pakcshome /1ib”
and “pakcshome/1lib/meta”. This search path can be extended by setting the environment variable
CURRYPATH (which can be also set in a PAKCS session by the option “:set path”, see below) to a
list of directory names separated by colons (“:”). In addition, a local standard search path can be
defined in the “.pakcsrc” file (see Section 2.6). Thus, modules to be loaded are searched in the
following directories (in this order, i.e., the first occurrence of a module file in this search path is
imported):

1. Current working directory (“.”) or directory prefix of the main module (e.g., directory

“/home/joe/curryprogs” if one loads the Curry program “/home/joe/curryprogs/main”).

2. The directories enumerated in the environment variable CURRYPATH.

¢

3. The directories enumerated in the “.pakcsrc” variable “libraries”.

4. The directories “pakcshome/1ib” and “pakcshome/lib/meta”.

The same strategy also applies to modules with a hierarchical module name with the only difference
that the hierarchy prefix of a module name corresponds to a directory prefix of the module. For
instance, if the main module is stored in directory MAINDIR and imports the module Test.Func, then
the module stored in MAINDIR/Test/Func.curry is imported (without setting any additional import
path) according to the module search strategy described above.

Note that the standard prelude (pakcshome/lib/Prelude.curry) will be always implicitly im-
ported to all modules if a module does not contain an explicit import declaration for the module
Prelude.

2 PAKCS: An Interactive Curry Development System

PAKCS is an interactive system to develop applications written in Curry. It is implemented in
Prolog and compiles Curry programs into Prolog programs. It contains various tools, a source-level
debugger, solvers for arithmetic constraints over real numbers and finite domain constraints, etc.
The compilation process and the execution of compiled programs is fairly efficient if a good Prolog
implementation like SICStus-Prolog is used.

2.1 Invoking PAKCS

To start PAKCS, execute the command “pakcs” (this is a shell script stored in pakcshome/bin
where pakcshome is the installation directory of PAKCS). When the system is ready (i.e., when the
prompt “Prelude>” occurs), the prelude (pakcshome /1ib/Prelude.curry) is already loaded, i.e., all
definitions in the prelude are accessible. Now you can type various commands (see next section)
or an expression to be evaluated.

One can also invoke PAKCS with parameters. These parameters are usual a sequence of com-
mands (see next section) that are executed before the user interaction starts. For instance, the
invocation

pakcs :load Mod :add List
starts PAKCS, loads the main module Mod, and adds the additional module List. The invocation
pakcs :load Mod :eval config

starts PAKCS, loads the main module Mod, and evaluates the operation config before the user
interaction starts. As a final example, the invocation

pakcs :load Mod :save :quit

starts PAKCS, loads the main module Mod, creates an executable, and terminates PAKCS. This
invocation could be useful in “make” files for systems implemented in Curry.
There are also some specific options that can be used when invoking PAKCS:

-q or ——quiet: With this option, PAKCS works silently, i.e., the initial banner and the input
prompt are not shown. The output of other information is determined by the options
“verbose” and “vn” (see Section 2.3).

--noreadline: Do not use input line editing (see Section 2.5).

[4

-Dname=val: Overwrite values defined in the configuration file “.pakcsrc” (see Section 2.6), where

name is a property defined in the configuration file and val its new value.

2.2 Commands of PAKCS

The most important commands of PAKCS are (it is sufficient to type a unique prefix of a

14

command if it is unique, e.g., one can type “:r” instead of “:reload”):

Show a list of all available commands.

Compile and load the program stored in prog.curry together with all its imported
modules. If this file does not exist, the system looks for a FlatCurry file prog.fcy and

compiles from this intermediate representation. If the file prog.fcy does not exists, too, the
system looks for a file prog_flat.xml containing a FlatCurry program in XML representation
(compare command “:xml”), translates this into a FlatCurry file prog.£cy and compiles from
this intermediate representation.

Recompile all currently loaded modules.

’ radd my . mn‘ Add modules myq,...,m, to the set of currently loaded modules so that their

exported entities are available in the top-level environment.

Evaluate the expression expr to normal form and show the computed results. Since PAKCS
compiles Curry programs into Prolog programs, non-deterministic computations are imple-
mented by backtracking. Therefore, computed results are shown one after the other. In the

interactive mode (which can be set in the configuration file *

‘.pakcsrc” or by setting the op-
tion interactive, see below), you will be asked after each computed result whether you want
to see the next alternative result or all alternative results. The default answer value for this

¢

question can be defined in the configuration file “.pakcsrc” file (see Section 2.6).

