
PAKCS 1.13.1

The Portland Aachen Kiel Curry System

User Manual
Version of 2015-10-02

Michael Hanus1 [editor]

Additional Contributors:

Sergio Antoy2

Bernd Braßel3

Martin Engelke4

Klaus Höppner5

Johannes Koj6

Philipp Niederau7

Björn Peemöller8

Ramin Sadre9

Frank Steiner10

(1) University of Kiel, Germany, mh@informatik.uni-kiel.de

(2) Portland State University, USA, antoy@cs.pdx.edu

(3) University of Kiel, Germany, bbr@informatik.uni-kiel.de

(4) University of Kiel, Germany, men@informatik.uni-kiel.de

(5) University of Kiel, Germany, klh@informatik.uni-kiel.de

(6) RWTH Aachen, Germany, johannes.koj@sdm.de

(7) RWTH Aachen, Germany, philipp@navigium.de

(8) University of Kiel, Germany, bjp@informatik.uni-kiel.de

(9) RWTH Aachen, Germany, ramin@lvs.informatik.rwth-aachen.de

(10) LMU Munich, Germany, fst@bio.informatik.uni-muenchen.de

Contents

Preface 5

1 Overview of PAKCS 6

1.1 General Use . 6

1.2 Restrictions . 6

1.3 Modules in PAKCS . 7

2 PAKCS: An Interactive Curry Development System 8

2.1 Invoking PAKCS . 8

2.2 Commands of PAKCS . 8

2.3 Options of PAKCS . 11

2.4 Using PAKCS in Batch Mode . 14

2.5 Command Line Editing . 15

2.6 Customization . 15

2.7 Emacs Interface . 15

3 Extensions 16

3.1 Recursive Variable Bindings . 16

3.2 Functional Patterns . 16

3.3 Order of Pattern Matching . 18

3.4 Datatypes with Field Labels . 18

3.4.1 Declaration of Constructors with Labeled Fields 18

3.4.2 Field Selection . 19

3.4.3 Construction Using Field Labels . 20

3.4.4 Updates Using Field Labels . 20

3.4.5 Pattern Matching Using Field Labels . 21

3.4.6 Field Labels and Modules . 21

4 Recognized Syntax of Curry 22

4.1 Notational Conventions . 22

4.2 Lexicon . 22

4.2.1 Case Mode . 22

4.2.2 Identifiers and Keywords . 22

4.2.3 Comments . 23

4.2.4 Numeric and Character Literals . 23

4.3 Layout . 24

4.4 Context Free Grammar . 24

5 CurryDoc: A Documentation Generator for Curry Programs 28

6 CurryBrowser: A Tool for Analyzing and Browsing Curry Programs 31

7 CurryTest: A Tool for Testing Curry Programs 33

1

8 ERD2Curry: A Tool to Generate Programs from ER Specifications 35

9 Spicey: An ER-based Web Framework 36

10 UI: Declarative Programming of User Interfaces 37

11 Preprocessing FlatCurry Files 38

12 Technical Problems 40

Bibliography 41

A Libraries of the PAKCS Distribution 43

A.1 Constraints, Ports, Meta-Programming . 43

A.1.1 Arithmetic Constraints . 43

A.1.2 Finite Domain Constraints . 44

A.1.3 Ports: Distributed Programming in Curry . 46

A.1.4 AbstractCurry and FlatCurry: Meta-Programming in Curry 47

A.2 General Libraries . 48

A.2.1 Library AllSolutions . 48

A.2.2 Library Assertion . 49

A.2.3 Library Char . 51

A.2.4 Library CHR . 53

A.2.5 Library CHRcompiled . 55

A.2.6 Library CLP.FD . 57

A.2.7 Library CLPFD . 61

A.2.8 Library CLPR . 66

A.2.9 Library CLPB . 67

A.2.10 Library Combinatorial . 68

A.2.11 Library Constraint . 69

A.2.12 Library CPNS . 70

A.2.13 Library CSV . 71

A.2.14 Library Database . 71

A.2.15 Library Debug . 75

A.2.16 Library Directory . 76

A.2.17 Library Distribution . 77

A.2.18 Library Dynamic . 82

A.2.19 Library Either . 84

A.2.20 Library FileGoodies . 85

A.2.21 Library FilePath . 86

A.2.22 Library Findall . 90

A.2.23 Library Float . 92

A.2.24 Library Function . 94

A.2.25 Library FunctionInversion . 95

A.2.26 Library GetOpt . 96

2

A.2.27 Library Global . 97

A.2.28 Library GlobalVariable . 98

A.2.29 Library GUI . 99

A.2.30 Library Integer . 111

A.2.31 Library IO . 113

A.2.32 Library IOExts . 116

A.2.33 Library JavaScript . 117

A.2.34 Library KeyDatabase . 120

A.2.35 Library KeyDatabaseSQLite . 121

A.2.36 Library KeyDB . 126

A.2.37 Library List . 127

A.2.38 Library Maybe . 131

A.2.39 Library NamedSocket . 133

A.2.40 Library Parser . 134

A.2.41 Library Ports . 135

A.2.42 Library Pretty . 137

A.2.43 Library Profile . 150

A.2.44 Library Prolog . 153

A.2.45 Library PropertyFile . 154

A.2.46 Library Read . 154

A.2.47 Library ReadNumeric . 155

A.2.48 Library ReadShowTerm . 156

A.2.49 Library SetFunctions . 157

A.2.50 Library Socket . 160

A.2.51 Library System . 161

A.2.52 Library Time . 163

A.2.53 Library Unsafe . 165

A.3 Data Structures and Algorithms . 167

A.3.1 Library Array . 167

A.3.2 Library Dequeue . 168

A.3.3 Library FiniteMap . 170

A.3.4 Library GraphInductive . 173

A.3.5 Library Random . 179

A.3.6 Library RedBlackTree . 180

A.3.7 Library SetRBT . 181

A.3.8 Library Sort . 182

A.3.9 Library TableRBT . 182

A.3.10 Library Traversal . 183

A.4 Libraries for Web Applications . 185

A.4.1 Library CategorizedHtmlList . 185

A.4.2 Library HTML . 186

A.4.3 Library HtmlCgi . 199

A.4.4 Library HtmlParser . 200

A.4.5 Library Mail . 201

3

A.4.6 Library Markdown . 201

A.4.7 Library URL . 204

A.4.8 Library WUI . 204

A.4.9 Library WUIjs . 211

A.4.10 Library XML . 219

A.4.11 Library XmlConv . 221

A.5 Libraries for Meta-Programming . 228

A.5.1 Library AbstractCurry.Types . 228

A.5.2 Library AbstractCurry.Files . 234

A.5.3 Library AbstractCurry.Select . 235

A.5.4 Library AbstractCurry.Build . 237

A.5.5 Library AbstractCurry.Pretty . 240

A.5.6 Library AnnotatedFlatCurry . 243

A.5.7 Library AnnotatedFlatCurryGoodies . 244

A.5.8 Library CompactFlatCurry . 257

A.5.9 Library CurryStringClassifier . 259

A.5.10 Library FlatCurry . 261

A.5.11 Library FlatCurryGoodies . 268

A.5.12 Library FlatCurryRead . 280

A.5.13 Library FlatCurryShow . 281

A.5.14 Library FlatCurryXML . 281

A.5.15 Library FlexRigid . 282

B Markdown Syntax 283

B.1 Paragraphs and Basic Formatting . 283

B.2 Lists and Block Formatting . 284

B.3 Headers . 286

C Overview of the PAKCS Distribution 287

D Auxiliary Files 289

E External Functions 290

Index 294

4

Preface

This document describes PAKCS (formerly called “PACS”), an implementation of the multi-

paradigm language Curry, jointly developed at the University of Kiel, the Technical University

of Aachen and Portland State University. Curry is a universal programming language aiming at

the amalgamation of the most important declarative programming paradigms, namely functional

programming and logic programming. Curry combines in a seamless way features from functional

programming (nested expressions, lazy evaluation, higher-order functions), logic programming (log-

ical variables, partial data structures, built-in search), and concurrent programming (concurrent

evaluation of constraints with synchronization on logical variables). Moreover, the PAKCS im-

plementation of Curry also supports constraint programming over various constraint domains, the

high-level implementation of distributed applications, graphical user interfaces, and web services

(as described in more detail in [12, 13, 14]). Since PAKCS compiles Curry programs into Prolog

programs, the availability of some of these features might depend on the underlying Prolog system.

We assume familiarity with the ideas and features of Curry as described in the Curry language

definition [20]. Therefore, this document only explains the use of the different components of

PAKCS and the differences and restrictions of PAKCS (see Section 1.2) compared with the language

Curry (Version 0.8.3).

Acknowledgements

This work has been supported in part by the DAAD/NSF grant INT-9981317, the NSF grants

CCR-0110496 and CCR-0218224, the Acción Integrada hispano-alemana HA1997-0073, and the

DFG grants Ha 2457/1-2, Ha 2457/5-1, and Ha 2457/5-2.

Many thanks to the users of PAKCS for bug reports, bug fixes, and improvements, in particular,

to Marco Comini, Sebastian Fischer, Massimo Forni, Carsten Heine, Stefan Junge, Frank Huch,

Parissa Sadeghi.

5

1 Overview of PAKCS

1.1 General Use

This version of PAKCS has been tested on Sun Solaris, Linux, and Mac OS X systems. In principle,

it should be also executable on other platforms on which a Prolog system like SICStus-Prolog

or SWI-Prolog exists (see the file INSTALL.html in the PAKCS directory for a description of the

necessary software to install PAKCS).

All executable files required to use the different components of PAKCS are stored in

the directory pakcshome /bin (where pakcshome is the installation directory of the complete

PAKCS installation). You should add this directory to your path (e.g., by the bash command

“export PATH=pakcshome /bin:$PATH”).

The source code of the Curry program must be stored in a file with the suffix “.curry”, e.g.,

prog.curry. Literate programs must be stored in files with the extension “.lcurry”.

Since the translation of Curry programs with PAKCS creates some auxiliary files (see Section D

for details), you need write permission in the directory where you have stored your Curry programs.

The auxiliary files for all Curry programs in the current directory can be deleted by the command

cleancurry

(this is a shell script stored in the bin directory of the PAKCS installation, see above). The

command

cleancurry -r

also deletes the auxiliary files in all subdirectories.

1.2 Restrictions

There are a few minor restrictions on Curry programs when they are processed with PAKCS:

• Singleton pattern variables, i.e., variables that occur only once in a rule, should be denoted

as an anonymous variable “_”, otherwise the parser will print a warning since this is a typical

source of programming errors.

• PAKCS translates all local declarations into global functions with additional arguments

(“lambda lifting”, see Appendix D of the Curry language report). Thus, in the compiled

target code, the definition of functions with local declarations look different from their origi-

nal definition (in order to see the result of this transformation, you can use the CurryBrowser,

see Section 6).

• Tabulator stops instead of blank spaces in source files are interpreted as stops at columns 9,

17, 25, 33, and so on. In general, tabulator stops should be avoided in source programs.

• Since PAKCS compiles Curry programs into Prolog programs, non-deterministic computa-

tions are treated as in Prolog by a backtracking strategy, which is known to be incomplete.

Thus, the order of rules could influence the ability to find solutions for a given goal.

• Threads created by a concurrent conjunction are not executed in a fair manner (usually,

threads corresponding to leftmost constraints are executed with higher priority).

6

• Encapsulated search: In order to allow the integration of non-deterministic computations in

programs performing I/O at the top-level, PAKCS supports the search operators findall and

findfirst. These and some other operators are available in the library Findall (i.e., they are

not part of the standard prelude). In contrast to the general definition of encapsulated search

[19], the current implementation suspends the evaluation of findall and findfirst until the

argument does not contain unbound global variables. Moreover, the evaluation of findall is

strict, i.e., it computes all solutions before returning the complete list of solutions.

Since it is known that the result of these search operators might depend on the evaluation

strategy due to the combination of sharing and lazy evaluation (see [9] for a detailed dis-

cussion), it is recommended to use set functions [7] as a strategy-independent encapsulation

of non-deterministic computations. Set functions compute the set of all results of a defined

function but do not encapsulate non-determinism occurring in the actual arguments. See the

library SetFunctions (Section A.2.49) for more details.

• There is currently no general connection to external constraint solvers. However, the PAKCS

compiler provides constraint solvers for arithmetic and finite domain constraints (see Ap-

pendix A).

1.3 Modules in PAKCS

PAKCS searches for imported modules in various directories. By default, imported modules are

searched in the directory of the main program and the system module directories “pakcshome /lib”

and “pakcshome /lib/meta”. This search path can be extended by setting the environment variable

CURRYPATH (which can be also set in a PAKCS session by the option “:set path”, see below) to a

list of directory names separated by colons (“:”). In addition, a local standard search path can be

defined in the “.pakcsrc” file (see Section 2.6). Thus, modules to be loaded are searched in the

following directories (in this order, i.e., the first occurrence of a module file in this search path is

imported):

1. Current working directory (“.”) or directory prefix of the main module (e.g., directory

“/home/joe/curryprogs” if one loads the Curry program “/home/joe/curryprogs/main”).

2. The directories enumerated in the environment variable CURRYPATH.

3. The directories enumerated in the “.pakcsrc” variable “libraries”.

4. The directories “pakcshome /lib” and “pakcshome /lib/meta”.

The same strategy also applies to modules with a hierarchical module name with the only difference

that the hierarchy prefix of a module name corresponds to a directory prefix of the module. For

instance, if the main module is stored in directory MAINDIR and imports the module Test.Func, then

the module stored in MAINDIR/Test/Func.curry is imported (without setting any additional import

path) according to the module search strategy described above.

Note that the standard prelude (pakcshome /lib/Prelude.curry) will be always implicitly im-

ported to all modules if a module does not contain an explicit import declaration for the module

Prelude.

7

2 PAKCS: An Interactive Curry Development System

PAKCS is an interactive system to develop applications written in Curry. It is implemented in

Prolog and compiles Curry programs into Prolog programs. It contains various tools, a source-level

debugger, solvers for arithmetic constraints over real numbers and finite domain constraints, etc.

The compilation process and the execution of compiled programs is fairly efficient if a good Prolog

implementation like SICStus-Prolog is used.

2.1 Invoking PAKCS

To start PAKCS, execute the command “pakcs” (this is a shell script stored in pakcshome /bin

where pakcshome is the installation directory of PAKCS). When the system is ready (i.e., when the

prompt “Prelude>” occurs), the prelude (pakcshome /lib/Prelude.curry) is already loaded, i.e., all

definitions in the prelude are accessible. Now you can type various commands (see next section)

or an expression to be evaluated.

One can also invoke PAKCS with parameters. These parameters are usual a sequence of com-

mands (see next section) that are executed before the user interaction starts. For instance, the

invocation

pakcs :load Mod :add List

starts PAKCS, loads the main module Mod, and adds the additional module List. The invocation

pakcs :load Mod :eval config

starts PAKCS, loads the main module Mod, and evaluates the operation config before the user

interaction starts. As a final example, the invocation

pakcs :load Mod :save :quit

starts PAKCS, loads the main module Mod, creates an executable, and terminates PAKCS. This

invocation could be useful in “make” files for systems implemented in Curry.

There are also some specific options that can be used when invoking PAKCS:

-q or --quiet: With this option, PAKCS works silently, i.e., the initial banner and the input

prompt are not shown. The output of other information is determined by the options

“verbose” and “vn” (see Section 2.3).

--noreadline: Do not use input line editing (see Section 2.5).

-Dname=val: Overwrite values defined in the configuration file “.pakcsrc” (see Section 2.6), where

name is a property defined in the configuration file and val its new value.

2.2 Commands of PAKCS

The most important commands of PAKCS are (it is sufficient to type a unique prefix of a

command if it is unique, e.g., one can type “:r” instead of “:reload”):

:help Show a list of all available commands.

8

:load prog Compile and load the program stored in prog.curry together with all its imported

modules. If this file does not exist, the system looks for a FlatCurry file prog.fcy and

compiles from this intermediate representation. If the file prog.fcy does not exists, too, the

system looks for a file prog_flat.xml containing a FlatCurry program in XML representation

(compare command “:xml”), translates this into a FlatCurry file prog.fcy and compiles from

this intermediate representation.

:reload Recompile all currently loaded modules.

:add m1 . . .mn Add modules m1, . . . ,mn to the set of currently loaded modules so that their

exported entities are available in the top-level environment.

expr Evaluate the expression expr to normal form and show the computed results. Since PAKCS

compiles Curry programs into Prolog programs, non-deterministic computations are imple-

mented by backtracking. Therefore, computed results are shown one after the other. In the

interactive mode (which can be set in the configuration file “.pakcsrc” or by setting the op-

tion interactive, see below), you will be asked after each computed result whether you want

to see the next alternative result or all alternative results. The default answer value for this

question can be defined in the configuration file “.pakcsrc” file (see Section 2.6).

Free variables in initial expressions must be declared as in Curry programs (if the free

variable mode is not turned on, see option “+free” below). Thus, in order to see the results

of their bindings, they must be introduced by a “where...free” declaration. For instance,

one can write

not b where b free

in order to obtain the following bindings and results:

{b = True} False

{b = False} True

Without these declarations, an error is reported in order to avoid the unintended introduction

of free variables in initial expressions by typos.

:eval expr Same as expr. This command might be useful when putting commands as arguments

when invoking pakcs.

:define x=expr Define the identifier x as an abbreviation for the expression expr which can

be used in subsequent expressions. The identifier x is visible until the next load or reload

command.

:quit Exit the system.

There are also a number of further commands that are often useful:

:type expr Show the type of the expression expr.

:browse Start the CurryBrowser to analyze the currently loaded module together with all its

imported modules (see Section 6 for more details).

9

:edit Load the source code of the current main module into a text editor. If the variable

editcommand is set in the configuration file “.pakcsrc” (see Section 2.6), its value is used

as an editor command, otherwise the environment variable “EDITOR” or a default editor (e.g.,

“vi”) is used.

:edit m Load the source text of module m (which must be accessible via the current load path if

no path specification is given) into a text editor which is defined as in the command “:edit”.

:interface Show the interface of the currently loaded module, i.e., show the names of all imported

modules, the fixity declarations of all exported operators, the exported datatypes declarations

and the types of all exported functions.

:interface prog Similar to “:interface” but shows the interface of the module “prog.curry”. If

this module does not exist, this command looks in the system library directory of PAKCS for

a module with this name, e.g., the command “:interface FlatCurry” shows the interface of

the system module FlatCurry for meta-programming (see Appendix A.1.4).

:usedimports Show all calls to imported functions in the currently loaded module. This might

be useful to see which import declarations are really necessary.

:modules Show the list of all currently loaded modules.

:programs Show the list of all Curry programs that are available in the load path.

:set option Set or turn on/off a specific option of the PAKCS environment (see 2.3 for a de-

scription of all options). Options are turned on by the prefix “+” and off by the prefix “-”.

Options that can only be set (e.g., printdepth) must not contain a prefix.

:set Show a help text on the possible options together with the current values of all options.

:show Show the source text of the currently loaded Curry program. If the variable showcommand

is set in the configuration file “.pakcsrc” (see Section 2.6), its value is used as a command

to show the source text, otherwise the environment variable PAGER or the standard command

“cat” is used. If the source text is not available (since the program has been directly compiled

from a FlatCurry or XML file), the loaded program is decompiled and the decompiled Curry

program text is shown.

:show m Show the source text of module m which must be accessible via the current load path.

:source f Show the source code of function f (which must be visible in the currently loaded

module) in a separate window.

:source m.f Show the source code of function f defined in module m in a separate window.

:cd dir Change the current working directory to dir.

:dir Show the names of all Curry programs in the current working directory.

:!cmd Shell escape: execute cmd in a Unix shell.

10

:save Save the currently loaded program as an executable evaluating the main expression “main”.

The executable is stored in the file Mod if Mod is the name of the currently loaded main module.

:save expr Similar as “:save” but the expression expr (typically: a call to the main function)

will be evaluated by the executable.

:fork expr The expression expr, which must be of type “IO ()”, is evaluated in an independent

process which runs in parallel to the current PAKCS process. All output and error messages

from this new process are suppressed. This command is useful to test distributed Curry

programs (see Appendix A.1.3) where one can start a new server process by this command.

The new process will be terminated when the evaluation of the expression expr is finished.

:coosy Start the Curry Object Observation System COOSy, a tool to observe the execution of

Curry programs. This commands starts a graphical user interface to show the observation

results and adds to the load path the directory containing the modules that must be imported

in order to annotate a program with observation points. Details about the use of COOSy can

be found in the COOSy interface (under the “Info” button), and details about the general

idea of observation debugging and the implementation of COOSy can be found in [8].

:xml Translate the currently loaded program module into an XML representation according to the

format described in http://www.informatik.uni-kiel.de/~curry/flat/. Actually, this

yields an implementation-independent representation of the corresponding FlatCurry program

(see Appendix A.1.4 for a description of FlatCurry). If prog is the name of the currently

loaded program, the XML representation will be written into the file “prog_flat.xml”.

:peval Translate the currently loaded program module into an equivalent program where some

subexpressions are partially evaluated so that these subexpressions are (hopefully) more ef-

ficiently executed. An expression e to be partially evaluated must be marked in the source

program by (PEVAL e) (where PEVAL is defined as the identity function in the prelude so that

it has no semantical meaning).

The partial evaluator translates a source program prog.curry into the partially evaluated

program in intermediate representation stored in prog_pe.fcy. The latter program is implicitly

loaded by the peval command so that the partially evaluated program is directly available.

The corresponding source program can be shown by the show command (see above).

The current partial evaluator is an experimental prototype (so it might not work on all

programs) based on the ideas described in [1, 2, 3, 4].

2.3 Options of PAKCS

The following options (which can be set by the command “:set”) are currently supported:

+/-debug Debug mode. In the debug mode, one can trace the evaluation of an expression, setting

spy points (break points) etc. (see the commands for the debug mode described below).

+/-free Free variable mode. If the free variable mode is off (default), then free variables occur-

ring in initial expressions entered in the PAKCS environment must always be declared by

11

http://www.informatik.uni-kiel.de/~curry/flat/

“where...free”. This avoids the introduction of free variables in initial expressions by typos

(which might lead to the exploration of infinite search spaces). If the free variable mode is on,

each undefined symbol occurring in an initial expression is considered as a free variable. In

this case, the syntax of accepted initial expressions is more restricted. In particular, lambda

abstractions, lets and list comprehensions are not allowed if the free variable mode is on.

+/-printfail Print failures. If this option is set, failures occurring during evaluation (i.e., non-

reducible demanded subexpressions) are printed. This is useful to see failed reductions due

to partially defined functions or failed unifications. Inside encapsulated search (e.g., inside

evaluations of findall and findfirst), failures are not printed (since they are a typical

programming technique there). Note that this option causes some overhead in execution time

and memory so that it could not be used in larger applications.

+/-allfails If this option is set, all failures (i.e., also failures on backtracking and failures of

enclosing functions that fail due to the failure of an argument evaluation) are printed if

the option printfail is set. Otherwise, only the first failure (i.e., the first non-reducible

subexpression) is printed.

+/-consfail Print constructor failures. If this option is set, failures due to application of functions

with non-exhaustive pattern matching or failures during unification (application of “=:=”) are

shown. Inside encapsulated search (e.g., inside evaluations of findall and findfirst), failures

are not printed (since they are a typical programming technique there). In contrast to the

option printfail, this option creates only a small overhead in execution time and memory

use.

+consfail all Similarly to “+consfail”, but the complete trace of all active (and just failed)

function calls from the main function to the failed function are shown.

+consfail file:f Similarly to “+consfail all”, but the complete fail trace is stored in the file

f . This option is useful in non-interactive program executions like web scripts.

+consfail int Similarly to “+consfail all”, but after each failure occurrence, an interactive

mode for exploring the fail trace is started (see help information in this interactive mode).

When the interactive mode is finished, the program execution proceeds with a failure.

+/-compact Reduce the size of target programs by using the parser option “--compact” (see Sec-

tion 11 for details about this option).

+/-interactive Turn on/off the interactive mode. In the interactive mode, the next non-

deterministic value is computed only when the user requests it. Thus, one has also the

possibility to terminate the enumeration of all values after having seen some values. The

default value for this option can be set in the configuration file “.pakcsrc” (initially, the

interactive mode is turned off).

+/-first Turn on/off the first-only mode. In the first-only mode, only the first value of the main

expression is printed (instead of all values).

12

+/-profile Profile mode. If the profile mode is on, then information about the number of calls,

failures, exits etc. are collected for each function during the debug mode (see above) and

shown after the complete execution (additionaly, the result is stored in the file prog.profile

where prog is the current main program). The profile mode has no effect outside the debug

mode.

+/-suspend Suspend mode (initially, it is off). If the suspend mode is on, all suspended expressions

(if there are any) are shown (in their internal representation) at the end of a computation.

+/-time Time mode. If the time mode is on, the cpu time and the elapsed time of the computation

is always printed together with the result of an evaluation.

+/-verbose Verbose mode (initially, it is off). If the verbose mode is on, the initial expression of

a computation is printed before it is evaluated. If the verbose mode is on and the verbosity

level (see below) is non-zero, the type of the initial expression is also printed and the output

of the evaluation is more detailed.

+/-warn Parser warnings. If the parser warnings are turned on (default), the parser will print

warnings about variables that occur only once in a program rule (see Section 1.2) or locally

declared names that shadow the definition of globally declared names. If the parser warnings

are switched off, these warnings are not printed during the reading of a Curry program.

path path Set the additional search path for loading modules to path. Note that this search

path is only used for loading modules inside this invocation of PAKCS, i.e., the environment

variable “CURRYPATH” (see also Section 1.3) is set to path in this invocation of PAKCS.

The path is a list of directories separated by “:”. The prefix “~” is replaced by the home

directory as in the following example:

:set path aux:~/tests

Relative directory names are replaced by absolute ones so that the path is independent of

later changes of the current working directory.

printdepth n Set the depth for printing terms to the value n (initially: 0). In this case subterms

with a depth greater than n are abbreviated by dots when they are printed as a result of a

computation or during debugging. A value of 0 means infinite depth so that the complete

terms are printed.

vn Set the verbosity level to n. The following values are allowed for n:

n = 0: Do not show any messages (except for errors).

n = 1: Show only messages of the front-end, like loading of modules.

n = 2: Show also messages of the back end, like loading intermediate files or generating Prolog

target files.

n = 3: Show also messages related to loading Prolog files and libraries into the run-time

systems and other intermediate messages and results.

13

safe Turn on the safe execution mode. In the safe execution mode, the initial goal is not allowed

to be of type IO and the program should not import the module Unsafe. Furthermore, the

allowed commands are eval, load, quit, and reload. This mode is useful to use PAKCS in

uncontrolled environments, like a computation service in a web page, where PAKCS could be

invoked by

pakcs :set safe

parser opts Define additional options passed to the PAKCS front end, i.e., the parser program

pakcshome /bin/cymake. For instance, setting the option

:set parser -F --pgmF=transcurry

has the effect that each Curry module to be compiled is transformed by the preprocessor

command transcurry into a new Curry program which is actually compiled.

args arguments Define run-time arguments for the evaluation of the main expression. For in-

stance, setting the option

:set args first second

has the effect that the I/O operation getArgs (see library System (Section A.2.51) returns the

value ["first","second"].

PAKCS can also execute programs in the debug mode. The debug mode is switched on by

setting the debug option with the command “:set +debug”. In order to switch back to normal

evaluation of the program, one has to execute the command “:set -debug”.

In the debug mode, PAKCS offers the following additional options:

+/-single Turn on/off single mode for debugging. If the single mode is on, the evaluation of an

expression is stopped after each step and the user is asked how to proceed (see the options

there).

+/-trace Turn on/off trace mode for debugging. If the trace mode is on, all intermediate expres-

sions occurring during the evaluation of an expressions are shown.

spy f Set a spy point (break point) on the function f . In the single mode, you can “leap” from

spy point to spy point (see the options shown in the single mode).

+/-spy Turn on/off spy mode for debugging. If the spy mode is on, the single mode is automati-

cally activated when a spy point is reached.

2.4 Using PAKCS in Batch Mode

Although PAKCS is primarily designed as an interactive system, it can also be used to process data

in batch mode. For example, consider a Curry program, say myprocessor, that reads argument

strings from the command line and processes them. Suppose the entry point is a function called

just_doit that takes no arguments. Such a processor can be invoked from the shell as follows:

14

> pakcs :set args string1 string2 :load myprocessor.curry :eval just_doit :quit

The “:quit” directive in necessary to avoid PAKCS going into interactive mode after the excution

of the expression being evaluated. The actual run-time arguments (string1, string2) are defined

by setting the option args (see above).

Here is an example to use PAKCS in this way:

> pakcs :set args Hello World :add System :eval "getArgs >>= putStrLn . unwords" :quit

Hello World

>

2.5 Command Line Editing

In order to have support for line editing or history functionality in the command line of PAKCS

(as often supported by the readline library), you should have the Unix command rlwrap installed

on your local machine. If rlwrap is installed, it is used by PAKCS if called on a terminal. If it

should not be used (e.g., because it is executed in an editor with readline functionality), one can

call PAKCS with the parameter “--noreadline”.

2.6 Customization

In order to customize the behavior of PAKCS to your own preferences, there is a configuration file

which is read by PAKCS when it is invoked. When you start PAKCS for the first time, a standard

version of this configuration file is copied with the name “.pakcsrc” into your home directory.

The file contains definitions of various settings, e.g., about showing warnings, progress messages

etc. After you have started PAKCS for the first time, look into this file and adapt it to your own

preferences.

2.7 Emacs Interface

Emacs is a powerful programmable editor suitable for program development. It is freely available

for many platforms (see http://www.emacs.org). The distribution of PAKCS contains also a

special Curry mode that supports the development of Curry programs in the Emacs environment.

This mode includes support for syntax highlighting, finding declarations in the current buffer, and

loading Curry programs into PAKCS in an Emacs shell.

The Curry mode has been adapted from a similar mode for Haskell programs. Its installation is

described in the file README in directory “pakcshome /tools/emacs” which also contains the sources

of the Curry mode and a short description about the use of this mode.

15

http://www.emacs.org

3 Extensions

PAKCS supports some extensions in Curry programs that are not (yet) part of the definition of

Curry. These extensions are described below.

3.1 Recursive Variable Bindings

Local variable declarations (introduced by let or where) can be (mutually) recursive in PAKCS.

For instance, the declaration

ones5 = let ones = 1 : ones

in take 5 ones

introduces the local variable ones which is bound to a cyclic structure representing an infinite list

of 1’s. Similarly, the definition

onetwo n = take n one2

where

one2 = 1 : two1

two1 = 2 : one2

introduces a local variables one2 that represents an infinite list of alternating 1’s and 2’s so that

the expression (onetwo 6) evaluates to [1,2,1,2,1,2].

3.2 Functional Patterns

Functional patterns [6] are a useful extension to code operations in a more readable way. Fur-

thermore, defining operations with functional patterns avoids problems caused by strict equality

(“=:=”) and leads to programs that are potentially more efficient.

Consider the definition of an operation to compute the last element of a list xs based on the

prelude operation “++” for list concatenation:

last xs | _++[y] =:= xs = y where y free

Since the equality constraint “=:=” evaluates both sides to a constructor term, all elements of the

list xs are fully evaluated in order to satisfy the constraint.

Functional patterns can help to improve this computational behavior. A functional pattern is

a function call at a pattern position. With functional patterns, we can define the operation last

as follows:

last (_++[y]) = y

This definition is not only more compact but also avoids the complete evaluation of the list elements:

since a functional pattern is considered as an abbreviation for the set of constructor terms obtained

by all evaluations of the functional pattern to normal form (see [6] for an exact definition), the

previous definition is conceptually equivalent to the set of rules

last [y] = y

last [_,y] = y

last [_,_,y] = y

. . .

16

which shows that the evaluation of the list elements is not demanded by the functional pattern.

In general, a pattern of the form (f t1...tn) (n > 0) is interpreted as a functional pattern if f

is not a visible constructor but a defined function that is visible in the scope of the pattern.

It is also possible to combine functional patterns with as-patterns. Similarly to the meaning of

as-patterns in standard constructor patterns, as-patterns in functional patterns are interpreted as

a sequence of pattern matching where the variable of the as-pattern is matched before the given

pattern is matched. This process can be described by introducing an auxiliary operation for this

two-level pattern matching process. For instance, the definition

f (_ ++ x@[(42,_)] ++ _) = x

is considered as syntactic sugar for the expanded definition

f (_ ++ x ++ _) = f’ x

where

f’ [(42,_)] = x

However, as-patterns are usually implemented in a more efficient way without introducing auxiliary

operations.

Optimization of programs containing functional patterns. Since functions patterns can

evaluate to non-linear constructor terms, they are dynamically checked for multiple occurrences

of variables which are, if present, replaced by equality constraints so that the constructor term is

always linear (see [6] for details). Since these dynamic checks are costly and not necessary for func-

tional patterns that are guaranteed to evaluate to linear terms, there is an optimizer for functional

patterns that checks for occurrences of functional patterns that evaluate always to linear construc-

tor terms and replace such occurrences with a more efficient implementation. This optimizer can

be enabled by the following possibilities:

• Set the environment variable FCYPP to “--fpopt” before starting PAKCS, e.g., by the shell

command

export FCYPP="--fpopt"

Then the functional pattern optimization is applied if programs are compiled and loaded in

PAKCS.

• Put an option into the source code: If the source code of a program contains a line with a

comment of the form (the comment must start at the beginning of the line)

{-# PAKCS_OPTION_FCYPP --fpopt #-}

then the functional pattern optimization is applied if this program is compiled and loaded in

PAKCS.

The optimizer also report errors in case of wrong uses of functional patterns (i.e., in case of a

function f defined with functional patterns that recursively depend on f).

17

3.3 Order of Pattern Matching

Curry allows multiple occurrences of pattern variables in standard patterns. These are an abbrevi-

ation of equational constraints between pattern variables. Functional patterns might also contain

multiple occurrences of pattern variables. For instance, the operation

f (_++[x]++_++[x]++_) = x

returns all elements with at least two occurrences in a list.

If functional patterns as well as multiple occurrences of pattern variables occur in a pattern

defining an operation, there are various orders to match an expression against such an operation.

In the current implementation, the order is as follows:

1. Standard pattern matching: First, it is checked whether the constructor patterns match.

Thus, functional patterns and multiple occurrences of pattern variables are ignored.

2. Functional pattern matching: In the next phase, functional patterns are matched but occur-

rences of standard pattern variables in the functional patterns are ignored.

3. Non-linear patterns: If standard and functional pattern matching is successful, the equational

constraints which correspond to multiple occurrences pattern variables are solved.

4. Guards: Finally, the guards supplied by the programmer are checked.

The order of pattern matching should not influence the computed result. However, it might have

some influence on the termination behavior of programs, i.e., a program might not terminate

instead of finitely failing. In such cases, it could be necessary to consider the influence of the order

of pattern matching. Note that other orders of pattern matching can be obtained using auxiliary

operations.

3.4 Datatypes with Field Labels

A datatype declaration may optionally define data constructors with field labels.1 These field labels

can be used to construct, select from, and update fields in a manner that is independent of the

overall structure of the datatype.

3.4.1 Declaration of Constructors with Labeled Fields

A data constructor of arity n creates an object with n components. These components are normally

accessed positionally as arguments to the constructor in expressions or patterns. For large datatypes

it is useful to assign field labels to the components of a data object. This allows a specific field to

be referenced independently of its location within the constructor. A constructor definition in a

data declaration may assign labels to the fields of the constructor, using the record syntax C {. . . }.
Constructors using field labels may be freely mixed with constructors without them. A constructor

with associated field labels may still be used as an ordinary constructor. The various use of labels

(see below) are simply a shorthand for operations using an underlying positional constructor. The

arguments to the positional constructor occur in the same order as the labeled fields.

1Field labels are quite similar to Haskell [22] so that we adopt most of the description of Haskell here.

18

Translation:

[[C { lts }]] = C [[lts]]

[[lt, lts]] = [[lt]] [[lts]]

[[l, ls :: t]] = t [[ls :: t]]

[[l :: t]] = t

For example, the definition using field labels

data Person = Person { firstName, lastName :: String, age :: Int }

| Agent { firstName, lastName :: String, trueIdentity :: Person }

is translated to

data Person = Person String String Int

| Agent String String Person

A data declaration may use the same field label in multiple constructors as long as the typing of

the field is the same in all cases after type synonym expansion. A label cannot be shared by more

than one type in scope. Field names share the top-level name space with ordinary definition of

functions and must not conflict with other top-level names in scope.

Consider the following example:

data S = S1 { x :: Int } | S2 { x :: Int } -- OK

data T = T1 { y :: Int } | T2 { y :: Bool } -- BAD

Here S is legal but T is not, because y is given inconsistent typings in the latter.

3.4.2 Field Selection

Field labels are used as selector functions, i.e., each field label serves as a function that extracts

the field from an object. Selectors are top-level bindings and so they may be shadowed by local

variables but cannot conflict with other top-level bindings of the same name. This shadowing only

affects selector functions; in record construction (Section 3.4.3) and update (Section 3.4.4), field

labels cannot be confused with ordinary variables.

Translation: A field label lab introduces a selector function defined as:

lab (C1 p11 ...p1k1
) = x

. . .

lab (Cn pn1 ...pnkn) = x

where C1 . . . Cn are all the constructors of the datatype containing a field labeled with lab,

pij is x when lab labels the jth component of Ci or _ otherwise.

For example the definition of Person above introduces the selector functions

firstName :: Person → String

firstName (Person x _ _) = x

firstName (Agent x _ _) = x

lastName :: Person → String

lastName (Person _ x _) = x

19

lastName (Agent _ x _) = x

age :: Person → Int

age (Person _ _ x) = x

trueIdentity :: Person → Person

trueIdentity (Agent _ _ x) = x

3.4.3 Construction Using Field Labels

A constructor with labeled fields may be used to construct a value in which the components are

specified by name rather than by position. In this case, the components are enclosed by braces.

Construction using field labels is subject to the following constraints:

• Only field labels declared with the specified constructor may be mentioned.

• A field label may not be mentioned more than once.

• Fields not mentioned are initialized to different free variables.

The expression C{}, where C is a data constructor, is legal whether or not C was declared with record

syntax ; it denotes C Prelude.unknown1 ... Prelude.unknownn where n is the arity of C. Note that

this will introduce the constructor C with n different free variables as arguments.

Translation: In the binding f = v, the field f labels v.

C { bs } = C (pickC1 bs Prelude.unknown) ... (pickCk bs Prelude.unknown)

where k is the arity of C.

The auxiliary function pickCi bs d is defined as follows:

If the ith component of a constructor C has the field label f and f = v appears in the

binding list bs, then pickCi bs d is v. Otherwise, pickCi bs d is the default value d.

For example, a Person can be constructed by

smith = Agent { lastName = "Smith", firstName = "Agent" }

which is equivalent to the following agent, whose true identity might be any person:

smith = Agent "Agent" "Smith" _

3.4.4 Updates Using Field Labels

Values belonging to a datatype with field labels may be non-destructively updated. This creates

a new value in which the specified field values replace those in the existing value. Updates are

restricted in the following ways:

• All labels must be taken from the same datatype.

• No label may be mentioned more than once.

20

• The computation fails when the value being updated does not contain all of the specified

labels.

Translation: Using the prior definition of pick,

e { bs } = fcase e of

C1 v1...vk1
-> C1 (pickC1

1 bs v1) ... (pickC1

k1
bs vk1

)

. . .

Cj v1...vkj -> Cj (pick
Cj

1 bs v1) ... (pick
Cj

kj
bs vkj)

where {C1, . . . , Cj} is the set of constructors containing all labels in bs, ki is the arity of

Ci.

For example, after watching a few more movies, we might want to update our information about

smith. We can do so by writing

smith { trueIdentity = complement neo }

which is equivalent to

fcase smith of

Agent fn ln _ → Agent fn ln (complement neo)

3.4.5 Pattern Matching Using Field Labels

A constructor with labeled fields may be used to specify a pattern in which the components are

identified by name rather than by position. Matching against a constructor using labeled fields is

the same as matching ordinary constructor patterns except that the fields are matched in the order

they are named in the field list. All listed fields must be declared by the constructor; fields may

not be named more than once. Fields not named by the pattern are ignored (matched against _).

Translation: Using the prior definition of pick,

C { bs } = (C (pickC1 bs _) ... (pickCk bs _))

where k is the arity of C.

For example, we could define a Smith-tester by writing:

isSmith Agent { lastName = "Smith" } = success

which is equivalent to

isSmith (Agent _ "Smith" _) = success

3.4.6 Field Labels and Modules

As described in the Curry report, there are two forms of exporting a data type T : The simple name

T exports only the types name without constructors, whereas T(..) also exports all constructors.

Analogously, the form T does not export any field labels, whereas T(..) exports all constructors

and all field labels.

21

4 Recognized Syntax of Curry

The PAKCS Curry compiler accepts a slightly extended version of the grammar specified in the

Curry Report [20]. Furthermore, the syntax recognized by PAKCS differs from that specified in the

Curry Report regarding numeric or character literals. We therefore present the complete description

of the syntax below, whereas syntactic extensions are highlighted.

4.1 Notational Conventions

The syntax is given in extended Backus-Naur-Form (eBNF), using the following notation:

NonTerm ::= α production

NonTerm nonterminal symbol

Term terminal symbol

[α] optional

{α} zero or more repetitions

(α) grouping

α | β alternative

α〈β〉 difference – elements generated by α

without those generated by β

The Curry files are expected to be encoded in UTF8. However, source programs are biased

towards ASCII for compatibility reasons.

4.2 Lexicon

4.2.1 Case Mode

Although the Curry Report specifies four different case modes (Prolog, Gödel, Haskell, free), the

PAKCS only supports the free mode which puts no constraints on the case of identifiers.

4.2.2 Identifiers and Keywords

Letter ::= any ASCII letter

Dashes ::= -- {-}

Ident ::= Letter {Letter | Digit | _ | ’}
Symbol ::= ~ | ! | @ | # | $ | % | ^ | & | * | + | - | = | < | > | ? | . | / | | | \ | :

ModuleID ::= {Ident .} Ident

TypeConstrID ::= Ident

DataConstrID ::= Ident

TypeVarID ::= Ident | _
InfixOpID ::= (Symbol {Symbol})〈Dashes〉

FunctionID ::= Ident

VariableID ::= Ident

LabelID ::= Ident

22

QTypeConstrID ::= [ModuleID .] TypeConstrID

QDataConstrID ::= [ModuleID .] DataConstrID

QInfixOpID ::= [ModuleID .] InfixOpID

QFunctionID ::= [ModuleID .] FunctionID

QVariableID ::= [ModuleID .] VariableID

QLabelID ::= [ModuleID .] LabelID

The following identifiers are recognized as keywords and cannot be used as an identifier:

case data do else external fcase foreign

free if import in infix infixl infixr

let module newtype of then type where

Note that the symbols as, hiding and qualified are not keywords. They have only a special

meaning in module headers and can be used as ordinary identifiers.

The following symbols also have a special meaning and cannot be used as an infix operator

identifier:

.. : :: = \\ | <- -> @ ~

4.2.3 Comments

Comments begin either with “--” and terminate at the end of the line or with “{-” and terminate

with a matching “-}”, i.e., the delimiters “{-” and “-}” act as parentheses and can be nested.

4.2.4 Numeric and Character Literals

Contrasting to the Curry Report, PAKCS adopts Haskell’s notation of literals, for both numeric

literals as well as Char and String literals. The precise syntax for both kinds is given below.

Int ::= Decimal

| 0o Octal | 0O Octal

| 0x Hexadecimal | 0X Hexadecimal

Float ::= Decimal . Decimal [Exponent]

| Decimal Exponent

Exponent ::= (e | E) [+ | -] Decimal

Decimal ::= Digit [Decimal]

Binary ::= Binit [Binary]

Octal ::= Octit [Octal]

Hexadecimal ::= Hexit [Hexadecimal]

Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Binit ::= 0 | 1
Octit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
Hexit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | a | b | c | d | e | f

Char ::= ’(Graphic〈\〉 | Space | Escape〈\&〉)’
String ::= "{Graphic〈"|\〉 | Space | Escape | Gap}"

Escape ::= \ (CharEsc | Ascii | Decimal | o Octal | x Hexadecimal)

23

CharEsc ::= a | b | f | n | r | t | v | \ | " | ’ | &
Ascii ::= ^ Cntrl | NUL | SOH | STX | ETX | EOT | ENQ | ACK

| BEL | BS | HT | LF | VT | FF | CR | SO | SI | DLE
| DC1 | DC2 | DC3 | DC4 | NAK | SYN | ETB | CAN
| EM | SUB | ESC | FS | GS | RS | US | SP | DEL

Cntrl ::= AsciiLarge | @ | [| \ |] | ^ | _
AsciiLarge ::= A | . . . | Z

Gap ::= \ WhiteChar {WhiteChar} \

4.3 Layout

Similarly to Haskell, a Curry programmer can use layout information to define the structure of

blocks. For this purpose, we define the indentation of a symbol as the column number indicating

the start of this symbol. The indentation of a line is the indentation of its first symbol.2

The layout (or “off-side”) rule applies to lists of syntactic entities after the keywords let, where,

do, or of. In the subsequent context-free syntax, these lists are enclosed with curly brackets ({ })
and the single entities are separated by semicolons (;). Instead of using the curly brackets and

semicolons of the context-free syntax, a Curry programmer must specify these lists by indentation:

the indentation of a list of syntactic entities after let, where, do, or of is the indentation of the

next symbol following the let, where, do, of. Any item of this list start with the same indentation

as the list. Lines with only whitespaces or an indentation greater than the indentation of the list

continue the item in its previous line. Lines with an indentation less than the indentation of the list

terminate the entire list. Moreover, a list started by let is terminated by the keyword in. Thus,

the sentence

f x = h x where { g y = y + 1 ; h z = (g z) * 2 }

which is valid w.r.t. the context-free syntax, is written with the layout rules as

f x = h x

where g y = y + 1

h z = (g z) * 2

or also as

f x = h x where

g y = y + 1

h z = (g z)

* 2

To avoid an indentation of top-level declarations, the keyword module and the end-of-file token are

assumed to start in column 0.