Free variables in initial expressions must be declared as in Curry programs (if the free
variable mode is not turned on, see option “+free” below). Thus, in order to see the results
of their bindings, they must be introduced by a “where...free” declaration. For instance,
one can write

not b where b free

in order to obtain the following bindings and results:

{b
{b

True} False
False} True

Without these declarations, an error is reported in order to avoid the unintended introduction
of free variables in initial expressions by typos.

Same as expr. This command might be useful when putting commands as arguments

when invoking pakcs.

’:deﬁne x:e:vpr‘ Define the identifier z as an abbreviation for the expression expr which can

be used in subsequent expressions. The identifier x is visible until the next load or reload
command.

Exit the system.

There are also a number of further commands that are often useful:

Show the type of the expression expr.

Start the CurryBrowser to analyze the currently loaded module together with all its
imported modules (see Section 6 for more details).

Load the source code of the current main module into a text editor. If the variable

¢

editcommand is set in the configuration file “.pakcsrc” (see Section 2.6), its value is used
as an editor command, otherwise the environment variable “EDITOR” or a default editor (e.g.,

“vi”) is used.

Load the source text of module m (which must be accessible via the current load path if
no path specification is given) into a text editor which is defined as in the command “:edit”.

Show the interface of the currently loaded module, i.e., show the names of all imported
modules, the fixity declarations of all exported operators, the exported datatypes declarations
and the types of all exported functions.

¢

’ :interface prog‘ Similar to “:interface” but shows the interface of the module “prog.curry”. If

this module does not exist, this command looks in the system library directory of PAKCS for
a module with this name, e.g., the command “:interface FlatCurry”’ shows the interface of
the system module FlatCurry for meta-programming (see Appendix A.1.4).

Show all calls to imported functions in the currently loaded module. This might

be useful to see which import declarations are really necessary.

Show the list of all currently loaded modules.

Show the list of all Curry programs that are available in the load path.

Set or turn on/off a specific option of the PAKCS environment (see 2.3 for a de-

scription of all options). Options are turned on by the prefix “+” and off by the prefix “-”.
Options that can only be set (e.g., printdepth) must not contain a prefix.

Show a help text on the possible options together with the current values of all options.

Show the source text of the currently loaded Curry program. If the variable showcommand

¢

is set in the configuration file “.pakcsrc” (see Section 2.6), its value is used as a command

to show the source text, otherwise the environment variable PAGER or the standard command
“cat” is used. If the source text is not available (since the program has been directly compiled
from a FlatCurry or XML file), the loaded program is decompiled and the decompiled Curry
program text is shown.

Show the source text of module m which must be accessible via the current load path.

Show the source code of function f (which must be visible in the currently loaded

module) in a separate window.

Show the source code of function f defined in module m in a separate window.
Change the current working directory to dir.

Show the names of all Curry programs in the current working directory.

Shell escape: execute cmd in a Unix shell.

10

Save the currently loaded program as an executable evaluating the main expression “main”.
The executable is stored in the file Mod if Mod is the name of the currently loaded main module.

Similar as “:save” but the expression expr (typically: a call to the main function)
will be evaluated by the executable.

The expression expr, which must be of type “I0 ()”, is evaluated in an independent
process which runs in parallel to the current PAKCS process. All output and error messages

from this new process are suppressed. This command is useful to test distributed Curry
programs (see Appendix A.1.3) where one can start a new server process by this command.
The new process will be terminated when the evaluation of the expression expr is finished.

Start the Curry Object Observation System COOSy, a tool to observe the execution of
Curry programs. This commands starts a graphical user interface to show the observation
results and adds to the load path the directory containing the modules that must be imported
in order to annotate a program with observation points. Details about the use of COOSy can
be found in the COOSy interface (under the “Info” button), and details about the general
idea of observation debugging and the implementation of COOSy can be found in [3].

Translate the currently loaded program module into an XML representation according to the
format described in http://www.informatik.uni-kiel.de/~curry/flat/. Actually, this
yields an implementation-independent representation of the corresponding FlatCurry program
(see Appendix A.1.4 for a description of FlatCurry). If prog is the name of the currently
loaded program, the XML representation will be written into the file “prog_flat.xml”.

Translate the currently loaded program module into an equivalent program where some
subexpressions are partially evaluated so that these subexpressions are (hopefully) more ef-
ficiently executed. An expression e to be partially evaluated must be marked in the source
program by (PEVAL e) (where PEVAL is defined as the identity function in the prelude so that
it has no semantical meaning).

The partial evaluator translates a source program prog.curry into the partially evaluated
program in intermediate representation stored in prog_pe.fcy. The latter program is implicitly
loaded by the peval command so that the partially evaluated program is directly available.
The corresponding source program can be shown by the show command (see above).

The current partial evaluator is an experimental prototype (so it might not work on all
programs) based on the ideas described in [1, 2, 3, 4].