4.4 Context Free Grammar

Module ::= module ModuleID [Exports] where Block

| Block

2In order to determine the exact column number, we assume a fixed-width font with tab stops at each 8th column.

24

ModuleID ::= see lexicon

Exports ::= (Export1 , . . . , Exportn) (n ≥ 0)

Export ::= QFunctionName

| QTypeConstrID [(ConsLabelName1 , . . . , ConsLabelNamen)] (n ≥ 0)

| QTypeConstrID (..)

| module ModuleID

ConsLabelName ::= LabelID | DataConstr

Block ::= { [ImportDecl1 ; . . . ; ImportDeclk ;] (no fixity declarations here)

BlockDeclaration1 ; . . . ; BlockDeclarationn } (k, n ≥ 0)

ImportDecl ::= import [qualified] ModuleID [as ModuleID] [ImportRestr]

ImportRestr ::= (Import1 , . . . , Importn) (n ≥ 0)

| hiding (Import1 , . . . , Importn) (n ≥ 0)

Import ::= FunctionName

| TypeConstrID [(ConsLabelName1 , . . . , ConsLabelNamen)] (n ≥ 0)

| TypeConstrID (..)

BlockDeclaration ::= TypeSynonymDecl

| DataDeclaration

| FixityDeclaration

| FunctionDeclaration

TypeSynonymDecl ::= type SimpleType = TypeExpr

SimpleType ::= TypeConstrID TypeVarID1 . . . TypeVarIDn (n ≥ 0)

TypeConstrID ::= see lexicon

DataDeclaration ::= data SimpleType (external data type)

| data SimpleType = ConstrDecl1 | . . . | ConstrDecln (n > 0)

ConstrDecl ::= DataConstr SimpleTypeExpr1 . . . SimpleTypeExprn (n ≥ 0)

| SimpleTypeExpr ConsOp TypeConsExpr (infix data constructor)

| DataConstr { FieldDeclaration1 , . . . , FieldDeclarationn } (n ≥ 0)

FieldDeclaration ::= LabelID1 , . . . , LabelIDn :: TypeExpr (n > 0)

LabelID ::= see lexicon

TypeExpr ::= TypeConsExpr [-> TypeExpr]

TypeConsExpr ::= QTypeConstrID SimpleTypeExpr1 . . . SimpleTypeExprn (n > 0)

| SimpleTypeExpr

SimpleTypeExpr ::= TypeVarID

| QTypeConstrID

| () (unit type)

| (TypeExpr1 , . . . , TypeExprn) (tuple type, n > 1)

| [TypeExpr] (list type)

| (TypeExpr) (parenthesized type)

TypeVarID ::= see lexicon

FixityDeclaration ::= FixityKeyword Digit InfixOpID1 , . . . , InfixOpIDn (n > 0)

FixityKeyword ::= infixl | infixr | infix
InfixOpID ::= see lexicon

FunctionDeclaration ::= Signature | External | Equat

External ::= FunctionNames external (externally defined functions)

Signature ::= FunctionNames :: TypeExpr

25

FunctionNames ::= FunctionName1 , . . . , FunctionNamen (n > 0)

Equat ::= FunLHS = TypedExpr [where LocalDefs]

| FunLHS CondExprs [where LocalDefs]

FunLHS ::= FunctionName SimplePat1 . . . SimplePatn (n ≥ 0)

| SimplePat InfixOpID SimplePat

CondExprs ::= | InfixExpr = TypedExpr [CondExprs]

Pattern ::= ConsPattern [QConsOp Pattern] (infix constructor pattern)

ConsPattern ::= GDataConstr SimplePat1 . . . SimplePatn (constructor pattern)

| SimplePat

SimplePat ::= Variable

| _ (wildcard)

| QDataConstr

| Literal

| - Int (negative pattern)

| -. Float (negative float pattern)

| () (empty tuple pattern)

| (Pattern1 , . . . , Patternn) (n > 1)

| (Pattern) (parenthesized pattern)

| [Pattern1 , . . . , Patternn] (n ≥ 0)

| Variable @ SimplePat (as-pattern)

| ~ SimplePat (irrefutable pattern)

| (SimplePat QFunOp SimplePat) (infix functional pattern)

| (QFunctionName SimplePat1 . . . SimplePatn) (functional pattern, n > 0)

| QDataConstr { FieldPat1 , . . . , FieldPatn } (labeled pattern, n ≥ 0)

FieldPat ::= QLabelID = Pattern

QLabelID ::= see lexicon

LocalDefs ::= {ValueDeclaration1 ; . . . ; ValueDeclarationn } (n > 0)

ValueDeclaration ::= FunctionDeclaration

| PatternDeclaration

| VariableID1 , . . . , VariableIDn free (n > 0)

| FixityDeclaration

PatternDeclaration ::= Pattern = TypedExpr [where LocalDefs]

TypedExpr ::= InfixExpr :: TypeExpr (expression type signature)

| InfixExpr

InfixExpr ::= Expr QOp InfixExpr (infix operator application)

| - InfixExpr (unary int minus)

| -. InfixExpr (unary float minus)

| Expr

Expr ::= \ SimplePat1 . . . SimplePatn -> TypedExpr (lambda expression, n > 0)

| let LocalDefs in TypedExpr (let expression)

| if TypedExpr then TypedExpr else TypedExpr (conditional)

| case TypedExpr of {Alt1 ; . . . ; Altn } (case expression, n ≥ 0)

| fcase TypedExpr of {Alt1 ; . . . ; Altn } (fcase expression, n ≥ 0)

| do { Stmt1 ; . . . ; Stmtn ; TypedExpr } (do expression, n ≥ 0)

| FunctExpr

FunctExpr ::= [FunctExpr] BasicExpr (function application)

BasicExpr ::= QVariableID (variable)

| _ (anonymous free variable)

26

| QFunctionName (qualified function)

| GDataConstr (general constructor)

| Literal

| (TypedExpr) (parenthesized expression)

| (TypedExpr1 , . . . , TypedExprn) (tuple, n > 1)

| [TypedExpr1 , . . . , TypedExprn] (finite list, n > 0)

| [TypedExpr [, TypedExpr] .. [TypedExpr]] (arithmetic sequence)

| [TypedExpr | Qual1 , . . . , Qualn] (list comprehension, n ≥ 1)

| (InfixExpr QOp) (left section)

| (QOp〈-,-.〉 InfixExpr) (right section)

| QDataConstr { FBind1 , . . . , FBindn } (labeled construction, n ≥ 0)

| BasicExpr〈QDataConstr〉 { FBind1 , . . . , FBindn } (labeled update, n > 0)

Alt ::= Pattern -> TypedExpr [where LocalDefs]

| Pattern GdAlts [where LocalDefs]

GdAlts ::= | TypedExpr -> TypedExpr [GdAlts]

FBind ::= QLabelID = TypedExpr

Qual ::= TypedExpr

| let LocalDefs

| Pattern <- TypedExpr

Stmt ::= TypedExpr

| let LocalDefs

| Pattern <- TypedExpr

Literal ::= Int | Char | String | Float

GDataConstr ::= ()

| []

| (,{,})
| QDataConstr

FunctionName ::= FunctionID | (InfixOpID) (function)

QFunctionName ::= QFunctionID | (QInfixOpID) (qualified function)

Variable ::= VariableID | (InfixOpID) (variable)

DataConstr ::= DataConstrID | (InfixOpID) (constructor)

QDataConstr ::= QDataConstrID | (QConsOp) (qualified constructor)

QFunOp ::= QInfixOpID | ‘QFunctionID‘ (qualified function operator)

ConsOp ::= InfixOpID | ‘DataConstrID‘ (constructor operator)

QOp ::= QFunOp | QConsOp (qualified operator)

QConsOp ::= GConSym | ‘QDataConstrID‘ (qualified constructor operator)

GConSym ::= : | QInfixOpID (general constructor symbol)

27

5 CurryDoc: A Documentation Generator for Curry Programs

CurryDoc is a tool in the PAKCS distribution that generates the documentation for a Curry

program (i.e., the main module and all its imported modules) in HTML format. The generated

HTML pages contain information about all data types and functions exported by a module as well

as links between the different entities. Furthermore, some information about the definitional status

of functions (like rigid, flexible, external, complete, or overlapping definitions) are provided and

combined with documentation comments provided by the programmer.

A documentation comment starts at the beginning of a line with “--- ” (also in literate

programs!). All documentation comments immediately before a definition of a datatype or (top-

level) function are kept together.3 The documentation comments for the complete module occur

before the first “module” or “import” line in the module. The comments can also contain several

special tags. These tags must be the first thing on its line (in the documentation comment) and

continues until the next tag is encountered or until the end of the comment. The following tags

are recognized:

@author comment

Specifies the author of a module (only reasonable in module comments).

@version comment

Specifies the version of a module (only reasonable in module comments).

@cons id comment

A comment for the constructor id of a datatype (only reasonable in datatype comments).

@param id comment

A comment for function parameter id (only reasonable in function comments). Due to pattern

matching, this need not be the name of a parameter given in the declaration of the function

but all parameters for this functions must be commented in left-to-right order (if they are

commented at all).

@return comment

A comment for the return value of a function (only reasonable in function comments).

The comment of a documented entity can be any string in Markdown’s syntax (the currently sup-

ported set of elements is described in detail in the appendix). For instance, it can contain Markdown

annotations for emphasizing elements (e.g., _verb_), strong elements (e.g., **important**), code

elements (e.g., ‘3+4‘), code blocks (lines prefixed by four blanks), unordered lists (lines prefixed

by “ * ”), ordered lists (lines prefixed by blanks followed by a digit and a dot), quotations (lines

prefixed by “> ”), and web links of the form “<http://...>” or “[link text](http://...)”. If the

Markdown syntax should not be used, one could run CurryDoc with the parameter “--nomarkdown”.

The comments can also contain markups in HTML format so that special characters like “<”

must be quoted (e.g., “<”). However, header tags like <h1> should not be used since the struc-

turing is generated by CurryDoc. In addition to Markdown or HTML markups, one can also mark

3The documentation tool recognizes this association from the first identifier in a program line. If one wants to

add a documentation comment to the definition of a function which is an infix operator, the first line of the operator

definition should be a type definition, otherwise the documentation comment is not recognized.

28

http://en.wikipedia.org/wiki/Markdown

references to names of operations or data types in Curry programs which are translated into links

inside the generated HTML documentation. Such references have to be enclosed in single quotes.

For instance, the text ’conc’ refers to the Curry operation conc inside the current module whereas

the text ’Prelude.reverse’ refers to the operation reverse of the module Prelude. If one wants

to write single quotes without this specific meaning, one can escape them with a backslash:

--- This is a comment without a \’reference\’.

To simplify the writing of documentation comments, such escaping is only necessary for single

words, i.e., if the text inside quotes has not the syntax of an identifier, the escaping can be omitted,

as in

--- This isn’t a reference.

The following example text shows a Curry program with some documentation comments:

--- This is an

--- example module.

--- @author Michael Hanus

--- @version 0.1

module Example where

--- The function ‘conc‘ concatenates two lists.

--- @param xs - the first list

--- @param ys - the second list

--- @return a list containing all elements of ‘xs‘ and ‘ys‘

conc [] ys = ys

conc (x:xs) ys = x : conc xs ys

-- this comment will not be included in the documentation

--- The function ‘last‘ computes the last element of a given list.

--- It is based on the operation ’conc’ to concatenate two lists.

--- @param xs - the given input list

--- @return last element of the input list

last xs | conc ys [x] =:= xs = x where x,ys free

--- This data type defines _polymorphic_ trees.

--- @cons Leaf - a leaf of the tree

--- @cons Node - an inner node of the tree

data Tree a = Leaf a | Node [Tree a]

To generate the documentation, execute the command

currydoc Example

(currydoc is a command usually stored in pakcshome/bin where pakcshome is the installation

directory of PAKCS; see Section 1.1). This command creates the directory DOC_Example (if it does

not exist) and puts all HTML documentation files for the main program module Example and all

its imported modules in this directory together with a main index file index.html. If one prefers

another directory for the documentation files, one can also execute the command

29

currydoc docdir Example

where docdir is the directory for the documentation files.

In order to generate the common documentation for large collections of Curry modules (e.g., the

libraries contained in the PAKCS distribution), one can call currydoc with the following options:

currydoc --noindexhtml docdir Mod : This command generates the documentation for module Mod

in the directory docdir without the index pages (i.e., main index page and index pages for

all functions and constructors defined in Mod and its imported modules).

currydoc --onlyindexhtml docdir Mod1 Mod2 ...Modn : This command generates only the index

pages (i.e., a main index page and index pages for all functions and constructors defined in

the modules Mod1, M2,. . . ,Modn and their imported modules) in the directory docdir.

30

6 CurryBrowser: A Tool for Analyzing and Browsing Curry Pro-

grams

CurryBrowser is a tool to browse through the modules and functions of a Curry application, show

them in various formats, and analyze their properties.4 Moreover, it is constructed in a way so

that new analyzers can be easily connected to CurryBrowser. A detailed description of the ideas

behind this tool can be found in [15, 16].

CurryBrowser is part of the PAKCS distribution and can be started in two ways:

• In the command shell via the command: pakcshome /bin/currybrowser mod

• In the PAKCS environment after loading the module mod and typing the command “:browse”.

Here, “mod” is the name of the main module of a Curry application. After the start, CurryBrowser

loads the interfaces of the main module and all imported modules before a GUI is created for

interactive browsing.

To get an impression of the use of CurryBrowser, Figure 1 shows a snapshot of its use on a

particular application (here: the implementation of CurryBrowser). The upper list box in the

left column shows the modules and their imports in order to browse through the modules of an

application. Similarly to directory browsers, the list of imported modules of a module can be opened

or closed by clicking. After selecting a module in the list of modules, its source code, interface, or

various other formats of the module can be shown in the main (right) text area. For instance, one

can show pretty-printed versions of the intermediate flat programs (see below) in order to see how

local function definitions are translated by lambda lifting [21] or pattern matching is translated

into case expressions [11, 23]. Since Curry is a language with parametric polymorphism and type

inference, programmers often omit the type signatures when defining functions. Therefore, one can

also view (and store) the selected module as source code where missing type signatures are added.

Below the list box for selecting modules, there is a menu (“Analyze selected module”) to analyze

all functions of the currently selected module at once. This is useful to spot some functions of a

module that could be problematic in some application contexts, like functions that are impure (i.e.,

the result depends on the evaluation time) or partially defined (i.e., not evaluable on all ground

terms). If such an analysis is selected, the names of all functions are shown in the lower list box

of the left column (the “function list”) with prefixes indicating the properties of the individual

functions.

The function list box can be also filled with functions via the menu “Select functions”. For

instance, all functions or only the exported functions defined in the currently selected module can

be shown there, or all functions from different modules that are directly or indirectly called from a

currently selected function. This list box is central to focus on a function in the source code of some

module or to analyze some function, i.e., showing their properties. In order to focus on a function,

it is sufficient to check the “focus on code” button. To analyze an individually selected function,

one can select an analysis from the list of available program analyses (through the menu “Select

analysis”). In this case, the analysis results are either shown in the text box below the main text

area or visualized by separate tools, e.g., by a graph drawing tool for visualizing call graphs. Some

4Although CurryBrowser is implemented in Curry, some functionalities of it require an installed graph visualization

tool (dot http://www.graphviz.org/), otherwise they have no effect.

31

http://www.graphviz.org/

Figure 1: Snapshot of the main window of CurryBrowser

analyses are local, i.e., they need only to consider the local definition of this function (e.g., “Calls

directly,” “Overlapping rules,” “Pattern completeness”), where other analyses are global, i.e., they

consider the definitions of all functions directly or indirectly called by this function (e.g., “Depends

on,” “Solution complete,” “Set-valued”). Finally, there are a few additional tools integrated into

CurryBrowser, for instance, to visualize the import relation between all modules as a dependency

graph. These tools are available through the “Tools” menu.

More details about the use of CurryBrowser and all built-in analyses are available through the

“Help” menu of CurryBrowser.

32

7 CurryTest: A Tool for Testing Curry Programs

CurryTest is a simple tool in the PAKCS distribution to write and run repeatable tests. CurryTest

simplifies the task of writing test cases for a module and executing them. The tool is easy to

use. Assume one has implemented a module MyMod and wants to write some test cases to test its

functionality, making regression tests in future versions, etc. For this purpose, there is a system

library Assertion (Section A.2.2) which contains the necessary definitions for writing tests. In

particular, it exports an abstract polymorphic type “Assertion a” together with the following

operations:

assertTrue :: String → Bool → Assertion ()

assertEqual :: String → a → a → Assertion a

assertValues :: String → a → [a] → Assertion a

assertSolutions :: String → (a → Success) → [a] → Assertion a

assertIO :: String → IO a → a → Assertion a

assertEqualIO :: String → IO a → IO a → Assertion a

The expression “assertTrue s b” is an assertion (named s) that the expression b has the value True.

Similarly, the expression “assertEqual s e1 e2” asserts that the expressions e1 and e2 must be equal

(i.e., e1==e2 must hold), the expression “assertValues s e vs” asserts that vs is the multiset of all

values of e, and the expression “assertSolutions s c vs” asserts that the constraint abstraction c

has the multiset of solutions vs. Furthermore, the expression “assertIO s a v” asserts that the I/O

action a yields the value v whenever it is executed, and the expression “assertEqualIO s a1 a2”

asserts that the I/O actions a1 and a2 yield equal values. The name s provided as a first argument

in each assertion is used in the protocol produced by the test tool.

One can define a test program by importing the module to be tested together with the module

Assertion and defining top-level functions of type Assertion in this module (which must also be

exported). As an example, consider the following program that can be used to test some list

processing functions:

import List

import Assertion

test1 = assertEqual "++" ([1,2]++[3,4]) [1,2,3,4]

test2 = assertTrue "all" (all (<5) [1,2,3,4])

test3 = assertSolutions "prefix" (\x → x++_ =:= [1,2])

[[],[1],[1,2]]

For instance, test1 asserts that the result of evaluating the expression ([1,2]++[3,4]) is equal to

[1,2,3,4].

We can execute a test suite by the command

currytest TestList

(currytest is a program stored in pakcshome /bin where pakcshome is the installation directory of

PAKCS; see Section 1.1). In our example, “TestList.curry” is the program containing the definition

of all assertions. This has the effect that all exported top-level functions of type Assertion are

33

Figure 2: Snapshot of CurryTest’s graphical interface

tested (i.e., the corresponding assertions are checked) and the results (“OK” or failure) are reported

together with the name of each assertion. For our example above, we obtain the following successful

protocol:

==

Testing module "TestList"...

OK: ++

OK: all

OK: prefix

All tests successfully passed.

==

There is also a graphical interface that summarizes the results more nicely.5 In order to start this

interface, one has to add the parameter “--window” (or “-w”), e.g., executing a test suite by

currytest --window TestList

or

currytest -w TestList

A snapshot of the interface is shown in Figure 2.

5Due to a bug in older versions of SICStus-Prolog, it works only with SICStus-Prolog version 3.8.5 (or newer).

34

8 ERD2Curry: A Tool to Generate Programs from ER Specifica-

tions

ERD2Curry is a tool to generate Curry code to access and manipulate data persistently stored

from entity relationship diagrams. The idea of this tool is described in detail in [10]. Thus, we

describe only the basic steps to use this tool in the following.

If one creates an entity relationship diagram (ERD) with the Umbrello UML Modeller, one has

to store its XML description in XMI format (as offered by Umbrello) in a file, e.g., “myerd.xmi”.

This description can be compiled into a Curry program by the command

erd2curry -x myerd.xmi

(erd2curry is a program stored in pakcshome /bin where pakcshome is the installation directory of

PAKCS; see Section 1.1). If MyData is the name of the ERD, the Curry program file “MyData.curry”

is generated containing all the necessary database access code as described in [10]. In addition to the

generated Curry program file, two auxiliary program files ERDGeneric.curry and KeyDatabase.curry

are created in the same directory.

If one does not want to use the Umbrello UML Modeller, which might be the preferred method

since the interface to the Umbrello UML Modeller is no longer actively supported, one can also

create a textual description of the ERD as a Curry term of type ERD (w.r.t. the type definition given

in module pakcshome /currytools/erd2curry/ERD.curry) and store it in some file, e.g., “myerd.term”.

This description can be compiled into a Curry program by the command

erd2curry -t myerd.term

The directory pakcshome /currytools/erd2curry/ contains two examples for such ERD term files:

Blog.erdterm: This is a simple ERD model for a blog with entries, comments, and tags.

Uni.erdterm: This is an ERD model for university lectures as presented in the paper [10].

There is also the possibility to visualize an ERD term as a graph with the graph visualization

program dotty (for this purpose, it might be necessary to adapt the definition of dotviewcommand

in your “.pakcsrc” file, see Section 2.6, according to your local environment). The visualization

can be performed by the command

erd2curry -v myerd.term

35

9 Spicey: An ER-based Web Framework

Spicey is a framework to support the implementation of web-based systems in Curry. Spicey

generates an initial implementation from an entity-relationship (ER) description of the underlying

data. The generated implementation contains operations to create and manipulate entities of

the data model, supports authentication, authorization, session handling, and the composition of

individual operations to user processes. Furthermore, the implementation ensures the consistency

of the database w.r.t. the data dependencies specified in the ER model, i.e., updates initiated by

the user cannot lead to an inconsistent state of the database.

The idea of this tool, which is part of the distribution of PAKCS, is described in detail in [18].

Thus, we describe only the basic steps to use this tool in order to generate a web application.

First, one has to create a textual description of the entity-relationship model as a Curry term of

type ERD (w.r.t. the type definitions given in module pakcshome /currytools/erd2curry/ERD.curry)

and store it in some file, e.g., “mymodel.erdterm”. The directory pakcshome /currytools/spicey/

contains two examples for such ERD term files:

Blog.erdterm: This is a simple ER model for a blog with entries, comments, and tags, as presented

in the paper [18].

Uni.erdterm: This is an ER model for university lectures as presented in the paper [10].

Then change to the directory in which you want to create the project sources. Execute the command

spiceup .../mymodel.erdterm

with the path to the ERD term file as a parameter (spiceup is a program stored in pakcshome /bin

where pakcshome is the installation directory of PAKCS; see Section 1.1). You can also provide a

path name, i.e., the name of a directory, where the database files should be stored, e.g.,

spiceup --dbpath DBDIR .../mymodel.erdterm

If the parameter “--dbpath DBDIR” is not provided, then DBDIR is set to the current directory

(“.”). Since this specification will be used in the generated web programs, a relative database

directory name will be relative to the place where the web programs are stored. In order to avoid

such confusion, it might be better to specify an absolute path name for the database directory.

After the generation of this project (see the generated file README.txt for information about the

generated project structure), one can compile the generated programs by

make compile

In order to generate the executable web application, configure the generated Makefile by adapting

the variable WEBSERVERDIR to the location where the compiled cgi programs should be stored, and

run

make deploy

After the successful compilation and deployment of all files, the application is executable in a web

browser by selecting the URL <URL of web dir>/spicey.cgi.

36

10 UI: Declarative Programming of User Interfaces

The PAKCS distribution contains a collection of libraries to implement graphical user interfaces

as well as web-based user interfaces from declarative descriptions. Exploiting these libraries, it is

possible to define the structure and functionality of a user interface independent from the concrete

technology. Thus, a graphical user interface or a web-based user interface can be generated from

the same description by simply changing the imported libraries. This programming technique is

described in detail in [17].

The libraries implementing these user interfaces are contained in the directory

pakcshome /tools/ui

Thus, in order to compile programs containing such user interface specifications, one has to in-

clude the directory pakcshome /tools/ui into the Curry load path (e.g., by setting the environment

variable “CURRYPATH”, see also Section 1.3). The directory

pakcshome /tools/ui/examples

contains a few examples for such user interface specifications.

37

11 Preprocessing FlatCurry Files

After the invocation of the Curry front end to parse Curry programs and translate them into

the intermediate FlatCurry representation, one can apply transformations on the FlatCurry files

before they are passed to the back end which translates the FlatCurry files into Prolog code. These

transformation are invoked by the FlatCurry preprocessor pakcs/bin/fycpp. Currently, only the

FlatCurry file corresponding to the main module can be transformed.

A transformation can be specified as follows:

1. Options to pakcs/bin/fcypp:

--fpopt Apply functional pattern optimization (see pakcs/tools/optimize/NonStrictOpt.curry

for details).

--compact Apply code compactification after parsing, i.e., transform the main module and

all its imported into one module and delete all non-accessible functions.

--compactexport Similar to --compact but delete all functions that are not accessible from

the exported functions of the main module.

--compactmain:f Similar to --compact but delete all functions that are not accessible from

the function “f” of the main module.

--fcypp cmd Apply command cmd to the main module after parsing. This is useful to in-

tegrate your own transformation into the compilation process. Note that the command

“cmd prog” should perform a transformation on the FlatCurry file prog.fcy, i.e., it re-

places the FlatCurry file by a new one.

2. Setting the environment variable FCYPP:

For instance, setting FCYPP by

export FCYPP="--fpopt"

will apply the functional pattern optimization if programs are compiled and loaded in the

PAKCS programming environment.

3. Putting options into the source code:

If the source code contains a line with a comment of the form (the comment must start at

the beginning of the line)

{-# PAKCS_OPTION_FCYPP <options> #-}

then the transformations specified by <options> are applied after translating the source code

into FlatCurry code. For instance, the functional pattern optimization can be set by the

comment

{-# PAKCS_OPTION_FCYPP --fpopt #-}

in the source code. Note that this comment must be in a single line of the source program.

If there are multiple lines containing such comments, only the first one will be considered.

38

Multiple options: Note that an arbitrary number of transformations can be specified by the

methods described above. If several specifications for preprocessing FlatCurry files are used, they

are executed in the following order:

1. all transformations specified by the environemnt variable FCYPP (from left to right)

2. all transformations specified as command line options of fcypp (from left to right)

3. all transformations specified by a comment line in the source code (from left to right)

39

12 Technical Problems

Due to the fact that Curry is intended to implement distributed systems (see Appendix A.1.3), it

might be possible that some technical problems arise due to the use of sockets for implementing

these features. Therefore, this section gives some information about the technical requirements of

PAKCS and how to solve problems due to these requirements.

There is one fixed port that is used by the implementation of PAKCS:

Port 8766: This port is used by the Curry Port Name Server (CPNS) to implement symbolic

names for ports in Curry (see Appendix A.1.3). If some other process uses this port on the

machine, the distribution facilities defined in the module Ports (see Appendix A.1.3) cannot

be used.

If these features do not work, you can try to find out whether this port is in use by the shell

command “netstat -a | fgrep 8766” (or similar).

The CPNS is implemented as a demon listening on its port 8766 in order to serve requests

about registering a new symbolic name for a Curry port or asking the physical port number of

a Curry port. The demon will be automatically started for the first time on a machine when

a user compiles a program using Curry ports. It can also be manually started and terminated

by the scripts pakcshome /cpns/start and pakcshome /cpns/stop. If the demon is already running,

the command pakcshome /cpns/start does nothing (so it can be always executed before invoking a

Curry program using ports).

If you detect any further technical problem, please write to

pakcs@curry-language.org

40

References

[1] E. Albert, M. Alpuente, M. Hanus, and G. Vidal. A partial evaluation framework for Curry

programs. In Proc. of the 6th International Conference on Logic for Programming and Auto-

mated Reasoning (LPAR’99), pages 376–395. Springer LNCS 1705, 1999.

[2] E. Albert, M. Hanus, and G. Vidal. Using an abstract representation to specialize functional

logic programs. In Proc. of the 7th International Conference on Logic for Programming and

Automated Reasoning (LPAR 2000), pages 381–398. Springer LNCS 1955, 2000.

[3] E. Albert, M. Hanus, and G. Vidal. A practical partial evaluator for a multi-paradigm declar-

ative language. In Proc. of the 5th International Symposium on Functional and Logic Pro-

gramming (FLOPS 2001), pages 326–342. Springer LNCS 2024, 2001.

[4] E. Albert, M. Hanus, and G. Vidal. A practical partial evaluator for a multi-paradigm declar-

ative language. Journal of Functional and Logic Programming, 2002(1), 2002.

[5] S. Antoy and M. Hanus. Compiling multi-paradigm declarative programs into Prolog. In Proc.

International Workshop on Frontiers of Combining Systems (FroCoS’2000), pages 171–185.

Springer LNCS 1794, 2000.

[6] S. Antoy and M. Hanus. Declarative programming with function patterns. In Proceedings of

the International Symposium on Logic-based Program Synthesis and Transformation (LOP-

STR’05). Springer LNCS (to appear), 2005.

[7] S. Antoy and M. Hanus. Set functions for functional logic programming. In Proceedings of

the 11th ACM SIGPLAN International Conference on Principles and Practice of Declarative

Programming (PPDP’09), pages 73–82. ACM Press, 2009.

[8] B. Braßel, O. Chitil, M. Hanus, and F. Huch. Observing functional logic computations. In

Proc. of the Sixth International Symposium on Practical Aspects of Declarative Languages

(PADL’04), pages 193–208. Springer LNCS 3057, 2004.

[9] B. Braßel, M. Hanus, and F. Huch. Encapsulating non-determinism in functional logic com-

putations. Journal of Functional and Logic Programming, 2004(6), 2004.

[10] B. Braßel, M. Hanus, and M. Müller. High-level database programming in Curry. In Proc. of

the Tenth International Symposium on Practical Aspects of Declarative Languages (PADL’08),

pages 316–332. Springer LNCS 4902, 2008.

[11] M. Hanus. A unified computation model for functional and logic programming. In Proc. of the

24th ACM Symposium on Principles of Programming Languages (Paris), pages 80–93, 1997.

[12] M. Hanus. Distributed programming in a multi-paradigm declarative language. In Proc. of the

International Conference on Principles and Practice of Declarative Programming (PPDP’99),

pages 376–395. Springer LNCS 1702, 1999.

[13] M. Hanus. A functional logic programming approach to graphical user interfaces. In Inter-

national Workshop on Practical Aspects of Declarative Languages (PADL’00), pages 47–62.

Springer LNCS 1753, 2000.

41

[14] M. Hanus. High-level server side web scripting in Curry. In Proc. of the Third International

Symposium on Practical Aspects of Declarative Languages (PADL’01), pages 76–92. Springer

LNCS 1990, 2001.

[15] M. Hanus. A generic analysis environment for declarative programs. In Proc. of the ACM SIG-

PLAN 2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005), pages

43–48. ACM Press, 2005.

[16] M. Hanus. CurryBrowser: A generic analysis environment for Curry programs. In Proc. of

the 16th Workshop on Logic-based Methods in Programming Environments (WLPE’06), pages

61–74, 2006.

[17] M. Hanus and C. Kluß. Declarative programming of user interfaces. In Proc. of the 11th

International Symposium on Practical Aspects of Declarative Languages (PADL’09), pages

16–30. Springer LNCS 5418, 2009.

[18] M. Hanus and S. Koschnicke. An ER-based framework for declarative web programming.

In Proc. of the 12th International Symposium on Practical Aspects of Declarative Languages

(PADL 2010), pages 201–216. Springer LNCS 5937, 2010.

[19] M. Hanus and F. Steiner. Controlling search in declarative programs. In Principles of Declar-

ative Programming (Proc. Joint International Symposium PLILP/ALP’98), pages 374–390.

Springer LNCS 1490, 1998.

[20] M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.3). Available at

http://www.informatik.uni-kiel.de/~curry, 2012.

[21] T. Johnsson. Lambda lifting: Transforming programs to recursive functions. In Functional

Programming Languages and Computer Architecture, pages 190–203. Springer LNCS 201, 1985.

[22] S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report. Cambridge

University Press, 2003.

[23] P. Wadler. Efficient compilation of pattern-matching. In S.L. Peyton Jones, editor, The

Implementation of Functional Programming Languages, pages 78–103. Prentice Hall, 1987.

42

A Libraries of the PAKCS Distribution

The PAKCS distribution comes with an extensive collection of libraries for application program-

ming. The libraries for arithmetic constraints over real numbers, finite domain constraints, ports

for concurrent and distributed programming, and meta-programming by representing Curry pro-

grams in Curry are described in the following subsection in more detail. The complete set of

libraries with all exported types and functions are described in the further subsections. For a more

detailed online documentation of all libraries of PAKCS, see http://www.informatik.uni-kiel.

de/~pakcs/lib/index.html.

A.1 Constraints, Ports, Meta-Programming

A.1.1 Arithmetic Constraints

The primitive entities for the use of arithmetic constraints are defined in the system module CLPR

(cf. Section 1.3), i.e., in order to use them, the program must contain the import declaration

import CLPR

Floating point arithmetic is supported in PAKCS via arithmetic constraints, i.e., the equational

constraint “2.3 +. x =:= 5.5” is solved by binding x to 3.2 (rather than suspending the evaluation

of the addition, as in corresponding constraints on integers like “3+x=:=5”). All operations related

to floating point numbers are suffixed by “.”. The following functions and constraints on floating

point numbers are supported in PAKCS:

(+.) :: Float -> Float -> Float

Addition on floating point numbers.

(-.) :: Float -> Float -> Float

Subtraction on floating point numbers.

(*.) :: Float -> Float -> Float

Multiplication on floating point numbers.

(/.) :: Float -> Float -> Float

Division on floating point numbers.

(<.) :: Float -> Float -> Success

Comparing two floating point numbers with the “less than” relation.

(>.) :: Float -> Float -> Success

Comparing two floating point numbers with the “greater than” relation.

(<=.) :: Float -> Float -> Success

Comparing two floating point numbers with the “less than or equal” relation.

(>=.) :: Float -> Float -> Success

Comparing two floating point numbers with the “greater than or equal” relation.

43

http://www.informatik.uni-kiel.de/~pakcs/lib/index.html
http://www.informatik.uni-kiel.de/~pakcs/lib/index.html

i2f :: Int -> Float

Converting an integer number into a floating point number.

As an example, consider a constraint mortgage which relates the principal p, the lifetime of the

mortgage in months t, the monthly interest rate ir, the monthly repayment r, and the outstanding

balance at the end of the lifetime b. The financial calculations can be defined by the following two

rules in Curry (the second rule describes the repeated accumulation of the interest):

import CLPR

mortgage p t ir r b | t >. 0.0 \& t <=. 1.0 --lifetime not more than 1 month?

= b =:= p *. (1.0 +. t *. ir) -. t*.r

mortgage p t ir r b | t >. 1.0 --lifetime more than 1 month?

= mortgage (p *. (1.0+.ir)-.r) (t-.1.0) ir r b

Then we can calculate the monthly payment for paying back a loan of $100,000 in 15 years with a

monthly interest rate of 1% by solving the goal

mortgage 100000.0 180.0 0.01 r 0.0

which yields the solution r=1200.17.

Note that only linear arithmetic equalities or inequalities are solved by the constraint solver. Non-

linear constraints like “x *. x =:= 4.0” are suspended until they become linear.

A.1.2 Finite Domain Constraints

Finite domain constraints are constraints where all variables can only take a finite number of

possible values. For simplicity, the domain of finite domain variables are identified with a subset

of the integers, i.e., the type of a finite domain variable is Int. The arithmetic operations related

to finite domain variables are suffixed by “#”. The following functions and constraints for finite

domain constraint solving are currently supported in PAKCS:6

domain :: [Int] -> Int -> Int -> Success

The constraint “domain [x1, . . . , xn] l u” is satisfied if the domain of all variables xi is the

interval [l, u].

(+#) :: Int -> Int -> Int

Addition on finite domain values.

(-#) :: Int -> Int -> Int

Subtraction on finite domain values.

(*#) :: Int -> Int -> Int

Multiplication on finite domain values.

(=#) :: Int -> Int -> Success

Equality of finite domain values.

6Note that this library is based on the corresponding library of SICStus-Prolog but does not implement the

complete functionality of the SICStus-Prolog library. However, using the PAKCS interface for external functions (see

Appendix E), it is relatively easy to provide the complete functionality.

44

(/=#) :: Int -> Int -> Success

Disequality of finite domain values.

(<#) :: Int -> Int -> Success

“less than” relation on finite domain values.

(<=#) :: Int -> Int -> Success

“less than or equal” relation on finite domain values.

(>#) :: Int -> Int -> Success

“greater than” relation on finite domain values.

(>=#) :: Int -> Int -> Success

“greater than or equal” relation on finite domain values.

sum :: [Int] -> (Int -> Int -> Success) -> Int -> Success

The constraint “sum [x1, . . . , xn] op x” is satisfied if all x1 + · · ·+ xn op x is satisfied, where

op is one of the above finite domain constraint relations (e.g., “=#”).

scalar_product :: [Int] -> [Int] -> (Int -> Int -> Success) -> Int -> Success

The constraint “scalar_product [c1, . . . , cn] [x1, . . . , xn] op x” is satisfied if all c1x1 + · · · +
cnxn op x is satisfied, where op is one of the above finite domain constraint relations.

count :: Int -> [Int] -> (Int -> Int -> Success) -> Int -> Success

The constraint “count k [x1, . . . , xn] op x” is satisfied if all k op x is satisfied, where n is

the number of the xi that are equal to k and op is one of the above finite domain constraint

relations.

all_different :: [Int] -> Success

The constraint “all_different [x1, . . . , xn]” is satisfied if all xi have pairwise different values.

labeling :: [LabelingOption] -> [Int] -> Success

The constraint “labeling os [x1, . . . , xn]” non-deterministically instantiates all xi to the val-

ues of their domain according to the options os (see the module documentation for further

details about these options).

These entities are defined in the system module CLPFD (cf. Section 1.3), i.e., in order to use it, the

program must contain the import declaration

import CLPFD

As an example, consider the classical “send+more=money” problem where each letter must be replaced

by a different digit such that this equation is valid and there are no leading zeros. The usual way to

solve finite domain constraint problems is to specify the domain of the involved variables followed

by a specification of the constraints and the labeling of the constraint variables in order to start

the search for solutions. Thus, the “send+more=money” problem can be solved as follows:

import CLPFD

smm l =

45

l =:= [s,e,n,d,m,o,r,y] &

domain l 0 9 &

s ># 0 &

m ># 0 &

all_different l &

1000 *# s +# 100 *# e +# 10 *# n +# d

+# 1000 *# m +# 100 *# o +# 10 *# r +# e

=# 10000 *# m +# 1000 *# o +# 100 *# n +# 10 *# e +# y &

labeling [FirstFail] l

where s,e,n,d,m,o,r,y free

Then we can solve this problem by evaluating the goal “smm [s,e,n,d,m,o,r,y]” which yields the

unique solution {s=9,e=5,n=6,d=7,m=1,o=0,r=8,y=2}.

A.1.3 Ports: Distributed Programming in Curry

To support the development of concurrent and distributed applications, PAKCS supports internal

and external ports as described in [12]. Since [12] contains a detailed description of this concept

together with various programming examples, we only summarize here the functions and constraints

supported for ports in PAKCS.

The basic datatypes, functions, and constraints for ports are defined in the system module Ports

(cf. Section 1.3), i.e., in order to use ports, the program must contain the import declaration

import Ports

This declaration includes the following entities in the program:

Port a

This is the datatype of a port to which one can send messages of type a.

openPort :: Port a -> [a] -> Success

The constraint “openPort p s” establishes a new internal port p with an associated message

stream s. p and s must be unbound variables, otherwise the constraint fails (and causes a

runtime error).

send :: a -> Port a -> Success

The constraint “send m p” is satisfied if p is constrained to contain the message m, i.e., m will

be sent to the port p so that it appears in the corresponding stream.

doSend :: a -> Port a -> IO ()

The I/O action “doSend m p” solves the constraint “send m p” and returns nothing.

openNamedPort :: String -> IO [a]

The I/O action “openNamedPort n” opens a new external port with symbolic name n and

returns the associated stream of messages.

connectPort :: String -> IO (Port a)

The I/O action “connectPort n” returns a port with symbolic name n (i.e., n must have the

form “portname@machine) to which one can send messages by the send constraint. Currently,

46

no dynamic type checking is done for external ports, i.e., sending messages of the wrong type

to a port might lead to a failure of the receiver.

Restrictions: Every expression, possibly containing logical variables, can be sent to a port.

However, as discussed in [12], port communication is strict, i.e., the expression is evaluated to

normal form before sending it by the constraint send. Furthermore, if messages containing logical

variables are sent to external ports, the behavior is as follows:

1. The sender waits until all logical variables in the message have been bound by the receiver.

2. The binding of a logical variable received by a process is sent back to the sender of this

logical variable only if it is bound to a ground term, i.e., as long as the binding contains

logical variables, the sender is not informed about the binding and, therefore, the sender

waits.

External ports on local machines: The implementation of external ports assumes that the

host machine running the application is connected to the Internet (i.e., it uses the standard IP

address of the host machine for message sending). If this is not the case and the application should

be tested by using external ports only on the local host without a connection to the Internet, the

environment variable “PAKCS_LOCALHOST” must be set to “yes” before PAKCS is started. In this

case, the IP address 127.0.0.1 and the hostname “localhost” are used for identifying the local

machine.

Selection of Unix sockets for external ports: The implementation of ports uses sockets

to communicate messages sent to external ports. Thus, if a Curry program uses the I/O action

openNamedPort to establish an externally visible server, PAKCS selects a Unix socket for the port

communication. Usually, a free socket is selected by the operating system. If the socket number

should be fixed in an application (e.g., because of the use of firewalls that allow only communi-

cation over particular sockets), then one can set the environment variable “PAKCS_SOCKET” to a

distinguished socket number before PAKCS is started. This has the effect that PAKCS uses only

this socket number for communication (even for several external ports used in the same application

program).

Debugging: To debug distributed systems, it is sometimes helpful to see all messages sent to

external ports. This is supported by the environment variable “PAKCS_TRACEPORTS”. If this variable

is set to “yes” before PAKCS is started, then all connections to external ports and all messages

sent and received on external ports are printed on the standard error stream.

A.1.4 AbstractCurry and FlatCurry: Meta-Programming in Curry

To support meta-programming, i.e., the manipulation of Curry programs in Curry, there are sys-

tem modules AbstractCurry.Types and FlatCurry which define datatypes for the representation of

Curry programs. AbstractCurry.Types is a more direct representation of a Curry program, whereas

FlatCurry is a simplified representation where local function definitions are replaced by global def-

initions (i.e., lambda lifting has been performed) and pattern matching is translated into explicit

47

case/or expressions. Thus, FlatCurry can be used for more back-end oriented program manipu-

lations (or, for writing new back ends for Curry), whereas AbstractCurry.Types is intended for

manipulations of programs that are more oriented towards the source program.

There are predefined I/O actions to read AbstractCurry and FlatCurry programs:

AbstractCurry.Files.readCurry) and FlatCurry.readFlatCurry). These actions parse the corre-

sponding source program and return a data term representing this program (according to the

definitions in the modules AbstractCurry.Types and FlatCurry).

Since all datatypes are explained in detail in these modules, we refer to the online documentation7

of these modules.

As an example, consider a program file “test.curry” containing the following two lines:

rev [] = []

rev (x:xs) = (rev xs) ++ [x]

Then the I/O action (FlatCurry.readFlatCurry "test") returns the following term:

(Prog "test"

["Prelude"]

[]

[Func ("test","rev") 1 Public

(FuncType (TCons ("Prelude","[]") [(TVar 0)])

(TCons ("Prelude","[]") [(TVar 0)]))

(Rule [0]

(Case Flex (Var 1)

[Branch (Pattern ("Prelude","[]") [])

(Comb ConsCall ("Prelude","[]") []),

Branch (Pattern ("Prelude",":") [2,3])

(Comb FuncCall ("Prelude","++")

[Comb FuncCall ("test","rev") [Var 3],

Comb ConsCall ("Prelude",":")

[Var 2,Comb ConsCall ("Prelude","[]") []]

])

]))]

[]

)

A.2 General Libraries

A.2.1 Library AllSolutions

This module contains a collection of functions for obtaining lists of solutions to constraints. These

operations are useful to encapsulate non-deterministic operations between I/O actions in order to

connects the worlds of logic and functional programming and to avoid non-determinism failures on

the I/O level.

In contrast the ”old” concept of encapsulated search (which could be applied to any subexpression

in a computation), the operations to encapsulate search in this module are I/O actions in order to

7http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/FlatCurry.html and http://www.informatik.

uni-kiel.de/~pakcs/lib/CDOC/AbstractCurry.Types.html

48

http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/FlatCurry.html
http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/AbstractCurry.Types.html
http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/AbstractCurry.Types.html

avoid some anomalities in the old concept.

Exported types:

data SearchTree

A search tree for representing search structures.

Exported constructors:

• SearchBranch :: [(b,SearchTree a b)] → SearchTree a b

• Solutions :: [a] → SearchTree a b

Exported functions:

getAllSolutions :: (a → Success) → IO [a]

Gets all solutions to a constraint (currently, via an incomplete depth-first left-to-right

strategy). Conceptually, all solutions are computed on a copy of the constraint, i.e.,

the evaluation of the constraint does not share any results. Moreover, this evaluation

suspends if the constraints contain unbound variables. Similar to Prolog’s findall.

getAllValues :: a → IO [a]

Gets all values of an expression. Since this is based on getAllSolutions, it inherits

the same restrictions.

getOneSolution :: (a → Success) → IO (Maybe a)

Gets one solution to a constraint (currently, via an incomplete left-to-right strategy).

Returns Nothing if the search space is finitely failed.

getOneValue :: a → IO (Maybe a)

Gets one value of an expression (currently, via an incomplete left-to-right strategy).

Returns Nothing if the search space is finitely failed.

getAllFailures :: a → (a → Success) → IO [a]

Returns a list of values that do not satisfy a given constraint.

getSearchTree :: [a] → (b → Success) → IO (SearchTree b a)

Computes a tree of solutions where the first argument determines the branching level

of the tree. For each element in the list of the first argument, the search tree contains

a branch node with a child tree for each value of this element. Moreover, evaluations of

elements in the branch list are shared within corresponding subtrees.

A.2.2 Library Assertion

This module defines the datatype and operations for the Curry module tester ”currytest”.

49

Exported types:

data Assertion

Datatype for defining test cases.

Exported constructors:

data ProtocolMsg

The messages sent to the test GUI. Used by the currytest tool.

Exported constructors:

• TestModule :: String → ProtocolMsg

• TestCase :: String → Bool → ProtocolMsg

• TestFinished :: ProtocolMsg

• TestCompileError :: ProtocolMsg

Exported functions:

assertTrue :: String → Bool → Assertion ()

(assertTrue s b) asserts (with name s) that b must be true.

assertEqual :: String → a → a → Assertion a

(assertEqual s e1 e2) asserts (with name s) that e1 and e2 must be equal (w.r.t.

==).

assertValues :: String → a → [a] → Assertion a

(assertValues s e vs) asserts (with name s) that vs is the multiset of all values of

e. All values of e are compared with the elements in vs w.r.t. ==.

assertSolutions :: String → (a → Success) → [a] → Assertion a

(assertSolutions s c vs) asserts (with name s) that constraint abstraction c has

the multiset of solutions vs. The solutions of c are compared with the elements in vs

w.r.t. ==.

assertIO :: String → IO a → a → Assertion a

(assertIO s a r) asserts (with name s) that I/O action a yields the result value r.

assertEqualIO :: String → IO a → IO a → Assertion a

(assertEqualIO s a1 a2) asserts (with name s) that I/O actions a1 and a2 yield

equal (w.r.t. ==) results.

50

seqStrActions :: IO (String,Bool) → IO (String,Bool) → IO (String,Bool)

Combines two actions and combines their results. Used by the currytest tool.

checkAssertion :: String → ((String,Bool) → IO (String,Bool)) → Assertion a →
IO (String,Bool)

Executes and checks an assertion, and process the result by an I/O action. Used by the

currytest tool.

writeAssertResult :: (String,Bool) → IO Int

Prints the results of assertion checking. If failures occurred, the return code is positive.

Used by the currytest tool.

showTestMod :: Int → String → IO ()

Sends message to GUI for showing test of a module. Used by the currytest tool.

showTestCase :: Int → (String,Bool) → IO (String,Bool)

Sends message to GUI for showing result of executing a test case. Used by the currytest

tool.

showTestEnd :: Int → IO ()

Sends message to GUI for showing end of module test. Used by the currytest tool.

showTestCompileError :: Int → IO ()

Sends message to GUI for showing compilation errors in a module test. Used by the

currytest tool.

A.2.3 Library Char

Library with some useful functions on characters.

Exported functions:

isAscii :: Char → Bool

Returns true if the argument is an ASCII character.

isLatin1 :: Char → Bool

Returns true if the argument is an Latin-1 character.

isAsciiLower :: Char → Bool

Returns true if the argument is an ASCII lowercase letter.

isAsciiUpper :: Char → Bool

Returns true if the argument is an ASCII uppercase letter.

51

isControl :: Char → Bool

Returns true if the argument is a control character.

isUpper :: Char → Bool

Returns true if the argument is an uppercase letter.

isLower :: Char → Bool

Returns true if the argument is an lowercase letter.

isAlpha :: Char → Bool

Returns true if the argument is a letter.

isDigit :: Char → Bool

Returns true if the argument is a decimal digit.

isAlphaNum :: Char → Bool

Returns true if the argument is a letter or digit.

isBinDigit :: Char → Bool

Returns true if the argument is a binary digit.

isOctDigit :: Char → Bool

Returns true if the argument is an octal digit.

isHexDigit :: Char → Bool

Returns true if the argument is a hexadecimal digit.

isSpace :: Char → Bool

Returns true if the argument is a white space.

toUpper :: Char → Char

Converts lowercase into uppercase letters.

toLower :: Char → Char

Converts uppercase into lowercase letters.

digitToInt :: Char → Int

Converts a (hexadecimal) digit character into an integer.

intToDigit :: Int → Char

Converts an integer into a (hexadecimal) digit character.

52

A.2.4 Library CHR

A representation of CHR rules in Curry, an interpreter for CHR rules based on the refined opera-

tional semantics of Duck et al. (ICLP 2004), and a compiler into CHR(Prolog).

To use CHR(Curry), specify the CHR(Curry) rules in a Curry program, load it, add module CHR

and interpret or compile the rules with runCHR or compileCHR, respectively. This can be done in

one shot with

> pakcs :l MyRules :add CHR :eval ’compileCHR "MyCHR" [rule1,rule2]’ :q

Exported types:

data CHR

The basic data type of Constraint Handling Rules.

Exported constructors:

data Goal

A CHR goal is a list of CHR constraints (primitive or user-defined).

Exported constructors:

Exported functions:

(<=>) :: Goal a b → Goal a b → CHR a b

Simplification rule.

(==>) :: Goal a b → Goal a b → CHR a b

Propagation rule.

(\\) :: Goal a b → CHR a b → CHR a b

Simpagation rule: if rule is applicable, the first constraint is kept and the second con-

straint is deleted.

(|>) :: CHR a b → Goal a b → CHR a b

A rule with a guard.

(/\) :: Goal a b → Goal a b → Goal a b

Conjunction of CHR goals.

true :: Goal a b

The always satisfiable CHR constraint.

fail :: Goal a b

53

The always failing constraint.

andCHR :: [Goal a b] → Goal a b

Join a list of CHR goals into a single CHR goal (by conjunction).

allCHR :: (a → Goal b c) → [a] → Goal b c

Is a given constraint abstraction satisfied by all elements in a list?

chrsToGoal :: [a] → Goal b a

Transforms a list of CHR constraints into a CHR goal.

toGoal1 :: (a → b) → a → Goal c b

Transform unary CHR constraint into a CHR goal.

toGoal2 :: (a → b → c) → a → b → Goal d c

Transforms binary CHR constraint into a CHR goal.

toGoal3 :: (a → b → c → d) → a → b → c → Goal e d

Transforms a ternary CHR constraint into a CHR goal.

toGoal4 :: (a → b → c → d → e) → a → b → c → d → Goal f e

Transforms a CHR constraint of arity 4 into a CHR goal.

toGoal5 :: (a → b → c → d → e → f) → a → b → c → d → e → Goal g f

Transforms a CHR constraint of arity 5 into a CHR goal.

toGoal6 :: (a → b → c → d → e → f → g) → a → b → c → d → e → f → Goal

h g

Transforms a CHR constraint of arity 6 into a CHR goal.

(.=.) :: a → a → Goal a b

Primitive syntactic equality on arbitrary terms.

(./=.) :: a → a → Goal a b

Primitive syntactic disequality on ground(!) terms.

(.<=.) :: a → a → Goal a b

Primitive less-or-equal constraint.

(.>=.) :: a → a → Goal a b

Primitive greater-or-equal constraint.

(.<.) :: a → a → Goal a b

54

Primitive less-than constraint.

(.>.) :: a → a → Goal a b

Primitive greater-than constraint.

ground :: a → Goal a b

Primitive groundness constraint (useful for guards).

nonvar :: a → Goal a b

Primitive nonvar constraint (useful for guards).

anyPrim :: (() → Success) → Goal a b

Embed user-defined primitive constraint.

solveCHR :: [[a] → CHR a b] → Goal a b → Success

Interpret CHR rules (parameterized over domain variables) for a given CHR goal (sec-

ond argument) and embed this as a constraint solver in Curry. If user-defined CHR

constraints remain after applying all CHR rules, a warning showing the residual con-

straints is issued.

runCHR :: [[a] → CHR a b] → Goal a b → [b]

Interpret CHR rules (parameterized over domain variables) for a given CHR goal (second

argument) and return the remaining CHR constraints.

runCHRwithTrace :: [[a] → CHR a b] → Goal a b → [b]

Interpret CHR rules (parameterized over domain variables) for a given CHR goal (second

argument) and return the remaining CHR constraints. Trace also the active and passive

constraints as well as the applied rule number during computation.

compileCHR :: String → [[a] → CHR a b] → IO ()

Compile a list of CHR(Curry) rules into CHR(Prolog) and store its interface in a Curry

program (name given as first argument).

chr2success :: Goal a b → Success

Transforms a primitive CHR constraint into a Curry constraint. Used in the generated

CHR(Prolog) code to evaluated primitive constraints.

A.2.5 Library CHRcompiled

This module defines the structure of CHR goals and some constructors to be used in compiled

CHR(Curry) rules. Furthermore, it defines an operation solveCHR to solve a CHR goal as a

constraint.

This module is imported in compiled CHR(Curry) programs, compare library CHR.

55

Exported types:

data Goal

A typed CHR goal. Since types are not present at run-time in compiled, we use a

phantom type to parameterize goals over CHR constraints. The argument of the goal

is the constraint implementing the goal with the compiled CHR(Prolog) program.

Exported constructors:

• Goal :: Success → Goal a

Exported functions:

(/\) :: Goal a → Goal a → Goal a

Conjunction of CHR goals.

true :: Goal a

The always satisfiable CHR constraint.

fail :: Goal a

The always failing constraint.

andCHR :: [Goal a] → Goal a

Join a list of CHR goals into a single CHR goal (by conjunction).

allCHR :: (a → Goal b) → [a] → Goal b

Is a given constraint abstraction satisfied by all elements in a list?

solveCHR :: Goal a → Success

Evaluate a given CHR goal and embed this as a constraint in Curry. Note: due to limi-

tations of the CHR(Prolog) implementation, no warning is issued if residual constraints

remain after the evaluation.

warnSuspendedConstraints :: Bool → Success

Primitive operation that issues a warning if there are some suspended constraints in

the CHR constraint store. If the argument is true, then all suspended constraints are

shown, otherwise only the first one.

56

A.2.6 Library CLP.FD

Library for finite domain constraint solving.

An FD problem is specified as an expression of type FDConstr using the constraints and expressions

offered in this library. FD variables are created by the operation domain. An FD problem is solved

by calling solveFD with labeling options, the FD variables whose values should be included in

the output, and a constraint. Hence, the typical program structure to solve an FD problem is as

follows:

main :: [Int]

main =

let fdvars = take n (domain u o)

fdmodel = {description of FD problem}

in solveFD {options} fdvars fdmodel

where n are the number of variables and [u..o] is the range of their possible values.

Exported types:

data FDRel

Possible relations between FD values.

Exported constructors:

• Equ :: FDRel

Equ

– Equal

• Neq :: FDRel

Neq

– Not equal

• Lt :: FDRel

Lt

– Less than

• Leq :: FDRel

Leq

– Less than or equal

• Gt :: FDRel

Gt

– Greater than

57

• Geq :: FDRel

Geq

– Greater than or equal

data Option

This datatype defines options to control the instantiation of FD variables in the solver

(solveFD).

Exported constructors:

• LeftMost :: Option

LeftMost

– The leftmost variable is selected for instantiation (default)

• FirstFail :: Option

FirstFail

– The leftmost variable with the smallest domain is selected (also known as first-fail prin-

ciple)

• FirstFailConstrained :: Option

FirstFailConstrained

– The leftmost variable with the smallest domain and the most constraints on it is selected.

• Min :: Option

Min

– The leftmost variable with the smalled lower bound is selected.

• Max :: Option

Max

– The leftmost variable with the greatest upper bound is selected.

• Step :: Option

Step

– Make a binary choice between x=#b and x/=#b for the selected variable x where b is the

lower or upper bound of x (default).

• Enum :: Option

Enum

– Make a multiple choice for the selected variable for all the values in its domain.

58

• Bisect :: Option

Bisect

– Make a binary choice between x<=#m and x>#m for the selected variable x where

m is the midpoint of the domain x (also known as domain splitting).

• Up :: Option

Up

– The domain is explored for instantiation in ascending order (default).

• Down :: Option

Down

– The domain is explored for instantiation in descending order.

• All :: Option

All

– Enumerate all solutions by backtracking (default).

• Minimize :: Int → Option

Minimize v

– Find a solution that minimizes the domain variable v (using a branch-and-bound algo-

rithm).

• Maximize :: Int → Option

Maximize v

– Find a solution that maximizes the domain variable v (using a branch-and-bound algo-

rithm).

• Assumptions :: Int → Option

Assumptions x

– The variable x is unified with the number of choices made by the selected enumeration

strategy when a solution is found.

data FDExpr

Exported constructors:

data FDConstr

Exported constructors:

59

Exported functions:

domain :: Int → Int → [FDExpr]

Operations to construct basic constraints. Returns infinite list of FDVars with a given

domain.

fd :: Int → FDExpr

Represent an integer value as an FD expression.

(+#) :: FDExpr → FDExpr → FDExpr

Addition of FD expressions.

(-#) :: FDExpr → FDExpr → FDExpr

Subtraction of FD expressions.

(*#) :: FDExpr → FDExpr → FDExpr

Multiplication of FD expressions.

(=#) :: FDExpr → FDExpr → FDConstr

Equality of FD expressions.

(/=#) :: FDExpr → FDExpr → FDConstr

Disequality of FD expressions.

(<#) :: FDExpr → FDExpr → FDConstr

”Less than” constraint on FD expressions.

(<=#) :: FDExpr → FDExpr → FDConstr

”Less than or equal” constraint on FD expressions.

(>#) :: FDExpr → FDExpr → FDConstr

”Greater than” constraint on FD expressions.

(>=#) :: FDExpr → FDExpr → FDConstr

”Greater than or equal” constraint on FD expressions.

true :: FDConstr

The always satisfied FD constraint.

(/\) :: FDConstr → FDConstr → FDConstr

Conjunction of FD constraints.

andC :: [FDConstr] → FDConstr

60

Conjunction of a list of FD constraints.

allC :: (a → FDConstr) → [a] → FDConstr

Maps a constraint abstraction to a list of FD constraints and joins them.

allDifferent :: [FDExpr] → FDConstr

”All different” constraint on FD variables.

sum :: [FDExpr] → FDRel → FDExpr → FDConstr

Relates the sum of FD variables with some integer of FD variable.

scalarProduct :: [FDExpr] → [FDExpr] → FDRel → FDExpr → FDConstr

(scalarProduct cs vs relop v) is satisfied if (sum (cs*vs) relop v) is satisfied.

The first argument must be a list of integers. The other arguments are as in sum.

count :: FDExpr → [FDExpr] → FDRel → FDExpr → FDConstr

(count v vs relop c) is satisfied if (n relop c), where n is the number of elements

in the list of FD variables vs that are equal to v, is satisfied. The first argument must

be an integer. The other arguments are as in sum.

solveFD :: [Option] → [FDExpr] → FDConstr → [Int]

Computes (non-deterministically) a solution for the FD variables (second argument)

w.r.t. constraint (third argument). The first argument contains options to control the

labeling/instantiation of FD variables.

A.2.7 Library CLPFD

Library for finite domain constraint solving.

The general structure of a specification of an FD problem is as follows:

domainconstraint & fdconstraint & labeling

where:

domain constraint specifies the possible range of the FD variables (see constraint domain)

fd constraint specifies the constraint to be satisfied by a valid solution (see constraints #+, #-,

allDifferent, etc below)

labeling is a labeling function to search for a concrete solution.

Note: This library is based on the corresponding library of Sicstus-Prolog but does not implement

the complete functionality of the Sicstus-Prolog library. However, using the PAKCS interface for

external functions, it is relatively easy to provide the complete functionality.

61

Exported types:

data Constraint

A datatype to represent reifyable constraints.

Exported constructors:

data LabelingOption

This datatype contains all options to control the instantiated of FD variables with the

enumeration constraint labeling.

Exported constructors:

• LeftMost :: LabelingOption

LeftMost

– The leftmost variable is selected for instantiation (default)

• FirstFail :: LabelingOption

FirstFail

– The leftmost variable with the smallest domain is selected (also known as first-fail prin-

ciple)

• FirstFailConstrained :: LabelingOption

FirstFailConstrained

– The leftmost variable with the smallest domain and the most constraints on it is selected.

• Min :: LabelingOption

Min

– The leftmost variable with the smalled lower bound is selected.

• Max :: LabelingOption

Max

– The leftmost variable with the greatest upper bound is selected.

• Step :: LabelingOption

Step

– Make a binary choice between x=#b and x/=#b for the selected variable x where b is the

lower or upper bound of x (default).

• Enum :: LabelingOption

Enum

62

– Make a multiple choice for the selected variable for all the values in its domain.

• Bisect :: LabelingOption

Bisect

– Make a binary choice between x<=#m and x>#m for the selected variable x where m is

the midpoint of the domain x (also known as domain splitting).

• Up :: LabelingOption

Up

– The domain is explored for instantiation in ascending order (default).

• Down :: LabelingOption

Down

– The domain is explored for instantiation in descending order.

• All :: LabelingOption

All

– Enumerate all solutions by backtracking (default).

• Minimize :: Int → LabelingOption

Minimize v

– Find a solution that minimizes the domain variable v (using a branch-and-bound algo-

rithm).

• Maximize :: Int → LabelingOption

Maximize v

– Find a solution that maximizes the domain variable v (using a branch-and-bound algo-

rithm).

• Assumptions :: Int → LabelingOption

Assumptions x

– The variable x is unified with the number of choices made by the selected enumeration

strategy when a solution is found.

Exported functions:

domain :: [Int] → Int → Int → Success

Constraint to specify the domain of all finite domain variables.

(+#) :: Int → Int → Int

63

Addition of FD variables.

(-#) :: Int → Int → Int

Subtraction of FD variables.

(*#) :: Int → Int → Int

Multiplication of FD variables.

(=#) :: Int → Int → Success

Equality of FD variables.

(/=#) :: Int → Int → Success

Disequality of FD variables.

(<#) :: Int → Int → Success

”Less than” constraint on FD variables.

(<=#) :: Int → Int → Success

”Less than or equal” constraint on FD variables.

(>#) :: Int → Int → Success

”Greater than” constraint on FD variables.

(>=#) :: Int → Int → Success

”Greater than or equal” constraint on FD variables.

(#=#) :: Int → Int → Constraint

Reifyable equality constraint on FD variables.

(#/=#) :: Int → Int → Constraint

Reifyable inequality constraint on FD variables.

(#<#) :: Int → Int → Constraint

Reifyable ”less than” constraint on FD variables.

(#<=#) :: Int → Int → Constraint

Reifyable ”less than or equal” constraint on FD variables.

(#>#) :: Int → Int → Constraint

Reifyable ”greater than” constraint on FD variables.

(#>=#) :: Int → Int → Constraint

64

Reifyable ”greater than or equal” constraint on FD variables.

neg :: Constraint → Constraint

The resulting constraint is satisfied if both argument constraints are satisfied.

(#/\#) :: Constraint → Constraint → Constraint

The resulting constraint is satisfied if both argument constraints are satisfied.

(#\/#) :: Constraint → Constraint → Constraint

The resulting constraint is satisfied if both argument constraints are satisfied.

(#=>#) :: Constraint → Constraint → Constraint

The resulting constraint is satisfied if the first argument constraint do not hold or both

argument constraints are satisfied.

(#<=>#) :: Constraint → Constraint → Constraint

The resulting constraint is satisfied if both argument constraint are either satisfied and

do not hold.

solve :: Constraint → Success

Solves a reified constraint.

sum :: [Int] → (Int → Int → Success) → Int → Success

Relates the sum of FD variables with some integer of FD variable.

scalarProduct :: [Int] → [Int] → (Int → Int → Success) → Int → Success

(scalarProduct cs vs relop v) is satisfied if ((cs*vs) relop v) is satisfied. The first

argument must be a list of integers. The other arguments are as in sum.

count :: Int → [Int] → (Int → Int → Success) → Int → Success

(count v vs relop c) is satisfied if (n relop c), where n is the number of elements in the

list of FD variables vs that are equal to v, is satisfied. The first argument must be an

integer. The other arguments are as in sum.

allDifferent :: [Int] → Success

”All different” constraint on FD variables.

all different :: [Int] → Success

For backward compatibility. Use allDifferent.

indomain :: Int → Success

Instantiate a single FD variable to its values in the specified domain.

labeling :: [LabelingOption] → [Int] → Success

Instantiate FD variables to their values in the specified domain.

65

A.2.8 Library CLPR

Library for constraint programming with arithmetic constraints over reals.

Exported functions:

(+.) :: Float → Float → Float

Addition on floats in arithmetic constraints.

(-.) :: Float → Float → Float

Subtraction on floats in arithmetic constraints.

(*.) :: Float → Float → Float

Multiplication on floats in arithmetic constraints.

(/.) :: Float → Float → Float

Division on floats in arithmetic constraints.

(<.) :: Float → Float → Success

”Less than” constraint on floats.

(>.) :: Float → Float → Success

”Greater than” constraint on floats.

(<=.) :: Float → Float → Success

”Less than or equal” constraint on floats.

(>=.) :: Float → Float → Success

”Greater than or equal” constraint on floats.

i2f :: Int → Float

Conversion function from integers to floats. Rigid in the first argument, i.e., suspends

until the first argument is ground.

minimumFor :: (a → Success) → (a → Float) → a

Computes the minimum with respect to a given constraint. (minimumFor g f) evaluates

to x if (g x) is satisfied and (f x) is minimal. The evaluation fails if such a minimal value

does not exist. The evaluation suspends if it contains unbound non-local variables.

minimize :: (a → Success) → (a → Float) → a → Success

Minimization constraint. (minimize g f x) is satisfied if (g x) is satisfied and (f x) is

minimal. The evaluation suspends if it contains unbound non-local variables.

maximumFor :: (a → Success) → (a → Float) → a

66

Computes the maximum with respect to a given constraint. (maximumFor g f) evaluates

to x if (g x) is satisfied and (f x) is maximal. The evaluation fails if such a maximal value

does not exist. The evaluation suspends if it contains unbound non-local variables.

maximize :: (a → Success) → (a → Float) → a → Success

Maximization constraint. (maximize g f x) is satisfied if (g x) is satisfied and (f x) is

maximal. The evaluation suspends if it contains unbound non-local variables.

A.2.9 Library CLPB

This library provides a Boolean Constraint Solver based on BDDs.

Exported types:

data Boolean

Exported constructors:

Exported functions:

true :: Boolean

The always satisfied constraint

false :: Boolean

The never satisfied constraint

neg :: Boolean → Boolean

Result is true iff argument is false.

(.&&) :: Boolean → Boolean → Boolean

Result is true iff both arguments are true.

(.||) :: Boolean → Boolean → Boolean

Result is true iff at least one argument is true.

(./=) :: Boolean → Boolean → Boolean

Result is true iff exactly one argument is true.

(.==) :: Boolean → Boolean → Boolean

Result is true iff both arguments are equal.

(.<=) :: Boolean → Boolean → Boolean

Result is true iff the first argument implies the second.

67

(.>=) :: Boolean → Boolean → Boolean

Result is true iff the second argument implies the first.

(.<) :: Boolean → Boolean → Boolean

Result is true iff the first argument is false and the second is true.

(.>) :: Boolean → Boolean → Boolean

Result is true iff the first argument is true and the second is false.

count :: [Boolean] → [Int] → Boolean

Result is true iff the count of valid constraints in the first list is an element of the second

list.

exists :: Boolean → Boolean → Boolean

Result is true, if the first argument is a variable which can be instantiated such that

the second argument is true.

satisfied :: Boolean → Success

Checks the consistency of the constraint with regard to the accumulated constraints,

and, if the check succeeds, tells the constraint.

check :: Boolean → Bool

Asks whether the argument (or its negation) is now entailed by the accumulated con-

straints. Fails if it is not.

bound :: [Boolean] → Success

Instantiates given variables with regard to the accumulated constraints.

simplify :: Boolean → Boolean

Simplifies the argument with regard to the accumulated constraints.

evaluate :: Boolean → Bool

Evaluates the argument with regard to the accumulated constraints.

A.2.10 Library Combinatorial

A collection of common non-deterministic and/or combinatorial operations. Many operations are

intended to operate on sets. The representation of these sets is not hidden; rather sets are repre-

sented as lists. Ideally these lists contains no duplicate elements and the order of their elements

cannot be observed. In practice, these conditions are not enforced.

68

Exported functions:

permute :: [a] → [a]

Compute any permutation of a list. For example, [1,2,3,4] may give [1,3,4,2].

subset :: [a] → [a]

Compute any sublist of a list. The sublist contains some of the elements of the list

in the same order. For example, [1,2,3,4] may give [1,3], and [1,2,3] gives [1,2,3], [1,2],

[1,3], [1], [2,3], [2], [3], or [].

splitSet :: [a] → ([a],[a])

Split a list into any two sublists. For example, [1,2,3,4] may give ([1,3,4],[2]).

sizedSubset :: Int → [a] → [a]

Compute any sublist of fixed length of a list. Similar to subset, but the length of the

result is fixed.

partition :: [a] → [[a]]

Compute any partition of a list. The output is a list of non-empty lists such that their

concatenation is a permutation of the input list. No guarantee is made on the order of

the arguments in the output. For example, [1,2,3,4] may give [[4],[2,3],[1]], and [1,2,3]

gives [[1,2,3]], [[2,3],[1]], [[1,3],[2]], [[3],[1,2]], or [[3],[2],[1]].

A.2.11 Library Constraint

Some useful operations for constraint programming.

Exported functions:

(<:) :: a → a → Success

Less-than on ground data terms as a constraint.

(>:) :: a → a → Success

Greater-than on ground data terms as a constraint.

(<=:) :: a → a → Success

Less-or-equal on ground data terms as a constraint.

(>=:) :: a → a → Success

Greater-or-equal on ground data terms as a constraint.

andC :: [Success] → Success

Evaluates the conjunction of a list of constraints.

69

orC :: [Success] → Success

Evaluates the disjunction of a list of constraints.

allC :: (a → Success) → [a] → Success

Is a given constraint abstraction satisfied by all elements in a list?

anyC :: (a → Success) → [a] → Success

Is there an element in a list satisfying a given constraint?

A.2.12 Library CPNS

Implementation of a Curry Port Name Server based on raw sockets. It is used to implement the

library Ports for distributed programming with ports.

Exported functions:

cpnsStart :: IO ()

Starts the ”Curry Port Name Server” (CPNS) running on the local machine. The CPNS

is responsible to resolve symbolic names for ports into physical socket numbers so that

a port can be reached under its symbolic name from any machine in the world.

cpnsShow :: IO ()

Shows all registered ports at the local CPNS demon (in its logfile).

cpnsStop :: IO ()

Terminates the local CPNS demon

registerPort :: String → Int → Int → IO ()

Registers a symbolic port at the local host.

getPortInfo :: String → String → IO (Int,Int)

Gets the information about a symbolic port at some host.

unregisterPort :: String → IO ()

Unregisters a symbolic port at the local host.

cpnsAlive :: Int → String → IO Bool

Tests whether the CPNS demon at a host is alive.

main :: IO ()

Main function for CPNS demon. Check arguments and execute command.

70

A.2.13 Library CSV

Library for reading/writing files in CSV format. Files in CSV (comma separated values) format

can be imported and exported by most spreadsheed and database applications.

Exported functions:

writeCSVFile :: String → [[String]] → IO ()

Writes a list of records (where each record is a list of strings) into a file in CSV format.

showCSV :: [[String]] → String

Shows a list of records (where each record is a list of strings) as a string in CSV format.

readCSVFile :: String → IO [[String]]

Reads a file in CSV format and returns the list of records (where each record is a list

of strings).

readCSVFileWithDelims :: String → String → IO [[String]]

Reads a file in CSV format and returns the list of records (where each record is a list

of strings).

readCSV :: String → [[String]]

Reads a string in CSV format and returns the list of records (where each record is a list

of strings).

readCSVWithDelims :: String → String → [[String]]

Reads a string in CSV format and returns the list of records (where each record is a list

of strings).

A.2.14 Library Database

Library for accessing and storing data in databases. The contents of a database is represented in

this library as dynamic predicates that are defined by facts than can change over time and can

be persistently stored. All functions in this library distinguishes between queries that access the

database and transactions that manipulates data in the database. Transactions have a monadic

structure. Both queries and transactions can be executed as I/O actions. However, arbitrary I/O

actions cannot be embedded in transactions.

A dynamic predicate p with arguments of type t1,...,tn must be declared by:

p :: t1 -> ... -> tn -> Dynamic

p = dynamic

A dynamic predicate where all facts should be persistently stored in the directory DIR must be

declared by:

p :: t1 -> ... -> tn -> Dynamic

p = persistent "file:DIR"

71

Exported types:

data Query

Abstract datatype to represent database queries.

Exported constructors:

data TError

The type of errors that might occur during a transaction.

Exported constructors:

• TError :: TErrorKind → String → TError

data TErrorKind

The various kinds of transaction errors.

Exported constructors:

• KeyNotExistsError :: TErrorKind

• NoRelationshipError :: TErrorKind

• DuplicateKeyError :: TErrorKind

• KeyRequiredError :: TErrorKind

• UniqueError :: TErrorKind

• MinError :: TErrorKind

• MaxError :: TErrorKind

• UserDefinedError :: TErrorKind

• ExecutionError :: TErrorKind

data Transaction

Abstract datatype for representing transactions.

Exported constructors:

72

Exported functions:

queryAll :: (a → Dynamic) → Query [a]

A database query that returns all answers to an abstraction on a dynamic expression.

queryOne :: (a → Dynamic) → Query (Maybe a)

A database query that returns a single answer to an abstraction on a dynamic expres-

sion. It returns Nothing if no answer exists.

queryOneWithDefault :: a → (a → Dynamic) → Query a

A database query that returns a single answer to an abstraction on a dynamic expres-

sion. It returns the first argument if no answer exists.

queryJustOne :: (a → Dynamic) → Query a

A database query that returns a single answer to an abstraction on a dynamic expres-

sion. It fails if no answer exists.

dynamicExists :: Dynamic → Query Bool

A database query that returns True if there exists the argument facts (without free

variables!) and False, otherwise.

transformQ :: (a → b) → Query a → Query b

Transforms a database query from one result type to another according to a given

mapping.

runQ :: Query a → IO a

Executes a database query on the current state of dynamic predicates. If other processes

made changes to persistent predicates, these changes are read and made visible to the

currently running program.

showTError :: TError → String

Transforms a transaction error into a string.

addDB :: Dynamic → Transaction ()

Adds new facts (without free variables!) about dynamic predicates. Conditional dy-

namics are added only if the condition holds.

deleteDB :: Dynamic → Transaction ()

Deletes facts (without free variables!) about dynamic predicates. Conditional dynamics

are deleted only if the condition holds.

getDB :: Query a → Transaction a

Returns the result of a database query in a transaction.

73

returnT :: a → Transaction a

The empty transaction that directly returns its argument.

doneT :: Transaction ()

The empty transaction that returns nothing.

errorT :: TError → Transaction a

Abort a transaction with a specific transaction error.

failT :: String → Transaction a

Abort a transaction with a general error message.

(|>>=) :: Transaction a → (a → Transaction b) → Transaction b

Sequential composition of transactions.

(|>>) :: Transaction a → Transaction b → Transaction b

Sequential composition of transactions.

sequenceT :: [Transaction a] → Transaction [a]

Executes a sequence of transactions and collects all results in a list.

sequenceT :: [Transaction a] → Transaction ()

Executes a sequence of transactions and ignores the results.

mapT :: (a → Transaction b) → [a] → Transaction [b]

Maps a transaction function on a list of elements. The results of all transactions are

collected in a list.

mapT :: (a → Transaction b) → [a] → Transaction ()

Maps a transaction function on a list of elements. The results of all transactions are

ignored.

runT :: Transaction a → IO (Either a TError)

Executes a possibly composed transaction on the current state of dynamic predicates

as a single transaction.

Before the transaction is executed, the access to all persistent predicates is locked (i.e.,

no other process can perform a transaction in parallel). After the successful transac-

tion, the access is unlocked so that the updates performed in this transaction become

persistent and visible to other processes. Otherwise (i.e., in case of a failure or abort

of the transaction), the changes of the transaction to persistent predicates are ignored

and Nothing is returned.

In general, a transaction should terminate and all failures inside a transaction should be

handled (execept for an explicit failT that leads to an abort of the transaction). If a

transaction is externally interrupted (e.g., by killing the process), some locks might never

be removed. However, they can be explicitly removed by deleting the corresponding

lock files reported at startup time.

74

runJustT :: Transaction a → IO a

Executes a possibly composed transaction on the current state of dynamic predicates

as a single transaction. Similarly to runT but a run-time error is raised if the execution

of the transaction fails.

runTNA :: Transaction a → IO (Either a TError)

Executes a possibly composed transaction as a Non-Atomic(!) sequence of its individual

database updates. Thus, the argument is not executed as a single transaction in contrast

to runT, i.e., no predicates are locked and individual updates are not undone in case of

a transaction error. This operation could be applied to execute a composed transaction

without the overhead caused by (the current implementation of) transactions if one is

sure that locking is not necessary (e.g., if the transaction contains only database reads

and transaction error raising).

A.2.15 Library Debug

This library contains some useful operation for debugging programs.

Exported functions:

trace :: String → a → a

Prints the first argument as a side effect and behaves as identity on the second argument.

traceId :: String → String

Prints the first argument as a side effect and returns it afterwards.

traceShow :: a → b → b

Prints the first argument using show and returns the second argument afterwards.

traceShowId :: a → a

Prints the first argument using show and returns it afterwards.

traceIO :: String → IO ()

Output a trace message from the IO monad.

assert :: Bool → String → a → a

Assert a condition w.r.t. an error message. If the condition is not met it fails with the

given error message, otherwise the third argument is returned.

assertIO :: Bool → String → IO ()

Assert a condition w.r.t. an error message from the IO monad. If the condition is not

met it fails with the given error message.

75

A.2.16 Library Directory

Library for accessing the directory structure of the underlying operating system.

Exported functions:

doesFileExist :: String → IO Bool

Returns true if the argument is the name of an existing file.

doesDirectoryExist :: String → IO Bool

Returns true if the argument is the name of an existing directory.

fileSize :: String → IO Int

Returns the size of the file.

getModificationTime :: String → IO ClockTime

Returns the modification time of the file.

getCurrentDirectory :: IO String

Returns the current working directory.

setCurrentDirectory :: String → IO ()

Sets the current working directory.

getDirectoryContents :: String → IO [String]

Returns the list of all entries in a directory.

createDirectory :: String → IO ()

Creates a new directory with the given name.

createDirectoryIfMissing :: Bool → String → IO ()

Creates a new directory with the given name if it does not already exist. If the first

parameter is True it will also create all missing parent directories.

removeDirectory :: String → IO ()

Deletes a directory from the file system.

renameDirectory :: String → String → IO ()

Renames a directory.

getHomeDirectory :: IO String

Returns the home directory of the current user.

76

getTemporaryDirectory :: IO String

Returns the temporary directory of the operating system.

getAbsolutePath :: String → IO String

Convert a path name into an absolute one. For instance, a leading ~ is replaced by the

current home directory.

removeFile :: String → IO ()

Deletes a file from the file system.

renameFile :: String → String → IO ()

Renames a file.

copyFile :: String → String → IO ()

Copy the contents from one file to another file

A.2.17 Library Distribution

This module contains functions to obtain information concerning the current distribution of the

Curry implementation, e.g., compiler version, load paths, front end.

Exported types:

data FrontendTarget

Data type for representing the different target files that can be produced by the front

end of the Curry compiler.

Exported constructors:

• FCY :: FrontendTarget

FCY

– FlatCurry file ending with .fcy

• FINT :: FrontendTarget

FINT

– FlatCurry interface file ending with .fint

• ACY :: FrontendTarget

ACY

– AbstractCurry file ending with .acy

• UACY :: FrontendTarget

UACY

77

– Untyped (without type checking) AbstractCurry file ending with .uacy

• HTML :: FrontendTarget

HTML

– colored HTML representation of source program

• CY :: FrontendTarget

CY

– source representation employed by the frontend

data FrontendParams

Abstract data type for representing parameters supported by the front end of the Curry

compiler.

Exported constructors:

Exported functions:

curryCompiler :: String

The name of the Curry compiler (e.g., ”pakcs” or ”kics2”).

curryCompilerMajorVersion :: Int

The major version number of the Curry compiler.

curryCompilerMinorVersion :: Int

The minor version number of the Curry compiler.

curryRuntime :: String

The name of the run-time environment (e.g., ”sicstus”, ”swi”, or ”ghc”)

curryRuntimeMajorVersion :: Int

The major version number of the Curry run-time environment.

curryRuntimeMinorVersion :: Int

The minor version number of the Curry run-time environment.

installDir :: String

Path of the main installation directory of the Curry compiler.

rcFileName :: IO String

The name of the file specifying configuration parameters of the current distribution.

This file must have the usual format of property files (see description in module Prop-

ertyFile).

78

rcFileContents :: IO [(String,String)]

Returns the current configuration parameters of the distribution. This action yields the

list of pairs (var,val).

getRcVar :: String → IO (Maybe String)

Look up a specific configuration variable as specified by user in his rc file. Upper-

case/lowercase is ignored for the variable names.

getRcVars :: [String] → IO [Maybe String]

Look up configuration variables as specified by user in his rc file. Uppercase/lowercase

is ignored for the variable names.

splitModuleFileName :: String → String → (String,String)

Split the FilePath of a module into the directory prefix and the FilePath correspond-

ing to the module name. For instance, the call splitModuleFileName "Data.Set"

"lib/Data/Set.curry" evaluates to ("lib", "Data/Set.curry"). This can be useful

to compute output directories while retaining the hierarchical module structure.

splitModuleIdentifiers :: String → [String]

Split up the components of a module identifier. For instance, splitModuleIdentifiers

"Data.Set" evaluates to ["Data", "Set"].

joinModuleIdentifiers :: [String] → String

Join the components of a module identifier. For instance, joinModuleIdentifiers

["Data", "Set"] evaluates to "Data.Set".

stripCurrySuffix :: String → String

Strips the suffix ”.curry” or ”.lcurry” from a file name.

modNameToPath :: String → String

Transforms a hierarchical module name into a path name, i.e., replace the dots in the

name by directory separator chars.

currySubdir :: String

Name of the sub directory where auxiliary files (.fint, .fcy, etc) are stored.

inCurrySubdir :: String → String

Transforms a path to a module name into a file name by adding the currySubDir

to the path and transforming a hierarchical module name into a path. For instance,

inCurrySubdir "mylib/Data.Char" evaluates to "mylib/.curry/Data/Char".

inCurrySubdirModule :: String → String → String

79

Transforms a file name by adding the currySubDir to the file name. This version respects

hierarchical module names.

addCurrySubdir :: String → String

Transforms a directory name into the name of the corresponding sub directory contain-

ing auxiliary files.

lookupFileInLoadPath :: String → IO (Maybe String)

Adds a directory name to a file by looking up the current load path. An error message

is delivered if there is no such file.

findFileInLoadPath :: String → IO String

Adds a directory name to a file by looking up the current load path. An error message

is delivered if there is no such file.

readFirstFileInLoadPath :: String → IO String

Returns the contents of the file found first in the current load path. An error message

is delivered if there is no such file.

getLoadPath :: IO [String]

Returns the current path (list of directory names) that is used for loading modules.

getLoadPathForFile :: String → IO [String]

Returns the current path (list of directory names) that is used for loading modules

w.r.t. a given main module file. The directory prefix of the module file (or ”.” if there

is no such prefix) is the first element of the load path and the remaining elements are

determined by the environment variable CURRYRPATH and the entry ”libraries” of

the system’s rc file.

getLoadPathForModule :: String → IO [String]

Returns the current path (list of directory names) that is used for loading modules w.r.t.

a given module path. The directory prefix of the module path (or ”.” if there is no such

prefix) is the first element of the load path and the remaining elements are determined

by the environment variable CURRYRPATH and the entry ”libraries” of the system’s

rc file.

lookupModuleSourceInLoadPath :: String → IO (Maybe (String,String))

Returns a directory name and the actual source file name for a module by looking up the

module source in the current load path. If the module is hierarchical, the directory is

the top directory of the hierarchy. Returns Nothing if there is no corresponding source

file.

defaultParams :: FrontendParams

80

The default parameters of the front end.

rcParams :: IO FrontendParams

The default parameters of the front end as configured by the compiler specific resource

configuration file.

setQuiet :: Bool → FrontendParams → FrontendParams

Set quiet mode of the front end.

setExtended :: Bool → FrontendParams → FrontendParams

Set extended mode of the front end.

setOverlapWarn :: Bool → FrontendParams → FrontendParams

Set overlap warn mode of the front end.

setFullPath :: [String] → FrontendParams → FrontendParams

Set the full path of the front end. If this parameter is set, the front end searches all

modules in this path (instead of using the default path).

setHtmlDir :: String → FrontendParams → FrontendParams

Set the htmldir parameter of the front end. Relevant for HTML generation.

setLogfile :: String → FrontendParams → FrontendParams

Set the logfile parameter of the front end. If this parameter is set, all messages produced

by the front end are stored in this file.

setSpecials :: String → FrontendParams → FrontendParams

Set additional specials parameters of the front end. These parameters are specific for

the current front end and should be used with care, since their form might change in

the future.

quiet :: FrontendParams → Bool

Returns the value of the ”quiet” parameter.

extended :: FrontendParams → Bool

Returns the value of the ”extended” parameter.

overlapWarn :: FrontendParams → Bool

Returns the value of the ”overlapWarn” parameter.

fullPath :: FrontendParams → Maybe [String]

Returns the full path parameter of the front end.

81

htmldir :: FrontendParams → Maybe String

Returns the htmldir parameter of the front end.

logfile :: FrontendParams → Maybe String

Returns the logfile parameter of the front end.

specials :: FrontendParams → String

Returns the special parameters of the front end.

callFrontend :: FrontendTarget → String → IO ()

In order to make sure that compiler generated files (like .fcy, .fint, .acy) are up to date,

one can call the front end of the Curry compiler with this action. If the front end

returns with an error, an exception is raised.

callFrontendWithParams :: FrontendTarget → FrontendParams → String → IO ()

In order to make sure that compiler generated files (like .fcy, .fint, .acy) are up to

date, one can call the front end of the Curry compiler with this action where various

parameters can be set. If the front end returns with an error, an exception is raised.

A.2.18 Library Dynamic

Library for dynamic predicates. 8 dyn.html”> This paper contains a description of the basic ideas

behind this library.

Currently, it is still experimental so that its interface might be slightly changed in the future.

A dynamic predicate p with arguments of type t1,...,tn must be declared by:

p :: t1 -> ... -> tn -> Dynamic

p = dynamic

A dynamic predicate where all facts should be persistently stored in the directory DIR must be

declared by:

p :: t1 -> ... -> tn -> Dynamic

p = persistent "file:DIR"

Remark: This library has been revised to the library Database. Thus, it might not be further

supported in the future.

Exported types:

data Dynamic

The general type of dynamic predicates.

Exported constructors:

8http://www.informatik.uni-kiel.de/~mh/papers/JFLP04

82

Exported functions:

dynamic :: a

dynamic is only used for the declaration of a dynamic predicate and should not be used

elsewhere.

persistent :: String → a

persistent is only used for the declaration of a persistent dynamic predicate and should

not be used elsewhere.

(<>) :: Dynamic → Dynamic → Dynamic

Combine two dynamics.

(|>) :: Dynamic → Bool → Dynamic

Restrict a dynamic with a condition.

(|&>) :: Dynamic → Success → Dynamic

Restrict a dynamic with a constraint.

assert :: Dynamic → IO ()

Asserts new facts (without free variables!) about dynamic predicates. Conditional

dynamics are asserted only if the condition holds.

retract :: Dynamic → IO Bool

Deletes facts (without free variables!) about dynamic predicates. Conditional dynamics

are retracted only if the condition holds. Returns True if all facts to be retracted exist,

otherwise False is returned.

getKnowledge :: IO (Dynamic → Success)

Returns the knowledge at a particular point of time about dynamic predicates. If other

processes made changes to persistent predicates, these changes are read and made visible

to the currently running program.

getDynamicSolutions :: (a → Dynamic) → IO [a]

Returns all answers to an abstraction on a dynamic expression. If other processes

made changes to persistent predicates, these changes are read and made visible to the

currently running program.

getDynamicSolution :: (a → Dynamic) → IO (Maybe a)

Returns an answer to an abstraction on a dynamic expression. Returns Nothing if no

answer exists. If other processes made changes to persistent predicates, these changes

are read and made visible to the currently running program.

83

isKnown :: Dynamic → IO Bool

Returns True if there exists the argument facts (without free variables!) and False,

otherwise.

transaction :: IO a → IO (Maybe a)

Perform an action (usually containing updates of various dynamic predicates) as a single

transaction. This is the preferred way to execute any changes to persistent dynamic

predicates if there might be more than one process that may modify the definition of

such predicates in parallel.