2.3 Options of PAKCS

The following options (which can be set by the command “:set”) are currently supported:

Debug mode. In the debug mode, one can trace the evaluation of an expression, setting
spy points (break points) etc. (see the commands for the debug mode described below).

Free variable mode. If the free variable mode is off (default), then free variables occur-
ring in initial expressions entered in the PAKCS environment must always be declared by

11

http://www.informatik.uni-kiel.de/~curry/flat/

“where...free”. This avoids the introduction of free variables in initial expressions by typos
(which might lead to the exploration of infinite search spaces). If the free variable mode is on,
each undefined symbol occurring in an initial expression is considered as a free variable. In
this case, the syntax of accepted initial expressions is more restricted. In particular, lambda
abstractions, lets and list comprehensions are not allowed if the free variable mode is on.

Print failures. If this option is set, failures occurring during evaluation (i.e., non-

reducible demanded subexpressions) are printed. This is useful to see failed reductions due
to partially defined functions or failed unifications. Inside encapsulated search (e.g., inside
evaluations of findall and findfirst), failures are not printed (since they are a typical
programming technique there). Note that this option causes some overhead in execution time
and memory so that it could not be used in larger applications.

If this option is set, all failures (i.e., also failures on backtracking and failures of

enclosing functions that fail due to the failure of an argument evaluation) are printed if
the option printfail is set. Otherwise, only the first failure (i.e., the first non-reducible
subexpression) is printed.

Print constructor failures. If this option is set, failures due to application of functions

with non-exhaustive pattern matching or failures during unification (application of “=:=") are
shown. Inside encapsulated search (e.g., inside evaluations of findall and findfirst), failures
are not printed (since they are a typical programming technique there). In contrast to the
option printfail, this option creates only a small overhead in execution time and memory
use.

| +consfail all| Similarly to “+consfail”, but the complete trace of all active (and just failed)

function calls from the main function to the failed function are shown.

’+consfail file:f‘ Similarly to “+consfail all”, but the complete fail trace is stored in the file

f. This option is useful in non-interactive program executions like web scripts.

]+consfail int\ Similarly to “+consfail all”, but after each failure occurrence, an interactive

mode for exploring the fail trace is started (see help information in this interactive mode).
When the interactive mode is finished, the program execution proceeds with a failure.

Reduce the size of target programs by using the parser option “--compact” (see Sec-

tion 11 for details about this option).

’+/—interactive‘ Turn on/off the interactive mode. In the interactive mode, the next non-

deterministic value is computed only when the user requests it. Thus, one has also the
possibility to terminate the enumeration of all values after having seen some values. The

[43

default value for this option can be set in the configuration file “.pakcsrc” (initially, the

interactive mode is turned off).

Turn on/off the first-only mode. In the first-only mode, only the first value of the main

expression is printed (instead of all values).

12

Profile mode. If the profile mode is on, then information about the number of calls,
failures, exits etc. are collected for each function during the debug mode (see above) and

shown after the complete execution (additionaly, the result is stored in the file prog.profile
where prog is the current main program). The profile mode has no effect outside the debug
mode.

Suspend mode (initially, it is off). If the suspend mode is on, all suspended expressions

(if there are any) are shown (in their internal representation) at the end of a computation.

Time mode. If the time mode is on, the cpu time and the elapsed time of the computation
is always printed together with the result of an evaluation.

Verbose mode (initially, it is off). If the verbose mode is on, the initial expression of
a computation is printed before it is evaluated. If the verbose mode is on and the verbosity
level (see below) is non-zero, the type of the initial expression is also printed and the output
of the evaluation is more detailed.

Parser warnings. If the parser warnings are turned on (default), the parser will print
warnings about variables that occur only once in a program rule (see Section 1.2) or locally
declared names that shadow the definition of globally declared names. If the parser warnings
are switched off, these warnings are not printed during the reading of a Curry program.

Set the additional search path for loading modules to path. Note that this search
path is only used for loading modules inside this invocation of PAKCS, i.e., the environment

variable “CURRYPATH” (see also Section 1.3) is set to path in this invocation of PAKCS.

The path is a list of directories separated by “:”. The prefix “~” is replaced by the home
directory as in the following example:

:set path aux:”/tests

Relative directory names are replaced by absolute ones so that the path is independent of
later changes of the current working directory.

Set the depth for printing terms to the value n (initially: 0). In this case subterms

with a depth greater than n are abbreviated by dots when they are printed as a result of a
computation or during debugging. A value of 0 means infinite depth so that the complete
terms are printed.