Before the transaction is executed, the access to all persistent predicates is locked (i.e.,

no other process can perform a transaction in parallel). After the successful transac-

tion, the access is unlocked so that the updates performed in this transaction become

persistent and visible to other processes. Otherwise (i.e., in case of a failure or abort

of the transaction), the changes of the transaction to persistent predicates are ignored

and Nothing is returned.

In general, a transaction should terminate and all failures inside a transaction should

be handled (execept for abortTransaction). If a transaction is externally interrupted

(e.g., by killing the process), some locks might never be removed. However, they can

be explicitly removed by deleting the corresponding lock files reported at startup time.

Nested transactions are not supported and lead to a failure.

transactionWithErrorCatch :: IO a → IO (Either a IOError)

Perform an action (usually containing updates of various dynamic predicates) as a

single transaction. This is similar to transaction but an execution error is caught and

returned instead of printing it.

abortTransaction :: IO a

Aborts the current transaction. If a transaction is aborted, the remaining actions of the

transaction are not executed and all changes to persistent dynamic predicates made

in this transaction are ignored.

abortTransaction should only be used in a transaction. Although the execution of

abortTransaction always fails (basically, it writes an abort record in log files, unlock

them and then fails), the failure is handled inside transaction.

A.2.19 Library Either

Library with some useful operations for the Either data type.

Exported functions:

lefts :: [Either a b] → [a]

Extracts from a list of Either all the Left elements in order.

84

rights :: [Either a b] → [b]

Extracts from a list of Either all the Right elements in order.

isLeft :: Either a b → Bool

Return True if the given value is a Left-value, False otherwise.

isRight :: Either a b → Bool

Return True if the given value is a Right-value, False otherwise.

fromLeft :: Either a b → a

Extract the value from a Left constructor.

fromRight :: Either a b → b

Extract the value from a Right constructor.

partitionEithers :: [Either a b] → ([a],[b])

Partitions a list of Either into two lists. All the Left elements are extracted, in order,

to the first component of the output. Similarly the Right elements are extracted to the

second component of the output.

A.2.20 Library FileGoodies

A collection of useful operations when dealing with files.

Exported functions:

separatorChar :: Char

The character for separating hierarchies in file names. On UNIX systems the value is

/.

pathSeparatorChar :: Char

The character for separating names in path expressions. On UNIX systems the value is

:.

suffixSeparatorChar :: Char

The character for separating suffixes in file names. On UNIX systems the value is ..

isAbsolute :: String → Bool

Is the argument an absolute name?

dirName :: String → String

Extracts the directoy prefix of a given (Unix) file name. Returns ”.” if there is no prefix.

85

baseName :: String → String

Extracts the base name without directoy prefix of a given (Unix) file name.

splitDirectoryBaseName :: String → (String,String)

Splits a (Unix) file name into the directory prefix and the base name. The directory

prefix is ”.” if there is no real prefix in the name.

stripSuffix :: String → String

Strips a suffix (the last suffix starting with a dot) from a file name.

fileSuffix :: String → String

Yields the suffix (the last suffix starting with a dot) from given file name.

splitBaseName :: String → (String,String)

Splits a file name into prefix and suffix (the last suffix starting with a dot and the rest).

splitPath :: String → [String]

Splits a path string into list of directory names.

lookupFileInPath :: String → [String] → [String] → IO (Maybe String)

Looks up the first file with a possible suffix in a list of directories. Returns Nothing if

such a file does not exist.

getFileInPath :: String → [String] → [String] → IO String

Gets the first file with a possible suffix in a list of directories. An error message is

delivered if there is no such file.

A.2.21 Library FilePath

This library is a direct port of the Haskell library System.FilePath of Neil Mitchell.

Exported types:

type FilePath = String

Exported functions:

pathSeparator :: Char

pathSeparators :: String

86

isPathSeparator :: Char → Bool

searchPathSeparator :: Char

isSearchPathSeparator :: Char → Bool

extSeparator :: Char

isExtSeparator :: Char → Bool

splitSearchPath :: String → [String]

getSearchPath :: IO [String]

splitExtension :: String → (String,String)

takeExtension :: String → String

replaceExtension :: String → String → String

(<.>) :: String → String → String

dropExtension :: String → String

addExtension :: String → String → String

hasExtension :: String → Bool

87

splitExtensions :: String → (String,String)

dropExtensions :: String → String

takeExtensions :: String → String

splitDrive :: String → (String,String)

joinDrive :: String → String → String

takeDrive :: String → String

dropDrive :: String → String

hasDrive :: String → Bool

isDrive :: String → Bool

splitFileName :: String → (String,String)

replaceFileName :: String → String → String

dropFileName :: String → String

takeFileName :: String → String

takeBaseName :: String → String

88

replaceBaseName :: String → String → String

hasTrailingPathSeparator :: String → Bool

addTrailingPathSeparator :: String → String

dropTrailingPathSeparator :: String → String

takeDirectory :: String → String

replaceDirectory :: String → String → String

combine :: String → String → String

(</>) :: String → String → String

splitPath :: String → [String]

splitDirectories :: String → [String]

joinPath :: [String] → String

equalFilePath :: String → String → Bool

makeRelative :: String → String → String

normalise :: String → String

89

isValid :: String → Bool

makeValid :: String → String

isRelative :: String → Bool

isAbsolute :: String → Bool

A.2.22 Library Findall

Library with some operations for encapsulating search. Note that some of these operations are

not fully declarative, i.e., the results depend on the order of evaluation and program rules. There

are newer and better approaches the encpasulate search, in particular, set functions (see module

SetFunctions), which should be used.

In previous versions of PAKCS, some of these operations were part of the standard prelude. We

keep them in this separate module in order to support a more portable standard prelude.

Exported functions:

getAllValues :: a → IO [a]

Gets all values of an expression (currently, via an incomplete depth-first strategy).

Conceptually, all values are computed on a copy of the expression, i.e., the evaluation

of the expression does not share any results. Moreover, the evaluation suspends as long

as the expression contains unbound variables. Similar to Prolog’s findall.

getSomeValue :: a → IO a

Gets a value of an expression (currently, via an incomplete depth-first strategy). The

expression must have a value, otherwise the computation fails. Conceptually, the value

is computed on a copy of the expression, i.e., the evaluation of the expression does not

share any results. Moreover, the evaluation suspends as long as the expression contains

unbound variables.

allValues :: a → [a]

Returns all values of an expression (currently, via an incomplete depth-first strategy).

Conceptually, all values are computed on a copy of the expression, i.e., the evaluation

of the expression does not share any results. Moreover, the evaluation suspends as long

as the expression contains unbound variables.

Note that this operation is not purely declarative since the ordering of the computed

values depends on the ordering of the program rules.

90

someValue :: a → a

Returns some value for an expression (currently, via an incomplete depth-first strat-

egy). If the expression has no value, the computation fails. Conceptually, the value is

computed on a copy of the expression, i.e., the evaluation of the expression does not

share any results. Moreover, the evaluation suspends as long as the expression contains

unbound variables.

Note that this operation is not purely declarative since the computed value depends

on the ordering of the program rules. Thus, this operation should be used only if the

expression has a single value.

allSolutions :: (a → Bool) → [a]

Returns all values satisfying a predicate, i.e., all arguments such that the predicate

applied to the argument can be evaluated to True (currently, via an incomplete depth-

first strategy). The evaluation suspends as long as the predicate expression contains

unbound variables.

Note that this operation is not purely declarative since the ordering of the computed

values depends on the ordering of the program rules.

someSolution :: (a → Bool) → a

Returns some values satisfying a predicate, i.e., some argument such that the predicate

applied to the argument can be evaluated to True (currently, via an incomplete depth-

first strategy). If there is no value satisfying the predicate, the computation fails.

Note that this operation is not purely declarative since the ordering of the computed

values depends on the ordering of the program rules. Thus, this operation should be

used only if the predicate has a single solution.

try :: (a → Success) → [a → Success]

Basic search control operator.

inject :: (a → Success) → (a → Success) → a → Success

Inject operator which adds the application of the unary procedure p to the search

variable to the search goal taken from Oz. p x comes before g x to enable a test+generate

form in a sequential implementation.

solveAll :: (a → Success) → [a → Success]

Computes all solutions via a a depth-first strategy.

once :: (a → Success) → a → Success

Gets the first solution via a depth-first strategy.

best :: (a → Success) → (a → a → Bool) → [a → Success]

91

Gets the best solution via a depth-first strategy according to a specified operator that

can always take a decision which of two solutions is better. In general, the comparison

operation should be rigid in its arguments!

findall :: (a → Success) → [a]

Gets all solutions via a depth-first strategy and unpack the values from the lambda-

abstractions. Similar to Prolog’s findall.

findfirst :: (a → Success) → a

Gets the first solution via a depth-first strategy and unpack the values from the search

goals.

browse :: (a → Success) → IO ()

Shows the solution of a solved constraint.

browseList :: [a → Success] → IO ()

Unpacks solutions from a list of lambda abstractions and write them to the screen.

unpack :: (a → Success) → a

Unpacks a solution’s value from a (solved) search goal.

rewriteAll :: a → [a]

Gets all values computable by term rewriting. In contrast to findall, this operation

does not wait until all ”outside” variables are bound to values, but it returns all values

computable by term rewriting and ignores all computations that requires bindings for

outside variables.

rewriteSome :: a → Maybe a

Similarly to rewriteAll but returns only some value computable by term rewriting.

Returns Nothing if there is no such value.

A.2.23 Library Float

A collection of operations on floating point numbers.

Exported functions:

pi :: Float

The number pi.

(+.) :: Float → Float → Float

Addition on floats.

(-.) :: Float → Float → Float

92

Subtraction on floats.

(*.) :: Float → Float → Float

Multiplication on floats.

(/.) :: Float → Float → Float

Division on floats.

(^.) :: Float → Int → Float

The value of a ^. b is a raised to the power of b. Executes in O(log b) steps.

i2f :: Int → Float

Conversion function from integers to floats.

truncate :: Float → Int

Conversion function from floats to integers. The result is the closest integer between

the argument and 0.

round :: Float → Int

Conversion function from floats to integers. The result is the nearest integer to the

argument. If the argument is equidistant between two integers, it is rounded to the

closest even integer value.

recip :: Float → Float

Reciprocal

sqrt :: Float → Float

Square root.

log :: Float → Float

Natural logarithm.

logBase :: Float → Float → Float

Logarithm to arbitrary Base.

exp :: Float → Float

Natural exponent.

sin :: Float → Float

Sine.

cos :: Float → Float

93

Cosine.

tan :: Float → Float

Tangent.

asin :: Float → Float

Arc sine.

acos :: Float → Float

atan :: Float → Float

Arc tangent.

sinh :: Float → Float

Hyperbolic sine.

cosh :: Float → Float

tanh :: Float → Float

Hyperbolic tangent.

asinh :: Float → Float

Hyperbolic Arc sine.

acosh :: Float → Float

atanh :: Float → Float

Hyperbolic Arc tangent.

A.2.24 Library Function

This module provides some utility functions for function application.

94

Exported functions:

fix :: (a → a) → a

fix f is the least fixed point of the function f, i.e. the least defined x such that f x =

x.

on :: (a → a → b) → (c → a) → c → c → b

(*) ‘on‘ f = \x y -> f x * f y. Typical usage: sortBy (compare ‘on‘ fst).

first :: (a → b) → (a,c) → (b,c)

Apply a function to the first component of a tuple.

second :: (a → b) → (c,a) → (c,b)

Apply a function to the second component of a tuple.

(***) :: (a → b) → (c → d) → (a,c) → (b,d)

Apply two functions to the two components of a tuple.

(&&&) :: (a → b) → (a → c) → a → (b,c)

Apply two functions to a value and returns a tuple of the results.

both :: (a → b) → (a,a) → (b,b)

Apply a function to both components of a tuple.

A.2.25 Library FunctionInversion

This module provides some utility functions for inverting functions.

Exported functions:

invf1 :: (a → b) → b → a

Inverts a unary function.

invf2 :: (a → b → c) → c → (a,b)

Inverts a binary function.

invf3 :: (a → b → c → d) → d → (a,b,c)

Inverts a ternary function.

invf4 :: (a → b → c → d → e) → e → (a,b,c,d)

Inverts a function of arity 4.

invf5 :: (a → b → c → d → e → f) → f → (a,b,c,d,e)

Inverts a function of arity 5.

95

A.2.26 Library GetOpt

This Module is a modified version of the Module System.Console.GetOpt by Sven Panne from the

ghc-base package it has been adapted for Curry by Bjoern Peemoeller

(c) Sven Panne 2002-2005 The Glasgow Haskell Compiler License

Copyright 2004, The University Court of the University of Glasgow. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted

provided that the following conditions are met:

this list of conditions and the following disclaimer.

this list of conditions and the following disclaimer in the documentation and/or other materials

provided with the distribution.

used to endorse or promote products derived from this software without specific prior written

permission.

THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY

OF GLASGOW AND THE CONTRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW

OR THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-

CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY

OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-

WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Exported types:

data ArgOrder

Exported constructors:

• RequireOrder :: ArgOrder a

• Permute :: ArgOrder a

• ReturnInOrder :: (String → a) → ArgOrder a

data OptDescr

Exported constructors:

• Option :: String → [String] → (ArgDescr a) → String → OptDescr a

data ArgDescr

96

Exported constructors:

• NoArg :: a → ArgDescr a

• ReqArg :: (String → a) → String → ArgDescr a

• OptArg :: (Maybe String → a) → String → ArgDescr a

Exported functions:

usageInfo :: String → [OptDescr a] → String

getOpt :: ArgOrder a → [OptDescr a] → [String] → ([a],[String],[String])

getOpt’ :: ArgOrder a → [OptDescr a] → [String] → ([a],[String],[String],[String])

A.2.27 Library Global

Library for handling global entities. A global entity has a name declared in the program. Its

value can be accessed and modified by IO actions. Furthermore, global entities can be declared as

persistent so that their values are stored across different program executions.

Currently, it is still experimental so that its interface might be slightly changed in the future.

A global entity g with an initial value v of type t must be declared by:

g :: Global t

g = global v spec

Here, the type t must not contain type variables and spec specifies the storage mechanism for the

global entity (see type GlobalSpec).

Exported types:

data Global

The type of a global entity.

Exported constructors:

data GlobalSpec

The storage mechanism for the global entity.

Exported constructors:

97

• Temporary :: GlobalSpec

Temporary

– the global value exists only during a single execution of a program

• Persistent :: String → GlobalSpec

Persistent f

– the global value is stored persisently in file f (which is created and initialized if it does

not exists)

Exported functions:

global :: a → GlobalSpec → Global a

global is only used for the declaration of a global value and should not be used else-

where. In the future, it might become a keyword.

readGlobal :: Global a → IO a

Reads the current value of a global.

writeGlobal :: Global a → a → IO ()

Updates the value of a global. The value is evaluated to a ground constructor term

before it is updated.

A.2.28 Library GlobalVariable

Library for handling global variables. A global variable has a name declared in the program. Its

value (a data term possibly containing free variables) can be accessed and modified by IO actions.

In contast to global entities (as defined in the library Global), global variables can contain logic

variables shared with computations running in the same computation space. As a consequence,

global variables cannot be persistent, their values are not kept across different program executions.

Currently, it is still experimental so that its interface might be slightly changed in the future.

A global variable g with an initial value v of type t must be declared by:

g :: GVar t

g = gvar v

Here, the type t must not contain type variables. v is the initial value for every program run.

Note: the implementation in PAKCS is based on threading a state through the execution. Thus,

it might be the case that some updates of global variables are lost if fancy features like unsafe

operations or debugging support are used.

Exported types:

data GVar

The general type of global variables.

Exported constructors:

98

Exported functions:

gvar :: a → GVar a

gvar is only used for the declaration of a global variable and should not be used else-

where. In the future, it might become a keyword.

readGVar :: GVar a → IO a

Reads the current value of a global variable.

writeGVar :: GVar a → a → IO ()

Updates the value of a global variable. The associated term is evaluated to a data term

and might contain free variables.

A.2.29 Library GUI

This library contains definitions and functions to implement graphical user interfaces for Curry

programs. It is based on Tcl/Tk and its basic ideas are described in detail in this paper

Exported types:

data GuiPort

The port to a GUI is just the stream connection to a GUI where Tcl/Tk communication

is done.

Exported constructors:

data Widget

The type of possible widgets in a GUI.

Exported constructors:

• PlainButton :: [ConfItem] → Widget

PlainButton

– a button in a GUI whose event handler is activated if the user presses the button

• Canvas :: [ConfItem] → Widget

Canvas

– a canvas to draw pictures containing CanvasItems

• CheckButton :: [ConfItem] → Widget

CheckButton

– a check button: it has value ”0” if it is unchecked and value ”1” if it is checked

99

http://www.informatik.uni-kiel.de/~mh/papers/PADL00.html

• Entry :: [ConfItem] → Widget

Entry

– an entry widget for entering single lines

• Label :: [ConfItem] → Widget

Label

– a label for showing a text

• ListBox :: [ConfItem] → Widget

ListBox

– a widget containing a list of items for selection

• Message :: [ConfItem] → Widget

Message

– a message for showing simple string values

• MenuButton :: [ConfItem] → Widget

MenuButton

– a button with a pull-down menu

• Scale :: Int → Int → [ConfItem] → Widget

Scale

– a scale widget to input values by a slider

• ScrollH :: WidgetRef → [ConfItem] → Widget

ScrollH

– a horizontal scroll bar

• ScrollV :: WidgetRef → [ConfItem] → Widget

ScrollV

– a vertical scroll bar

• TextEdit :: [ConfItem] → Widget

TextEdit

– a text editor widget to show and manipulate larger text paragraphs

• Row :: [ConfCollection] → [Widget] → Widget

Row

– a horizontal alignment of widgets

100

• Col :: [ConfCollection] → [Widget] → Widget

Col

– a vertical alignment of widgets

• Matrix :: [ConfCollection] → [[Widget]] → Widget

Matrix

– a 2-dimensional (matrix) alignment of widgets

data ConfItem

The data type for possible configurations of a widget.

Exported constructors:

• Active :: Bool → ConfItem

Active

– define the active state for buttons, entries, etc.

• Anchor :: String → ConfItem

Anchor

– alignment of information inside a widget where the argument must be: n, ne, e, se, s,

sw, w, nw, or center

• Background :: String → ConfItem

Background

– the background color

• Foreground :: String → ConfItem

Foreground

– the foreground color

• Handler :: Event → (GuiPort → IO [ReconfigureItem]) → ConfItem

Handler

– an event handler associated to a widget. The event handler returns a list of widget

ref/configuration pairs that are applied after the handler in order to configure GUI

widgets

• Height :: Int → ConfItem

Height

– the height of a widget (chars for text, pixels for graphics)

101

• CheckInit :: String → ConfItem

CheckInit

– initial value for checkbuttons

• CanvasItems :: [CanvasItem] → ConfItem

CanvasItems

– list of items contained in a canvas

• List :: [String] → ConfItem

List

– list of values shown in a listbox

• Menu :: [MenuItem] → ConfItem

Menu

– the items of a menu button

• WRef :: WidgetRef → ConfItem

WRef

– a reference to this widget

• Text :: String → ConfItem

Text

– an initial text contents

• Width :: Int → ConfItem

Width

– the width of a widget (chars for text, pixels for graphics)

• Fill :: ConfItem

Fill

– fill widget in both directions

• FillX :: ConfItem

FillX

– fill widget in horizontal direction

• FillY :: ConfItem

FillY

– fill widget in vertical direction

102

• TclOption :: String → ConfItem

TclOption

– further options in Tcl syntax (unsafe!)

data ReconfigureItem

Data type for describing configurations that are applied to a widget or GUI by some

event handler.

Exported constructors:

• WidgetConf :: WidgetRef → ConfItem → ReconfigureItem

WidgetConf wref conf

– reconfigure the widget referred by wref with configuration item conf

• StreamHandler :: Handle → (Handle → GuiPort → IO [ReconfigureItem]) →
ReconfigureItem

StreamHandler hdl handler

– add a new handler to the GUI that processes inputs on an input stream referred by hdl

• RemoveStreamHandler :: Handle → ReconfigureItem

RemoveStreamHandler hdl

– remove a handler for an input stream referred by hdl from the GUI (usually used to

remove handlers for closed streams)

data Event

The data type of possible events on which handlers can react. This list is still incomplete

and might be extended or restructured in future releases of this library.

Exported constructors:

• DefaultEvent :: Event

DefaultEvent

– the default event of the widget

• MouseButton1 :: Event

MouseButton1

– left mouse button pressed

• MouseButton2 :: Event

MouseButton2

103

– middle mouse button pressed

• MouseButton3 :: Event

MouseButton3

– right mouse button pressed

• KeyPress :: Event

KeyPress

– any key is pressed

• Return :: Event

Return

– return key is pressed

data ConfCollection

The data type for possible configurations of widget collections (e.g., columns, rows).

Exported constructors:

• CenterAlign :: ConfCollection

CenterAlign

– centered alignment

• LeftAlign :: ConfCollection

LeftAlign

– left alignment

• RightAlign :: ConfCollection

RightAlign

– right alignment

• TopAlign :: ConfCollection

TopAlign

– top alignment

• BottomAlign :: ConfCollection

BottomAlign

– bottom alignment

data MenuItem

104

The data type for specifying items in a menu.

Exported constructors:

• MButton :: (GuiPort → IO [ReconfigureItem]) → String → MenuItem

MButton

– a button with an associated command and a label string

• MSeparator :: MenuItem

MSeparator

– a separator between menu entries

• MMenuButton :: String → [MenuItem] → MenuItem

MMenuButton

– a submenu with a label string

data CanvasItem

The data type of items in a canvas. The last argument are further options in Tcl/Tk

(for testing).

Exported constructors:

• CLine :: [(Int,Int)] → String → CanvasItem

• CPolygon :: [(Int,Int)] → String → CanvasItem

• CRectangle :: (Int,Int) → (Int,Int) → String → CanvasItem

• COval :: (Int,Int) → (Int,Int) → String → CanvasItem

• CText :: (Int,Int) → String → String → CanvasItem

data WidgetRef

The (hidden) data type of references to a widget in a GUI window. Note that the

constructor WRefLabel will not be exported so that values can only be created inside

this module.

Exported constructors:

data Style

The data type of possible text styles.

Exported constructors:

105

• Bold :: Style

Bold

– text in bold font

• Italic :: Style

Italic

– text in italic font

• Underline :: Style

Underline

– underline text

• Fg :: Color → Style

Fg

– foreground color, i.e., color of the text font

• Bg :: Color → Style

Bg

– background color of the text

data Color

The data type of possible colors.

Exported constructors:

• Black :: Color

• Blue :: Color

• Brown :: Color

• Cyan :: Color

• Gold :: Color

• Gray :: Color

• Green :: Color

• Magenta :: Color

• Navy :: Color

• Orange :: Color

106

• Pink :: Color

• Purple :: Color

• Red :: Color

• Tomato :: Color

• Turquoise :: Color

• Violet :: Color

• White :: Color

• Yellow :: Color

Exported functions:

row :: [Widget] → Widget

Horizontal alignment of widgets.

col :: [Widget] → Widget

Vertical alignment of widgets.

matrix :: [[Widget]] → Widget

Matrix alignment of widgets.

debugTcl :: Widget → IO ()

Prints the generated Tcl commands of a main widget (useful for debugging).

runPassiveGUI :: String → Widget → IO GuiPort

IO action to show a Widget in a new GUI window in passive mode, i.e., ignore all GUI

events.

runGUI :: String → Widget → IO ()

IO action to run a Widget in a new window.

runGUIwithParams :: String → String → Widget → IO ()

IO action to run a Widget in a new window.

runInitGUI :: String → Widget → (GuiPort → IO [ReconfigureItem]) → IO ()

IO action to run a Widget in a new window. The GUI events are processed after

executing an initial action on the GUI.

runInitGUIwithParams :: String → String → Widget → (GuiPort → IO

[ReconfigureItem]) → IO ()

107

IO action to run a Widget in a new window. The GUI events are processed after

executing an initial action on the GUI.

runControlledGUI :: String → (Widget,String → GuiPort → IO ()) → Handle → IO

()

Runs a Widget in a new GUI window and process GUI events. In addition, an event

handler is provided that process messages received from an external stream identified

by a handle (third argument). This operation is useful to run a GUI that should react

on user events as well as messages written to the given handle.

runConfigControlledGUI :: String → (Widget,String → GuiPort → IO

[ReconfigureItem]) → Handle → IO ()

Runs a Widget in a new GUI window and process GUI events. In addition, an event

handler is provided that process messages received from an external stream identified

by a handle (third argument). This operation is useful to run a GUI that should react

on user events as well as messages written to the given handle.

runInitControlledGUI :: String → (Widget,String → GuiPort → IO ()) → (GuiPort

→ IO [ReconfigureItem]) → Handle → IO ()

Runs a Widget in a new GUI window and process GUI events after executing an initial

action on the GUI window. In addition, an event handler is provided that process

messages received from an external message stream. This operation is useful to run a

GUI that should react on user events as well as messages written to the given handle.

runHandlesControlledGUI :: String → (Widget,[Handle → GuiPort → IO

[ReconfigureItem]]) → [Handle] → IO ()

Runs a Widget in a new GUI window and process GUI events. In addition, a list of

event handlers is provided that process inputs received from a corresponding list of

handles to input streams. Thus, if the i-th handle has some data available, the i-th

event handler is executed with the i-th handle as a parameter. This operation is useful

to run a GUI that should react on inputs provided by other processes, e.g., via sockets.

runInitHandlesControlledGUI :: String → (Widget,[Handle → GuiPort → IO

[ReconfigureItem]]) → (GuiPort → IO [ReconfigureItem]) → [Handle] → IO ()

Runs a Widget in a new GUI window and process GUI events after executing an initial

action on the GUI window. In addition, a list of event handlers is provided that process

inputs received from a corresponding list of handles to input streams. Thus, if the i-th

handle has some data available, the i-th event handler is executed with the i-th handle

as a parameter. This operation is useful to run a GUI that should react on inputs

provided by other processes, e.g., via sockets.

setConfig :: WidgetRef → ConfItem → GuiPort → IO ()

Changes the current configuration of a widget (deprecated operation, only included for

backward compatibility). Warning: does not work for Command options!

108

exitGUI :: GuiPort → IO ()

An event handler for terminating the GUI.

getValue :: WidgetRef → GuiPort → IO String

Gets the (String) value of a variable in a GUI.

setValue :: WidgetRef → String → GuiPort → IO ()

Sets the (String) value of a variable in a GUI.

updateValue :: (String → String) → WidgetRef → GuiPort → IO ()

Updates the (String) value of a variable w.r.t. to an update function.

appendValue :: WidgetRef → String → GuiPort → IO ()

Appends a String value to the contents of a TextEdit widget and adjust the view to the

end of the TextEdit widget.

appendStyledValue :: WidgetRef → String → [Style] → GuiPort → IO ()

Appends a String value with style tags to the contents of a TextEdit widget and adjust

the view to the end of the TextEdit widget. Different styles can be combined, e.g., to

get bold blue text on a red background. If Bold, Italic and Underline are combined,

currently all but one of these are ignored. This is an experimental function and might

be changed in the future.

addRegionStyle :: WidgetRef → (Int,Int) → (Int,Int) → Style → GuiPort → IO ()

Adds a style value in a region of a TextEdit widget. The region is specified a start and

end position similarly to getCursorPosition. Different styles can be combined, e.g., to

get bold blue text on a red background. If Bold, Italic and Underline are combined,

currently all but one of these are ignored. This is an experimental function and might

be changed in the future.

removeRegionStyle :: WidgetRef → (Int,Int) → (Int,Int) → Style → GuiPort → IO

()

Removes a style value in a region of a TextEdit widget. The region is specified a start

and end position similarly to getCursorPosition. This is an experimental function

and might be changed in the future.

getCursorPosition :: WidgetRef → GuiPort → IO (Int,Int)

Get the position (line,column) of the insertion cursor in a TextEdit widget. Lines are

numbered from 1 and columns are numbered from 0.

seeText :: WidgetRef → (Int,Int) → GuiPort → IO ()

Adjust the view of a TextEdit widget so that the specified line/column character is

visible. Lines are numbered from 1 and columns are numbered from 0.

109

focusInput :: WidgetRef → GuiPort → IO ()

Sets the input focus of this GUI to the widget referred by the first argument. This is

useful for automatically selecting input entries in an application.

addCanvas :: WidgetRef → [CanvasItem] → GuiPort → IO ()

Adds a list of canvas items to a canvas referred by the first argument.

popupMessage :: String → IO ()

A simple popup message.

Cmd :: (GuiPort → IO ()) → ConfItem

A simple event handler that can be associated to a widget. The event handler takes a

GUI port as parameter in order to read or write values from/into the GUI.

Command :: (GuiPort → IO [ReconfigureItem]) → ConfItem

An event handler that can be associated to a widget. The event handler takes a GUI

port as parameter (in order to read or write values from/into the GUI) and returns a

list of widget reference/configuration pairs which is applied after the handler in order

to configure some GUI widgets.

Button :: (GuiPort → IO ()) → [ConfItem] → Widget

A button with an associated event handler which is activated if the button is pressed.

ConfigButton :: (GuiPort → IO [ReconfigureItem]) → [ConfItem] → Widget

A button with an associated event handler which is activated if the button is pressed.

The event handler is a configuration handler (see Command) that allows the configura-

tion of some widgets.

TextEditScroll :: [ConfItem] → Widget

A text edit widget with vertical and horizontal scrollbars. The argument contains the

configuration options for the text edit widget.

ListBoxScroll :: [ConfItem] → Widget

A list box widget with vertical and horizontal scrollbars. The argument contains the

configuration options for the list box widget.

CanvasScroll :: [ConfItem] → Widget

A canvas widget with vertical and horizontal scrollbars. The argument contains the

configuration options for the text edit widget.

EntryScroll :: [ConfItem] → Widget

An entry widget with a horizontal scrollbar. The argument contains the configuration

options for the entry widget.

110

getOpenFile :: IO String

Pops up a GUI for selecting an existing file. The file with its full path name will be

returned (or ”” if the user cancels the selection).

getOpenFileWithTypes :: [(String,String)] → IO String

Pops up a GUI for selecting an existing file. The parameter is a list of pairs of file types

that could be selected. A file type pair consists of a name and an extension for that

file type. The file with its full path name will be returned (or ”” if the user cancels the

selection).

getSaveFile :: IO String

Pops up a GUI for choosing a file to save some data. If the user chooses an existing

file, she/he will asked to confirm to overwrite it. The file with its full path name will

be returned (or ”” if the user cancels the selection).

getSaveFileWithTypes :: [(String,String)] → IO String

Pops up a GUI for choosing a file to save some data. The parameter is a list of pairs of

file types that could be selected. A file type pair consists of a name and an extension

for that file type. If the user chooses an existing file, she/he will asked to confirm to

overwrite it. The file with its full path name will be returned (or ”” if the user cancels

the selection).

chooseColor :: IO String

Pops up a GUI dialog box to select a color. The name of the color will be returned (or

”” if the user cancels the selection).

A.2.30 Library Integer

A collection of common operations on integer numbers. Most operations make no assumption on

the precision of integers. Operation bitNot is necessarily an exception.

Exported functions:

(^) :: Int → Int → Int

The value of a ^ b is a raised to the power of b. Fails if b < 0. Executes in O(log

b) steps.

pow :: Int → Int → Int

The value of pow a b is a raised to the power of b. Fails if b < 0. Executes in

O(log b) steps.

ilog :: Int → Int

111

The value of ilog n is the floor of the logarithm in the base 10 of n. Fails if n <=

0. For positive integers, the returned value is 1 less the number of digits in the decimal

representation of n.

isqrt :: Int → Int

The value of isqrt n is the floor of the square root of n. Fails if n < 0. Executes

in O(log n) steps, but there must be a better way.

factorial :: Int → Int

The value of factorial n is the factorial of n. Fails if n < 0.

binomial :: Int → Int → Int

The value of binomial n m is n(n-1)...(n-m+1)/m(m-1)*...1 Fails if ‘m <= 0‘ or ‘n <

m‘.

abs :: Int → Int

The value of abs n is the absolute value of n.

max3 :: a → a → a → a

Returns the maximum of the three arguments.

min3 :: a → a → a → a

Returns the minimum of the three arguments.

maxlist :: [a] → a

Returns the maximum of a list of integer values. Fails if the list is empty.

minlist :: [a] → a

Returns the minimum of a list of integer values. Fails if the list is empty.

bitTrunc :: Int → Int → Int

The value of bitTrunc n m is the value of the n least significant bits of m.

bitAnd :: Int → Int → Int

Returns the bitwise AND of the two arguments.

bitOr :: Int → Int → Int

Returns the bitwise inclusive OR of the two arguments.

bitNot :: Int → Int

Returns the bitwise NOT of the argument. Since integers have unlimited precision, only

the 32 least significant bits are computed.

112

bitXor :: Int → Int → Int

Returns the bitwise exclusive OR of the two arguments.

even :: Int → Bool

Returns whether an integer is even

odd :: Int → Bool

Returns whether an integer is odd

A.2.31 Library IO

Library for IO operations like reading and writing files that are not already contained in the prelude.

Exported types:

data Handle

The abstract type of a handle for a stream.

Exported constructors:

data IOMode

The modes for opening a file.

Exported constructors:

• ReadMode :: IOMode

• WriteMode :: IOMode

• AppendMode :: IOMode

data SeekMode

The modes for positioning with hSeek in a file.

Exported constructors:

• AbsoluteSeek :: SeekMode

• RelativeSeek :: SeekMode

• SeekFromEnd :: SeekMode

113

Exported functions:

stdin :: Handle

Standard input stream.

stdout :: Handle

Standard output stream.

stderr :: Handle

Standard error stream.

openFile :: String → IOMode → IO Handle

Opens a file in specified mode and returns a handle to it.

hClose :: Handle → IO ()

Closes a file handle and flushes the buffer in case of output file.

hFlush :: Handle → IO ()

Flushes the buffer associated to handle in case of output file.

hIsEOF :: Handle → IO Bool

Is handle at end of file?

isEOF :: IO Bool

Is standard input at end of file?

hSeek :: Handle → SeekMode → Int → IO ()

Set the position of a handle to a seekable stream (e.g., a file). If the second argument

is AbsoluteSeek, SeekFromEnd, or RelativeSeek, the position is set relative to the

beginning of the file, to the end of the file, or to the current position, respectively.

hWaitForInput :: Handle → Int → IO Bool

Waits until input is available on the given handle. If no input is available within t

milliseconds, it returns False, otherwise it returns True.

hWaitForInputs :: [Handle] → Int → IO Int

Waits until input is available on some of the given handles. If no input is available

within t milliseconds, it returns -1, otherwise it returns the index of the corresponding

handle with the available data.

hWaitForInputOrMsg :: Handle → [a] → IO (Either Handle [a])

114

Waits until input is available on a given handles or a message in the message stream.

Usually, the message stream comes from an external port. Thus, this operation im-

plements a committed choice over receiving input from an IO handle or an external

port.

Note that the implementation of this operation works only with Sicstus-Prolog 3.8.5 or

higher (due to a bug in previous versions of Sicstus-Prolog).

hWaitForInputsOrMsg :: [Handle] → [a] → IO (Either Int [a])

Waits until input is available on some of the given handles or a message in the message

stream. Usually, the message stream comes from an external port. Thus, this operation

implements a committed choice over receiving input from IO handles or an external

port.

Note that the implementation of this operation works only with Sicstus-Prolog 3.8.5 or

higher (due to a bug in previous versions of Sicstus-Prolog).

hReady :: Handle → IO Bool

Checks whether an input is available on a given handle.

hGetChar :: Handle → IO Char

Reads a character from an input handle and returns it. Throws an error if the end of

file has been reached.

hGetLine :: Handle → IO String

Reads a line from an input handle and returns it. Throws an error if the end of file has

been reached while reading the first character. If the end of file is reached later in the

line, it ist treated as a line terminator and the (partial) line is returned.

hGetContents :: Handle → IO String

Reads the complete contents from an input handle and closes the input handle before

returning the contents.

getContents :: IO String

Reads the complete contents from the standard input stream until EOF.

hPutChar :: Handle → Char → IO ()

Puts a character to an output handle.

hPutStr :: Handle → String → IO ()

Puts a string to an output handle.

hPutStrLn :: Handle → String → IO ()

Puts a string with a newline to an output handle.

115

hPrint :: Handle → a → IO ()

Converts a term into a string and puts it to an output handle.

hIsReadable :: Handle → IO Bool

Is the handle readable?

hIsWritable :: Handle → IO Bool

Is the handle writable?

hIsTerminalDevice :: Handle → IO Bool

Is the handle connected to a terminal?

A.2.32 Library IOExts

Library with some useful extensions to the IO monad.

Exported types:

data IORef

Mutable variables containing values of some type. The values are not evaluated when

they are assigned to an IORef.

Exported constructors:

Exported functions:

execCmd :: String → IO (Handle,Handle,Handle)

Executes a command with a new default shell process. The standard I/O streams

of the new process (stdin,stdout,stderr) are returned as handles so that they can be

explicitly manipulated. They should be closed with IO.hClose since they are not closed

automatically when the process terminates.

evalCmd :: String → [String] → String → IO (Int,String,String)

Executes a command with the given arguments as a new default shell process and

provides the input via the process’ stdin input stream. The exit code of the process

and the contents written to the standard I/O streams stdout and stderr are returned.

connectToCommand :: String → IO Handle

Executes a command with a new default shell process. The input and output streams

of the new process is returned as one handle which is both readable and writable. Thus,

writing to the handle produces input to the process and output from the process can

be retrieved by reading from this handle. The handle should be closed with IO.hClose

since they are not closed automatically when the process terminates.

116

readCompleteFile :: String → IO String

An action that reads the complete contents of a file and returns it. This action can be

used instead of the (lazy) readFile action if the contents of the file might be changed.

updateFile :: (String → String) → String → IO ()

An action that updates the contents of a file.

exclusiveIO :: String → IO a → IO a

Forces the exclusive execution of an action via a lock file. For instance, (exclusiveIO

”myaction.lock” act) ensures that the action ”act” is not executed by two processes on

the same system at the same time.

setAssoc :: String → String → IO ()

Defines a global association between two strings. Both arguments must be evaluable to

ground terms before applying this operation.

getAssoc :: String → IO (Maybe String)

Gets the value associated to a string. Nothing is returned if there does not exist an

associated value.

newIORef :: a → IO (IORef a)

Creates a new IORef with an initial values.

readIORef :: IORef a → IO a

Reads the current value of an IORef.

writeIORef :: IORef a → a → IO ()

Updates the value of an IORef.

modifyIORef :: IORef a → (a → a) → IO ()

Modify the value of an IORef.

A.2.33 Library JavaScript

A library to represent JavaScript programs.

Exported types:

data JSExp

Type of JavaScript expressions.

Exported constructors:

117

• JSString :: String → JSExp

JSString

– string constant

• JSInt :: Int → JSExp

JSInt

– integer constant

• JSBool :: Bool → JSExp

JSBool

– Boolean constant

• JSIVar :: Int → JSExp

JSIVar

– indexed variable

• JSIArrayIdx :: Int → Int → JSExp

JSIArrayIdx

– array access to index array variable

• JSOp :: String → JSExp → JSExp → JSExp

JSOp

– infix operator expression

• JSFCall :: String → [JSExp] → JSExp

JSFCall

– function call

• JSApply :: JSExp → JSExp → JSExp

JSApply

– function call where the function is an expression

• JSLambda :: [Int] → [JSStat] → JSExp

JSLambda

– (anonymous) function with indexed variables as arguments

data JSStat

Type of JavaScript statements.

118

Exported constructors:

• JSAssign :: JSExp → JSExp → JSStat

JSAssign

– assignment

• JSIf :: JSExp → [JSStat] → [JSStat] → JSStat

JSIf

– conditional

• JSSwitch :: JSExp → [JSBranch] → JSStat

JSSwitch

– switch statement

• JSPCall :: String → [JSExp] → JSStat

JSPCall

– procedure call

• JSReturn :: JSExp → JSStat

JSReturn

– return statement

• JSVarDecl :: Int → JSStat

JSVarDecl

– local variable declaration

data JSBranch

Exported constructors:

• JSCase :: String → [JSStat] → JSBranch

JSCase

– case branch

• JSDefault :: [JSStat] → JSBranch

JSDefault

– default branch

data JSFDecl

119

Exported constructors:

• JSFDecl :: String → [Int] → [JSStat] → JSFDecl

Exported functions:

showJSExp :: JSExp → String

Shows a JavaScript expression as a string in JavaScript syntax.

showJSStat :: Int → JSStat → String

Shows a JavaScript statement as a string in JavaScript syntax with indenting.

showJSFDecl :: JSFDecl → String

Shows a JavaScript function declaration as a string in JavaScript syntax.

jsConsTerm :: String → [JSExp] → JSExp

Representation of constructor terms in JavaScript.

A.2.34 Library KeyDatabase

This module provides a general interface for databases (persistent predicates) where each entry

consists of a key and an info part. The key is an integer and the info is arbitrary. All functions are

parameterized with a dynamic predicate that takes an integer key as a first parameter.

Exported functions:

existsDBKey :: (Int → a → Dynamic) → Int → Query Bool

Exists an entry with a given key in the database?

allDBKeys :: (Int → a → Dynamic) → Query [Int]

Query that returns all keys of entries in the database.

allDBInfos :: (Int → a → Dynamic) → Query [a]

Query that returns all infos of entries in the database.

allDBKeyInfos :: (Int → a → Dynamic) → Query [(Int,a)]

Query that returns all key/info pairs of the database.

getDBInfo :: (Int → a → Dynamic) → Int → Query (Maybe a)

Gets the information about an entry in the database.

index :: a → [a] → Int

120

compute the position of an entry in a list fail, if given entry is not an element.

sortByIndex :: [(Int,a)] → [a]

Sorts a given list by associated index .

groupByIndex :: [(Int,a)] → [[a]]

Sorts a given list by associated index and group for identical index. Empty lists are

added for missing indexes

getDBInfos :: (Int → a → Dynamic) → [Int] → Query (Maybe [a])

Gets the information about a list of entries in the database.

deleteDBEntry :: (Int → a → Dynamic) → Int → Transaction ()

Deletes an entry with a given key in the database. No error is raised if the given key

does not exist.

deleteDBEntries :: (Int → a → Dynamic) → [Int] → Transaction ()

Deletes all entries with the given keys in the database. No error is raised if some of the

given keys does not exist.

updateDBEntry :: (Int → a → Dynamic) → Int → a → Transaction ()

Overwrites an existing entry in the database.

newDBEntry :: (Int → a → Dynamic) → a → Transaction Int

Stores a new entry in the database and return the key of the new entry.

newDBKeyEntry :: (Int → a → Dynamic) → Int → a → Transaction ()

Stores a new entry in the database under a given key. The transaction fails if the key

already exists.

cleanDB :: (Int → a → Dynamic) → Transaction ()

Deletes all entries in the database.

A.2.35 Library KeyDatabaseSQLite

This module provides a general interface for databases (persistent predicates) where each entry

consists of a key and an info part. The key is an integer and the info is arbitrary. All functions are

parameterized with a dynamic predicate that takes an integer key as a first parameter.

This module reimplements the interface of the module KeyDatabase based on the SQLite database

engine. In order to use it you need to have sqlite3 in your PATH environment variable or adjust

the value of the constant path<code>to</code>sqlite3.

Programs that use the KeyDatabase module can be adjusted to use this module instead by re-

placing the imports of Dynamic, Database, and KeyDatabase with this module and changing the

121

http://sqlite.org/

declarations of database predicates to use the function persistentSQLite instead of dynamic or

persistent. This module redefines the types Dynamic, Query, and Transaction and although

both implementations can be used in the same program (by importing modules qualified) they

cannot be mixed.

Compared with the interface of KeyDatabase, this module lacks definitions for index, sortByIndex,

groupByIndex, and runTNA and adds the functions deleteDBEntries and closeDBHandles.

Exported types:

type Key = Int

type KeyPred a = Int → a → Dynamic

data Query

Queries can read but not write to the database.

Exported constructors:

data Transaction

Transactions can modify the database and are executed atomically.

Exported constructors:

data Dynamic

Result type of database predicates.

Exported constructors:

data ColVal

Abstract type for value restrictions

Exported constructors:

data TError

The type of errors that might occur during a transaction.

Exported constructors:

• TError :: TErrorKind → String → TError

data TErrorKind

The various kinds of transaction errors.

122

Exported constructors:

• KeyNotExistsError :: TErrorKind

• NoRelationshipError :: TErrorKind

• DuplicateKeyError :: TErrorKind

• KeyRequiredError :: TErrorKind

• UniqueError :: TErrorKind

• MinError :: TErrorKind

• MaxError :: TErrorKind

• UserDefinedError :: TErrorKind

• ExecutionError :: TErrorKind

Exported functions:

runQ :: Query a → IO a

Runs a database query in the IO monad.

transformQ :: (a → b) → Query a → Query b

Applies a function to the result of a database query.

runT :: Transaction a → IO (Either a TError)

Runs a transaction atomically in the IO monad.

Transactions are immediate, which means that locks are acquired on all databases as

soon as the transaction is started. After one transaction is started, no other database

connection will be able to write to the database or start a transaction. Other connections

can read the database during a transaction of another process.

The choice to use immediate rather than deferred transactions is conservative. It might

also be possible to allow multiple simultaneous transactions that lock tables on the first

database access (which is the default in SQLite). However this leads to unpredictable

order in which locks are taken when multiple databases are involved. The current

implementation fixes the locking order by sorting databases by their name and locking

them in order immediately when a transaction begins.

More information on 9 transaction.html”>transactions in SQLite is available online.

runJustT :: Transaction a → IO a

Executes a possibly composed transaction on the current state of dynamic predicates

as a single transaction. Similar to runT but a run-time error is raised if the execution

of the transaction fails.
9http://sqlite.org/lang

123

getDB :: Query a → Transaction a

Lifts a database query to the transaction type such that it can be composed with other

transactions. Run-time errors that occur during the execution of the given query are

transformed into transaction errors.

returnT :: a → Transaction a

Returns the given value in a transaction that does not access the database.

doneT :: Transaction ()

Returns the unit value in a transaction that does not access the database. Useful to

ignore results when composing transactions.

errorT :: TError → Transaction a

Aborts a transaction with an error.

failT :: String → Transaction a

Aborts a transaction with a user-defined error message.

(|>>=) :: Transaction a → (a → Transaction b) → Transaction b

Combines two transactions into a single transaction that executes both in sequence.

The first transaction is executed, its result passed to the function which computes the

second transaction, which is then executed to compute the final result.

If the first transaction is aborted with an error, the second transaction is not executed.

(|>>) :: Transaction a → Transaction b → Transaction b

Combines two transactions to execute them in sequence. The result of the first trans-

action is ignored.

sequenceT :: [Transaction a] → Transaction [a]

Executes a list of transactions sequentially and computes a list of all results.

sequenceT :: [Transaction a] → Transaction ()

Executes a list of transactions sequentially, ignoring their results.

mapT :: (a → Transaction b) → [a] → Transaction [b]

Applies a function that yields transactions to all elements of a list, executes the trans-

action sequentially, and collects their results.

mapT :: (a → Transaction b) → [a] → Transaction ()

Applies a function that yields transactions to all elements of a list, executes the trans-

actions sequentially, and ignores their results.

124

persistentSQLite :: String → String → [String] → Int → a → Dynamic

This function is used instead of dynamic or persistent to declare predicates whose

facts are stored in an SQLite database.

If the provided database or the table do not exist they are created automatically when

the declared predicate is accessed for the first time.

Multiple column names can be provided if the second argument of the predicate is a

tuple with a matching arity. Other record types are not supported. If no column names

are provided a table with a single column called info is created. Columns of name

rowid are not supported and lead to a run-time error.

existsDBKey :: (Int → a → Dynamic) → Int → Query Bool

Checks whether the predicate has an entry with the given key.

allDBKeys :: (Int → a → Dynamic) → Query [Int]

Returns a list of all stored keys. Do not use this function unless the database is small.

allDBInfos :: (Int → a → Dynamic) → Query [a]

Returns a list of all info parts of stored entries. Do not use this function unless the

database is small.

allDBKeyInfos :: (Int → a → Dynamic) → Query [(Int,a)]

Returns a list of all stored entries. Do not use this function unless the database is small.

(@=) :: Int → a → ColVal

Constructs a value restriction for the column given as first argument

someDBKeys :: (Int → a → Dynamic) → [ColVal] → Query [Int]

Returns a list of those stored keys where the corresponding info part matches the gioven

value restriction. Safe to use even on large databases if the number of results is small.

someDBInfos :: (Int → a → Dynamic) → [ColVal] → Query [a]

Returns a list of those info parts of stored entries that match the given value restrictions

for columns. Safe to use even on large databases if the number of results is small.

someDBKeyInfos :: (Int → a → Dynamic) → [ColVal] → Query [(Int,a)]

Returns a list of those entries that match the given value restrictions for columns. Safe

to use even on large databases if the number of results is small.

someDBKeyProjections :: (Int → a → Dynamic) → [Int] → [ColVal] → Query

[(Int,b)]

Returns a list of column projections on those entries that match the given value re-

strictions for columns. Safe to use even on large databases if the number of results is

small.

125

getDBInfo :: (Int → a → Dynamic) → Int → Query (Maybe a)

Queries the information stored under the given key. Yields Nothing if the given key is

not present.

getDBInfos :: (Int → a → Dynamic) → [Int] → Query (Maybe [a])

Queries the information stored under the given keys. Yields Nothing if a given key is

not present.

deleteDBEntry :: (Int → a → Dynamic) → Int → Transaction ()

Deletes the information stored under the given key. If the given key does not exist this

transaction is silently ignored and no error is raised.

deleteDBEntries :: (Int → a → Dynamic) → [Int] → Transaction ()

Deletes the information stored under the given keys. No error is raised if (some of) the

keys do not exist.

updateDBEntry :: (Int → a → Dynamic) → Int → a → Transaction ()

Updates the information stored under the given key. The transaction is aborted with a

KeyNotExistsError if the given key is not present in the database.

newDBEntry :: (Int → a → Dynamic) → a → Transaction Int

Stores new information in the database and yields the newly generated key.

newDBKeyEntry :: (Int → a → Dynamic) → Int → a → Transaction ()

Stores a new entry in the database under a given key. The transaction fails if the key

already exists.

cleanDB :: (Int → a → Dynamic) → Transaction ()

Deletes all entries from the database associated with a predicate.

closeDBHandles :: IO ()

Closes all database connections. Should be called when no more database access will

be necessary.

showTError :: TError → String

Transforms a transaction error into a string.

A.2.36 Library KeyDB

This module provides a general interface for databases (persistent predicates) where each entry

consists of a key and an info part. The key is an integer and the info is arbitrary. All functions are

parameterized with a dynamic predicate that takes an integer key as a first parameter.

Remark: This library has been revised to the library KeyDatabase. Thus, it might not be further

supported in the future.

126

Exported functions:

existsDBKey :: (Int → a → Dynamic) → Int → IO Bool

Exists an entry with a given key in the database?

allDBKeys :: (Int → a → Dynamic) → IO [Int]

Returns all keys of entries in the database.

getDBInfo :: (Int → a → Dynamic) → Int → IO a

Gets the information about an entry in the database.

index :: a → [a] → Int

compute the position of an entry in a list fail, if given entry is not an element.

sortByIndex :: [(Int,a)] → [a]

Sorts a given list by associated index .

groupByIndex :: [(Int,a)] → [[a]]

Sorts a given list by associated index and group for identical index. Empty lists are

added for missing indexes

getDBInfos :: (Int → a → Dynamic) → [Int] → IO [a]

Gets the information about a list of entries in the database.

deleteDBEntry :: (Int → a → Dynamic) → Int → IO ()

Deletes an entry with a given key in the database.

updateDBEntry :: (Int → a → Dynamic) → Int → a → IO ()

Overwrites an existing entry in the database.

newDBEntry :: (Int → a → Dynamic) → a → IO Int

Stores a new entry in the database and return the key of the new entry.

cleanDB :: (Int → a → Dynamic) → IO ()

Deletes all entries in the database.

A.2.37 Library List

Library with some useful operations on lists.

127

Exported functions:

elemIndex :: a → [a] → Maybe Int

Returns the index i of the first occurrence of an element in a list as (Just i), otherwise

Nothing is returned.

elemIndices :: a → [a] → [Int]

Returns the list of indices of occurrences of an element in a list.

find :: (a → Bool) → [a] → Maybe a

Returns the first element e of a list satisfying a predicate as (Just e), otherwise

Nothing is returned.

findIndex :: (a → Bool) → [a] → Maybe Int

Returns the index i of the first occurrences of a list element satisfying a predicate as

(Just i), otherwise Nothing is returned.

findIndices :: (a → Bool) → [a] → [Int]

Returns the list of indices of list elements satisfying a predicate.

nub :: [a] → [a]

Removes all duplicates in the argument list.

nubBy :: (a → a → Bool) → [a] → [a]

Removes all duplicates in the argument list according to an equivalence relation.

delete :: a → [a] → [a]

Deletes the first occurrence of an element in a list.

deleteBy :: (a → a → Bool) → a → [a] → [a]

Deletes the first occurrence of an element in a list according to an equivalence relation.

(\\) :: [a] → [a] → [a]

Computes the difference of two lists.

union :: [a] → [a] → [a]

Computes the union of two lists.

unionBy :: (a → a → Bool) → [a] → [a] → [a]

Computes the union of two lists according to the given equivalence relation

intersect :: [a] → [a] → [a]

128

Computes the intersection of two lists.

intersectBy :: (a → a → Bool) → [a] → [a] → [a]

Computes the intersection of two lists according to the given equivalence relation

intersperse :: a → [a] → [a]

Puts a separator element between all elements in a list.

Example: (intersperse 9 [1,2,3,4]) = [1,9,2,9,3,9,4]

intercalate :: [a] → [[a]] → [a]

intercalate xs xss is equivalent to (concat (intersperse xs xss)). It inserts the

list xs in between the lists in xss and concatenates the result.

transpose :: [[a]] → [[a]]

Transposes the rows and columns of the argument.

Example: (transpose [[1,2,3],[4,5,6]]) = [[1,4],[2,5],[3,6]]

permutations :: [a] → [[a]]

Returns the list of all permutations of the argument.

partition :: (a → Bool) → [a] → ([a],[a])

Partitions a list into a pair of lists where the first list contains those elements that

satisfy the predicate argument and the second list contains the remaining arguments.

Example: (partition (<4) [8,1,5,2,4,3]) = ([1,2,3],[8,5,4])

group :: [a] → [[a]]

Splits the list argument into a list of lists of equal adjacent elements.

Example: (group [1,2,2,3,3,3,4]) = [[1],[2,2],[3,3,3],[4]]

groupBy :: (a → a → Bool) → [a] → [[a]]

Splits the list argument into a list of lists of related adjacent elements.

splitOn :: [a] → [a] → [[a]]

Breaks the second list argument into pieces separated by the first list argument, con-

suming the delimiter. An empty delimiter is invalid, and will cause an error to be

raised.

split :: (a → Bool) → [a] → [[a]]

Splits a list into components delimited by separators, where the predicate returns True

for a separator element. The resulting components do not contain the separators. Two

adjacent separators result in an empty component in the output.

129

split (==a) ”aabbaca” == [””,””,”bb”,”c”,””] split (==a) ”” == [””]

inits :: [a] → [[a]]

Returns all initial segments of a list, starting with the shortest. Example: inits

[1,2,3] == [[],[1],[1,2],[1,2,3]]

tails :: [a] → [[a]]

Returns all final segments of a list, starting with the longest. Example: tails [1,2,3]

== [[1,2,3],[2,3],[3],[]]

replace :: a → Int → [a] → [a]

Replaces an element in a list.

isPrefixOf :: [a] → [a] → Bool

Checks whether a list is a prefix of another.

isSuffixOf :: [a] → [a] → Bool

Checks whether a list is a suffix of another.

isInfixOf :: [a] → [a] → Bool

Checks whether a list is contained in another.

sortBy :: (a → a → Bool) → [a] → [a]

Sorts a list w.r.t. an ordering relation by the insertion method.

insertBy :: (a → a → Bool) → a → [a] → [a]

Inserts an object into a list according to an ordering relation.

last :: [a] → a

Returns the last element of a non-empty list.

init :: [a] → [a]

Returns the input list with the last element removed.

sum :: [Int] → Int

Returns the sum of a list of integers.

product :: [Int] → Int

Returns the product of a list of integers.

maximum :: [a] → a

Returns the maximum of a non-empty list.

130

maximumBy :: (a → a → Ordering) → [a] → a

Returns the maximum of a non-empty list according to the given comparison function

minimum :: [a] → a

Returns the minimum of a non-empty list.

minimumBy :: (a → a → Ordering) → [a] → a

Returns the minimum of a non-empty list according to the given comparison function

scanl :: (a → b → a) → a → [b] → [a]

scanl is similar to foldl, but returns a list of successive reduced values from the left:

scanl f z [x1, x2, ...] == [z, z f x1, (z f x1) f x2, ...]

scanl1 :: (a → a → a) → [a] → [a]

scanl1 is a variant of scanl that has no starting value argument: scanl1 f [x1, x2, ...]

== [x1, x1 f x2, ...]

scanr :: (a → b → b) → b → [a] → [b]

scanr is the right-to-left dual of scanl.

scanr1 :: (a → a → a) → [a] → [a]

scanr1 is a variant of scanr that has no starting value argument.

mapAccumL :: (a → b → (a,c)) → a → [b] → (a,[c])

The mapAccumL function behaves like a combination of map and foldl; it applies a

function to each element of a list, passing an accumulating parameter from left to right,

and returning a final value of this accumulator together with the new list.

mapAccumR :: (a → b → (a,c)) → a → [b] → (a,[c])

The mapAccumR function behaves like a combination of map and foldr; it applies a

function to each element of a list, passing an accumulating parameter from right to left,

and returning a final value of this accumulator together with the new list.

cycle :: [a] → [a]

Builds an infinite list from a finite one.

unfoldr :: (a → Maybe (b,a)) → a → [b]

Builds a list from a seed value.

A.2.38 Library Maybe

Library with some useful functions on the Maybe datatype.

131

Exported functions:

isJust :: Maybe a → Bool

Return True iff the argument is of the form Just .

isNothing :: Maybe a → Bool

Return True iff the argument is of the form Nothing.

fromJust :: Maybe a → a

Extract the argument from the Just constructor and throw an error if the argument is

Nothing.

fromMaybe :: a → Maybe a → a

Extract the argument from the Just constructor or return the provided default value

if the argument is Nothing.

listToMaybe :: [a] → Maybe a

Return Nothing on an empty list or Just x where x is the first list element.

maybeToList :: Maybe a → [a]

Return an empty list for Nothing or a singleton list for Just x.

catMaybes :: [Maybe a] → [a]

Return the list of all Just values.

mapMaybe :: (a → Maybe b) → [a] → [b]

Apply a function which may throw out elements using the Nothing constructor to a list

of elements.

(>>-) :: Maybe a → (a → Maybe b) → Maybe b

Monadic bind for Maybe. Maybe can be interpreted as a monad where Nothing is

interpreted as the error case by this monadic binding.

sequenceMaybe :: [Maybe a] → Maybe [a]

Monadic sequence for Maybe.

mapMMaybe :: (a → Maybe b) → [a] → Maybe [b]

Monadic map for Maybe.

mplus :: Maybe a → Maybe a → Maybe a

Combine two Maybes, returning the first Just value, if any.

132

A.2.39 Library NamedSocket

Library to support network programming with sockets that are addressed by symbolic names. In

contrast to raw sockets (see library Socket), this library uses the Curry Port Name Server to

provide sockets that are addressed by symbolic names rather than numbers.

In standard applications, the server side uses the operations listenOn and socketAccept to provide

some service on a named socket, and the client side uses the operation connectToSocket to request

a service.

Exported types:

data Socket

Abstract type for named sockets.

Exported constructors:

Exported functions:

listenOn :: String → IO Socket

Creates a server side socket with a symbolic name.

socketAccept :: Socket → IO (String,Handle)

Returns a connection of a client to a socket. The connection is returned as a pair

consisting of a string identifying the client (the format of this string is implementation-

dependent) and a handle to a stream communication with the client. The handle is

both readable and writable.

waitForSocketAccept :: Socket → Int → IO (Maybe (String,Handle))

Waits until a connection of a client to a socket is available. If no connection is available

within the time limit, it returns Nothing, otherwise the connection is returned as a pair

consisting of a string identifying the client (the format of this string is implementation-

dependent) and a handle to a stream communication with the client.

sClose :: Socket → IO ()

Closes a server socket.

socketName :: Socket → String

Returns a the symbolic name of a named socket.

connectToSocketRepeat :: Int → IO a → Int → String → IO (Maybe Handle)

Waits for connection to a Unix socket with a symbolic name. In contrast to

connectToSocket, this action waits until the socket has been registered with its sym-

bolic name.

133

connectToSocketWait :: String → IO Handle

Waits for connection to a Unix socket with a symbolic name and return the handle of

the connection. This action waits (possibly forever) until the socket with the symbolic

name is registered.

connectToSocket :: String → IO Handle

Creates a new connection to an existing(!) Unix socket with a symbolic name. If the

symbolic name is not registered, an error is reported.

A.2.40 Library Parser

Library with functional logic parser combinators.

Adapted from: Rafael Caballero and Francisco J. Lopez-Fraguas: A Functional Logic Perspective

of Parsing. In Proc. FLOPS’99, Springer LNCS 1722, pp. 85-99, 1999

Exported types:

type Parser a = [a] → [a]

type ParserRep a b = a → [b] → [b]

Exported functions:

(<|>) :: ([a] → [a]) → ([a] → [a]) → [a] → [a]

Combines two parsers without representation in an alternative manner.

(<||>) :: (a → [b] → [b]) → (a → [b] → [b]) → a → [b] → [b]

Combines two parsers with representation in an alternative manner.

(<*>) :: ([a] → [a]) → ([a] → [a]) → [a] → [a]

Combines two parsers (with or without representation) in a sequential manner.

(>>>) :: ([a] → [a]) → b → b → [a] → [a]

Attaches a representation to a parser without representation.

empty :: [a] → [a]

The empty parser which recognizes the empty word.

terminal :: a → [a] → [a]

A parser recognizing a particular terminal symbol.

134

satisfy :: (a → Bool) → a → [a] → [a]

A parser (with representation) recognizing a terminal satisfying a given predicate.

star :: (a → [b] → [b]) → [a] → [b] → [b]

A star combinator for parsers. The returned parser repeats zero or more times a parser

p with representation and returns the representation of all parsers in a list.

some :: (a → [b] → [b]) → [a] → [b] → [b]

A some combinator for parsers. The returned parser repeats the argument parser (with

representation) at least once.

A.2.41 Library Ports

Library for distributed programming with ports. This paper10 contains a description of the basic

ideas behind this library.

Exported types:

data Port

The internal constructor for the port datatype is not visible to the user.

Exported constructors:

data SP_Msg

A ”stream port” is an adaption of the port concept to model the communication with

bidirectional streams, i.e., a stream port is a port connection to a bidirectional stream

(e.g., opened by openProcessPort) where the communication is performed via the fol-

lowing stream port messages.

Exported constructors:

• SP_Put :: String → SP_Msg

SP_Put s

– write the argument s on the output stream

• SP_GetLine :: String → SP_Msg

SP_GetLine s

– unify the argument s with the next text line of the input stream

• SP_GetChar :: Char → SP_Msg

SP_GetChar c

10http://www.informatik.uni-kiel.de/~mh/papers/PPDP99.html

135

– unify the argument c with the next character of the input stream

• SP_EOF :: Bool → SP_Msg

SP_EOF b

– unify the argument b with True if we are at the end of the input stream, otherwise with

False

• SP_Close :: SP_Msg

SP_Close

– close the input/output streams

Exported functions:

openPort :: Port a → [a] → Success

Opens an internal port for communication.

send :: a → Port a → Success

Sends a message to a port.

doSend :: a → Port a → IO ()

I/O action that sends a message to a port.

ping :: Int → Port a → IO (Maybe Int)

Checks whether port p is still reachable.

timeoutOnStream :: Int → [a] → Maybe [a]

Checks for instantiation of a stream within some amount of time.

openProcessPort :: String → IO (Port SP_Msg)

Opens a new connection to a process that executes a shell command.

openNamedPort :: String → IO [a]

Opens an external port with a symbolic name.

connectPortRepeat :: Int → IO a → Int → String → IO (Maybe (Port b))

Waits for connection to an external port. In contrast to connectPort, this action waits

until the external port has been registered with its symbolic name.

connectPortWait :: String → IO (Port a)

Waits for connection to an external port and return the connected port. This action

waits (possibly forever) until the external port is registered.

136

connectPort :: String → IO (Port a)

Connects to an external port. The external port must be already registered, otherwise

an error is reported.

choiceSPEP :: Port SP_Msg → [a] → Either String [a]

This function implements a committed choice over the receiving of messages via a stream

port and an external port.

Note that the implementation of choiceSPEP works only with Sicstus-Prolog 3.8.5 or

higher (due to a bug in previous versions of Sicstus-Prolog).

newObject :: (a → [b] → Success) → a → Port b → Success

Creates a new object (of type State -> [msg] -> Success) with an initial state and a

port to which messages for this object can be sent.

newNamedObject :: (a → [b] → Success) → a → String → IO ()

Creates a new object (of type State -> [msg] -> Success) with a symbolic port name

to which messages for this object can be sent.

runNamedServer :: ([a] → IO b) → String → IO b

Runs a new server (of type [msg] -> IO a) on a named port to which messages can

be sent.

A.2.42 Library Pretty

This library provides pretty printing combinators. The interface is that of Daan Leijen’s library

linear-time, bounded implementation by Olaf Chitil. Note that the implementation of fill and

fillBreak is not linear-time bounded Support of ANSI escape codes for formatting and colorisation

of documents in text terminals (see https://en.wikipedia.org/wiki/ANSIescapecode)

Exported types:

data Doc

The abstract data type Doc represents pretty documents.

Exported constructors:

Exported functions:

pPrint :: Doc → String

Standard printing with a column length of 80.

empty :: Doc

The empty document

137

<http://www.cs.uu.nl/~daan/download/pprint/pprint.html
http://www.cs.kent.ac.uk/pubs/2006/2381/index.html

isEmpty :: Doc → Bool

Is the document empty?

text :: String → Doc

The document (text s) contains the literal string s. The string shouldn’t contain any

newline (\n) characters. If the string contains newline characters, the function string

should be used.

linesep :: String → Doc

The document (linesep s) advances to the next line and indents to the current nesting

level. Document (linesep s) behaves like (text s) if the line break is undone by

group.

hardline :: Doc

The document hardline advances to the next line and indents to the current nesting

level. hardline cannot be undone by group.

line :: Doc

The document line advances to the next line and indents to the current nesting level.

Document line behaves like (text " ") if the line break is undone by group.

linebreak :: Doc

The document linebreak advances to the next line and indents to the current nesting

level. Document linebreak behaves like (text "") if the line break is undone by

group.

softline :: Doc

The document softline behaves like space if the resulting output fits the page, oth-

erwise it behaves like line. softline = group line

softbreak :: Doc

The document softbreak behaves like (text "") if the resulting output fits the page,

otherwise it behaves like line. softbreak = group linebreak

group :: Doc → Doc

The combinator group is used to specify alternative layouts. The document (group x)

undoes all line breaks in document x. The resulting line is added to the current line if

that fits the page. Otherwise, the document x is rendered without any changes.

nest :: Int → Doc → Doc

The document (nest i d) renders document d with the current indentation level in-

creased by i (See also hang, align and indent).

138

nest 2 (text "hello" $$ text "world") $$ text "!"

outputs as:

hello

world

!

hang :: Int → Doc → Doc

The combinator hang implements hanging indentation. The document (hang i d)

renders document d with a nesting level set to the current column plus i. The following

example uses hanging indentation for some text:

test = hang 4

(fillSep

(map text

(words "the hang combinator indents these words !")))

Which lays out on a page with a width of 20 characters as:

the hang combinator

indents these

words !

The hang combinator is implemented as:

hang i x = align (nest i x)

align :: Doc → Doc

The document (align d) renders document d with the nesting level set to the

current column. It is used for example to implement hang‘.

As an example, we will put a document right above another one, regardless of the

current nesting level:

x $$ y = align (x $$ y)

test = text "hi" <+> (text "nice" $$ text "world")

which will be layed out as:

hi nice

world

139

indent :: Int → Doc → Doc

The document (indent i d) indents document d with i spaces.

test = indent 4 (fillSep (map text

(words "the indent combinator indents these words !")))

Which lays out with a page width of 20 as:

the indent

combinator

indents these

words !

combine :: Doc → Doc → Doc → Doc

The document (combine c d1 d2) combines document d1 and d2 with document c in

between using (<>) with identity empty. Thus, the following equations hold.

combine c d1 empty == d1

combine c empty d2 == d2

combine c d1 d2 == d1 <> c <> d2 if neither d1 nor d2 are empty

(<>) :: Doc → Doc → Doc

The document (x <> y) concatenates document x and document y. It is an associative

operation having empty as a left and right unit.

(<+>) :: Doc → Doc → Doc

The document (x <+> y) concatenates document x and y with a space in between

with identity empty.

($$) :: Doc → Doc → Doc

The document (x $$ y) concatenates document x and y with a line in between with

identity empty.

(<$+$>) :: Doc → Doc → Doc

The document (x <$+$> y) concatenates document x and y with a blank line in

between with identity empty.

(</>) :: Doc → Doc → Doc

The document (x </> y) concatenates document x and y with a softline in between

with identity empty. This effectively puts x and y either next to each other (with a

space in between) or underneath each other.

140

(<$$>) :: Doc → Doc → Doc

The document (x <$$> y) concatenates document x and y with a linebreak in be-

tween with identity empty.

(<//>) :: Doc → Doc → Doc

The document (x <//> y) concatenates document x and y with a softbreak in be-

tween with identity empty. This effectively puts x and y either right next to each other

or underneath each other.

(<$!$>) :: Doc → Doc → Doc

The document (x <$!$> y) concatenates document x and y with a hardline in be-

tween with identity empty. This effectively puts x and y underneath each other.

compose :: (Doc → Doc → Doc) → [Doc] → Doc

The document (compose f xs) concatenates all documents xs with function f. Func-

tion f should be like (<+>), ($$) and so on.

hsep :: [Doc] → Doc

The document (hsep xs) concatenates all documents xs horizontally with (<+>).

vsep :: [Doc] → Doc

The document (vsep xs) concatenates all documents xs vertically with ($$). If a

group undoes the line breaks inserted by vsep, all documents are separated with a

space.

someText = map text (words ("text to lay out"))

test = text "some" <+> vsep someText

This is layed out as:

some text

to

lay

out

The align combinator can be used to align the documents under their first element:

test = text "some" <+> align (vsep someText)

This is printed as:

141

some text

to

lay

out

vsepBlank :: [Doc] → Doc

The document vsep xs concatenates all documents xs vertically with (<$+$>). If a

group undoes the line breaks inserted by vsepBlank, all documents are separated with

a space.

fillSep :: [Doc] → Doc

The document (fillSep xs) concatenates documents xs horizontally with (</>) as

long as its fits the page, than inserts a line and continues doing that for all documents

in xs. fillSep xs = foldr (</>) empty xs

sep :: [Doc] → Doc

The document (sep xs) concatenates all documents xs either horizontally with (<+>),

if it fits the page, or vertically with ($$). sep xs = group (vsep xs)

hcat :: [Doc] → Doc

The document (hcat xs) concatenates all documents xs horizontally with (<>).

vcat :: [Doc] → Doc

The document (vcat xs) concatenates all documents xs vertically with (<$$>). If a

group undoes the line breaks inserted by vcat, all documents are directly concatenated.

fillCat :: [Doc] → Doc

The document (fillCat xs) concatenates documents xs horizontally with (<//>)

as long as its fits the page, than inserts a linebreak and continues doing that for all

documents in xs. fillCat xs = foldr (<//>) empty xs

cat :: [Doc] → Doc

The document (cat xs) concatenates all documents xs either horizontally with (<>),

if it fits the page, or vertically with (<$$>). cat xs = group (vcat xs)

punctuate :: Doc → [Doc] → [Doc]

(punctuate p xs) concatenates all documents xs with document p except for the last

document.

someText = map text ["words","in","a","tuple"]

test = parens (align (cat (punctuate comma someText)))

142

This is layed out on a page width of 20 as:

(words,in,a,tuple)

But when the page width is 15, it is layed out as:

(words,

in,

a,

tuple)

(If you want put the commas in front of their elements instead of at the end, you should

use tupled or, in general, encloseSep.)

encloseSep :: Doc → Doc → Doc → [Doc] → Doc

The document (encloseSep l r s xs) concatenates the documents xs seperated by

s and encloses the resulting document by l and r. The documents are rendered hori-

zontally if that fits the page. Otherwise they are aligned vertically. All seperators are

put in front of the elements.

For example, the combinator list can be defined with encloseSep:

list xs = encloseSep lbracket rbracket comma xs

test = text "list" <+> (list (map int [10,200,3000]))

Which is layed out with a page width of 20 as:

list [10,200,3000]

But when the page width is 15, it is layed out as:

list [10

,200

,3000]

encloseSepSpaced :: Doc → Doc → Doc → [Doc] → Doc

The document (encloseSepSpaced l r s xs) concatenates the documents xs seper-

ated by s and encloses the resulting document by l and r. In addition, after each

occurrence of s, after l, and before r, a space is inserted. The documents are rendered

horizontally if that fits the page. Otherwise they are aligned vertically. All seperators

are put in front of the elements.

hEncloseSep :: Doc → Doc → Doc → [Doc] → Doc

143

The document (hEncloseSep l r s xs) concatenates the documents xs seperated by

s and encloses the resulting document by l and r.

The documents are rendered horizontally.

fillEncloseSep :: Doc → Doc → Doc → [Doc] → Doc

The document (fillEncloseSep l r s xs) concatenates the documents xs seperated

by s and encloses the resulting document by l and r.

The documents are rendered horizontally if that fits the page. Otherwise they are

aligned vertically. All seperators are put in front of the elements.

fillEncloseSepSpaced :: Doc → Doc → Doc → [Doc] → Doc

The document (fillEncloseSepSpaced l r s xs) concatenates the documents xs

seperated by s and encloses the resulting document by l and r. In addition, after each

occurrence of s, after l, and before r, a space is inserted.

The documents are rendered horizontally if that fits the page. Otherwise, they are

aligned vertically. All seperators are put in front of the elements.

list :: [Doc] → Doc

The document (list xs) comma seperates the documents xs and encloses them in

square brackets. The documents are rendered horizontally if that fits the page. Other-

wise they are aligned vertically. All comma seperators are put in front of the elements.

listSpaced :: [Doc] → Doc

Spaced version of list

set :: [Doc] → Doc

The document (set xs) comma seperates the documents xs and encloses them in

braces. The documents are rendered horizontally if that fits the page. Otherwise they

are aligned vertically. All comma seperators are put in front of the elements.

setSpaced :: [Doc] → Doc

Spaced version of set

tupled :: [Doc] → Doc

The document (tupled xs) comma seperates the documents xs and encloses them in

parenthesis. The documents are rendered horizontally if that fits the page. Otherwise

they are aligned vertically. All comma seperators are put in front of the elements.

tupledSpaced :: [Doc] → Doc

Spaced version of tupled

semiBraces :: [Doc] → Doc

144

The document (semiBraces xs) seperates the documents xs with semi colons and

encloses them in braces. The documents are rendered horizontally if that fits the page.

Otherwise they are aligned vertically. All semi colons are put in front of the elements.

semiBracesSpaced :: [Doc] → Doc

Spaced version of semiBraces

enclose :: Doc → Doc → Doc → Doc

The document (enclose l r x) encloses document x between documents l and r using

(<>). enclose l r x = l <> x <> r

squotes :: Doc → Doc

Document (squotes x) encloses document x with single quotes "’".

dquotes :: Doc → Doc

Document (dquotes x) encloses document x with double quotes.

bquotes :: Doc → Doc

Document (bquotes x) encloses document x with back quotes "‘".

parens :: Doc → Doc

Document (parens x) encloses document x in parenthesis, "(" and ")".

parensIf :: Bool → Doc → Doc

Document (parensIf x) encloses document x in parenthesis,"(" and ")", iff the con-

dition is true.

angles :: Doc → Doc

Document (angles x) encloses document x in angles, "<" and ">".

braces :: Doc → Doc

Document (braces x) encloses document x in braces, "{" and "}".

brackets :: Doc → Doc

Document (brackets x) encloses document x in square brackets, "[" and "]".

char :: Char → Doc

The document (char c) contains the literal character c. The character should not be

a newline (\n), the function line should be used for line breaks.

string :: String → Doc

145

The document (string s) concatenates all characters in s using line for newline

characters and char for all other characters. It is used instead of text whenever the

text contains newline characters.

int :: Int → Doc

The document (int i) shows the literal integer i using text.

float :: Float → Doc

The document (float f) shows the literal float f using text.

lparen :: Doc

The document lparen contains a left parenthesis, "(".

rparen :: Doc

The document rparen contains a right parenthesis, ")".

langle :: Doc

The document langle contains a left angle, "<".

rangle :: Doc

The document rangle contains a right angle, ">".

lbrace :: Doc

The document lbrace contains a left brace, "{".

rbrace :: Doc

The document rbrace contains a right brace, "}".

lbracket :: Doc

The document lbracket contains a left square bracket, "[".

rbracket :: Doc

The document rbracket contains a right square bracket, "]".

squote :: Doc

The document squote contains a single quote, "’".

dquote :: Doc

The document dquote contains a double quote.

semi :: Doc

The document semi contains a semi colon, ";".

146

colon :: Doc

The document colon contains a colon, ":".

comma :: Doc

The document comma contains a comma, ",".

space :: Doc

The document space contains a single space, " ".

x <+> y = x <> space <> y

dot :: Doc

The document dot contains a single dot, ".".

backslash :: Doc

The document backslash contains a back slash, "\".

equals :: Doc

The document equals contains an equal sign, "=".

larrow :: Doc

The document larrow contains a left arrow sign, "<-".

rarrow :: Doc

The document rarrow contains a right arrow sign, "->".

doubleArrow :: Doc

The document doubleArrow contains an double arrow sign, "=>".

doubleColon :: Doc

The document doubleColon contains a double colon sign, "::".

bar :: Doc

The document bar contains a vertical bar sign, "|".

at :: Doc

The document at contains an at sign, "@".

tilde :: Doc

The document tilde contains a tilde sign, "~".

fill :: Int → Doc → Doc

147

The document (fill i d) renders document d. It than appends spaces until the width

is equal to i. If the width of d is already larger, nothing is appended. This combinator is

quite useful in practice to output a list of bindings. The following example demonstrates

this.

types = [("empty","Doc")

,("nest","Int -> Doc -> Doc")

,("linebreak","Doc")]

ptype (name,tp)

= fill 6 (text name) <+> text "::" <+> text tp

test = text "let" <+> align (vcat (map ptype types))

Which is layed out as:

let empty :: Doc

nest :: Int -> Doc -> Doc

linebreak :: Doc

Note that fill is not guaranteed to be linear-time bounded since it has to compute the

width of a document before pretty printing it

fillBreak :: Int → Doc → Doc

The document (fillBreak i d) first renders document d. It than appends spaces

until the width is equal to i. If the width of d is already larger than i, the nesting

level is increased by i and a line is appended. When we redefine ptype in the previous

example to use fillBreak, we get a useful variation of the previous output:

ptype (name,tp)

= fillBreak 6 (text name) <+> text "::" <+> text tp

The output will now be:

let empty :: Doc

nest :: Int -> Doc -> Doc

linebreak

:: Doc

Note that fillBreak is not guaranteed to be linear-time bounded since it has to com-

pute the width of a document before pretty printing it

bold :: Doc → Doc

148

The document (bold d) displays document d with bold text

faint :: Doc → Doc

The document (faint d) displays document d with faint text

blinkSlow :: Doc → Doc

The document (blinkSlow d) displays document d with slowly blinking text (rarely

supported)

blinkRapid :: Doc → Doc

The document (blinkRapid d) displays document d with rapidly blinking text (rarely

supported)

italic :: Doc → Doc

The document (italic d) displays document d with italicized text (rarely supported)

underline :: Doc → Doc

The document (underline d) displays document d with underlined text

crossout :: Doc → Doc

The document (crossout d) displays document d with crossed out text

inverse :: Doc → Doc

The document (inverse d) displays document d with inversed coloring, i.e. use text

color of d as background color and background color of d as text color

black :: Doc → Doc

The document (black d) displays document d with black text color

red :: Doc → Doc

The document (red d) displays document d with red text color

green :: Doc → Doc

The document (green d) displays document d with green text color

yellow :: Doc → Doc

The document (yellow d) displays document d with yellow text color

blue :: Doc → Doc

The document (blue d) displays document d with blue text color

magenta :: Doc → Doc

149

The document (magenta d) displays document d with magenta text color

cyan :: Doc → Doc

The document (cyan d) displays document d with cyan text color

white :: Doc → Doc

The document (white d) displays document d with white text color

bgBlack :: Doc → Doc

The document (bgBlack d) displays document d with black background color

bgRed :: Doc → Doc

The document (bgRed d) displays document d with red background color

bgGreen :: Doc → Doc

The document (bgGreen d) displays document d with green background color

bgYellow :: Doc → Doc

The document (bgYellow d) displays document d with yellow background color

bgBlue :: Doc → Doc

The document (bgBlue d) displays document d with blue background color

bgMagenta :: Doc → Doc

The document (bgMagenta d) displays document d with magenta background color

bgCyan :: Doc → Doc

The document (bgCyan d) displays document d with cyan background color

bgWhite :: Doc → Doc

The document (bgWhite d) displays document d with white background color

pretty :: Int → Doc → String

(pretty w d) pretty prints document d with a page width of w characters

A.2.43 Library Profile

Preliminary library to support profiling.

150

Exported types:

data ProcessInfo

The data type for representing information about the state of a Curry process.

Exported constructors:

• RunTime :: ProcessInfo

RunTime

– the run time in milliseconds

• ElapsedTime :: ProcessInfo

ElapsedTime

– the elapsed time in milliseconds

• Memory :: ProcessInfo

Memory

– the total memory in bytes

• Code :: ProcessInfo

Code

– the size of the code area in bytes

• Stack :: ProcessInfo

Stack

– the size of the local stack for recursive functions in bytes

• Heap :: ProcessInfo

Heap

– the size of the heap to store term structures in bytes

• Choices :: ProcessInfo

Choices

– the size of the choicepoint stack

• GarbageCollections :: ProcessInfo

GarbageCollections

– the number of garbage collections performed

151

Exported functions:

getProcessInfos :: IO [(ProcessInfo,Int)]

Returns various informations about the current state of the Curry process. Note that

the returned values are very implementation dependent so that one should interpret

them with care!

garbageCollectorOff :: IO ()

Turns off the garbage collector of the run-time system (if possible). This could be useful

to get more precise data of memory usage.

garbageCollectorOn :: IO ()

Turns on the garbage collector of the run-time system (if possible).

garbageCollect :: IO ()

Invoke the garbage collector (if possible). This could be useful before run-time critical

operations.

showMemInfo :: [(ProcessInfo,Int)] → String

Get a human readable version of the memory situation from the process infos.

printMemInfo :: IO ()

Print a human readable version of the current memory situation of the Curry process.

profileTime :: IO a → IO a

Print the time needed to execute a given IO action.

profileTimeNF :: a → IO ()

Evaluates the argument to normal form and print the time needed for this evaluation.

profileSpace :: IO a → IO a

Print the time and space needed to execute a given IO action. During the executation,

the garbage collector is turned off to get the total space usage.

profileSpaceNF :: a → IO ()

Evaluates the argument to normal form and print the time and space needed for this

evaluation. During the evaluation, the garbage collector is turned off to get the total

space usage.

evalTime :: a → a

Evaluates the argument to normal form (and return the normal form) and print the

time needed for this evaluation on standard error. Included for backward compatibility

only, use profileTime!

evalSpace :: a → a

Evaluates the argument to normal form (and return the normal form) and print the

time and space needed for this evaluation on standard error. During the evaluation,

the garbage collector is turned off. Included for backward compatibility only, use pro-

fileSpace!

152

A.2.44 Library Prolog

A library defining a representation for Prolog programs together with a simple pretty printer. It

does not cover all aspects of Prolog but might be useful for applications generating Prolog programs.

Exported types:

data PlClause

A Prolog clause is either a program clause consisting of a head and a body, or a directive

or a query without a head.

Exported constructors:

• PlClause :: String → [PlTerm] → [PlGoal] → PlClause

• PlDirective :: [PlGoal] → PlClause

• PlQuery :: [PlGoal] → PlClause

data PlGoal

A Prolog goal is a literal, a negated goal, or a conditional.

Exported constructors:

• PlLit :: String → [PlTerm] → PlGoal

• PlNeg :: [PlGoal] → PlGoal

• PlCond :: [PlGoal] → [PlGoal] → [PlGoal] → PlGoal

data PlTerm

A Prolog term is a variable, atom, number, or structure.

Exported constructors:

• PlVar :: String → PlTerm

• PlAtom :: String → PlTerm

• PlInt :: Int → PlTerm

• PlFloat :: Float → PlTerm

• PlStruct :: String → [PlTerm] → PlTerm

153

Exported functions:

plList :: [PlTerm] → PlTerm

A Prolog list of Prolog terms.

showPlProg :: [PlClause] → String

Shows a Prolog program in standard Prolog syntax.

showPlClause :: PlClause → String

showPlGoals :: [PlGoal] → String

showPlGoal :: PlGoal → String

showPlTerm :: PlTerm → String

A.2.45 Library PropertyFile

A library to read and update files containing properties in the usual equational syntax, i.e., a

property is defined by a line of the form prop=value where prop starts with a letter. All other

lines (e.g., blank lines or lines starting with # are considered as comment lines and are ignored.

Exported functions:

readPropertyFile :: String → IO [(String,String)]

Reads a property file and returns the list of properties. Returns empty list if the

property file does not exist.

updatePropertyFile :: String → String → String → IO ()

Update a property in a property file or add it, if it is not already there.

A.2.46 Library Read

Library with some functions for reading special tokens.

This library is included for backward compatibility. You should use the library ReadNumeric which

provides a better interface for these functions.

154

Exported functions:

readNat :: String → Int

Read a natural number in a string. The string might contain leadings blanks and the

the number is read up to the first non-digit.

readInt :: String → Int

Read a (possibly negative) integer in a string. The string might contain leadings blanks

and the the integer is read up to the first non-digit.

readHex :: String → Int

Read a hexadecimal number in a string. The string might contain leadings blanks and

the the integer is read up to the first non-heaxdecimal digit.

A.2.47 Library ReadNumeric

Library with some functions for reading and converting numeric tokens.

Exported functions:

readInt :: String → Maybe (Int,String)

Read a (possibly negative) integer as a first token in a string. The string might contain

leadings blanks and the integer is read up to the first non-digit. If the string does not

start with an integer token, Nothing is returned, otherwise the result is Just (v, s),

where v is the value of the integer and s is the remaing string without the integer token.

readNat :: String → Maybe (Int,String)

Read a natural number as a first token in a string. The string might contain leadings

blanks and the number is read up to the first non-digit. If the string does not start

with a natural number token, Nothing is returned, otherwise the result is Just (v,

s) where v is the value of the number and s is the remaing string without the number

token.

readHex :: String → Maybe (Int,String)

Read a hexadecimal number as a first token in a string. The string might contain

leadings blanks and the number is read up to the first non-hexadecimal digit. If the

string does not start with a hexadecimal number token, Nothing is returned, otherwise

the result is Just (v, s) where v is the value of the number and s is the remaing string

without the number token.

readOct :: String → Maybe (Int,String)

Read an octal number as a first token in a string. The string might contain leadings

blanks and the number is read up to the first non-octal digit. If the string does not

start with an octal number token, Nothing is returned, otherwise the result is Just (v,

s) where v is the value of the number and s is the remaing string without the number

token.

155

A.2.48 Library ReadShowTerm

Library for converting ground terms to strings and vice versa.

Exported functions:

showTerm :: a → String

Transforms a ground(!) term into a string representation in standard prefix notation.

Thus, showTerm suspends until its argument is ground. This function is similar to

the prelude function show but can read the string back with readUnqualifiedTerm

(provided that the constructor names are unique without the module qualifier).

showQTerm :: a → String

Transforms a ground(!) term into a string representation in standard prefix notation.

Thus, showTerm suspends until its argument is ground. Note that this function differs

from the prelude function show since it prefixes constructors with their module name

in order to read them back with readQTerm.

readsUnqualifiedTerm :: [String] → String → [(a,String)]

Transform a string containing a term in standard prefix notation without module qual-

ifiers into the corresponding data term. The first argument is a non-empty list of

module qualifiers that are tried to prefix the constructor in the string in order to get

the qualified constructors (that must be defined in the current program!). In case of a

successful parse, the result is a one element list containing a pair of the data term and

the remaining unparsed string.

readUnqualifiedTerm :: [String] → String → a

Transforms a string containing a term in standard prefix notation without module

qualifiers into the corresponding data term. The first argument is a non-empty list of

module qualifiers that are tried to prefix the constructor in the string in order to get

the qualified constructors (that must be defined in the current program!).

Example: readUnqualifiedTerm ["Prelude"] "Just 3" evaluates to (Just 3)

readsTerm :: String → [(a,String)]

For backward compatibility. Should not be used since their use can be problematic in

case of constructors with identical names in different modules.

readTerm :: String → a

For backward compatibility. Should not be used since their use can be problematic in

case of constructors with identical names in different modules.

readsQTerm :: String → [(a,String)]

156

Transforms a string containing a term in standard prefix notation with qualified con-

structor names into the corresponding data term. In case of a successful parse, the

result is a one element list containing a pair of the data term and the remaining un-

parsed string.

readQTerm :: String → a

Transforms a string containing a term in standard prefix notation with qualified con-

structor names into the corresponding data term.

readQTermFile :: String → IO a

Reads a file containing a string representation of a term in standard prefix notation and

returns the corresponding data term.

readQTermListFile :: String → IO [a]

Reads a file containing lines with string representations of terms of the same type and

returns the corresponding list of data terms.

writeQTermFile :: String → a → IO ()

Writes a ground term into a file in standard prefix notation.

writeQTermListFile :: String → [a] → IO ()

Writes a list of ground terms into a file. Each term is written into a separate line which

might be useful to modify the file with a standard text editor.