Set the verbosity level to n. The following values are allowed for n:

n = 0: Do not show any messages (except for errors).
n = 1: Show only messages of the front-end, like loading of modules.

n = 2: Show also messages of the back end, like loading intermediate files or generating Prolog
target files.

n = 3: Show also messages related to loading Prolog files and libraries into the run-time
systems and other intermediate messages and results.

13

Turn on the safe execution mode. In the safe execution mode, the initial goal is not allowed
to be of type I0 and the program should not import the module Unsafe. Furthermore, the
allowed commands are eval, load, quit, and reload. This mode is useful to use PAKCS in
uncontrolled environments, like a computation service in a web page, where PAKCS could be
invoked by

pakcs :set safe

Define additional options passed to the PAKCS front end, i.e., the parser program
pakcshome /bin/cymake. For instance, setting the option

:set parser -F --pgmF=transcurry

has the effect that each Curry module to be compiled is transformed by the preprocessor
command transcurry into a new Curry program which is actually compiled.

args arguments| Define run-time arguments for the evaluation of the main expression. For in-

stance, setting the option

:set args first second

has the effect that the 1/O operation getArgs (see library System (Section A.2.51) returns the
value ["first","second"].

PAKCS can also execute programs in the debug mode. The debug mode is switched on by
setting the debug option with the command “:set +debug’. In order to switch back to normal
evaluation of the program, one has to execute the command “:set -debug’.

In the debug mode, PAKCS offers the following additional options:

Turn on/off single mode for debugging. If the single mode is on, the evaluation of an

expression is stopped after each step and the user is asked how to proceed (see the options
there).

Turn on/off trace mode for debugging. If the trace mode is on, all intermediate expres-
sions occurring during the evaluation of an expressions are shown.

Set a spy point (break point) on the function f. In the single mode, you can “leap” from
spy point to spy point (see the options shown in the single mode).

Turn on/off spy mode for debugging. If the spy mode is on, the single mode is automati-
cally activated when a spy point is reached.

2.4 Using PAKCS in Batch Mode

Although PAKCS is primarily designed as an interactive system, it can also be used to process data
in batch mode. For example, consider a Curry program, say myprocessor, that reads argument
strings from the command line and processes them. Suppose the entry point is a function called
just_doit that takes no arguments. Such a processor can be invoked from the shell as follows:

14

> pakcs :set args stringl string2 :load myprocessor.curry :eval just_doit :quit

The “:quit” directive in necessary to avoid PAKCS going into interactive mode after the excution
of the expression being evaluated. The actual run-time arguments (stringl, string2) are defined
by setting the option args (see above).

Here is an example to use PAKCS in this way:

> pakcs :set args Hello World :add System :eval "getArgs >>= putStrLn . unwords" :quit
Hello World
>

2.5 Command Line Editing

In order to have support for line editing or history functionality in the command line of PAKCS
(as often supported by the readline library), you should have the Unix command rlwrap installed
on your local machine. If rlwrap is installed, it is used by PAKCS if called on a terminal. If it
should not be used (e.g., because it is executed in an editor with readline functionality), one can
call PAKCS with the parameter “--noreadline”.

2.6 Customization

In order to customize the behavior of PAKCS to your own preferences, there is a configuration file
which is read by PAKCS when it is invoked. When you start PAKCS for the first time, a standard

version of this configuration file is copied with the name °

‘.pakcsrc” into your home directory.
The file contains definitions of various settings, e.g., about showing warnings, progress messages
etc. After you have started PAKCS for the first time, look into this file and adapt it to your own

preferences.

2.7 Emacs Interface

Emacs is a powerful programmable editor suitable for program development. It is freely available
for many platforms (see http://www.emacs.org). The distribution of PAKCS contains also a
special Curry mode that supports the development of Curry programs in the Emacs environment.
This mode includes support for syntax highlighting, finding declarations in the current buffer, and
loading Curry programs into PAKCS in an Emacs shell.

The Curry mode has been adapted from a similar mode for Haskell programs. Its installation is
described in the file README in directory “pakcshome/tools/emacs” which also contains the sources
of the Curry mode and a short description about the use of this mode.

15

http://www.emacs.org

3 Extensions

PAKCS supports some extensions in Curry programs that are not (yet) part of the definition of
Curry. These extensions are described below.

3.1 Recursive Variable Bindings

Local variable declarations (introduced by let or where) can be (mutually) recursive in PAKCS.
For instance, the declaration

onesb = let ones = 1 : ones
in take 5 ones

introduces the local variable ones which is bound to a cyclic structure representing an infinite list
of 1’s. Similarly, the definition

onetwo n = take n one2

where
one2 = 1 : twol
twol = 2 : one2

introduces a local variables one2 that represents an infinite list of alternating 1’s and 2’s so that

the expression (onetwo 6) evaluates to [1,2,1,2,1,2].

3.2 Functional Patterns

Functional patterns [6] are a useful extension to code operations in a more readable way. Fur-
thermore, defining operations with functional patterns avoids problems caused by strict equality
(“=:=") and leads to programs that are potentially more efficient.

Consider the definition of an operation to compute the last element of a list xs based on the
prelude operation “++” for list concatenation:

last xs | _++[y] =:= xs =y where y free

W, _»

Since the equality constrain :=" evaluates both sides to a constructor term, all elements of the
list xs are fully evaluated in order to satisfy the constraint.

Functional patterns can help to improve this computational behavior. A functional pattern is
a function call at a pattern position. With functional patterns, we can define the operation last

as follows:
last (_++[y]) =y

This definition is not only more compact but also avoids the complete evaluation of the list elements:
since a functional pattern is considered as an abbreviation for the set of constructor terms obtained
by all evaluations of the functional pattern to normal form (see [0] for an exact definition), the
previous definition is conceptually equivalent to the set of rules

last [yl =y
last [_,y] =y
last [_,_,y] =y

16

which shows that the evaluation of the list elements is not demanded by the functional pattern.

In general, a pattern of the form (f ¢;...t,) (n > 0) is interpreted as a functional pattern if f
is not a visible constructor but a defined function that is visible in the scope of the pattern.

It is also possible to combine functional patterns with as-patterns. Similarly to the meaning of
as-patterns in standard constructor patterns, as-patterns in functional patterns are interpreted as
a sequence of pattern matching where the variable of the as-pattern is matched before the given
pattern is matched. This process can be described by introducing an auxiliary operation for this
two-level pattern matching process. For instance, the definition

f(_ ++ x0[(42,.)] ++) =x
is considered as syntactic sugar for the expanded definition

f (_++x++ _) =1f x
where
£ [(42,.0] = x

However, as-patterns are usually implemented in a more efficient way without introducing auxiliary
operations.

Optimization of programs containing functional patterns. Since functions patterns can
evaluate to non-linear constructor terms, they are dynamically checked for multiple occurrences
of variables which are, if present, replaced by equality constraints so that the constructor term is
always linear (see [0] for details). Since these dynamic checks are costly and not necessary for func-
tional patterns that are guaranteed to evaluate to linear terms, there is an optimizer for functional
patterns that checks for occurrences of functional patterns that evaluate always to linear construc-
tor terms and replace such occurrences with a more efficient implementation. This optimizer can
be enabled by the following possibilities:

e Set the environment variable FCYPP to “--fpopt” before starting PAKCS, e.g., by the shell
command

export FCYPP="--fpopt"

Then the functional pattern optimization is applied if programs are compiled and loaded in
PAKCS.

e Put an option into the source code: If the source code of a program contains a line with a
comment of the form (the comment must start at the beginning of the line)

{-# PAKCS_OPTION_FCYPP --fpopt #-}

then the functional pattern optimization is applied if this program is compiled and loaded in
PAKCS.

The optimizer also report errors in case of wrong uses of functional patterns (i.e., in case of a
function f defined with functional patterns that recursively depend on f).

17

3.3 Order of Pattern Matching

Curry allows multiple occurrences of pattern variables in standard patterns. These are an abbrevi-
ation of equational constraints between pattern variables. Functional patterns might also contain
multiple occurrences of pattern variables. For instance, the operation

f (_++[x]++_++[x]++_) = x

returns all elements with at least two occurrences in a list.

If functional patterns as well as multiple occurrences of pattern variables occur in a pattern
defining an operation, there are various orders to match an expression against such an operation.
In the current implementation, the order is as follows:

1. Standard pattern matching: First, it is checked whether the constructor patterns match.
Thus, functional patterns and multiple occurrences of pattern variables are ignored.

2. Functional pattern matching: In the next phase, functional patterns are matched but occur-
rences of standard pattern variables in the functional patterns are ignored.

3. Non-linear patterns: If standard and functional pattern matching is successful, the equational
constraints which correspond to multiple occurrences pattern variables are solved.

4. Guards: Finally, the guards supplied by the programmer are checked.

The order of pattern matching should not influence the computed result. However, it might have
some influence on the termination behavior of programs, i.e., a program might not terminate
instead of finitely failing. In such cases, it could be necessary to consider the influence of the order
of pattern matching. Note that other orders of pattern matching can be obtained using auxiliary
operations.

3.4 Datatypes with Field Labels

A datatype declaration may optionally define data constructors with field labels.! These field labels
can be used to construct, select from, and update fields in a manner that is independent of the
overall structure of the datatype.