A.2.49 Library SetFunctions

This module contains an implementation of set functions. The general idea of set functions is

described in:

S. Antoy, M. Hanus: Set Functions for Functional Logic Programming Proc. 11th Inter-

national Conference on Principles and Practice of Declarative Programming (PPDP’09),

pp. 73-82, ACM Press, 2009

Intuition: If f is an n-ary function, then (setn f) is a set-valued function that collects all non-

determinism caused by f (but not the non-determinism caused by evaluating arguments!) in a set.

Thus, (setn f a1 ... an) returns the set of all values of (f b1 ... bn) where b1,...,bn are

values of the arguments a1,...,an (i.e., the arguments are evaluated ”outside” this capsule so that

the non-determinism caused by evaluating these arguments is not captured in this capsule but

yields several results for (setn...). Similarly, logical variables occuring in a1,...,an are not bound

inside this capsule (but causes a suspension until they are bound). The set of values returned by a

set function is represented by an abstract type Values on which several operations are defined in

this module. Actually, it is a multiset of values, i.e., duplicates are not removed.

Restrictions:

1. The set is a multiset, i.e., it might contain multiple values.

157

2. The multiset of values is completely evaluated when demanded. Thus, if it is infinite, its

evaluation will not terminate even if only some elements (e.g., for a containment test) are

demanded. However, for the emptiness test, at most one value will be computed

3. The arguments of a set function are strictly evaluated before the set functions itself will be

evaluated.

Since this implementation is restricted and prototypical, the interface is not stable and might

change.

Exported types:

data Values

Abstract type representing multisets of values.

Exported constructors:

Exported functions:

set0 :: a → Values a

Combinator to transform a 0-ary function into a corresponding set function.

set1 :: (a → b) → a → Values b

Combinator to transform a unary function into a corresponding set function.

set2 :: (a → b → c) → a → b → Values c

Combinator to transform a binary function into a corresponding set function.

set3 :: (a → b → c → d) → a → b → c → Values d

Combinator to transform a function of arity 3 into a corresponding set function.

set4 :: (a → b → c → d → e) → a → b → c → d → Values e

Combinator to transform a function of arity 4 into a corresponding set function.

set5 :: (a → b → c → d → e → f) → a → b → c → d → e → Values f

Combinator to transform a function of arity 5 into a corresponding set function.

set6 :: (a → b → c → d → e → f → g) → a → b → c → d → e → f → Values

g

Combinator to transform a function of arity 6 into a corresponding set function.

set7 :: (a → b → c → d → e → f → g → h) → a → b → c → d → e → f → g

→ Values h

Combinator to transform a function of arity 7 into a corresponding set function.

158

isEmpty :: Values a → Bool

Is a multiset of values empty?

notEmpty :: Values a → Bool

Is a multiset of values not empty?

valueOf :: a → Values a → Bool

Is some value an element of a multiset of values?

choose :: Values a → (a,Values a)

Chooses (non-deterministically) some value in a multiset of values and returns the

chosen value and the remaining multiset of values. Thus, if we consider the operation

chooseValue by

chooseValue x = fst (choose x)

then (set1 chooseValue) is the identity on value sets, i.e., (set1 chooseValue s)

contains the same elements as the value set s.

chooseValue :: Values a → a

Chooses (non-deterministically) some value in a multiset of values and returns the

chosen value. Thus, (set1 chooseValue) is the identity on value sets, i.e., (set1

chooseValue s) contains the same elements as the value set s.

select :: Values a → (a,Values a)

Selects (indeterministically) some value in a multiset of values and returns the selected

value and the remaining multiset of values. Thus, select has always at most one value.

It fails if the value set is empty.

NOTE: The usage of this operation is only safe (i.e., does not destroy completeness)

if all values in the argument set are identical.

selectValue :: Values a → a

Selects (indeterministically) some value in a multiset of values and returns the selected

value. Thus, selectValue has always at most one value. It fails if the value set is

empty.

NOTE: The usage of this operation is only safe (i.e., does not destroy completeness)

if all values in the argument set are identical. It returns a single value even for infinite

value sets (in contrast to select or choose).

mapValues :: (a → b) → Values a → Values b

159

Accumulates all elements of a multiset of values by applying a binary operation. This

is similarly to fold on lists, but the binary operation must be commutative so that

the result is independent of the order of applying this operation to all elements in the

multiset.

foldValues :: (a → a → a) → a → Values a → a

Accumulates all elements of a multiset of values by applying a binary operation. This

is similarly to fold on lists, but the binary operation must be commutative so that

the result is independent of the order of applying this operation to all elements in the

multiset.

minValue :: (a → a → Bool) → Values a → a

Returns the minimal element of a non-empty multiset of values with respect to a given

total ordering on the elements.

maxValue :: (a → a → Bool) → Values a → a

Returns the maximal element of a non-empty multiset of value with respect to a given

total ordering on the elements.

values2list :: Values a → IO [a]

Puts all elements of a multiset of values in a list. Since the order of the elements in the

list might depend on the time of the computation, this operation is an I/O action.

printValues :: Values a → IO ()

Prints all elements of a multiset of values.

sortValues :: Values a → [a]

Transforms a multiset of values into a list sorted by the standard term ordering. As a

consequence, the multiset of values is completely evaluated.

sortValuesBy :: (a → a → Bool) → Values a → [a]

Transforms a multiset of values into a list sorted by a given ordering on the values. As

a consequence, the multiset of values is completely evaluated. In order to ensure that

the result of this operation is independent of the evaluation order, the given ordering

must be a total order.

A.2.50 Library Socket

Library to support network programming with sockets. In standard applications, the server side

uses the operations listenOn and socketAccept to provide some service on a socket, and the client

side uses the operation connectToSocket to request a service.

160

Exported types:

data Socket

The abstract type of sockets.

Exported constructors:

Exported functions:

listenOn :: Int → IO Socket

Creates a server side socket bound to a given port number.

listenOnFresh :: IO (Int,Socket)

Creates a server side socket bound to a free port. The port number and the socket is

returned.

socketAccept :: Socket → IO (String,Handle)

Returns a connection of a client to a socket. The connection is returned as a pair

consisting of a string identifying the client (the format of this string is implementation-

dependent) and a handle to a stream communication with the client. The handle is

both readable and writable.

waitForSocketAccept :: Socket → Int → IO (Maybe (String,Handle))

Waits until a connection of a client to a socket is available. If no connection is available

within the time limit, it returns Nothing, otherwise the connection is returned as a pair

consisting of a string identifying the client (the format of this string is implementation-

dependent) and a handle to a stream communication with the client.

sClose :: Socket → IO ()

Closes a server socket.

connectToSocket :: String → Int → IO Handle

Creates a new connection to a Unix socket.

A.2.51 Library System

Library to access parts of the system environment.

Exported functions:

getCPUTime :: IO Int

Returns the current cpu time of the process in milliseconds.

getElapsedTime :: IO Int

161

Returns the current elapsed time of the process in milliseconds. This operation is not

supported in KiCS2 (there it always returns 0), but only included for compatibility

reasons.

getArgs :: IO [String]

Returns the list of the program’s command line arguments. The program name is not

included.

getEnviron :: String → IO String

Returns the value of an environment variable. The empty string is returned for unde-

fined environment variables.

setEnviron :: String → String → IO ()

Set an environment variable to a value. The new value will be passed to subsequent

shell commands (see system) and visible to subsequent calls to getEnviron (but it is

not visible in the environment of the process that started the program execution).

unsetEnviron :: String → IO ()

Removes an environment variable that has been set by setEnviron.

getHostname :: IO String

Returns the hostname of the machine running this process.

getPID :: IO Int

Returns the process identifier of the current Curry process.

getProgName :: IO String

Returns the name of the current program, i.e., the name of the main module currently

executed.

system :: String → IO Int

Executes a shell command and return with the exit code of the command. An exit

status of zero means successful execution.

exitWith :: Int → IO a

Terminates the execution of the current Curry program and returns the exit code given

by the argument. An exit code of zero means successful execution.

sleep :: Int → IO ()

The evaluation of the action (sleep n) puts the Curry process asleep for n seconds.

isPosix :: Bool

Is the underlying operating system a POSIX system (unix, MacOS)?

isWindows :: Bool

Is the underlying operating system a Windows system?

162

A.2.52 Library Time

Library for handling date and time information.

Exported types:

data ClockTime

ClockTime represents a clock time in some internal representation.

Exported constructors:

data CalendarTime

A calendar time is presented in the following form: (CalendarTime year month day

hour minute second timezone) where timezone is an integer representing the timezone

as a difference to UTC time in seconds.

Exported constructors:

• CalendarTime :: Int → Int → Int → Int → Int → Int → Int → CalendarTime

Exported functions:

ctYear :: CalendarTime → Int

The year of a calendar time.

ctMonth :: CalendarTime → Int

The month of a calendar time.

ctDay :: CalendarTime → Int

The day of a calendar time.

ctHour :: CalendarTime → Int

The hour of a calendar time.

ctMin :: CalendarTime → Int

The minute of a calendar time.

ctSec :: CalendarTime → Int

The second of a calendar time.

ctTZ :: CalendarTime → Int

The time zone of a calendar time. The value of the time zone is the difference to UTC

time in seconds.

getClockTime :: IO ClockTime

163

Returns the current clock time.

getLocalTime :: IO CalendarTime

Returns the local calendar time.

clockTimeToInt :: ClockTime → Int

Transforms a clock time into a unique integer. It is ensured that clock times that differs

in at least one second are mapped into different integers.

toCalendarTime :: ClockTime → IO CalendarTime

Transforms a clock time into a calendar time according to the local time (if possible).

Since the result depends on the local environment, it is an I/O operation.

toUTCTime :: ClockTime → CalendarTime

Transforms a clock time into a standard UTC calendar time. Thus, this operationa is

independent on the local time.

toClockTime :: CalendarTime → ClockTime

Transforms a calendar time (interpreted as UTC time) into a clock time.

calendarTimeToString :: CalendarTime → String

Transforms a calendar time into a readable form.

toDayString :: CalendarTime → String

Transforms a calendar time into a string containing the day, e.g., ”September 23, 2006”.

toTimeString :: CalendarTime → String

Transforms a calendar time into a string containing the time.

addSeconds :: Int → ClockTime → ClockTime

Adds seconds to a given time.

addMinutes :: Int → ClockTime → ClockTime

Adds minutes to a given time.

addHours :: Int → ClockTime → ClockTime

Adds hours to a given time.

addDays :: Int → ClockTime → ClockTime

Adds days to a given time.

addMonths :: Int → ClockTime → ClockTime

164

Adds months to a given time.

addYears :: Int → ClockTime → ClockTime

Adds years to a given time.

daysOfMonth :: Int → Int → Int

Gets the days of a month in a year.

validDate :: Int → Int → Int → Bool

Is a date consisting of year/month/day valid?

compareDate :: CalendarTime → CalendarTime → Ordering

Compares two dates (don’t use it, just for backward compatibility!).

compareCalendarTime :: CalendarTime → CalendarTime → Ordering

Compares two calendar times.

compareClockTime :: ClockTime → ClockTime → Ordering

Compares two clock times.

A.2.53 Library Unsafe

Library containing unsafe operations. These operations should be carefully used (e.g., for testing

or debugging). These operations should not be used in application programs!

Exported functions:

unsafePerformIO :: IO a → a

Performs and hides an I/O action in a computation (use with care!).

trace :: String → a → a

Prints the first argument as a side effect and behaves as identity on the second argument.

spawnConstraint :: Success → a → a

Spawns a constraint and returns the second argument. This function can be consid-

ered as defined by ”spawnConstraint c x | c = x”. However, the evaluation of the

constraint and the right-hand side are performed concurrently, i.e., a suspension of the

constraint does not imply a blocking of the right-hand side and the right-hand side

might be evaluated before the constraint is successfully solved. Thus, a computation

might return a result even if some of the spawned constraints are suspended (use the

PAKCS/Curry2Prolog option ”+suspend” to show such suspended goals).

isVar :: a → Bool

165

Tests whether the first argument evaluates to a currently unbound variable (use with

care!).

identicalVar :: a → a → Bool

Tests whether both arguments evaluate to the identical currently unbound variable

(use with care!). For instance, identicalVar (id x) (fst (x,1)) evaluates to True

whereas identicalVar x y and let x=1 in identicalVar x x evaluate to False

isGround :: a → Bool

Tests whether the argument evaluates to a ground value (use with care!).

compareAnyTerm :: a → a → Ordering

Comparison of any data terms, possibly containing variables. Data constructors are

compared in the order of their definition in the datatype declarations and recursively

in the arguments. Variables are compared in some internal order.

showAnyTerm :: a → String

Transforms the normal form of a term into a string representation in stan-

dard prefix notation. Thus, showAnyTerm evaluates its argument to normal

form. This function is similar to the function ReadShowTerm.showTerm but it also

transforms logic variables into a string representation that can be read back by

Unsafe.read(s)AnyUnqualifiedTerm. Thus, the result depends on the evaluation and

binding status of logic variables so that it should be used with care!

showAnyQTerm :: a → String

Transforms the normal form of a term into a string representation in standard prefix

notation. Thus, showAnyQTerm evaluates its argument to normal form. This function

is similar to the function ReadShowTerm.showQTerm but it also transforms logic variables

into a string representation that can be read back by Unsafe.read(s)AnyQTerm. Thus,

the result depends on the evaluation and binding status of logic variables so that it

should be used with care!

readsAnyUnqualifiedTerm :: [String] → String → [(a,String)]

Transform a string containing a term in standard prefix notation without module qual-

ifiers into the corresponding data term. The string might contain logical variable en-

codings produced by showAnyTerm. In case of a successful parse, the result is a one

element list containing a pair of the data term and the remaining unparsed string.

readAnyUnqualifiedTerm :: [String] → String → a

Transforms a string containing a term in standard prefix notation without module

qualifiers into the corresponding data term. The string might contain logical variable

encodings produced by showAnyTerm.

166

readsAnyQTerm :: String → [(a,String)]

Transforms a string containing a term in standard prefix notation with qualified con-

structor names into the corresponding data term. The string might contain logical

variable encodings produced by showAnyQTerm. In case of a successful parse, the re-

sult is a one element list containing a pair of the data term and the remaining unparsed

string.

readAnyQTerm :: String → a

Transforms a string containing a term in standard prefix notation with qualified con-

structor names into the corresponding data term. The string might contain logical

variable encodings produced by showAnyQTerm.

showAnyExpression :: a → String

Transforms any expression (even not in normal form) into a string representation in

standard prefix notation without module qualifiers. The result depends on the evalua-

tion and binding status of logic variables so that it should be used with care!

showAnyQExpression :: a → String

Transforms any expression (even not in normal form) into a string representation in

standard prefix notation with module qualifiers. The result depends on the evaluation

and binding status of logic variables so that it should be used with care!

readsAnyQExpression :: String → [(a,String)]

Transforms a string containing an expression in standard prefix notation with qualified

constructor names into the corresponding expression. The string might contain logical

variable and defined function encodings produced by showAnyQExpression. In case of

a successful parse, the result is a one element list containing a pair of the expression

and the remaining unparsed string.

readAnyQExpression :: String → a

Transforms a string containing an expression in standard prefix notation with qualified

constructor names into the corresponding expression. The string might contain logical

variable and defined function encodings produced by showAnyQExpression.

A.3 Data Structures and Algorithms

A.3.1 Library Array

Implementation of Arrays with Braun Trees. Conceptually, Braun trees are always infinite. Con-

sequently, there is no test on emptiness.

Exported types:

data Array

Exported constructors:

167

Exported functions:

emptyErrorArray :: Array a

Creates an empty array which generates errors for non-initialized indexes.

emptyDefaultArray :: (Int → a) → Array a

Creates an empty array, call given function for non-initialized indexes.

(//) :: Array a → [(Int,a)] → Array a

Inserts a list of entries into an array.

update :: Array a → Int → a → Array a

Inserts a new entry into an array.

applyAt :: Array a → Int → (a → a) → Array a

Applies a function to an element.

(!) :: Array a → Int → a

Yields the value at a given position.

listToDefaultArray :: (Int → a) → [a] → Array a

Creates a default array from a list of entries.

listToErrorArray :: [a] → Array a

Creates an error array from a list of entries.

combine :: (a → b → c) → Array a → Array b → Array c

combine two arbitrary arrays

combineSimilar :: (a → a → a) → Array a → Array a → Array a

the combination of two arrays with identical default function and a combinator which

is neutral in the default can be implemented much more efficient

A.3.2 Library Dequeue

An implementation of double-ended queues supporting access at both ends in constant amortized

time.

Exported types:

data Queue

The datatype of a queue.

Exported constructors:

168

Exported functions:

empty :: Queue a

The empty queue.

cons :: a → Queue a → Queue a

Inserts an element at the front of the queue.

snoc :: a → Queue a → Queue a

Inserts an element at the end of the queue.

isEmpty :: Queue a → Bool

Is the queue empty?

deqLength :: Queue a → Int

Returns the number of elements in the queue.

deqHead :: Queue a → a

The first element of the queue.

deqTail :: Queue a → Queue a

Removes an element at the front of the queue.

deqLast :: Queue a → a

The last element of the queue.

deqInit :: Queue a → Queue a

Removes an element at the end of the queue.

deqReverse :: Queue a → Queue a

Reverses a double ended queue.

rotate :: Queue a → Queue a

Moves the first element to the end of the queue.

matchHead :: Queue a → Maybe (a,Queue a)

Matches the front of a queue. matchHead q is equivalent to if isEmpty q then

Nothing else Just (deqHead q, deqTail q) but more efficient.

matchLast :: Queue a → Maybe (a,Queue a)

Matches the end of a queue. matchLast q is equivalent to if isEmpty q then

Nothing else Just (deqLast q,deqInit q) but more efficient.

listToDeq :: [a] → Queue a

Transforms a list to a double ended queue.

deqToList :: Queue a → [a]

Transforms a double ended queue to a list.

169

A.3.3 Library FiniteMap

A finite map is an efficient purely functional data structure to store a mapping from keys to values.

In order to store the mapping efficiently, an irreflexive(!) order predicate has to be given, i.e., the

order predicate le should not satisfy (le x x) for some key x.

Example: To store a mapping from Int -> String, the finite map needs a Boolean predicate like

(<). This version was ported from a corresponding Haskell library

Exported types:

data FM

Exported constructors:

Exported functions:

emptyFM :: (a → a → Bool) → FM a b

The empty finite map.

unitFM :: (a → a → Bool) → a → b → FM a b

Construct a finite map with only a single element.

listToFM :: (a → a → Bool) → [(a,b)] → FM a b

Builts a finite map from given list of tuples (key,element). For multiple occurences of

key, the last corresponding element of the list is taken.

addToFM :: FM a b → a → b → FM a b

Throws away any previous binding and stores the new one given.

addListToFM :: FM a b → [(a,b)] → FM a b

Throws away any previous bindings and stores the new ones given. The items are added

starting with the first one in the list

addToFM C :: (a → a → a) → FM b a → b → a → FM b a

Instead of throwing away the old binding, addToFM C combines the new element with

the old one.

addListToFM C :: (a → a → a) → FM b a → [(b,a)] → FM b a

Combine with a list of tuples (key,element), cf. addToFM C

delFromFM :: FM a b → a → FM a b

Deletes key from finite map. Deletion doesn’t complain if you try to delete something

which isn’t there

170

delListFromFM :: FM a b → [a] → FM a b

Deletes a list of keys from finite map. Deletion doesn’t complain if you try to delete

something which isn’t there

updFM :: FM a b → a → (b → b) → FM a b

Applies a function to element bound to given key.

splitFM :: FM a b → a → Maybe (FM a b,(a,b))

Combines delFrom and lookup.

plusFM :: FM a b → FM a b → FM a b

Efficiently add key/element mappings of two maps into a single one. Bindings in right

argument shadow those in the left

plusFM C :: (a → a → a) → FM b a → FM b a → FM b a

Efficiently combine key/element mappings of two maps into a single one, cf. addToFM C

minusFM :: FM a b → FM a b → FM a b

(minusFM a1 a2) deletes from a1 any bindings which are bound in a2

intersectFM :: FM a b → FM a b → FM a b

Filters only those keys that are bound in both of the given maps. The elements will be

taken from the second map.

intersectFM C :: (a → b → c) → FM d a → FM d b → FM d c

Filters only those keys that are bound in both of the given maps and combines the

elements as in addToFM C.

foldFM :: (a → b → c → c) → c → FM a b → c

Folds finite map by given function.

mapFM :: (a → b → c) → FM a b → FM a c

Applies a given function on every element in the map.

filterFM :: (a → b → Bool) → FM a b → FM a b

Yields a new finite map with only those key/element pairs matching the given predicate.

sizeFM :: FM a b → Int

How many elements does given map contain?

eqFM :: FM a b → FM a b → Bool

Do two given maps contain the same key/element pairs?

171

isEmptyFM :: FM a b → Bool

Is the given finite map empty?

elemFM :: a → FM a b → Bool

Does given map contain given key?

lookupFM :: FM a b → a → Maybe b

Retrieves element bound to given key

lookupWithDefaultFM :: FM a b → b → a → b

Retrieves element bound to given key. If the element is not contained in map, return

default value.

keyOrder :: FM a b → a → a → Bool

Retrieves the ordering on which the given finite map is built.

minFM :: FM a b → Maybe (a,b)

Retrieves the smallest key/element pair in the finite map according to the basic key

ordering.

maxFM :: FM a b → Maybe (a,b)

Retrieves the greatest key/element pair in the finite map according to the basic key

ordering.

fmToList :: FM a b → [(a,b)]

Builds a list of key/element pairs. The list is ordered by the initially given irreflexive

order predicate on keys.

keysFM :: FM a b → [a]

Retrieves a list of keys contained in finite map. The list is ordered by the initially given

irreflexive order predicate on keys.

eltsFM :: FM a b → [b]

Retrieves a list of elements contained in finite map. The list is ordered by the initially

given irreflexive order predicate on keys.

fmToListPreOrder :: FM a b → [(a,b)]

Retrieves list of key/element pairs in preorder of the internal tree. Useful for lists that

will be retransformed into a tree or to match any elements regardless of basic order.

fmSortBy :: (a → a → Bool) → [a] → [a]

Sorts a given list by inserting and retrieving from finite map. Duplicates are deleted.

172

showFM :: FM a b → String

Transforms a finite map into a string. For efficiency reasons, the tree structure is shown

which is valid for reading only if one uses the same ordering predicate.

readFM :: (a → a → Bool) → String → FM a b

Transforms a string representation of a finite map into a finite map. One has two

provide the same ordering predicate as used in the original finite map.

A.3.4 Library GraphInductive

Library for inductive graphs (port of a Haskell library by Martin Erwig).

In this library, graphs are composed and decomposed in an inductive way.

The key idea is as follows:

A graph is either empty or it consists of node context and a graph g’ which are put together by a

constructor (:&).

This constructor (:&), however, is not a constructor in the sense of abstract data type, but

more basically a defined constructing funtion.

A context is a node together withe the edges to and from this node into the nodes in the graph g’.

For examples of how to use this library, cf. the module GraphAlgorithms.

Exported types:

type Node = Int

Nodes and edges themselves (in contrast to their labels) are coded as integers.

For both of them, there are variants as labeled, unlabelwd and quasi unlabeled (labeled

with ()).

Unlabeled node

type LNode a = (Int,a)

Labeled node

type UNode = (Int,())

Quasi-unlabeled node

type Edge = (Int,Int)

Unlabeled edge

type LEdge a = (Int,Int,a)

Labeled edge

type UEdge = (Int,Int,())

Quasi-unlabeled edge

173

type Context a b = ([(b,Int)],Int,a,[(b,Int)])

The context of a node is the node itself (along with label) and its adjacent nodes. Thus,

a context is a quadrupel, for node n it is of the form (edges to n,node n,n’s label,edges

from n)

type MContext a b = Maybe ([(b,Int)],Int,a,[(b,Int)])

maybe context

type Context’ a b = ([(b,Int)],a,[(b,Int)])

context with edges and node label only, without the node identifier itself

type UContext = ([Int],Int,[Int])

Unlabeled context.

type GDecomp a b = (([(b,Int)],Int,a,[(b,Int)]),Graph a b)

A graph decompostion is a context for a node n and the remaining graph without that

node.

type Decomp a b = (Maybe ([(b,Int)],Int,a,[(b,Int)]),Graph a b)

a decomposition with a maybe context

type UDecomp a = (Maybe ([Int],Int,[Int]),a)

Unlabeled decomposition.

type Path = [Int]

Unlabeled path

type LPath a = [(Int,a)]

Labeled path

type UPath = [(Int,())]

Quasi-unlabeled path

type UGr = Graph () ()

a graph without any labels

data Graph

The type variables of Graph are nodeLabel and edgeLabel. The internal representation

of Graph is hidden.

Exported constructors:

174

Exported functions:

(:&) :: ([(a,Int)],Int,b,[(a,Int)]) → Graph b a → Graph b a

(:&) takes a node-context and a Graph and yields a new graph.

The according key idea is detailed at the beginning.

nl is the type of the node labels and el the edge labels.

Note that it is an error to induce a context for a node already contained in the graph.

matchAny :: Graph a b → (([(b,Int)],Int,a,[(b,Int)]),Graph a b)

decompose a graph into the Context for an arbitrarily-chosen Node and the remaining

Graph.

In order to use graphs as abstract data structures, we also need means to decompose a

graph. This decompostion should work as much like pattern matching as possible. The

normal matching is done by the function matchAny, which takes a graph and yields a

graph decompostion.

According to the main idea, matchAny . (:&) should be an identity.

empty :: Graph a b

An empty Graph.

mkGraph :: [(Int,a)] → [(Int,Int,b)] → Graph a b

Create a Graph from the list of LNodes and LEdges.

buildGr :: [([(a,Int)],Int,b,[(a,Int)])] → Graph b a

Build a Graph from a list of Contexts.

mkUGraph :: [Int] → [(Int,Int)] → Graph () ()

Build a quasi-unlabeled Graph from the list of Nodes and Edges.

insNode :: (Int,a) → Graph a b → Graph a b

Insert a LNode into the Graph.

insEdge :: (Int,Int,a) → Graph b a → Graph b a

Insert a LEdge into the Graph.

delNode :: Int → Graph a b → Graph a b

Remove a Node from the Graph.

delEdge :: (Int,Int) → Graph a b → Graph a b

Remove an Edge from the Graph.

insNodes :: [(Int,a)] → Graph a b → Graph a b

175

Insert multiple LNodes into the Graph.

insEdges :: [(Int,Int,a)] → Graph b a → Graph b a

Insert multiple LEdges into the Graph.

delNodes :: [Int] → Graph a b → Graph a b

Remove multiple Nodes from the Graph.

delEdges :: [(Int,Int)] → Graph a b → Graph a b

Remove multiple Edges from the Graph.

isEmpty :: Graph a b → Bool

test if the given Graph is empty.

match :: Int → Graph a b → (Maybe ([(b,Int)],Int,a,[(b,Int)]),Graph a b)

match is the complement side of (:&), decomposing a Graph into the MContext found

for the given node and the remaining Graph.

noNodes :: Graph a b → Int

The number of Nodes in a Graph.

nodeRange :: Graph a b → (Int,Int)

The minimum and maximum Node in a Graph.

context :: Graph a b → Int → ([(b,Int)],Int,a,[(b,Int)])

Find the context for the given Node. In contrast to ”match”, ”context” causes an error

if the Node is not present in the Graph.

lab :: Graph a b → Int → Maybe a

Find the label for a Node.

neighbors :: Graph a b → Int → [Int]

Find the neighbors for a Node.

suc :: Graph a b → Int → [Int]

Find all Nodes that have a link from the given Node.

pre :: Graph a b → Int → [Int]

Find all Nodes that link to to the given Node.

lsuc :: Graph a b → Int → [(Int,b)]

Find all Nodes and their labels, which are linked from the given Node.

176

lpre :: Graph a b → Int → [(Int,b)]

Find all Nodes that link to the given Node and the label of each link.

out :: Graph a b → Int → [(Int,Int,b)]

Find all outward-bound LEdges for the given Node.

inn :: Graph a b → Int → [(Int,Int,b)]

Find all inward-bound LEdges for the given Node.

outdeg :: Graph a b → Int → Int

The outward-bound degree of the Node.

indeg :: Graph a b → Int → Int

The inward-bound degree of the Node.

deg :: Graph a b → Int → Int

The degree of the Node.

gelem :: Int → Graph a b → Bool

True if the Node is present in the Graph.

equal :: Graph a b → Graph a b → Bool

graph equality

node’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The Node in a Context.

lab’ :: ([(a,Int)],Int,b,[(a,Int)]) → b

The label in a Context.

labNode’ :: ([(a,Int)],Int,b,[(a,Int)]) → (Int,b)

The LNode from a Context.

neighbors’ :: ([(a,Int)],Int,b,[(a,Int)]) → [Int]

All Nodes linked to or from in a Context.

suc’ :: ([(a,Int)],Int,b,[(a,Int)]) → [Int]

All Nodes linked to in a Context.

pre’ :: ([(a,Int)],Int,b,[(a,Int)]) → [Int]

All Nodes linked from in a Context.

177

lpre’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,a)]

All Nodes linked from in a Context, and the label of the links.

lsuc’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,a)]

All Nodes linked from in a Context, and the label of the links.

out’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,Int,a)]

All outward-directed LEdges in a Context.

inn’ :: ([(a,Int)],Int,b,[(a,Int)]) → [(Int,Int,a)]

All inward-directed LEdges in a Context.

outdeg’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The outward degree of a Context.

indeg’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The inward degree of a Context.

deg’ :: ([(a,Int)],Int,b,[(a,Int)]) → Int

The degree of a Context.

labNodes :: Graph a b → [(Int,a)]

A list of all LNodes in the Graph.

labEdges :: Graph a b → [(Int,Int,b)]

A list of all LEdges in the Graph.

nodes :: Graph a b → [Int]

List all Nodes in the Graph.

edges :: Graph a b → [(Int,Int)]

List all Edges in the Graph.

newNodes :: Int → Graph a b → [Int]

List N available Nodes, ie Nodes that are not used in the Graph.

ufold :: (([(a,Int)],Int,b,[(a,Int)]) → c → c) → c → Graph b a → c

Fold a function over the graph.

gmap :: (([(a,Int)],Int,b,[(a,Int)]) → ([(c,Int)],Int,d,[(c,Int)])) → Graph b a

→ Graph d c

Map a function over the graph.

178

nmap :: (a → b) → Graph a c → Graph b c

Map a function over the Node labels in a graph.

emap :: (a → b) → Graph c a → Graph c b

Map a function over the Edge labels in a graph.

labUEdges :: [(a,b)] → [(a,b,())]

add label () to list of edges (node,node)

labUNodes :: [a] → [(a,())]

add label () to list of nodes

showGraph :: Graph a b → String

Represent Graph as String

A.3.5 Library Random

Library for pseudo-random number generation in Curry.

This library provides operations for generating pseudo-random number sequences. For any given

seed, the sequences generated by the operations in this module should be identical to the sequences

generated by the java.util.Random package.

The algorithm is a linear congruential pseudo-random number generator described in Donald E.

Knuth, The Art of Computer Programming , Volume 2: Seminumerical Algorithms, section 3.2.1.

Exported functions:

nextInt :: Int → [Int]

Returns a sequence of pseudorandom, uniformly distributed 32-bits integer values. All

232 possible integer values are produced with (approximately) equal probability.

nextIntRange :: Int → Int → [Int]

Returns a pseudorandom, uniformly distributed sequence of values between 0 (inclusive)

and the specified value (exclusive). Each value is a 32-bits positive integer. All n possible

values are produced with (approximately) equal probability.

nextBoolean :: Int → [Bool]

Returns a pseudorandom, uniformly distributed sequence of boolean values. The values

True and False are produced with (approximately) equal probability.

getRandomSeed :: IO Int

Returns a time-dependent integer number as a seed for really random numbers. Should

only be used as a seed for pseudorandom number sequence and not as a random number

since the precision is limited to milliseconds

179

A.3.6 Library RedBlackTree

Library with an implementation of red-black trees:

Serves as the base for both TableRBT and SetRBT All the operations on trees are generic, i.e.,

one has to provide two explicit order predicates (”lessThan” and ”eq”below) on elements.

Exported types:

data RedBlackTree

A red-black tree consists of a tree structure and three order predicates. These predicates

generalize the red black tree. They define 1) equality when inserting into the tree

eg for a set eqInsert is (==), for a multiset it is (-> False) for a lookUp-table it is

((==) . fst) 2) equality for looking up values eg for a set eqLookUp is (==), for a

multiset it is (==) for a lookUp-table it is ((==) . fst) 3) the (less than) relation for

the binary search tree

Exported constructors:

Exported functions:

empty :: (a → a → Bool) → (a → a → Bool) → (a → a → Bool) → RedBlackTree

a

The three relations are inserted into the structure by function empty. Returns an empty

tree, i.e., an empty red-black tree augmented with the order predicates.

isEmpty :: RedBlackTree a → Bool

Test on emptyness

newTreeLike :: RedBlackTree a → RedBlackTree a

Creates a new empty red black tree from with the same ordering as a give one.

lookup :: a → RedBlackTree a → Maybe a

Returns an element if it is contained in a red-black tree.

update :: a → RedBlackTree a → RedBlackTree a

Updates/inserts an element into a RedBlackTree.

delete :: a → RedBlackTree a → RedBlackTree a

Deletes entry from red black tree.

tree2list :: RedBlackTree a → [a]

Transforms a red-black tree into an ordered list of its elements.

sort :: (a → a → Bool) → [a] → [a]

Generic sort based on insertion into red-black trees. The first argument is the order for

the elements.

setInsertEquivalence :: (a → a → Bool) → RedBlackTree a → RedBlackTree a

For compatibility with old version only

180

A.3.7 Library SetRBT

Library with an implementation of sets as red-black trees.

All the operations on sets are generic, i.e., one has to provide an explicit order predicate (<)

(less-than) on elements.

Exported types:

type SetRBT a = RedBlackTree a

Exported functions:

emptySetRBT :: (a → a → Bool) → RedBlackTree a

Returns an empty set, i.e., an empty red-black tree augmented with an order predicate.

isEmptySetRBT :: RedBlackTree a → Bool

Test for an empty set.

elemRBT :: a → RedBlackTree a → Bool

Returns true if an element is contained in a (red-black tree) set.

insertRBT :: a → RedBlackTree a → RedBlackTree a

Inserts an element into a set if it is not already there.

insertMultiRBT :: a → RedBlackTree a → RedBlackTree a

Inserts an element into a multiset. Thus, the same element can have several occurrences

in the multiset.

deleteRBT :: a → RedBlackTree a → RedBlackTree a

delete an element from a set. Deletes only a single element from a multi set

setRBT2list :: RedBlackTree a → [a]

Transforms a (red-black tree) set into an ordered list of its elements.

unionRBT :: RedBlackTree a → RedBlackTree a → RedBlackTree a

Computes the union of two (red-black tree) sets. This is done by inserting all elements

of the first set into the second set.

intersectRBT :: RedBlackTree a → RedBlackTree a → RedBlackTree a

Computes the intersection of two (red-black tree) sets. This is done by inserting all

elements of the first set contained in the second set into a new set, which order is taken

from the first set.

sortRBT :: (a → a → Bool) → [a] → [a]

Generic sort based on insertion into red-black trees. The first argument is the order for

the elements.

181

A.3.8 Library Sort

A collection of useful functions for sorting and comparing characters, strings, and lists.

Exported functions:

quickSort :: (a → a → Bool) → [a] → [a]

Quicksort.

mergeSort :: (a → a → Bool) → [a] → [a]

Bottom-up mergesort.

leqList :: (a → a → Bool) → [a] → [a] → Bool

Less-or-equal on lists.

cmpList :: (a → a → Ordering) → [a] → [a] → Ordering

Comparison of lists.

leqChar :: Char → Char → Bool

Less-or-equal on characters (deprecated, use Prelude.<=</code></=</code>).

cmpChar :: Char → Char → Ordering

Comparison of characters (deprecated, use Prelude.compare).

leqCharIgnoreCase :: Char → Char → Bool

Less-or-equal on characters ignoring case considerations.

leqString :: String → String → Bool

Less-or-equal on strings (deprecated, use Prelude.<=</code></=</code>).

cmpString :: String → String → Ordering

Comparison of strings (deprecated, use Prelude.compare).

leqStringIgnoreCase :: String → String → Bool

Less-or-equal on strings ignoring case considerations.

leqLexGerman :: String → String → Bool

Lexicographical ordering on German strings. Thus, upper/lowercase are not distin-

guished and Umlauts are sorted as vocals.

A.3.9 Library TableRBT

Library with an implementation of tables as red-black trees:

A table is a finite mapping from keys to values. All the operations on tables are generic, i.e.,

one has to provide an explicit order predicate (”cmp” below) on elements. Each inner node in the

red-black tree contains a key-value association.

182

Exported types:

type TableRBT a b = RedBlackTree (a,b)

Exported functions:

emptyTableRBT :: (a → a → Bool) → RedBlackTree (a,b)

Returns an empty table, i.e., an empty red-black tree.

isEmptyTable :: RedBlackTree (a,b) → Bool

tests whether a given table is empty

lookupRBT :: a → RedBlackTree (a,b) → Maybe b

Looks up an entry in a table.

updateRBT :: a → b → RedBlackTree (a,b) → RedBlackTree (a,b)

Inserts or updates an element in a table.

tableRBT2list :: RedBlackTree (a,b) → [(a,b)]

Transforms the nodes of red-black tree into a list.

deleteRBT :: a → RedBlackTree (a,b) → RedBlackTree (a,b)

A.3.10 Library Traversal

Library to support lightweight generic traversals through tree-structured data. See here11 for a

description of the library.

Exported types:

type Traversable a b = a → ([b],[b] → a)

A datatype is Traversable if it defines a function that can decompose a value into

a list of children of the same type and recombine new children to a new value of the

original type.

11http://www-ps.informatik.uni-kiel.de/~sebf/projects/traversal.html

183

Exported functions:

noChildren :: a → ([b],[b] → a)

Traversal function for constructors without children.

children :: (a → ([b],[b] → a)) → a → [b]

Yields the children of a value.

replaceChildren :: (a → ([b],[b] → a)) → a → [b] → a

Replaces the children of a value.

mapChildren :: (a → ([b],[b] → a)) → (b → b) → a → a

Applies the given function to each child of a value.

family :: (a → ([a],[a] → a)) → a → [a]

Computes a list of the given value, its children, those children, etc.

childFamilies :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → a → [b]

Computes a list of family members of the children of a value. The value and its children

can have different types.

mapFamily :: (a → ([a],[a] → a)) → (a → a) → a → a

Applies the given function to each member of the family of a value. Proceeds bottom-up.

mapChildFamilies :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → b) →
a → a

Applies the given function to each member of the families of the children of a value.

The value and its children can have different types. Proceeds bottom-up.

evalFamily :: (a → ([a],[a] → a)) → (a → Maybe a) → a → a

Applies the given function to each member of the family of a value as long as possible.

On each member of the family of the result the given function will yield Nothing.

Proceeds bottom-up.

evalChildFamilies :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → Maybe

b) → a → a

Applies the given function to each member of the families of the children of a value as

long as possible. Similar to evalFamily.

fold :: (a → ([a],[a] → a)) → (a → [b] → b) → a → b

Implements a traversal similar to a fold with possible default cases.

184

foldChildren :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (a → [c] → d)

→ (b → [c] → c) → a → d

Fold the children and combine the results.

replaceChildrenIO :: (a → ([b],[b] → a)) → a → IO [b] → IO a

IO version of replaceChildren

mapChildrenIO :: (a → ([b],[b] → a)) → (b → IO b) → a → IO a

IO version of mapChildren

mapFamilyIO :: (a → ([a],[a] → a)) → (a → IO a) → a → IO a

IO version of mapFamily

mapChildFamiliesIO :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → IO

b) → a → IO a

IO version of mapChildFamilies

evalFamilyIO :: (a → ([a],[a] → a)) → (a → IO (Maybe a)) → a → IO a

IO version of evalFamily

evalChildFamiliesIO :: (a → ([b],[b] → a)) → (b → ([b],[b] → b)) → (b → IO

(Maybe b)) → a → IO a

IO version of evalChildFamilies

A.4 Libraries for Web Applications

A.4.1 Library CategorizedHtmlList

This library provides functions to categorize a list of entities into a HTML page with an index

access (e.g., ”A-Z”) to these entities.

Exported functions:

list2CategorizedHtml :: [(a,[HtmlExp])] → [(b,String)] → (a → b → Bool) →
[HtmlExp]

General categorization of a list of entries.

The item will occur in every category for which the boolean function categoryFun yields

True.

categorizeByItemKey :: [(String,[HtmlExp])] → [HtmlExp]

Categorize a list of entries with respect to the inial keys.

The categories are named as all initial characters of the keys of the items.

stringList2ItemList :: [String] → [(String,[HtmlExp])]

Convert a string list into an key-item list The strings are used as keys and for the simple

text layout.

185

A.4.2 Library HTML

Library for HTML and CGI programming. This paper contains a description of the basic ideas

behind this library.

The installation of a cgi script written with this library can be done by the command

makecurrycgi -m initialForm -o /home/joe/public_html/prog.cgi prog

where prog is the name of the Curry program with the cgi script,

/home/joe/public html/prog.cgi is the desired location of the compiled cgi script, and

initialForm is the Curry expression (of type IO HtmlForm) computing the HTML form (where

makecurrycgi is a shell script stored in pakcshome/bin).

Exported types:

type CgiEnv = CgiRef → String

The type for representing cgi environments (i.e., mappings from cgi references to the

corresponding values of the input elements).

type HtmlHandler = (CgiRef → String) → IO HtmlForm

The type of event handlers in HTML forms.

data CgiRef

The (abstract) data type for representing references to input elements in HTML forms.

Exported constructors:

data HtmlExp

The data type for representing HTML expressions.

Exported constructors:

• HtmlText :: String → HtmlExp

HtmlText s

– a text string without any further structure

• HtmlStruct :: String → [(String,String)] → [HtmlExp] → HtmlExp

HtmlStruct t as hs

– a structure with a tag, attributes, and HTML expressions inside the structure

• HtmlCRef :: HtmlExp → CgiRef → HtmlExp

HtmlCRef h ref

– an input element (described by the first argument) with a cgi reference

186

http://www.informatik.uni-kiel.de/~mh/papers/PADL01.html

• HtmlEvent :: HtmlExp → ((CgiRef → String) → IO HtmlForm) → HtmlExp

HtmlEvent h hdlr

– an input element (first arg) with an associated event handler (tpyically, a submit button)

data HtmlForm

The data type for representing HTML forms (active web pages) and return values of

HTML forms.

Exported constructors:

• HtmlForm :: String → [FormParam] → [HtmlExp] → HtmlForm

HtmlForm t ps hs

– an HTML form with title t, optional parameters (e.g., cookies) ps, and contents hs

• HtmlAnswer :: String → String → HtmlForm

HtmlAnswer t c

– an answer in an arbitrary format where t is the content type (e.g., ”text/plain”) and c

is the contents

data FormParam

The possible parameters of an HTML form. The parameters of a cookie (FormCookie)

are its name and value and optional parameters (expiration date, domain, path (e.g.,

the path ”/” makes the cookie valid for all documents on the server), security) which

are collected in a list.

Exported constructors:

• FormCookie :: String → String → [CookieParam] → FormParam

FormCookie name value params

– a cookie to be sent to the client’s browser

• FormCSS :: String → FormParam

FormCSS s

– a URL for a CSS file for this form

• FormJScript :: String → FormParam

FormJScript s

– a URL for a Javascript file for this form

• FormOnSubmit :: String → FormParam

FormOnSubmit s

187

– a JavaScript statement to be executed when the form is submitted (i.e., <form ...

onsubmit=”s”>)

• FormTarget :: String → FormParam

FormTarget s

– a name of a target frame where the output of the script should be represented (should

only be used for scripts running in a frame)

• FormEnc :: String → FormParam

FormEnc

– the encoding scheme of this form

• FormMeta :: [(String,String)] → FormParam

FormMeta as

– meta information (in form of attributes) for this form

• HeadInclude :: HtmlExp → FormParam

HeadInclude he

– HTML expression to be included in form header

• MultipleHandlers :: FormParam

MultipleHandlers

– indicates that the event handlers of the form can be multiply used (i.e., are not deleted

if the form is submitted so that they are still available when going back in the browser;

but then there is a higher risk that the web server process might overflow with unused

events); the default is a single use of event handlers, i.e., one cannot use the back button

in the browser and submit the same form again (which is usually a reasonable behavior

to avoid double submissions of data).

• BodyAttr :: (String,String) → FormParam

BodyAttr ps

– optional attribute for the body element (more than one occurrence is allowed)

data CookieParam

The possible parameters of a cookie.

Exported constructors:

• CookieExpire :: ClockTime → CookieParam

• CookieDomain :: String → CookieParam

188

• CookiePath :: String → CookieParam

• CookieSecure :: CookieParam

data HtmlPage

The data type for representing HTML pages. The constructor arguments are the title,

the parameters, and the contents (body) of the web page.

Exported constructors:

• HtmlPage :: String → [PageParam] → [HtmlExp] → HtmlPage

data PageParam

The possible parameters of an HTML page.