3.4.1 Declaration of Constructors with Labeled Fields

A data constructor of arity n creates an object with n components. These components are normally
accessed positionally as arguments to the constructor in expressions or patterns. For large datatypes
it is useful to assign field labels to the components of a data object. This allows a specific field to
be referenced independently of its location within the constructor. A constructor definition in a
data declaration may assign labels to the fields of the constructor, using the record syntax C {...}.
Constructors using field labels may be freely mixed with constructors without them. A constructor
with associated field labels may still be used as an ordinary constructor. The various use of labels
(see below) are simply a shorthand for operations using an underlying positional constructor. The
arguments to the positional constructor occur in the same order as the labeled fields.

!Field labels are quite similar to Haskell [22] so that we adopt most of the description of Haskell here.

18

Translation:

[C {lts }] = C [its]
[it, its] = [it] [its]
[URERS tﬂ =t [ls::t]
[::t] =

For example, the definition using field labels

data Person = Person { firstName, lastName :: String, age :: Int }
| Agent { firstName, lastName :: String, trueldentity :: Person }

is translated to

data Person = Person String String Int
| Agent String String Person

A data declaration may use the same field label in multiple constructors as long as the typing of
the field is the same in all cases after type synonym expansion. A label cannot be shared by more
than one type in scope. Field names share the top-level name space with ordinary definition of
functions and must not conflict with other top-level names in scope.

Consider the following example:

S1 {x :: Int } | S2{x :: Int } -- 0K
Tt {y :: Int } | T2 { y :: Bool } -- BAD

data S
data T

Here S is legal but T is not, because y is given inconsistent typings in the latter.

3.4.2 Field Selection

Field labels are used as selector functions, i.e., each field label serves as a function that extracts
the field from an object. Selectors are top-level bindings and so they may be shadowed by local
variables but cannot conflict with other top-level bindings of the same name. This shadowing only
affects selector functions; in record construction (Section 3.4.3) and update (Section 3.4.4), field
labels cannot be confused with ordinary variables.

Translation: A field label lab introduces a selector function defined as:
lab (Cl P11 - - ~P1k1) =X

lab (C, Pn1 - - -pnkn) =X
where C; ... C), are all the constructors of the datatype containing a field labeled with lab,
pij is x when lab labels the jth component of C; or _ otherwise.

For example the definition of Person above introduces the selector functions

firstName :: Person — String
-)=
firstName (Agent x _ _) =

firstName (Person x

lastName :: Person — String
lastName (Person _ x _) = x

19

lastName (Agent _ x _) = x

age :: Person — Int

age (Person _ _ x) = X
trueldentity :: Person — Person
trueldentity (Agent _ _ x) = x

3.4.3 Construction Using Field Labels

A constructor with labeled fields may be used to construct a value in which the components are
specified by name rather than by position. In this case, the components are enclosed by braces.
Construction using field labels is subject to the following constraints:

e Only field labels declared with the specified constructor may be mentioned.
e A field label may not be mentioned more than once.
e Fields not mentioned are initialized to different free variables.

The expression C{}, where C is a data constructor, is legal whether or not C was declared with record
syntaz; it denotes C Prelude.unknown; ... Prelude.unknown, where n is the arity of C. Note that
this will introduce the constructor ¢ with n different free variables as arguments.

Translation: In the binding f = v, the field f labels v.

C { bs } = C (pick{ bs Prelude.unknown) ... (pick{ bs Prelude.unknown)
where k is the arity of C.
The auxiliary function pz'ckio bs d is defined as follows:
If the ith component of a constructor C has the field label f and f = v appears in the
binding list bs, then pz’ckic bs d is v. Otherwise, pickic bs d is the default value d.

For example, a Person can be constructed by
smith = Agent { lastName = "Smith", firstName = "Agent" }
which is equivalent to the following agent, whose true identity might be any person:

smith = Agent "Agent" "Smith" _

3.4.4 Updates Using Field Labels

Values belonging to a datatype with field labels may be non-destructively updated. This creates
a new value in which the specified field values replace those in the existing value. Updates are
restricted in the following ways:

e All labels must be taken from the same datatype.

e No label may be mentioned more than once.

20

e The computation fails when the value being updated does not contain all of the specified
labels.

Translation: Using the prior definition of pick,

e { bs } = fcase e of
Cy vy...vp, => Oy (picl{:lc1 bs v1) ... Qﬁckg? bs wvi,)
e yer
Cj vr.. Vg > C; (picky” bs vy) ... (pzckkj’ bs vkj)
where {C1,...,C}} is the set of constructors containing all labels in bs, k; is the arity of

Ci.

For example, after watching a few more movies, we might want to update our information about
smith. We can do so by writing

smith { trueldentity = complement neo }
which is equivalent to

fcase smith of
Agent fn 1n _ — Agent fn 1ln (complement neo)

3.4.5 Pattern Matching Using Field Labels

A constructor with labeled fields may be used to specify a pattern in which the components are
identified by name rather than by position. Matching against a constructor using labeled fields is
the same as matching ordinary constructor patterns except that the fields are matched in the order
they are named in the field list. All listed fields must be declared by the constructor; fields may
not be named more than once. Fields not named by the pattern are ignored (matched against _).

Translation: Using the prior definition of pick,
C {bs} = (C (pick{ bs _) ... (pick{ bs _))
where k is the arity of C.

For example, we could define a Smith-tester by writing:
isSmith Agent { lastName = "Smith" } = success
which is equivalent to

isSmith (Agent "Smith" _) = success

3.4.6 Field Labels and Modules

As described in the Curry report, there are two forms of exporting a data type T: The simple name
T exports only the types name without constructors, whereas T'(..) also exports all constructors.
Analogously, the form T does not export any field labels, whereas T'(..) exports all constructors
and all field labels.

21

4 Recognized Syntax of Curry

The PAKCS Curry compiler accepts a slightly extended version of the grammar specified in the
Curry Report [20]. Furthermore, the syntax recognized by PAKCS differs from that specified in the
Curry Report regarding numeric or character literals. We therefore present the complete description
of the syntax below, whereas syntactic extensions are highlighted.

4.1 Notational Conventions

The syntax is given in extended Backus-Naur-Form (eBNF), using the following notation:

NonTerm := « production
NonTerm nonterminal symbol
Term terminal symbol
[a] optional
{a} zero or more repetitions
(a) grouping
a | B alternative
a(gy difference — elements generated by a
without those generated by [

The Curry files are expected to be encoded in UTF8. However, source programs are biased
towards ASCII for compatibility reasons.
4.2 Lexicon
4.2.1 Case Mode
Although the Curry Report specifies four different case modes (Prolog, Godel, Haskell, free), the

PAKCS only supports the free mode which puts no constraints on the case of identifiers.

4.2.2 Identifiers and Keywords

Letter ::= any ASCII letter
Dashes = --{-}
Ident ::= Letter {Letter | Digit | _ | ’}
Symbol = ~ [t |e|#[$|h[~|&][*x[+]|-[=|<[>[?].[/[1|\]:
ModuleID ::= {Ident .} Ident
TypeConstrID ::= Ident
DataConstrID ::= Ident
TypeVarID = Ident | _
InfizOpID = (Symbol {Symbol}) p,spes)
FunctionID = Ident
VariableID ::= Ident
LabellD ::= Ident

22

QTypeConstrID = [ModuleID .| TypeConstrID
QDataConstrID = [ModuleID .| DataConstrID
QInfirtOpID ::= [ModulelD .| InfiztOpID
QFunctionID ::= [ModuleID .| FunctionID
QVariableID ::= [ModuleID .] VariableID
QLabellD ::= [ModuleID .| LabellD

The following identifiers are recognized as keywords and cannot be used as an identifier:

case data do else external fcase foreign
free if import in infix infixl infixr
let module newtype of then type where

Note that the symbols as, hiding and qualified are not keywords. They have only a special
meaning in module headers and can be used as ordinary identifiers.

The following symbols also have a special meaning and cannot be used as an infix operator
identifier:

= \\ <- -> e -

4.2.3 Comments

9

Comments begin either with “-=-" and terminate at the end of the line or with “{-” and terminate

with a matching “-}”, i.e., the delimiters “{-" and “-}” act as parentheses and can be nested.

4.2.4 Numeric and Character Literals

Contrasting to the Curry Report, PAKCS adopts Haskell’s notation of literals, for both numeric
literals as well as Char and String literals. The precise syntax for both kinds is given below.
Int = Decimal

| 0o Octal | 00 Octal
| 0x Hexadecimal | 0X Hezadecimal

Float ::= Decimal . Decimal [Exponent]
| Decimal Exponent
Ezponent == (e |E) [+ | -] Decimal
Decimal = Digit [Decimal]
Binary ::= Binit [Binary]
Octal = Octit [Octal]
Hezadecimal ::= Hexit [Hexadecimal]
Digit == 0|1|2|3]4|5|6|7|8]9
Binit == 0]1
Octit == 0]1]2|3|4|5]6]|7
Hexit == 0|1]|2|3]|4|5|6|7|8|9|A|B|C|D|E|Fla|b|c|d]|e]f
Char ::= ’(Graphic<\> | Space | Escape \g,)’
String = "{Graphic<n| \ | Space | Escape | Gap}"

Escape = \ (CharEsc | Ascii | Decimal | o Octal | x Hezadecimal)