Exported constructors:

• PageEnc :: String → PageParam

PageEnc

– the encoding scheme of this page

• PageCSS :: String → PageParam

PageCSS s

– a URL for a CSS file for this page

• PageJScript :: String → PageParam

PageJScript s

– a URL for a Javascript file for this page

• PageMeta :: [(String,String)] → PageParam

PageMeta as

– meta information (in form of attributes) for this page

• PageLink :: [(String,String)] → PageParam

PageLink as

– link information (in form of attributes) for this page

• PageBodyAttr :: (String,String) → PageParam

PageBodyAttr attr

– optional attribute for the body element of the page (more than one occurrence is allowed)

189

Exported functions:

defaultEncoding :: String

The default encoding used in generated web pages.

idOfCgiRef :: CgiRef → String

Internal identifier of a CgiRef (intended only for internal use in other libraries!).

formEnc :: String → FormParam

An encoding scheme for a HTML form.

formCSS :: String → FormParam

A URL for a CSS file for a HTML form.

formMetaInfo :: [(String,String)] → FormParam

Meta information for a HTML form. The argument is a list of attributes included in

the meta-tag in the header for this form.

formBodyAttr :: (String,String) → FormParam

Optional attribute for the body element of the HTML form. More than one occurrence

is allowed, i.e., all such attributes are collected.

form :: String → [HtmlExp] → HtmlForm

A basic HTML form for active web pages with the default encoding and a default

background.

standardForm :: String → [HtmlExp] → HtmlForm

A standard HTML form for active web pages where the title is included in the body as

the first header.

cookieForm :: String → [(String,String)] → [HtmlExp] → HtmlForm

An HTML form with simple cookies. The cookies are sent to the client’s browser

together with this form.

addCookies :: [(String,String)] → HtmlForm → HtmlForm

Add simple cookie to HTML form. The cookies are sent to the client’s browser together

with this form.

answerText :: String → HtmlForm

A textual result instead of an HTML form as a result for active web pages.

answerEncText :: String → String → HtmlForm

190

A textual result instead of an HTML form as a result for active web pages where the

encoding is given as the first parameter.

addFormParam :: HtmlForm → FormParam → HtmlForm

Adds a parameter to an HTML form.

redirect :: Int → String → HtmlForm → HtmlForm

Adds redirection to given HTML form.

expires :: Int → HtmlForm → HtmlForm

Adds expire time to given HTML form.

addSound :: String → Bool → HtmlForm → HtmlForm

Adds sound to given HTML form. The functions adds two different declarations for

sound, one invented by Microsoft for the internet explorer, one introduced for netscape.

As neither is an official part of HTML, addsound might not work on all systems and

browsers. The greatest chance is by using sound files in MID-format.

pageEnc :: String → PageParam

An encoding scheme for a HTML page.

pageCSS :: String → PageParam

A URL for a CSS file for a HTML page.

pageMetaInfo :: [(String,String)] → PageParam

Meta information for a HTML page. The argument is a list of attributes included in

the meta-tag in the header for this page.

pageLinkInfo :: [(String,String)] → PageParam

Link information for a HTML page. The argument is a list of attributes included in

the link-tag in the header for this page.

pageBodyAttr :: (String,String) → PageParam

Optional attribute for the body element of the web page. More than one occurrence is

allowed, i.e., all such attributes are collected.

page :: String → [HtmlExp] → HtmlPage

A basic HTML web page with the default encoding.

standardPage :: String → [HtmlExp] → HtmlPage

A standard HTML web page where the title is included in the body as the first header.

addPageParam :: HtmlPage → PageParam → HtmlPage

191

Adds a parameter to an HTML page.

htxt :: String → HtmlExp

Basic text as HTML expression. The text may contain special HTML chars (like

<,>,&,”) which will be quoted so that they appear as in the parameter string.

htxts :: [String] → [HtmlExp]

A list of strings represented as a list of HTML expressions. The strings may contain

special HTML chars that will be quoted.

hempty :: HtmlExp

An empty HTML expression.

nbsp :: HtmlExp

Non breaking Space

h1 :: [HtmlExp] → HtmlExp

Header 1

h2 :: [HtmlExp] → HtmlExp

Header 2

h3 :: [HtmlExp] → HtmlExp

Header 3

h4 :: [HtmlExp] → HtmlExp

Header 4

h5 :: [HtmlExp] → HtmlExp

Header 5

par :: [HtmlExp] → HtmlExp

Paragraph

section :: [HtmlExp] → HtmlExp

Section

header :: [HtmlExp] → HtmlExp

Header

footer :: [HtmlExp] → HtmlExp

Footer

192

emphasize :: [HtmlExp] → HtmlExp

Emphasize

strong :: [HtmlExp] → HtmlExp

Strong (more emphasized) text.

bold :: [HtmlExp] → HtmlExp

Boldface

italic :: [HtmlExp] → HtmlExp

Italic

nav :: [HtmlExp] → HtmlExp

Navigation

code :: [HtmlExp] → HtmlExp

Program code

center :: [HtmlExp] → HtmlExp

Centered text

blink :: [HtmlExp] → HtmlExp

Blinking text

teletype :: [HtmlExp] → HtmlExp

Teletype font

pre :: [HtmlExp] → HtmlExp

Unformatted input, i.e., keep spaces and line breaks and don’t quote special characters.

verbatim :: String → HtmlExp

Verbatim (unformatted), special characters (<,>,&,”) are quoted.

address :: [HtmlExp] → HtmlExp

Address

href :: String → [HtmlExp] → HtmlExp

Hypertext reference

anchor :: String → [HtmlExp] → HtmlExp

An anchored text with a hypertext reference inside a document.

193

ulist :: [[HtmlExp]] → HtmlExp

Unordered list

olist :: [[HtmlExp]] → HtmlExp

Ordered list

litem :: [HtmlExp] → HtmlExp

A single list item (usually not explicitly used)

dlist :: [([HtmlExp],[HtmlExp])] → HtmlExp

Description list

table :: [[[HtmlExp]]] → HtmlExp

Table with a matrix of items where each item is a list of HTML expressions.

headedTable :: [[[HtmlExp]]] → HtmlExp

Similar to table but introduces header tags for the first row.

addHeadings :: HtmlExp → [[HtmlExp]] → HtmlExp

Add a row of items (where each item is a list of HTML expressions) as headings to a

table. If the first argument is not a table, the headings are ignored.

hrule :: HtmlExp

Horizontal rule

breakline :: HtmlExp

Break a line

image :: String → String → HtmlExp

Image

styleSheet :: String → HtmlExp

Defines a style sheet to be used in this HTML document.

style :: String → [HtmlExp] → HtmlExp

Provides a style for HTML elements. The style argument is the name of a style class

defined in a style definition (see styleSheet) or in an external style sheet (see form

and page parameters FormCSS and PageCSS).

textstyle :: String → String → HtmlExp

Provides a style for a basic text. The style argument is the name of a style class defined

in an external style sheet.

194

blockstyle :: String → [HtmlExp] → HtmlExp

Provides a style for a block of HTML elements. The style argument is the name of

a style class defined in an external style sheet. This element is used (in contrast to

”style”) for larger blocks of HTML elements since a line break is placed before and

after these elements.

inline :: [HtmlExp] → HtmlExp

Joins a list of HTML elements into a single HTML element. Although this construction

has no rendering, it is sometimes useful for programming when several HTML elements

must be put together.

block :: [HtmlExp] → HtmlExp

Joins a list of HTML elements into a block. A line break is placed before and after

these elements.

button :: String → ((CgiRef → String) → IO HtmlForm) → HtmlExp

Submit button with a label string and an event handler

resetbutton :: String → HtmlExp

Reset button with a label string

imageButton :: String → ((CgiRef → String) → IO HtmlForm) → HtmlExp

Submit button in form of an imag.

textfield :: CgiRef → String → HtmlExp

Input text field with a reference and an initial contents

password :: CgiRef → HtmlExp

Input text field (where the entered text is obscured) with a reference

textarea :: CgiRef → (Int,Int) → String → HtmlExp

Input text area with a reference, height/width, and initial contents

checkbox :: CgiRef → String → HtmlExp

A checkbox with a reference and a value. The value is returned if checkbox is on,

otherwise ”” is returned.

checkedbox :: CgiRef → String → HtmlExp

A checkbox that is initially checked with a reference and a value. The value is returned

if checkbox is on, otherwise ”” is returned.

radio main :: CgiRef → String → HtmlExp

195

A main button of a radio (initially ”on”) with a reference and a value. The value is

returned of this button is on. A complete radio button suite always consists of a main

button (radiomain) and some further buttons (radioothers) with the same reference.

Initially, the main button is selected (or nothing is selected if one uses radiomainoff

instead of radio main). The user can select another button but always at most one

button of the radio can be selected. The value corresponding to the selected button is

returned in the environment for this radio reference.

radio main off :: CgiRef → String → HtmlExp

A main button of a radio (initially ”off”) with a reference and a value. The value is

returned of this button is on.

radio other :: CgiRef → String → HtmlExp

A further button of a radio (initially ”off”) with a reference (identical to the main

button of this radio) and a value. The value is returned of this button is on.

selection :: CgiRef → [(String,String)] → HtmlExp

A selection button with a reference and a list of name/value pairs. The names are

shown in the selection and the value is returned for the selected name.

selectionInitial :: CgiRef → [(String,String)] → Int → HtmlExp

A selection button with a reference, a list of name/value pairs, and a preselected item

in this list. The names are shown in the selection and the value is returned for the

selected name.

multipleSelection :: CgiRef → [(String,String,Bool)] → HtmlExp

A selection button with a reference and a list of name/value/flag pairs. The names are

shown in the selection and the value is returned if the corresponding name is selected.

If flag is True, the corresonding name is initially selected. If more than one name has

been selected, all values are returned in one string where the values are separated by

newline (<code>\n</code>) characters.

hiddenfield :: String → String → HtmlExp

A hidden field to pass a value referenced by a fixed name. This function should be

used with care since it may cause conflicts with the CGI-based implementation of this

library.

htmlQuote :: String → String

Quotes special characters (<,>,&,", umlauts) in a string as HTML special characters.

htmlIsoUmlauts :: String → String

Translates umlauts in iso-8859-1 encoding into HTML special characters.

196

addAttr :: HtmlExp → (String,String) → HtmlExp

Adds an attribute (name/value pair) to an HTML element.

addAttrs :: HtmlExp → [(String,String)] → HtmlExp

Adds a list of attributes (name/value pair) to an HTML element.

addClass :: HtmlExp → String → HtmlExp

Adds a class attribute to an HTML element.

showHtmlExps :: [HtmlExp] → String

Transforms a list of HTML expressions into string representation.

showHtmlExp :: HtmlExp → String

Transforms a single HTML expression into string representation.

showHtmlPage :: HtmlPage → String

Transforms HTML page into string representation.

getUrlParameter :: IO String

Gets the parameter attached to the URL of the script. For instance, if the script is

called with URL ”http://.../script.cgi?parameter”, then ”parameter” is returned by

this I/O action. Note that an URL parameter should be ”URL encoded” to avoid the

appearance of characters with a special meaning. Use the functions ”urlencoded2string”

and ”string2urlencoded” to decode and encode such parameters, respectively.

urlencoded2string :: String → String

Translates urlencoded string into equivalent ASCII string.

string2urlencoded :: String → String

Translates arbitrary strings into equivalent urlencoded string.

getCookies :: IO [(String,String)]

Gets the cookies sent from the browser for the current CGI script. The cookies are

represented in the form of name/value pairs since no other components are important

here.

coordinates :: (CgiRef → String) → Maybe (Int,Int)

For image buttons: retrieve the coordinates where the user clicked within the image.

runFormServerWithKey :: String → String → IO HtmlForm → IO ()

197

The server implementing an HTML form (possibly containing input fields). It receives

a message containing the environment of the client’s web browser, translates the HTML

form w.r.t. this environment into a string representation of the complete HTML doc-

ument and sends the string representation back to the client’s browser by binding the

corresponding message argument.

runFormServerWithKeyAndFormParams :: String → String → [FormParam] → IO

HtmlForm → IO ()

The server implementing an HTML form (possibly containing input fields). It receives

a message containing the environment of the client’s web browser, translates the HTML

form w.r.t. this environment into a string representation of the complete HTML doc-

ument and sends the string representation back to the client’s browser by binding the

corresponding message argument.

showLatexExps :: [HtmlExp] → String

Transforms HTML expressions into LaTeX string representation.

showLatexExp :: HtmlExp → String

Transforms an HTML expression into LaTeX string representation.

htmlSpecialChars2tex :: String → String

Convert special HTML characters into their LaTeX representation, if necessary.

showLatexDoc :: [HtmlExp] → String

Transforms HTML expressions into a string representation of a complete LaTeX docu-

ment.

showLatexDocWithPackages :: [HtmlExp] → [String] → String

Transforms HTML expressions into a string representation of a complete LaTeX doc-

ument. The variable ”packages” holds the packages to add to the latex document e.g.

”ngerman”

showLatexDocs :: [[HtmlExp]] → String

Transforms a list of HTML expressions into a string representation of a complete LaTeX

document where each list entry appears on a separate page.

showLatexDocsWithPackages :: [[HtmlExp]] → [String] → String

Transforms a list of HTML expressions into a string representation of a complete LaTeX

document where each list entry appears on a separate page. The variable ”packages”

holds the packages to add to the latex document (e.g., ”ngerman”).

germanLatexDoc :: [HtmlExp] → String

show german latex document

198

intForm :: IO HtmlForm → IO ()

Execute an HTML form in ”interactive” mode.

intFormMain :: String → String → String → String → Bool → String → IO

HtmlForm → IO ()

Execute an HTML form in ”interactive” mode with various parameters.

A.4.3 Library HtmlCgi

Library to support CGI programming in the HTML library. It is only intended as an auxiliary

library to implement dynamic web pages according to the HTML library. It contains a simple script

that is installed for a dynamic web page and which sends the user input to the real application

server implementing the application.

Exported types:

data CgiServerMsg

The messages to comunicate between the cgi script and the server program. CgiSubmit

env cgienv nextpage - pass the environment and show next page, where env are the values

of the environment variables of the web script (e.g., QUERYSTRING, REMOTEHOST,

REMOTE ADDR), cgienv are the values in the current form submitted by the client,

and nextpage is the answer text to be shown in the next web page

Exported constructors:

• CgiSubmit :: [(String,String)] → [(String,String)] → CgiServerMsg

• GetLoad :: CgiServerMsg

GetLoad

– get info about the current load of the server process

• SketchStatus :: CgiServerMsg

SketchStatus

– get a sketch of the status of the server

• SketchHandlers :: CgiServerMsg

SketchHandlers

– get a sketch of all event handlers of the server

• ShowStatus :: CgiServerMsg

ShowStatus

– show the status of the server with all event handlers

199

• CleanServer :: CgiServerMsg

CleanServer

– clean up the server (with possible termination)

• StopCgiServer :: CgiServerMsg

StopCgiServer

– stop the server

Exported functions:

readCgiServerMsg :: Handle → IO (Maybe CgiServerMsg)

Reads a line from a handle and check whether it is a syntactically correct cgi server

message.

submitForm :: IO ()

runCgiServerCmd :: String → CgiServerMsg → IO ()

Executes a specific command for a cgi server.

noHandlerPage :: String → String → String

cgiServerRegistry :: String

The name of the file to register all cgi servers.

registerCgiServer :: String → String → IO ()

unregisterCgiServer :: String → IO ()

A.4.4 Library HtmlParser

This module contains a very simple parser for HTML documents.

Exported functions:

readHtmlFile :: String → IO [HtmlExp]

Reads a file with HTML text and returns the corresponding HTML expressions.

parseHtmlString :: String → [HtmlExp]

Transforms an HTML string into a list of HTML expressions. If the HTML string is

a well structured document, the list of HTML expressions should contain exactly one

element.

200

A.4.5 Library Mail

This library contains functions for sending emails. The implementation might need to be adapted

to the local environment.

Exported types:

data MailOption

Options for sending emails.

Exported constructors:

• CC :: String → MailOption

CC

– recipient of a carbon copy

• BCC :: String → MailOption

BCC

– recipient of a blind carbon copy

• TO :: String → MailOption

TO

– recipient of the email

Exported functions:

sendMail :: String → String → String → String → IO ()

Sends an email via mailx command.

sendMailWithOptions :: String → String → [MailOption] → String → IO ()

Sends an email via mailx command and various options. Note that multiple options are

allowed, e.g., more than one CC option for multiple recipient of carbon copies.

Important note: The implementation of this operation is based on the command ”mailx”

and must be adapted according to your local environment!

A.4.6 Library Markdown

Library to translate markdown documents into HTML or LaTeX. The slightly restricted subset of

the markdown syntax recognized by this implementation is documented in this page.

201

http://en.wikipedia.org/wiki/Markdown
http://www.informatik.uni-kiel.de/~pakcs/markdown_syntax.html

Exported types:

type MarkdownDoc = [MarkdownElem]

A markdown document is a list of markdown elements.

data MarkdownElem

The data type for representing the different elements occurring in a markdown docu-

ment.

Exported constructors:

• Text :: String → MarkdownElem

Text s

– a simple text in a markdown document

• Emph :: String → MarkdownElem

Emph s

– an emphasized text in a markdown document

• Strong :: String → MarkdownElem

Strong s

– a strongly emphaszed text in a markdown document

• Code :: String → MarkdownElem

Code s

– a code string in a markdown document

• HRef :: String → String → MarkdownElem

HRef s u

– a reference to URL u with text s in a markdown document

• Par :: [MarkdownElem] → MarkdownElem

Par md

– a paragraph in a markdown document

• CodeBlock :: String → MarkdownElem

CodeBlock s

– a code block in a markdown document

• UList :: [[MarkdownElem]] → MarkdownElem

UList mds

202

– an unordered list in a markdown document

• OList :: [[MarkdownElem]] → MarkdownElem

OList mds

– an ordered list in a markdown document

• Quote :: [MarkdownElem] → MarkdownElem

Quote md

– a quoted paragraph in a markdown document

• HRule :: MarkdownElem

HRule

– a hoirzontal rule in a markdown document

• Header :: Int → String → MarkdownElem

Header l s

– a level l header with title s in a markdown document

Exported functions:

fromMarkdownText :: String → [MarkdownElem]

Parse markdown document from its textual representation.

removeEscapes :: String → String

Remove the backlash of escaped markdown characters in a string.

markdownEscapeChars :: String

Escape characters supported by markdown.

markdownText2HTML :: String → [HtmlExp]

Translate a markdown text into a (partial) HTML document.

markdownText2CompleteHTML :: String → String → String

Translate a markdown text into a complete HTML text that can be viewed as a stan-

dalone document by a browser. The first argument is the title of the document.

markdownText2LaTeX :: String → String

Translate a markdown text into a (partial) LaTeX document. All characters with a

special meaning in LaTeX, like dollar or ampersand signs, are quoted.

markdownText2LaTeXWithFormat :: (String → String) → String → String

203

Translate a markdown text into a (partial) LaTeX document where the first argument is

a function to translate the basic text occurring in markdown elements to a LaTeX string.

For instance, one can use a translation operation that supports passing mathematical

formulas in LaTeX style instead of quoting all special characters.

markdownText2CompleteLaTeX :: String → String

Translate a markdown text into a complete LaTeX document that can be formatted as

a standalone document.

formatMarkdownInputAsPDF :: IO ()

Format the standard input (containing markdown text) as PDF.

formatMarkdownFileAsPDF :: String → IO ()

Format a file containing markdown text as PDF.

A.4.7 Library URL

Library for dealing with URLs (Uniform Resource Locators).

Exported functions:

getContentsOfUrl :: String → IO String

Reads the contents of a document located by a URL. This action requires that the

program ”wget” is in your path, otherwise the implementation must be adapted to the

local installation.

A.4.8 Library WUI

A library to support the type-oriented construction of Web User Interfaces (WUIs).

The ideas behind the application and implementation of WUIs are described in a paper that is

available via this web page.

Exported types:

type Rendering = [HtmlExp] → HtmlExp

A rendering is a function that combines the visualization of components of a data

structure into some HTML expression.

data WuiHandler

A handler for a WUI is an event handler for HTML forms possibly with some specific

code attached (for future extensions).

Exported constructors:

data WuiSpec

204

http://www.informatik.uni-kiel.de/~pakcs/WUI

The type of WUI specifications. The first component are parameters specifying the

behavior of this WUI type (rendering, error message, and constraints on inputs). The

second component is a ”show” function returning an HTML expression for the edit fields

and a WUI state containing the CgiRefs to extract the values from the edit fields. The

third component is ”read” function to extract the values from the edit fields for a given

cgi environment (returned as (Just v)). If the value is not legal, Nothing is returned.

The second component of the result contains an HTML edit expression together with

a WUI state to edit the value again.

Exported constructors:

data WTree

A simple tree structure to demonstrate the construction of WUIs for tree types.

Exported constructors:

• WLeaf :: a → WTree a

• WNode :: [WTree a] → WTree a

Exported functions:

wuiHandler2button :: String → WuiHandler → HtmlExp

Transform a WUI handler into a submit button with a given label string.

withRendering :: WuiSpec a → ([HtmlExp] → HtmlExp) → WuiSpec a

Puts a new rendering function into a WUI specification.

withError :: WuiSpec a → String → WuiSpec a

Puts a new error message into a WUI specification.

withCondition :: WuiSpec a → (a → Bool) → WuiSpec a

Puts a new condition into a WUI specification.

transformWSpec :: (a → b,b → a) → WuiSpec a → WuiSpec b

Transforms a WUI specification from one type to another.

adaptWSpec :: (a → b) → WuiSpec a → WuiSpec b

Adapt a WUI specification to a new type. For this purpose, the first argument must

be a transformation mapping values from the old type to the new type. This function

must be bijective and operationally invertible (i.e., the inverse must be computable by

narrowing). Otherwise, use transformWSpec!

wHidden :: WuiSpec a

205

A hidden widget for a value that is not shown in the WUI. Usually, this is used in

components of larger structures, e.g., internal identifiers, data base keys.

wConstant :: (a → HtmlExp) → WuiSpec a

A widget for values that are shown but cannot be modified. The first argument is a

mapping of the value into a HTML expression to show this value.

wInt :: WuiSpec Int

A widget for editing integer values.

wString :: WuiSpec String

A widget for editing string values.

wStringSize :: Int → WuiSpec String

A widget for editing string values with a size attribute.

wRequiredString :: WuiSpec String

A widget for editing string values that are required to be non-empty.

wRequiredStringSize :: Int → WuiSpec String

A widget with a size attribute for editing string values that are required to be non-empty.

wTextArea :: (Int,Int) → WuiSpec String

A widget for editing string values in a text area. The argument specifies the height and

width of the text area.

wSelect :: (a → String) → [a] → WuiSpec a

A widget to select a value from a given list of values. The current value should be

contained in the value list and is preselected. The first argument is a mapping from

values into strings to be shown in the selection widget.

wSelectInt :: [Int] → WuiSpec Int

A widget to select a value from a given list of integers (provided as the argument). The

current value should be contained in the value list and is preselected.

wSelectBool :: String → String → WuiSpec Bool

A widget to select a Boolean value via a selection box. The arguments are the strings

that are shown for the values True and False in the selection box, respectively.

wCheckBool :: [HtmlExp] → WuiSpec Bool

A widget to select a Boolean value via a check box. The first argument are HTML

expressions that are shown after the check box. The result is True if the box is checked.

206

wMultiCheckSelect :: (a → [HtmlExp]) → [a] → WuiSpec [a]

A widget to select a list of values from a given list of values via check boxes. The current

values should be contained in the value list and are preselected. The first argument is

a mapping from values into HTML expressions that are shown for each item after the

check box.

wRadioSelect :: (a → [HtmlExp]) → [a] → WuiSpec a

A widget to select a value from a given list of values via a radio button. The current

value should be contained in the value list and is preselected. The first argument is

a mapping from values into HTML expressions that are shown for each item after the

radio button.

wRadioBool :: [HtmlExp] → [HtmlExp] → WuiSpec Bool

A widget to select a Boolean value via a radio button. The arguments are the lists of

HTML expressions that are shown after the True and False radio buttons, respectively.

wPair :: WuiSpec a → WuiSpec b → WuiSpec (a,b)

WUI combinator for pairs.

wCons2 :: (a → b → c) → WuiSpec a → WuiSpec b → WuiSpec c

WUI combinator for constructors of arity 2. The first argument is the binary con-

structor. The second and third arguments are the WUI specifications for the argument

types.

wTriple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec (a,b,c)

WUI combinator for triples.

wCons3 :: (a → b → c → d) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d

WUI combinator for constructors of arity 3. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

w4Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec (a,b,c,d)

WUI combinator for tuples of arity 4.

wCons4 :: (a → b → c → d → e) → WuiSpec a → WuiSpec b → WuiSpec c →
WuiSpec d → WuiSpec e

WUI combinator for constructors of arity 4. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

w5Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec (a,b,c,d,e)

WUI combinator for tuples of arity 5.

207

wCons5 :: (a → b → c → d → e → f) → WuiSpec a → WuiSpec b → WuiSpec c →
WuiSpec d → WuiSpec e → WuiSpec f

WUI combinator for constructors of arity 5. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

w6Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec (a,b,c,d,e,f)

WUI combinator for tuples of arity 6.

wCons6 :: (a → b → c → d → e → f → g) → WuiSpec a → WuiSpec b → WuiSpec c

→ WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g

WUI combinator for constructors of arity 6. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

w7Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec (a,b,c,d,e,f,g)

WUI combinator for tuples of arity 7.

wCons7 :: (a → b → c → d → e → f → g → h) → WuiSpec a → WuiSpec b →
WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h

WUI combinator for constructors of arity 7. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

w8Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec (a,b,c,d,e,f,g,h)

WUI combinator for tuples of arity 8.

wCons8 :: (a → b → c → d → e → f → g → h → i) → WuiSpec a → WuiSpec b

→ WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h →
WuiSpec i

WUI combinator for constructors of arity 8. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

w9Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec (a,b,c,d,e,f,g,h,i)

WUI combinator for tuples of arity 9.

wCons9 :: (a → b → c → d → e → f → g → h → i → j) → WuiSpec a → WuiSpec

b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h →
WuiSpec i → WuiSpec j

WUI combinator for constructors of arity 9. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

208

w10Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e

→ WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec

(a,b,c,d,e,f,g,h,i,j)

WUI combinator for tuples of arity 10.

wCons10 :: (a → b → c → d → e → f → g → h → i → j → k) → WuiSpec a →
WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g →
WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k

WUI combinator for constructors of arity 10. The first argument is the ternary con-

structor. The further arguments are the WUI specifications for the argument types.

w11Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k →
WuiSpec (a,b,c,d,e,f,g,h,i,j,k)

WUI combinator for tuples of arity 11.

wCons11 :: (a → b → c → d → e → f → g → h → i → j → k → l) → WuiSpec a

→ WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g →
WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k → WuiSpec l

WUI combinator for constructors of arity 11. The first argument is the ternary con-

structor. The further arguments are the WUI specifications for the argument types.

w12Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k →
WuiSpec l → WuiSpec (a,b,c,d,e,f,g,h,i,j,k,l)

WUI combinator for tuples of arity 12.

wCons12 :: (a → b → c → d → e → f → g → h → i → j → k → l → m) →
WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f →
WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k → WuiSpec l →
WuiSpec m

WUI combinator for constructors of arity 12. The first argument is the ternary con-

structor. The further arguments are the WUI specifications for the argument types.

wJoinTuple :: WuiSpec a → WuiSpec b → WuiSpec (a,b)

WUI combinator to combine two tuples into a joint tuple. It is similar to wPair but

renders both components as a single tuple provided that the components are already

rendered as tuples, i.e., by the rendering function renderTuple. This combinator is

useful to define combinators for large tuples.

wList :: WuiSpec a → WuiSpec [a]

WUI combinator for list structures where the list elements are vertically aligned in a

table.

209

wListWithHeadings :: [String] → WuiSpec a → WuiSpec [a]

Add headings to a standard WUI for list structures:

wHList :: WuiSpec a → WuiSpec [a]

WUI combinator for list structures where the list elements are horizontally aligned in

a table.

wMatrix :: WuiSpec a → WuiSpec [[a]]

WUI for matrices, i.e., list of list of elements visualized as a matrix.

wMaybe :: WuiSpec Bool → WuiSpec a → a → WuiSpec (Maybe a)

WUI for Maybe values. It is constructed from a WUI for Booleans and a WUI for the

potential values. Nothing corresponds to a selection of False in the Boolean WUI. The

value WUI is shown after the Boolean WUI.

wCheckMaybe :: WuiSpec a → [HtmlExp] → a → WuiSpec (Maybe a)

A WUI for Maybe values where a check box is used to select Just. The value WUI is

shown after the check box.

wRadioMaybe :: WuiSpec a → [HtmlExp] → [HtmlExp] → a → WuiSpec (Maybe a)

A WUI for Maybe values where radio buttons are used to switch between Nothing and

Just. The value WUI is shown after the radio button WUI.

wEither :: WuiSpec a → WuiSpec b → WuiSpec (Either a b)

WUI for union types. Here we provide only the implementation for Either types since

other types with more alternatives can be easily reduced to this case.

wTree :: WuiSpec a → WuiSpec (WTree a)

WUI for tree types. The rendering specifies the rendering of inner nodes. Leaves are

shown with their default rendering.

renderTuple :: [HtmlExp] → HtmlExp

Standard rendering of tuples as a table with a single row. Thus, the elements are

horizontally aligned.

renderTaggedTuple :: [String] → [HtmlExp] → HtmlExp

Standard rendering of tuples with a tag for each element. Thus, each is preceded by a

tag, that is set in bold, and all elements are vertically aligned.

renderList :: [HtmlExp] → HtmlExp

Standard rendering of lists as a table with a row for each item: Thus, the elements are

vertically aligned.

210

mainWUI :: WuiSpec a → a → (a → IO HtmlForm) → IO HtmlForm

Generates an HTML form from a WUI data specification, an initial value and an update

form.

wui2html :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp,WuiHandler)

Generates HTML editors and a handler from a WUI data specification, an initial value

and an update form.

wuiInForm :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp → WuiHandler → IO

HtmlForm) → IO HtmlForm

Puts a WUI into a HTML form containing ”holes” for the WUI and the handler.

wuiWithErrorForm :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp → WuiHandler

→ IO HtmlForm) → (HtmlExp,WuiHandler)

Generates HTML editors and a handler from a WUI data specification, an initial value

and an update form. In addition to wui2html, we can provide a skeleton form used to

show illegal inputs.

A.4.9 Library WUIjs

A library to support the type-oriented construction of Web User Interfaces (WUIs).

The ideas behind the application and implementation of WUIs are described in a paper that is

available via this web page.

In addition to the original library, this version provides also support for JavaScript.

Exported types:

type Rendering = [HtmlExp] → HtmlExp

A rendering is a function that combines the visualization of components of a data

structure into some HTML expression.

data WuiHandler

A handler for a WUI is an event handler for HTML forms possibly with some specific

JavaScript code attached.

Exported constructors:

data WuiSpec

The type of WUI specifications. The first component are parameters specifying the

behavior of this WUI type (rendering, error message, and constraints on inputs). The

second component is a ”show” function returning an HTML expression for the edit fields

and a WUI state containing the CgiRefs to extract the values from the edit fields. The

third component is ”read” function to extract the values from the edit fields for a given

cgi environment (returned as (Just v)). If the value is not legal, Nothing is returned.

The second component of the result contains an HTML edit expression together with

a WUI state to edit the value again.

211

http://www.informatik.uni-kiel.de/~pakcs/WUI

Exported constructors:

data WTree

A simple tree structure to demonstrate the construction of WUIs for tree types.

Exported constructors:

• WLeaf :: a → WTree a

• WNode :: [WTree a] → WTree a

Exported functions:

wuiHandler2button :: String → WuiHandler → HtmlExp

Transform a WUI handler into a submit button with a given label string.

withRendering :: WuiSpec a → ([HtmlExp] → HtmlExp) → WuiSpec a

Puts a new rendering function into a WUI specification.

withError :: WuiSpec a → String → WuiSpec a

Puts a new error message into a WUI specification.

withCondition :: WuiSpec a → (a → Bool) → WuiSpec a

Puts a new condition into a WUI specification.

withConditionJS :: WuiSpec a → (a → Bool) → WuiSpec a

Puts a new JavaScript implementation of the condition into a WUI specification.

withConditionJSName :: WuiSpec a → (a → Bool,String) → WuiSpec a

Puts a new JavaScript implementation of the condition into a WUI specification.

transformWSpec :: (a → b,b → a) → WuiSpec a → WuiSpec b

Transforms a WUI specification from one type to another.

adaptWSpec :: (a → b) → WuiSpec a → WuiSpec b

Adapt a WUI specification to a new type. For this purpose, the first argument must

be a transformation mapping values from the old type to the new type. This function

must be bijective and operationally invertible (i.e., the inverse must be computable by

narrowing). Otherwise, use transformWSpec!

wHidden :: WuiSpec a

A hidden widget for a value that is not shown in the WUI. Usually, this is used in

components of larger structures, e.g., internal identifiers, data base keys.

212

wConstant :: (a → HtmlExp) → WuiSpec a

A widget for values that are shown but cannot be modified. The first argument is a

mapping of the value into a HTML expression to show this value.

wInt :: WuiSpec Int

A widget for editing integer values.

wString :: WuiSpec String

A widget for editing string values.

wStringSize :: Int → WuiSpec String

A widget for editing string values with a size attribute.

wRequiredString :: WuiSpec String

A widget for editing string values that are required to be non-empty.

wRequiredStringSize :: Int → WuiSpec String

A widget with a size attribute for editing string values that are required to be non-empty.

wTextArea :: (Int,Int) → WuiSpec String

A widget for editing string values in a text area. The argument specifies the height and

width of the text area.

wSelect :: (a → String) → [a] → WuiSpec a

A widget to select a value from a given list of values. The current value should be

contained in the value list and is preselected. The first argument is a mapping from

values into strings to be shown in the selection widget.

wSelectInt :: [Int] → WuiSpec Int

A widget to select a value from a given list of integers (provided as the argument). The

current value should be contained in the value list and is preselected.

wSelectBool :: String → String → WuiSpec Bool

A widget to select a Boolean value via a selection box. The arguments are the strings

that are shown for the values True and False in the selection box, respectively.

wCheckBool :: [HtmlExp] → WuiSpec Bool

A widget to select a Boolean value via a check box. The first argument are HTML

expressions that are shown after the check box. The result is True if the box is checked.

wMultiCheckSelect :: (a → [HtmlExp]) → [a] → WuiSpec [a]

213

A widget to select a list of values from a given list of values via check boxes. The current

values should be contained in the value list and are preselected. The first argument is

a mapping from values into HTML expressions that are shown for each item after the

check box.

wRadioSelect :: (a → [HtmlExp]) → [a] → WuiSpec a

A widget to select a value from a given list of values via a radio button. The current

value should be contained in the value list and is preselected. The first argument is

a mapping from values into HTML expressions that are shown for each item after the

radio button.

wRadioBool :: [HtmlExp] → [HtmlExp] → WuiSpec Bool

A widget to select a Boolean value via a radio button. The arguments are the lists of

HTML expressions that are shown after the True and False radio buttons, respectively.

wJoinTuple :: WuiSpec a → WuiSpec b → WuiSpec (a,b)

WUI combinator to combine two tuples into a joint tuple. It is similar to wPair but

renders both components as a single tuple provided that the components are already

rendered as tuples, i.e., by the rendering function renderTuple. This combinator is

useful to define combinators for large tuples.

wPair :: WuiSpec a → WuiSpec b → WuiSpec (a,b)

WUI combinator for pairs.

wCons2 :: (a → b → c) → WuiSpec a → WuiSpec b → WuiSpec c

WUI combinator for constructors of arity 2. The first argument is the binary con-

structor. The second and third arguments are the WUI specifications for the argument

types.

wCons2JS :: Maybe ([JSExp] → JSExp) → (a → b → c) → WuiSpec a → WuiSpec b →
WuiSpec c

wTriple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec (a,b,c)

WUI combinator for triples.

wCons3 :: (a → b → c → d) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d

WUI combinator for constructors of arity 3. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

wCons3JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d) → WuiSpec a → WuiSpec

b → WuiSpec c → WuiSpec d

214

w4Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec (a,b,c,d)

WUI combinator for tuples of arity 4.

wCons4 :: (a → b → c → d → e) → WuiSpec a → WuiSpec b → WuiSpec c →
WuiSpec d → WuiSpec e

WUI combinator for constructors of arity 4. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

wCons4JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e) → WuiSpec a →
WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e

w5Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec (a,b,c,d,e)

WUI combinator for tuples of arity 5.

wCons5 :: (a → b → c → d → e → f) → WuiSpec a → WuiSpec b → WuiSpec c →
WuiSpec d → WuiSpec e → WuiSpec f

WUI combinator for constructors of arity 5. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

wCons5JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f) → WuiSpec a

→ WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f

w6Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec (a,b,c,d,e,f)

WUI combinator for tuples of arity 6.

wCons6 :: (a → b → c → d → e → f → g) → WuiSpec a → WuiSpec b → WuiSpec c

→ WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g

WUI combinator for constructors of arity 6. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

wCons6JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f → g) →
WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f →
WuiSpec g

w7Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec (a,b,c,d,e,f,g)

WUI combinator for tuples of arity 7.

215

wCons7 :: (a → b → c → d → e → f → g → h) → WuiSpec a → WuiSpec b →
WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h

WUI combinator for constructors of arity 7. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

wCons7JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f → g → h)

→ WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f →
WuiSpec g → WuiSpec h

w8Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec (a,b,c,d,e,f,g,h)

WUI combinator for tuples of arity 8.

wCons8 :: (a → b → c → d → e → f → g → h → i) → WuiSpec a → WuiSpec b

→ WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h →
WuiSpec i

WUI combinator for constructors of arity 8. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

wCons8JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f → g → h →
i) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f

→ WuiSpec g → WuiSpec h → WuiSpec i

w9Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec (a,b,c,d,e,f,g,h,i)

WUI combinator for tuples of arity 9.

wCons9 :: (a → b → c → d → e → f → g → h → i → j) → WuiSpec a → WuiSpec

b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h →
WuiSpec i → WuiSpec j

WUI combinator for constructors of arity 9. The first argument is the ternary construc-

tor. The further arguments are the WUI specifications for the argument types.

wCons9JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f → g → h → i

→ j) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec

f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j

w10Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e

→ WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec

(a,b,c,d,e,f,g,h,i,j)

216

WUI combinator for tuples of arity 10.

wCons10 :: (a → b → c → d → e → f → g → h → i → j → k) → WuiSpec a →
WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g →
WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k

WUI combinator for constructors of arity 10. The first argument is the ternary con-

structor. The further arguments are the WUI specifications for the argument types.

wCons10JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f → g → h →
i → j → k) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k

w11Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k →
WuiSpec (a,b,c,d,e,f,g,h,i,j,k)

WUI combinator for tuples of arity 11.

wCons11 :: (a → b → c → d → e → f → g → h → i → j → k → l) → WuiSpec a

→ WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f → WuiSpec g →
WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k → WuiSpec l

WUI combinator for constructors of arity 11. The first argument is the ternary con-

structor. The further arguments are the WUI specifications for the argument types.

wCons11JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f → g → h →
i → j → k → l) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e

→ WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k →
WuiSpec l

w12Tuple :: WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e →
WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k →
WuiSpec l → WuiSpec (a,b,c,d,e,f,g,h,i,j,k,l)

WUI combinator for tuples of arity 12.

wCons12 :: (a → b → c → d → e → f → g → h → i → j → k → l → m) →
WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d → WuiSpec e → WuiSpec f →
WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j → WuiSpec k → WuiSpec l →
WuiSpec m

WUI combinator for constructors of arity 12. The first argument is the ternary con-

structor. The further arguments are the WUI specifications for the argument types.

217

wCons12JS :: Maybe ([JSExp] → JSExp) → (a → b → c → d → e → f → g → h

→ i → j → k → l → m) → WuiSpec a → WuiSpec b → WuiSpec c → WuiSpec d →
WuiSpec e → WuiSpec f → WuiSpec g → WuiSpec h → WuiSpec i → WuiSpec j →
WuiSpec k → WuiSpec l → WuiSpec m

wList :: WuiSpec a → WuiSpec [a]

WUI combinator for list structures where the list elements are vertically aligned in a

table.

wListWithHeadings :: [String] → WuiSpec a → WuiSpec [a]

Add headings to a standard WUI for list structures:

wHList :: WuiSpec a → WuiSpec [a]

WUI combinator for list structures where the list elements are horizontally aligned in

a table.

wMatrix :: WuiSpec a → WuiSpec [[a]]

WUI for matrices, i.e., list of list of elements visualized as a matrix.

wMaybe :: WuiSpec Bool → WuiSpec a → a → WuiSpec (Maybe a)

WUI for Maybe values. It is constructed from a WUI for Booleans and a WUI for the

potential values. Nothing corresponds to a selection of False in the Boolean WUI. The

value WUI is shown after the Boolean WUI.

wCheckMaybe :: WuiSpec a → [HtmlExp] → a → WuiSpec (Maybe a)

A WUI for Maybe values where a check box is used to select Just. The value WUI is

shown after the check box.

wRadioMaybe :: WuiSpec a → [HtmlExp] → [HtmlExp] → a → WuiSpec (Maybe a)

A WUI for Maybe values where radio buttons are used to switch between Nothing and

Just. The value WUI is shown after the radio button WUI.

wEither :: WuiSpec a → WuiSpec b → WuiSpec (Either a b)

WUI for union types. Here we provide only the implementation for Either types since

other types with more alternatives can be easily reduced to this case.

wTree :: WuiSpec a → WuiSpec (WTree a)

WUI for tree types. The rendering specifies the rendering of inner nodes. Leaves are

shown with their default rendering.

renderTuple :: [HtmlExp] → HtmlExp

218

Standard rendering of tuples as a table with a single row. Thus, the elements are

horizontally aligned.

renderTaggedTuple :: [String] → [HtmlExp] → HtmlExp

Standard rendering of tuples with a tag for each element. Thus, each is preceded by a

tag, that is set in bold, and all elements are vertically aligned.

renderList :: [HtmlExp] → HtmlExp

Standard rendering of lists as a table with a row for each item: Thus, the elements are

vertically aligned.

mainWUI :: WuiSpec a → a → (a → IO HtmlForm) → IO HtmlForm

Generates an HTML form from a WUI data specification, an initial value and an update

form.

wui2html :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp,WuiHandler)

Generates HTML editors and a handler from a WUI data specification, an initial value

and an update form.

wuiInForm :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp → WuiHandler → IO

HtmlForm) → IO HtmlForm

Puts a WUI into a HTML form containing ”holes” for the WUI and the handler.

wuiWithErrorForm :: WuiSpec a → a → (a → IO HtmlForm) → (HtmlExp → WuiHandler

→ IO HtmlForm) → (HtmlExp,WuiHandler)

Generates HTML editors and a handler from a WUI data specification, an initial value

and an update form. In addition to wui2html, we can provide a skeleton form used to

show illegal inputs.

A.4.10 Library XML

Library for processing XML data.

Warning: the structure of this library is not stable and might be changed in the future!

Exported types:

data XmlExp

The data type for representing XML expressions.

Exported constructors:

• XText :: String → XmlExp

XText

219

– a text string (PCDATA)

• XElem :: String → [(String,String)] → [XmlExp] → XmlExp

XElem

– an XML element with tag field, attributes, and a list of XML elements as contents

data Encoding

The data type for encodings used in the XML document.

Exported constructors:

• StandardEnc :: Encoding

• Iso88591Enc :: Encoding

data XmlDocParams

The data type for XML document parameters.

Exported constructors:

• Enc :: Encoding → XmlDocParams

Enc

– the encoding for a document

• DtdUrl :: String → XmlDocParams

DtdUrl

– the url of the DTD for a document

Exported functions:

tagOf :: XmlExp → String

Returns the tag of an XML element (or empty for a textual element).

elemsOf :: XmlExp → [XmlExp]

Returns the child elements an XML element.

textOf :: [XmlExp] → String

Extracts the textual contents of a list of XML expressions. Useful auxiliary function

when transforming XML expressions into other data structures.

For instance, textOf [XText ”xy”, XElem ”a” [] [], XText "bc"] == "xy bc"

textOfXml :: [XmlExp] → String

220

Included for backward compatibility, better use textOf!

xtxt :: String → XmlExp

Basic text (maybe containing special XML chars).

xml :: String → [XmlExp] → XmlExp

XML element without attributes.

writeXmlFile :: String → XmlExp → IO ()

Writes a file with a given XML document.

writeXmlFileWithParams :: String → [XmlDocParams] → XmlExp → IO ()

Writes a file with a given XML document and XML parameters.

showXmlDoc :: XmlExp → String

Show an XML document in indented format as a string.

showXmlDocWithParams :: [XmlDocParams] → XmlExp → String

readXmlFile :: String → IO XmlExp

Reads a file with an XML document and returns the corresponding XML expression.

readUnsafeXmlFile :: String → IO (Maybe XmlExp)

Tries to read a file with an XML document and returns the corresponding XML expres-

sion, if possible. If file or parse errors occur, Nothing is returned.

readFileWithXmlDocs :: String → IO [XmlExp]

Reads a file with an arbitrary sequence of XML documents and returns the list of

corresponding XML expressions.

parseXmlString :: String → [XmlExp]

Transforms an XML string into a list of XML expressions. If the XML string is a well

structured document, the list of XML expressions should contain exactly one element.

updateXmlFile :: (XmlExp → XmlExp) → String → IO ()

An action that updates the contents of an XML file by some transformation on the

XML document.

A.4.11 Library XmlConv

Provides type-based combinators to construct XML converters. Arbitrary XML data can be rep-

resented as algebraic datatypes and vice versa. See here12 for a description of this library.