23

CharEsc == al|b|f|n|r|t|v|[\|"]’]|&

Ascii ::= =~ Cntrl | NUL | SOH | STX | ETX | EOT | ENQ | ACK
| BEL|BS|HT|LF|VT|FF|CR|SO]|SI|DLE
| DC1|DC2|DC3|DC4 | NAK | SYN | ETB | CAN
| EM|SUB|ESC|FS|GS|RS|US]|SP|DEL

Cntrl == Asciilarge |@ | [|\N]1]|~ |_
AsciiLlarge == A|...|Z
Gap == \ WhiteChar { WhiteChar} \
4.3 Layout

Similarly to Haskell, a Curry programmer can use layout information to define the structure of
blocks. For this purpose, we define the indentation of a symbol as the column number indicating
the start of this symbol. The indentation of a line is the indentation of its first symbol.?

The layout (or “off-side”) rule applies to lists of syntactic entities after the keywords let, where,
do, or of. In the subsequent context-free syntax, these lists are enclosed with curly brackets ({ })
and the single entities are separated by semicolons (;). Instead of using the curly brackets and
semicolons of the context-free syntax, a Curry programmer must specify these lists by indentation:
the indentation of a list of syntactic entities after let, where, do, or of is the indentation of the
next symbol following the let, where, do, of. Any item of this list start with the same indentation
as the list. Lines with only whitespaces or an indentation greater than the indentation of the list
continue the item in its previous line. Lines with an indentation less than the indentation of the list
terminate the entire list. Moreover, a list started by let is terminated by the keyword in. Thus,
the sentence

fx=hzxvwhere {gy=y+1; hz=1(gz *x2}

which is valid w.r.t. the context-free syntax, is written with the layout rules as

f x=hx
where gy =y + 1
hz=(gz) 2
or also as

f x = h x where

gy=y+1
hz= (g 2)
* 2

To avoid an indentation of top-level declarations, the keyword module and the end-of-file token are
assumed to start in column 0.
4.4 Context Free Grammar

Module ::= module ModuleID [Ezports] where Block
| Block

2In order to determine the exact column number, we assume a fixed-width font with tab stops at each 8th column.

24

ModuleID

Ezxports
FExport

ConsLabelName
Block

ImportDecl

ImportRestr ::=

Import

BlockDeclaration

TypeSynonymDecl
Simple Type
TypeConstriD

DataDeclaration

ConstrDecl

FieldDeclaration

LabellD

TypeExpr =

TypeConsExpr =

Simple Type Expr

Type VarlD

FizityDeclaration
FizityKeyword
InfixOpID

FunctionDeclaration
FExternal
Signature

see lexicon

(Exporty , ... , Export,) (n>0)
QFunctionName
QTypeConstrID [(ConsLabelName, , ... , ConsLabelName,,)] (n>0)

QTypeConstrID (..)
module ModuleID
LabelID | DataConstr

{ [ImportDecly ; ... ; ImportDecl ;] (no fixity declarations here)

BlockDeclaration; ; ... ; BlockDeclaration, } (k,n >0)
import [qualified] ModuleID [as ModuleID] [ImportRestr]
(Importy , ..., Import,) (n>0)
hiding (Importy , ... , Import,) (n>0)
FunctionName
TypeConstrID [(ConsLabelName; , ... , ConsLabelName,,)] (n>0)
TypeConstrID (. .)
TypeSynonymDecl
DataDeclaration
FixityDeclaration
FunctionDeclaration
type SimpleType = TypeExpr
TypeConstrID Type VarlD, TypeVarID, (n>0)

see lexicon

data Simple Type
data SimpleType = ConstrDecly | ... | ConstrDecl,

(external data type

)
(n>0)
)

DataConstr Simple TypeExpr Simple TypeExpry, (n>0
Sitmple TypeExpr ConsOp TypeConsEzpr (infiz data constructor)
DataConstr { FieldDeclaration; , ... , FieldDeclaration, } (n>0)
LabellDy , ..., LabellD,, :: TypeExpr (n>0)

see lexicon

TypeConsExpr [-> TypeExpr]

QTypeConstrID Simple TypeExpr, Simple Type Expr, (n>0)
Simple Type Expr
TypeVarlD
QTypeConstrlD
O (unit type

(TypeExpry , ...
[TypeExpr]

(TypeExpr)

see lexicon

)
» TypeExpry,) (tuple type, n > 1)
(list type)

)

(parenthesized type

FizityKeyword Digit InfixOpID; , ... , InfixOpID,
infix1 | infixr | infix

(n>0)

see lexicon

Signature | External | Equat
FunctionNames external (externally defined functions)

FunctionNames :: TypeFxpr

25

FunctionNames
FEquat

FunLHS ::

CondExprs
Pattern

ConsPattern

SimplePat

FieldPat
QLab