12http://www-ps.informatik.uni-kiel.de/~sebf/projects/xmlconv/

221

Exported types:

type XmlReads a = ([(String,String)],[XmlExp]) → (a,([(String,String)],[XmlExp]))

Type of functions that consume some XML data to compute a result

type XmlShows a = a → ([(String,String)],[XmlExp]) → ([(String,String)],[XmlExp])

Type of functions that extend XML data corresponding to a given value

type XElemConv a = XmlConv Repeatable Elem a

Type of converters for XML elements

type XAttrConv a = XmlConv NotRepeatable NoElem a

Type of converters for attributes

type XPrimConv a = XmlConv NotRepeatable NoElem a

Type of converters for primitive values

type XOptConv a = XmlConv NotRepeatable NoElem a

Type of converters for optional values

type XRepConv a = XmlConv NotRepeatable NoElem a

Type of converters for repetitions

Exported functions:

xmlReads :: XmlConv a b c → ([(String,String)],[XmlExp]) →
(c,([(String,String)],[XmlExp]))

Takes an XML converter and returns a function that consumes XML data and returns

the remaining data along with the result.

xmlShows :: XmlConv a b c → c → ([(String,String)],[XmlExp]) →
([(String,String)],[XmlExp])

Takes an XML converter and returns a function that extends XML data with the

representation of a given value.

xmlRead :: XmlConv a Elem b → XmlExp → b

Takes an XML converter and an XML expression and returns a corresponding Curry

value.

xmlShow :: XmlConv a Elem b → b → XmlExp

Takes an XML converter and a value and returns a corresponding XML expression.

int :: XmlConv NotRepeatable NoElem Int

222

Creates an XML converter for integer values. Integer values must not be used in repe-

titions and do not represent XML elements.

float :: XmlConv NotRepeatable NoElem Float

Creates an XML converter for float values. Float values must not be used in repetitions

and do not represent XML elements.

char :: XmlConv NotRepeatable NoElem Char

Creates an XML converter for character values. Character values must not be used in

repetitions and do not represent XML elements.

string :: XmlConv NotRepeatable NoElem String

Creates an XML converter for string values. String values must not be used in repeti-

tions and do not represent XML elements.

(!) :: XmlConv a b c → XmlConv a b c → XmlConv a b c

Parallel composition of XML converters.

element :: String → XmlConv a b c → XmlConv Repeatable Elem c

Takes an arbitrary XML converter and returns a converter representing an XML element

that contains the corresponding data. XML elements may be used in repetitions.

empty :: a → XmlConv NotRepeatable NoElem a

Takes a value and returns an XML converter for this value which is not represented as

XML data. Empty XML data must not be used in repetitions and does not represent

an XML element.

attr :: String → (String → a,a → String) → XmlConv NotRepeatable NoElem a

Takes a name and string conversion functions and returns an XML converter that

represents an attribute. Attributes must not be used in repetitions and do not represent

an XML element.

adapt :: (a → b,b → a) → XmlConv c d a → XmlConv c d b

Converts between arbitrary XML converters for different types.

opt :: XmlConv a b c → XmlConv NotRepeatable NoElem (Maybe c)

Creates a converter for arbitrary optional XML data. Optional XML data must not be

used in repetitions and does not represent an XML element.

rep :: XmlConv Repeatable a b → XmlConv NotRepeatable NoElem [b]

Takes an XML converter representing repeatable data and returns an XML converter

that represents repetitions of this data. Repetitions must not be used in other repeti-

tions and do not represent XML elements.

223

aInt :: String → XmlConv NotRepeatable NoElem Int

Creates an XML converter for integer attributes. Integer attributes must not be used

in repetitions and do not represent XML elements.

aFloat :: String → XmlConv NotRepeatable NoElem Float

Creates an XML converter for float attributes. Float attributes must not be used in

repetitions and do not represent XML elements.

aChar :: String → XmlConv NotRepeatable NoElem Char

Creates an XML converter for character attributes. Character attributes must not be

used in repetitions and do not represent XML elements.

aString :: String → XmlConv NotRepeatable NoElem String

Creates an XML converter for string attributes. String attributes must not be used in

repetitions and do not represent XML elements.

aBool :: String → String → String → XmlConv NotRepeatable NoElem Bool

Creates an XML converter for boolean attributes. Boolean attributes must not be used

in repetitions and do not represent XML elements.

eInt :: String → XmlConv Repeatable Elem Int

Creates an XML converter for integer elements. Integer elements may be used in repe-

titions.

eFloat :: String → XmlConv Repeatable Elem Float

Creates an XML converter for float elements. Float elements may be used in repetitions.

eChar :: String → XmlConv Repeatable Elem Char

Creates an XML converter for character elements. Character elements may be used in

repetitions.

eString :: String → XmlConv Repeatable Elem String

Creates an XML converter for string elements. String elements may be used in repeti-

tions.

eBool :: String → String → XmlConv Repeatable Elem Bool

Creates an XML converter for boolean elements. Boolean elements may be used in

repetitions.

eEmpty :: String → a → XmlConv Repeatable Elem a

Takes a name and a value and creates an empty XML element that represents the given

value. The created element may be used in repetitions.

224

eOpt :: String → XmlConv a b c → XmlConv Repeatable Elem (Maybe c)

Creates an XML converter that represents an element containing optional XML data.

The created element may be used in repetitions.

eRep :: String → XmlConv Repeatable a b → XmlConv Repeatable Elem [b]

Creates an XML converter that represents an element containing repeated XML data.

The created element may be used in repetitions.

seq1 :: (a → b) → XmlConv c d a → XmlConv c NoElem b

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

repSeq1 :: (a → b) → XmlConv Repeatable c a → XmlConv NotRepeatable NoElem [b]

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions but does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq1 :: String → (a → b) → XmlConv c d a → XmlConv Repeatable Elem b

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq1 :: String → (a → b) → XmlConv Repeatable c a → XmlConv Repeatable

Elem [b]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

seq2 :: (a → b → c) → XmlConv d e a → XmlConv f g b → XmlConv NotRepeatable

NoElem c

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

repSeq2 :: (a → b → c) → XmlConv Repeatable d a → XmlConv Repeatable e b →
XmlConv NotRepeatable NoElem [c]

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions and does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq2 :: String → (a → b → c) → XmlConv d e a → XmlConv f g b → XmlConv

Repeatable Elem c

225

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq2 :: String → (a → b → c) → XmlConv Repeatable d a → XmlConv

Repeatable e b → XmlConv Repeatable Elem [c]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

seq3 :: (a → b → c → d) → XmlConv e f a → XmlConv g h b → XmlConv i j c →
XmlConv NotRepeatable NoElem d

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

repSeq3 :: (a → b → c → d) → XmlConv Repeatable e a → XmlConv Repeatable f b

→ XmlConv Repeatable g c → XmlConv NotRepeatable NoElem [d]

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions and does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq3 :: String → (a → b → c → d) → XmlConv e f a → XmlConv g h b → XmlConv

i j c → XmlConv Repeatable Elem d

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq3 :: String → (a → b → c → d) → XmlConv Repeatable e a → XmlConv

Repeatable f b → XmlConv Repeatable g c → XmlConv Repeatable Elem [d]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

seq4 :: (a → b → c → d → e) → XmlConv f g a → XmlConv h i b → XmlConv j k c

→ XmlConv l m d → XmlConv NotRepeatable NoElem e

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

repSeq4 :: (a → b → c → d → e) → XmlConv Repeatable f a → XmlConv Repeatable

g b → XmlConv Repeatable h c → XmlConv Repeatable i d → XmlConv NotRepeatable

NoElem [e]

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions and does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

226

eSeq4 :: String → (a → b → c → d → e) → XmlConv f g a → XmlConv h i b →
XmlConv j k c → XmlConv l m d → XmlConv Repeatable Elem e

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq4 :: String → (a → b → c → d → e) → XmlConv Repeatable f a → XmlConv

Repeatable g b → XmlConv Repeatable h c → XmlConv Repeatable i d → XmlConv

Repeatable Elem [e]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

seq5 :: (a → b → c → d → e → f) → XmlConv g h a → XmlConv i j b → XmlConv

k l c → XmlConv m n d → XmlConv o p e → XmlConv NotRepeatable NoElem f

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

repSeq5 :: (a → b → c → d → e → f) → XmlConv Repeatable g a → XmlConv

Repeatable h b → XmlConv Repeatable i c → XmlConv Repeatable j d → XmlConv

Repeatable k e → XmlConv NotRepeatable NoElem [f]

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions and does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq5 :: String → (a → b → c → d → e → f) → XmlConv g h a → XmlConv i j b

→ XmlConv k l c → XmlConv m n d → XmlConv o p e → XmlConv Repeatable Elem f

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq5 :: String → (a → b → c → d → e → f) → XmlConv Repeatable g a →
XmlConv Repeatable h b → XmlConv Repeatable i c → XmlConv Repeatable j d →
XmlConv Repeatable k e → XmlConv Repeatable Elem [f]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

seq6 :: (a → b → c → d → e → f → g) → XmlConv h i a → XmlConv j k b →
XmlConv l m c → XmlConv n o d → XmlConv p q e → XmlConv r s f → XmlConv

NotRepeatable NoElem g

Creates an XML converter representing a sequence of arbitrary XML data. The se-

quence must not be used in repetitions and does not represent an XML element.

227

repSeq6 :: (a → b → c → d → e → f → g) → XmlConv Repeatable h a → XmlConv

Repeatable i b → XmlConv Repeatable j c → XmlConv Repeatable k d → XmlConv

Repeatable l e → XmlConv Repeatable m f → XmlConv NotRepeatable NoElem [g]

Creates an XML converter that represents a repetition of a sequence of repeatable

XML data. The repetition may be used in other repetitions and does not represent an

XML element. This combinator is provided because converters for repeatable sequences

cannot be constructed by the seq combinators.

eSeq6 :: String → (a → b → c → d → e → f → g) → XmlConv h i a → XmlConv j

k b → XmlConv l m c → XmlConv n o d → XmlConv p q e → XmlConv r s f → XmlConv

Repeatable Elem g

Creates an XML converter for compound values represented as an XML element with

children that correspond to the values components. The element can be used in repe-

titions.

eRepSeq6 :: String → (a → b → c → d → e → f → g) → XmlConv Repeatable h a

→ XmlConv Repeatable i b → XmlConv Repeatable j c → XmlConv Repeatable k d →
XmlConv Repeatable l e → XmlConv Repeatable m f → XmlConv Repeatable Elem [g]

Creates an XML converter for repetitions of sequences represented as an XML element

that can be used in repetitions.

A.5 Libraries for Meta-Programming

A.5.1 Library AbstractCurry.Types

This library contains a definition for representing Curry programs in Curry and an I/O action to

read Curry programs and transform them into this abstract representation.

Note this defines a slightly new format for AbstractCurry in comparison to the first proposal of

2003.

Assumption: an abstract Curry program is stored in file with extension .acy

Exported types:

type MName = String

A module name.

type QName = (String,String)

The data type for representing qualified names. In AbstractCurry all names are qual-

ified to avoid name clashes. The first component is the module name and the second

component the unqualified name as it occurs in the source program. An exception are

locally defined names where the module name is the empty string (to avoid name clashes

with a globally defined name).

type CTVarIName = (Int,String)

228

The type for representing type variables. They are represented by (i,n) where i is a type

variable index which is unique inside a function and n is a name (if possible, the name

written in the source program).

type CField a = ((String,String),a)

Labeled record fields

type Arity = Int

Function arity

type CVarIName = (Int,String)

Data types for representing object variables. Object variables occurring in expressions

are represented by (Var i) where i is a variable index.

data CVisibility

Data type to specify the visibility of various entities.

Exported constructors:

• Public :: CVisibility

• Private :: CVisibility

data CurryProg

Data type for representing a Curry module in the intermediate form. A value of this

data type has the form

(CProg modname imports typedecls functions opdecls)

where modname: name of this module, imports: list of modules names that are im-

ported, typedecls: Type declarations functions: Function declarations opdecls: Opera-

tor precedence declarations

Exported constructors:

• CurryProg :: String → [String] → [CTypeDecl] → [CFuncDecl] → [COpDecl] →
CurryProg

data CTypeDecl

Data type for representing definitions of algebraic data types and type synonyms.

A data type definition of the form

data t x1...xn = ...| c t1....tkc |...

229

is represented by the Curry term

(CType t v [i1,...,in] [...(CCons c kc v [t1,...,tkc])...])

where each ij is the index of the type variable xj.

Note: the type variable indices are unique inside each type declaration and are usually

numbered from 0

Thus, a data type declaration consists of the name of the data type, a list of type

parameters and a list of constructor declarations.

Exported constructors:

• CType :: (String,String) → CVisibility → [(Int,String)] → [CConsDecl] →
CTypeDecl

• CTypeSyn :: (String,String) → CVisibility → [(Int,String)] → CTypeExpr →
CTypeDecl

• CNewType :: (String,String) → CVisibility → [(Int,String)] → CConsDecl →
CTypeDecl

data CConsDecl

A constructor declaration consists of the name of the constructor and a list of the

argument types of the constructor. The arity equals the number of types.

Exported constructors:

• CCons :: (String,String) → CVisibility → [CTypeExpr] → CConsDecl

• CRecord :: (String,String) → CVisibility → [CFieldDecl] → CConsDecl

data CFieldDecl

A record field declaration consists of the name of the the label, the visibility and its

corresponding type.

Exported constructors:

• CField :: (String,String) → CVisibility → CTypeExpr → CFieldDecl

data CTypeExpr

Type expression. A type expression is either a type variable, a function type, or a type

constructor application.

Note: the names of the predefined type constructors are ”Int”, ”Float”, ”Bool”, ”Char”,

”IO”, ”Success”, ”()” (unit type), ”(,...,)” (tuple types), ”[]” (list type)

230

Exported constructors:

• CTVar :: (Int,String) → CTypeExpr

• CFuncType :: CTypeExpr → CTypeExpr → CTypeExpr

• CTCons :: (String,String) → [CTypeExpr] → CTypeExpr

data COpDecl

Data type for operator declarations. An operator declaration ”fix p n” in Curry corre-

sponds to the AbstractCurry term (COp n fix p).

Exported constructors:

• COp :: (String,String) → CFixity → Int → COpDecl

data CFixity

Data type for operator associativity

Exported constructors:

• CInfixOp :: CFixity

• CInfixlOp :: CFixity

• CInfixrOp :: CFixity

data CFuncDecl

Data type for representing function declarations.

A function declaration in AbstractCurry is a term of the form

(CFunc name arity visibility type (CRules eval [CRule rule1,...,rulek]))

and represents the function name defined by the rules rule1,...,rulek.

Note: the variable indices are unique inside each rule

Thus, a function declaration consists of the name, arity, type, and a list of rules.

A function declaration with the constructor CmtFunc is similarly to CFunc but has

a comment as an additional first argument. This comment could be used by pretty

printers that generate a readable Curry program containing documentation comments.

Exported constructors:

• CFunc :: (String,String) → Int → CVisibility → CTypeExpr → [CRule] →
CFuncDecl

• CmtFunc :: String → (String,String) → Int → CVisibility → CTypeExpr →
[CRule] → CFuncDecl

231

data CRule

The general form of a function rule. It consists of a list of patterns (left-hand side) and

the right-hand side for these patterns.

Exported constructors:

• CRule :: [CPattern] → CRhs → CRule

data CRhs

Right-hand-side of a CRule or a case expression. It is either a simple unconditional

right-hand side or a list of guards with their corresponding right-hand sides, and a list

of local declarations.

Exported constructors:

• CSimpleRhs :: CExpr → [CLocalDecl] → CRhs

• CGuardedRhs :: [(CExpr,CExpr)] → [CLocalDecl] → CRhs

data CLocalDecl

Data type for representing local (let/where) declarations

Exported constructors:

• CLocalFunc :: CFuncDecl → CLocalDecl

• CLocalPat :: CPattern → CRhs → CLocalDecl

• CLocalVars :: [(Int,String)] → CLocalDecl

data CPattern

Data type for representing pattern expressions.

Exported constructors:

• CPVar :: (Int,String) → CPattern

• CPLit :: CLiteral → CPattern

• CPComb :: (String,String) → [CPattern] → CPattern

• CPAs :: (Int,String) → CPattern → CPattern

• CPFuncComb :: (String,String) → [CPattern] → CPattern

• CPLazy :: CPattern → CPattern

• CPRecord :: (String,String) → [((String,String),CPattern)] → CPattern

232

data CExpr

Data type for representing Curry expressions.

Exported constructors:

• CVar :: (Int,String) → CExpr

• CLit :: CLiteral → CExpr

• CSymbol :: (String,String) → CExpr

• CApply :: CExpr → CExpr → CExpr

• CLambda :: [CPattern] → CExpr → CExpr

• CLetDecl :: [CLocalDecl] → CExpr → CExpr

• CDoExpr :: [CStatement] → CExpr

• CListComp :: CExpr → [CStatement] → CExpr

• CCase :: CCaseType → CExpr → [(CPattern,CRhs)] → CExpr

• CTyped :: CExpr → CTypeExpr → CExpr

• CRecConstr :: (String,String) → [((String,String),CExpr)] → CExpr

• CRecUpdate :: CExpr → [((String,String),CExpr)] → CExpr

data CLiteral

Data type for representing literals occurring in an expression. It is either an integer, a

float, or a character constant.

Exported constructors:

• CIntc :: Int → CLiteral

• CFloatc :: Float → CLiteral

• CCharc :: Char → CLiteral

• CStringc :: String → CLiteral

data CStatement

Data type for representing statements in do expressions and list comprehensions.

Exported constructors:

• CSExpr :: CExpr → CStatement

• CSPat :: CPattern → CExpr → CStatement

233

• CSLet :: [CLocalDecl] → CStatement

data CCaseType

Type of case expressions

Exported constructors:

• CRigid :: CCaseType

• CFlex :: CCaseType

Exported functions:

version :: String

Current version of AbstractCurry

pre :: String → (String,String)

Converts a string into a qualified name of the Prelude.

A.5.2 Library AbstractCurry.Files

This library defines various I/O actions to read Curry programs and transform them into the

AbstractCurry representation and to write AbstractCurry files.

Assumption: an abstract Curry program is stored in file with extension .acy in the subdirectory

.curry

Exported functions:

readCurry :: String → IO CurryProg

I/O action which parses a Curry program and returns the corresponding typed Abstract

Curry program. Thus, the argument is the file name without suffix ”.curry” or ”.lcurry”)

and the result is a Curry term representing this program.

readUntypedCurry :: String → IO CurryProg

I/O action which parses a Curry program and returns the corresponding untyped Ab-

stract Curry program. Thus, the argument is the file name without suffix ”.curry” or

”.lcurry”) and the result is a Curry term representing this program.

readCurryWithParseOptions :: String → FrontendParams → IO CurryProg

I/O action which reads a typed Curry program from a file (with extension ”.acy”)

with respect to some parser options. This I/O action is used by the standard action

readCurry. It is currently predefined only in Curry2Prolog.

readUntypedCurryWithParseOptions :: String → FrontendParams → IO CurryProg

234

I/O action which reads an untyped Curry program from a file (with extension

”.uacy”) with respect to some parser options. For more details see function

readCurryWithParseOptions

abstractCurryFileName :: String → String

Transforms a name of a Curry program (with or without suffix ”.curry” or ”.lcurry”)

into the name of the file containing the corresponding AbstractCurry program.

untypedAbstractCurryFileName :: String → String

Transforms a name of a Curry program (with or without suffix ”.curry” or ”.lcurry”)

into the name of the file containing the corresponding untyped AbstractCurry program.

readAbstractCurryFile :: String → IO CurryProg

I/O action which reads an AbstractCurry program from a file in ”.acy” format. In

contrast to readCurry, this action does not parse a source program. Thus, the argument

must be the name of an existing file (with suffix ”.acy”) containing an AbstractCurry

program in ”.acy” format and the result is a Curry term representing this program. It

is currently predefined only in Curry2Prolog.

tryReadACYFile :: String → IO (Maybe CurryProg)

Tries to read an AbstractCurry file and returns

• Left err , where err specifies the error occurred

• Right prog, where prog is the AbstractCurry program

writeAbstractCurryFile :: String → CurryProg → IO ()

Writes an AbstractCurry program into a file in ”.acy” format. The first argument must

be the name of the target file (with suffix ”.acy”).

A.5.3 Library AbstractCurry.Select

This library provides some useful operations to select components in AbstractCurry programs, i.e.,

it provides a collection of selector functions for AbstractCurry.

Exported functions:

typeName :: CTypeDecl → (String,String)

Returns the name of a given type declaration

typeVis :: CTypeDecl → CVisibility

Returns the visibility of a given type declaration

typeCons :: CTypeDecl → [CConsDecl]

235

Returns the constructors of a given type declaration

consName :: CConsDecl → (String,String)

Returns the name of a given constructor declaration

consVis :: CConsDecl → CVisibility

Returns the visibility of a given constructor declaration

isBaseType :: CTypeExpr → Bool

Returns true if the type expression is a base type.

isPolyType :: CTypeExpr → Bool

Returns true if the type expression contains type variables.

isFunctionalType :: CTypeExpr → Bool

Returns true if the type expression is a functional type.

isIOType :: CTypeExpr → Bool

Returns true if the type expression is (IO t).

isIOReturnType :: CTypeExpr → Bool

Returns true if the type expression is (IO t) with t/=() and t is not functional

argTypes :: CTypeExpr → [CTypeExpr]

Returns all argument types from a functional type

resultType :: CTypeExpr → CTypeExpr

Return the result type from a (nested) functional type

tvarsOfType :: CTypeExpr → [(Int,String)]

Returns all type variables occurring in a type expression.

modsOfType :: CTypeExpr → [String]

Returns all modules used in the given type.

funcName :: CFuncDecl → (String,String)

Returns the name of a given function declaration

funcVis :: CFuncDecl → CVisibility

Returns the visibility of a given function declaration

varsOfPat :: CPattern → [(Int,String)]

236

Returns list of all variables occurring in a pattern. Each occurrence corresponds to one

element, i.e., the list might contain multiple elements.

varsOfExp :: CExpr → [(Int,String)]

Returns list of all variables occurring in an expression. Each occurrence corresponds to

one element, i.e., the list might contain multiple elements.

varsOfRhs :: CRhs → [(Int,String)]

Returns list of all variables occurring in a right-hand side. Each occurrence corresponds

to one element, i.e., the list might contain multiple elements.

varsOfStat :: CStatement → [(Int,String)]

Returns list of all variables occurring in a statement. Each occurrence corresponds to

one element, i.e., the list might contain multiple elements.

varsOfLDecl :: CLocalDecl → [(Int,String)]

Returns list of all variables occurring in a local declaration. Each occurrence corresponds

to one element, i.e., the list might contain multiple elements.

varsOfFDecl :: CFuncDecl → [(Int,String)]

Returns list of all variables occurring in a function declaration. Each occurrence corre-

sponds to one element, i.e., the list might contain multiple elements.

varsOfRule :: CRule → [(Int,String)]

Returns list of all variables occurring in a rule. Each occurrence corresponds to one

element, i.e., the list might contain multiple elements.

isPrelude :: String → Bool

Tests whether a module name is the prelude.

A.5.4 Library AbstractCurry.Build

This library provides some useful operations to write programs that generate AbstractCurry pro-

grams in a more compact and readable way.

Exported functions:

(~>) :: CTypeExpr → CTypeExpr → CTypeExpr

A function type.

baseType :: (String,String) → CTypeExpr

A base type.

listType :: CTypeExpr → CTypeExpr

237

Constructs a list type from an element type.

tupleType :: [CTypeExpr] → CTypeExpr

Constructs a tuple type from list of component types.

ioType :: CTypeExpr → CTypeExpr

Constructs an IO type from a type.

maybeType :: CTypeExpr → CTypeExpr

Constructs a Maybe type from element type.

stringType :: CTypeExpr

The type expression of the String type.

intType :: CTypeExpr

The type expression of the Int type.

floatType :: CTypeExpr

The type expression of the Float type.

boolType :: CTypeExpr

The type expression of the Bool type.

unitType :: CTypeExpr

The type expression of the unit type.

dateType :: CTypeExpr

The type expression of the Time.CalendarTime type.

cfunc :: (String,String) → Int → CVisibility → CTypeExpr → [CRule] →
CFuncDecl

Constructs a function declaration from a given qualified function name, arity, visibility,

type expression and list of defining rules.

cmtfunc :: String → (String,String) → Int → CVisibility → CTypeExpr → [CRule]

→ CFuncDecl

Constructs a function declaration from a given comment, qualified function name, arity,

visibility, type expression and list of defining rules.

simpleRule :: [CPattern] → CExpr → CRule

Constructs a simple rule with a pattern list and an unconditional right-hand side.

guardedRule :: [CPattern] → [(CExpr,CExpr)] → [CLocalDecl] → CRule

238

Constructs a rule with a possibly guarded right-hand side and local declarations. A

simple right-hand side is constructed if there is only one success condition.

noGuard :: CExpr → (CExpr,CExpr)

Constructs a guarded expression with the trivial guard.

applyF :: (String,String) → [CExpr] → CExpr

An application of a qualified function name to a list of arguments.

applyE :: CExpr → [CExpr] → CExpr

An application of an expression to a list of arguments.

constF :: (String,String) → CExpr

A constant, i.e., an application without arguments.

applyV :: (Int,String) → [CExpr] → CExpr

An application of a variable to a list of arguments.

applyJust :: CExpr → CExpr

applyMaybe :: CExpr → CExpr → CExpr → CExpr

tupleExpr :: [CExpr] → CExpr

Constructs a tuple expression from list of component expressions.

cBranch :: CPattern → CExpr → (CPattern,CRhs)

Constructs from a pattern and an expression a branch for a case expression.

tuplePattern :: [CPattern] → CPattern

Constructs a tuple pattern from list of component patterns.

pVars :: Int → [CPattern]

Constructs, for given n, a list of n PVars starting from 0.

pChar :: Char → CPattern

Converts a character into a pattern.

pNil :: CPattern

Constructs an empty list pattern.

listPattern :: [CPattern] → CPattern

239

Constructs a list pattern from list of component patterns.

stringPattern :: String → CPattern

Converts a string into a pattern representing this string.

list2ac :: [CExpr] → CExpr

Converts a list of AbstractCurry expressions into an AbstractCurry representation of

this list.

cChar :: Char → CExpr

Converts a character into an AbstractCurry expression.

string2ac :: String → CExpr

Converts a string into an AbstractCurry represention of this string.

toVar :: Int → CExpr

Converts an index i into a variable named xi.

cvar :: String → CExpr

Converts a string into a variable with index 1.

cpvar :: String → CPattern

Converts a string into a pattern variable with index 1.

ctvar :: String → CTypeExpr

Converts a string into a type variable with index 1.

A.5.5 Library AbstractCurry.Pretty

Pretty printing of AbstractCurry.

This library provides a pretty-printer for AbstractCurry modules.

Exported types:

data Qualification

Exported constructors:

• Full :: Qualification

• Imports :: Qualification

• None :: Qualification

data Options

Exported constructors:

240

Exported functions:

defaultOptions :: Options

defaultOptions = options 78 2 Imports "" Therefore use these options only with

functions like prettyCurryProg or ppCurryProg, because they will overwrite the mod-

ule name anyway.

options :: Int → Int → Qualification → String → Options

setPageWith :: Int → Options → Options

Sets the page width of the pretty printer options.

setIndentWith :: Int → Options → Options

Sets the indentation width of the pretty printer options.

setQualification :: Qualification → Options → Options

Sets the qualification method to be used by the pretty printer.

setModName :: String → Options → Options

Sets the name of the current module in the pretty printer options.

showCProg :: CurryProg → String

Shows a pretty formatted version of an abstract Curry Program. The options for pretty

printing are the defaultOptions.

prettyCurryProg :: Options → CurryProg → String

pretty-print the document generated by ppCurryProg, using the page width specified

by given options.

ppCurryProg :: Options → CurryProg → Doc

pretty-print a CurryProg (the representation of a program, written in curry, using

AbstractCurry) according to given options. This function will overwrite the module

name given by options with the name encapsulated in CurryProg.

ppMName :: String → Doc

pretty-print a module name (just a string).

ppExports :: Options → [CTypeDecl] → [CFuncDecl] → Doc

pretty-print exports, i.e. all type and function declarations which are public. extract

the type and function declarations which are public and gather their qualified names in

a list.

241

ppImports :: Options → [String] → Doc

pretty-print imports (list of module names) by prepending the word ”import” to the

module name.

ppCOpDecl :: Options → COpDecl → Doc

pretty-print operator precedence declarations.

ppCTypeDecl :: Options → CTypeDecl → Doc

pretty-print type declarations, like data ... = ..., type ... = ... or newtype

... =

ppCFuncDecl :: Options → CFuncDecl → Doc

pretty-print a function declaration.

ppCFuncDeclWithoutSig :: Options → CFuncDecl → Doc

pretty-print a function declaration without signature.

ppCFuncSignature :: Options → (String,String) → CTypeExpr → Doc

pretty-print a function signature according to given options.

ppCTypeExpr :: Options → CTypeExpr → Doc

pretty-print a type expression.

ppCPattern :: Options → CPattern → Doc

pretty-print a pattern expression.

ppCLiteral :: Options → CLiteral → Doc

pretty-print given literal (Int, Float, ...).

ppCExpr :: Options → CExpr → Doc

pretty-print an expression.

ppCStatement :: Options → CStatement → Doc

ppQName :: Options → (String,String) → Doc

pretty-print a QName qualified according to given options.

ppName :: (String,String) → Doc

pretty-print a QName non-qualified.

242

A.5.6 Library AnnotatedFlatCurry

This library contains a version of FlatCurry’s abstract syntax tree which can be annotated with

arbitrary information due to a polymorphic type parameter. For instance, this could be used to

annotate function declarations and expressions with their corresponding type.

For more information about the abstract syntax tree of FlatCurry, see the documentation of the

respective module.

Exported types:

type Arity = Int

Arity of a function declaration

data AProg

Annotated FlatCurry program (corresponds to a module)

Exported constructors:

• AProg :: String → [String] → [TypeDecl] → [AFuncDecl a] → [OpDecl] →
AProg a

data AFuncDecl

Annotated function declaration

Exported constructors:

• AFunc :: (String,String) → Int → Visibility → TypeExpr → (ARule a) →
AFuncDecl a

data ARule

Annotated function rule

Exported constructors:

• ARule :: a → [(Int,a)] → (AExpr a) → ARule a

• AExternal :: a → String → ARule a

data AExpr

Annotated expression

Exported constructors:

• AVar :: a → Int → AExpr a

• ALit :: a → Literal → AExpr a

243

• AComb :: a → CombType → ((String,String),a) → [AExpr a] → AExpr a

• ALet :: a → [((Int,a),AExpr a)] → (AExpr a) → AExpr a

• AFree :: a → [(Int,a)] → (AExpr a) → AExpr a

• AOr :: a → (AExpr a) → (AExpr a) → AExpr a

• ACase :: a → CaseType → (AExpr a) → [ABranchExpr a] → AExpr a

• ATyped :: a → (AExpr a) → TypeExpr → AExpr a

data ABranchExpr

Annotated case branch

Exported constructors:

• ABranch :: (APattern a) → (AExpr a) → ABranchExpr a

data APattern

Annotated pattern

Exported constructors:

• APattern :: a → ((String,String),a) → [(Int,a)] → APattern a

• ALPattern :: a → Literal → APattern a

A.5.7 Library AnnotatedFlatCurryGoodies

This library provides selector functions, test and update operations as well as some useful auxiliary

functions for FlatCurry data terms. Most of the provided functions are based on general trans-

formation functions that replace constructors with user-defined functions. For recursive datatypes

the transformations are defined inductively over the term structure. This is quite usual for trans-

formations on FlatCurry terms, so the provided functions can be used to implement specific trans-

formations without having to explicitly state the recursion. Essentially, the tedious part of such

transformations - descend in fairly complex term structures - is abstracted away, which hopefully

makes the code more clear and brief.

Exported types:

type Update a b = (b → b) → a → a

244

Exported functions:

trProg :: (String → [String] → [TypeDecl] → [AFuncDecl a] → [OpDecl] → b) →
AProg a → b

transform program

progName :: AProg a → String

get name from program

progImports :: AProg a → [String]

get imports from program

progTypes :: AProg a → [TypeDecl]

get type declarations from program

progFuncs :: AProg a → [AFuncDecl a]

get functions from program

progOps :: AProg a → [OpDecl]

get infix operators from program

updProg :: (String → String) → ([String] → [String]) → ([TypeDecl] →
[TypeDecl]) → ([AFuncDecl a] → [AFuncDecl a]) → ([OpDecl] → [OpDecl]) → AProg

a → AProg a

update program

updProgName :: (String → String) → AProg a → AProg a

update name of program

updProgImports :: ([String] → [String]) → AProg a → AProg a

update imports of program

updProgTypes :: ([TypeDecl] → [TypeDecl]) → AProg a → AProg a

update type declarations of program

updProgFuncs :: ([AFuncDecl a] → [AFuncDecl a]) → AProg a → AProg a

update functions of program

updProgOps :: ([OpDecl] → [OpDecl]) → AProg a → AProg a

update infix operators of program

allVarsInProg :: AProg a → [Int]

245

get all program variables (also from patterns)

updProgExps :: (AExpr a → AExpr a) → AProg a → AProg a

lift transformation on expressions to program

rnmAllVarsInProg :: (Int → Int) → AProg a → AProg a

rename programs variables

updQNamesInProg :: ((String,String) → (String,String)) → AProg a → AProg a

update all qualified names in program

rnmProg :: String → AProg a → AProg a

rename program (update name of and all qualified names in program)

trType :: ((String,String) → Visibility → [Int] → [ConsDecl] → a) →
((String,String) → Visibility → [Int] → TypeExpr → a) → TypeDecl → a

transform type declaration

typeName :: TypeDecl → (String,String)

get name of type declaration

typeVisibility :: TypeDecl → Visibility

get visibility of type declaration

typeParams :: TypeDecl → [Int]

get type parameters of type declaration

typeConsDecls :: TypeDecl → [ConsDecl]

get constructor declarations from type declaration

typeSyn :: TypeDecl → TypeExpr

get synonym of type declaration

isTypeSyn :: TypeDecl → Bool

is type declaration a type synonym?

updType :: ((String,String) → (String,String)) → (Visibility → Visibility)

→ ([Int] → [Int]) → ([ConsDecl] → [ConsDecl]) → (TypeExpr → TypeExpr) →
TypeDecl → TypeDecl

update type declaration

updTypeName :: ((String,String) → (String,String)) → TypeDecl → TypeDecl

246

update name of type declaration

updTypeVisibility :: (Visibility → Visibility) → TypeDecl → TypeDecl

update visibility of type declaration

updTypeParams :: ([Int] → [Int]) → TypeDecl → TypeDecl

update type parameters of type declaration

updTypeConsDecls :: ([ConsDecl] → [ConsDecl]) → TypeDecl → TypeDecl

update constructor declarations of type declaration

updTypeSynonym :: (TypeExpr → TypeExpr) → TypeDecl → TypeDecl

update synonym of type declaration

updQNamesInType :: ((String,String) → (String,String)) → TypeDecl → TypeDecl

update all qualified names in type declaration

trCons :: ((String,String) → Int → Visibility → [TypeExpr] → a) → ConsDecl →
a

transform constructor declaration

consName :: ConsDecl → (String,String)

get name of constructor declaration

consArity :: ConsDecl → Int

get arity of constructor declaration

consVisibility :: ConsDecl → Visibility

get visibility of constructor declaration

consArgs :: ConsDecl → [TypeExpr]

get arguments of constructor declaration

updCons :: ((String,String) → (String,String)) → (Int → Int) → (Visibility →
Visibility) → ([TypeExpr] → [TypeExpr]) → ConsDecl → ConsDecl

update constructor declaration

updConsName :: ((String,String) → (String,String)) → ConsDecl → ConsDecl

update name of constructor declaration

updConsArity :: (Int → Int) → ConsDecl → ConsDecl

update arity of constructor declaration

247

updConsVisibility :: (Visibility → Visibility) → ConsDecl → ConsDecl

update visibility of constructor declaration

updConsArgs :: ([TypeExpr] → [TypeExpr]) → ConsDecl → ConsDecl

update arguments of constructor declaration

updQNamesInConsDecl :: ((String,String) → (String,String)) → ConsDecl →
ConsDecl

update all qualified names in constructor declaration

tVarIndex :: TypeExpr → Int

get index from type variable

domain :: TypeExpr → TypeExpr

get domain from functional type

range :: TypeExpr → TypeExpr

get range from functional type

tConsName :: TypeExpr → (String,String)

get name from constructed type

tConsArgs :: TypeExpr → [TypeExpr]

get arguments from constructed type

trTypeExpr :: (Int → a) → ((String,String) → [a] → a) → (a → a → a) →
TypeExpr → a

isTVar :: TypeExpr → Bool

is type expression a type variable?

isTCons :: TypeExpr → Bool

is type declaration a constructed type?

isFuncType :: TypeExpr → Bool

is type declaration a functional type?

updTVars :: (Int → TypeExpr) → TypeExpr → TypeExpr

update all type variables

updTCons :: ((String,String) → [TypeExpr] → TypeExpr) → TypeExpr → TypeExpr

248

update all type constructors

updFuncTypes :: (TypeExpr → TypeExpr → TypeExpr) → TypeExpr → TypeExpr

update all functional types

argTypes :: TypeExpr → [TypeExpr]

get argument types from functional type

resultType :: TypeExpr → TypeExpr

get result type from (nested) functional type

rnmAllVarsInTypeExpr :: (Int → Int) → TypeExpr → TypeExpr

rename variables in type expression

updQNamesInTypeExpr :: ((String,String) → (String,String)) → TypeExpr →
TypeExpr

update all qualified names in type expression

trOp :: ((String,String) → Fixity → Int → a) → OpDecl → a

transform operator declaration

opName :: OpDecl → (String,String)

get name from operator declaration

opFixity :: OpDecl → Fixity

get fixity of operator declaration

opPrecedence :: OpDecl → Int

get precedence of operator declaration

updOp :: ((String,String) → (String,String)) → (Fixity → Fixity) → (Int →
Int) → OpDecl → OpDecl

update operator declaration

updOpName :: ((String,String) → (String,String)) → OpDecl → OpDecl

update name of operator declaration

updOpFixity :: (Fixity → Fixity) → OpDecl → OpDecl

update fixity of operator declaration

updOpPrecedence :: (Int → Int) → OpDecl → OpDecl

update precedence of operator declaration

249

trFunc :: ((String,String) → Int → Visibility → TypeExpr → ARule a → b) →
AFuncDecl a → b

transform function

funcName :: AFuncDecl a → (String,String)

get name of function

funcArity :: AFuncDecl a → Int

get arity of function

funcVisibility :: AFuncDecl a → Visibility

get visibility of function

funcType :: AFuncDecl a → TypeExpr

get type of function

funcRule :: AFuncDecl a → ARule a

get rule of function

updFunc :: ((String,String) → (String,String)) → (Int → Int) → (Visibility →
Visibility) → (TypeExpr → TypeExpr) → (ARule a → ARule a) → AFuncDecl a →
AFuncDecl a

update function

updFuncName :: ((String,String) → (String,String)) → AFuncDecl a → AFuncDecl a

update name of function

updFuncArity :: (Int → Int) → AFuncDecl a → AFuncDecl a

update arity of function

updFuncVisibility :: (Visibility → Visibility) → AFuncDecl a → AFuncDecl a

update visibility of function

updFuncType :: (TypeExpr → TypeExpr) → AFuncDecl a → AFuncDecl a

update type of function

updFuncRule :: (ARule a → ARule a) → AFuncDecl a → AFuncDecl a

update rule of function

isExternal :: AFuncDecl a → Bool

is function externally defined?

250

allVarsInFunc :: AFuncDecl a → [Int]

get variable names in a function declaration

funcArgs :: AFuncDecl a → [(Int,a)]

get arguments of function, if not externally defined

funcBody :: AFuncDecl a → AExpr a

get body of function, if not externally defined

funcRHS :: AFuncDecl a → [AExpr a]

rnmAllVarsInFunc :: (Int → Int) → AFuncDecl a → AFuncDecl a

rename all variables in function

updQNamesInFunc :: ((String,String) → (String,String)) → AFuncDecl a →
AFuncDecl a

update all qualified names in function

updFuncArgs :: ([(Int,a)] → [(Int,a)]) → AFuncDecl a → AFuncDecl a

update arguments of function, if not externally defined

updFuncBody :: (AExpr a → AExpr a) → AFuncDecl a → AFuncDecl a

update body of function, if not externally defined

trRule :: (a → [(Int,a)] → AExpr a → b) → (a → String → b) → ARule a → b

transform rule

ruleArgs :: ARule a → [(Int,a)]

get rules arguments if it’s not external

ruleBody :: ARule a → AExpr a

get rules body if it’s not external

ruleExtDecl :: ARule a → String

get rules external declaration

isRuleExternal :: ARule a → Bool

is rule external?

updRule :: (a → a) → ([(Int,a)] → [(Int,a)]) → (AExpr a → AExpr a) → (String

→ String) → ARule a → ARule a

251

update rule

updRuleArgs :: ([(Int,a)] → [(Int,a)]) → ARule a → ARule a

update rules arguments

updRuleBody :: (AExpr a → AExpr a) → ARule a → ARule a

update rules body

updRuleExtDecl :: (String → String) → ARule a → ARule a

update rules external declaration

allVarsInRule :: ARule a → [Int]

get variable names in a functions rule

rnmAllVarsInRule :: (Int → Int) → ARule a → ARule a

rename all variables in rule

updQNamesInRule :: ((String,String) → (String,String)) → ARule a → ARule a

update all qualified names in rule

trCombType :: a → (Int → a) → a → (Int → a) → CombType → a

transform combination type

isCombTypeFuncCall :: CombType → Bool

is type of combination FuncCall?

isCombTypeFuncPartCall :: CombType → Bool

is type of combination FuncPartCall?

isCombTypeConsCall :: CombType → Bool

is type of combination ConsCall?

isCombTypeConsPartCall :: CombType → Bool

is type of combination ConsPartCall?

missingArgs :: CombType → Int

varNr :: AExpr a → Int

get internal number of variable

literal :: AExpr a → Literal

252

get literal if expression is literal expression

combType :: AExpr a → CombType

get combination type of a combined expression

combName :: AExpr a → (String,String)

get name of a combined expression

combArgs :: AExpr a → [AExpr a]

get arguments of a combined expression

missingCombArgs :: AExpr a → Int

get number of missing arguments if expression is combined

letBinds :: AExpr a → [((Int,a),AExpr a)]

get indices of variables in let declaration

letBody :: AExpr a → AExpr a

get body of let declaration

freeVars :: AExpr a → [Int]

get variable indices from declaration of free variables

freeExpr :: AExpr a → AExpr a

get expression from declaration of free variables

orExps :: AExpr a → [AExpr a]

get expressions from or-expression

caseType :: AExpr a → CaseType

get case-type of case expression

caseExpr :: AExpr a → AExpr a

get scrutinee of case expression

caseBranches :: AExpr a → [ABranchExpr a]

isVar :: AExpr a → Bool

is expression a variable?

isLit :: AExpr a → Bool

253

is expression a literal expression?

isComb :: AExpr a → Bool

is expression combined?

isLet :: AExpr a → Bool

is expression a let expression?

isFree :: AExpr a → Bool

is expression a declaration of free variables?

isOr :: AExpr a → Bool

is expression an or-expression?

isCase :: AExpr a → Bool

is expression a case expression?

trExpr :: (a → Int → b) → (a → Literal → b) → (a → CombType →
((String,String),a) → [b] → b) → (a → [((Int,a),b)] → b → b) → (a →
[(Int,a)] → b → b) → (a → b → b → b) → (a → CaseType → b → [c] → b)

→ (APattern a → b → c) → (a → b → TypeExpr → b) → AExpr a → b

transform expression

updVars :: (a → Int → AExpr a) → AExpr a → AExpr a

update all variables in given expression

updLiterals :: (a → Literal → AExpr a) → AExpr a → AExpr a

update all literals in given expression

updCombs :: (a → CombType → ((String,String),a) → [AExpr a] → AExpr a) →
AExpr a → AExpr a

update all combined expressions in given expression

updLets :: (a → [((Int,a),AExpr a)] → AExpr a → AExpr a) → AExpr a → AExpr a

update all let expressions in given expression

updFrees :: (a → [(Int,a)] → AExpr a → AExpr a) → AExpr a → AExpr a

update all free declarations in given expression

updOrs :: (a → AExpr a → AExpr a → AExpr a) → AExpr a → AExpr a

update all or expressions in given expression

254

updCases :: (a → CaseType → AExpr a → [ABranchExpr a] → AExpr a) → AExpr a →
AExpr a

update all case expressions in given expression

updBranches :: (APattern a → AExpr a → ABranchExpr a) → AExpr a → AExpr a

update all case branches in given expression

updTypeds :: (a → AExpr a → TypeExpr → AExpr a) → AExpr a → AExpr a

update all typed expressions in given expression

isFuncCall :: AExpr a → Bool

is expression a call of a function where all arguments are provided?

isFuncPartCall :: AExpr a → Bool

is expression a partial function call?

isConsCall :: AExpr a → Bool

is expression a call of a constructor?

isConsPartCall :: AExpr a → Bool

is expression a partial constructor call?

isGround :: AExpr a → Bool

is expression fully evaluated?

allVars :: AExpr a → [Int]

get all variables (also pattern variables) in expression

rnmAllVars :: (Int → Int) → AExpr a → AExpr a

rename all variables (also in patterns) in expression

updQNames :: ((String,String) → (String,String)) → AExpr a → AExpr a

update all qualified names in expression

trBranch :: (APattern a → AExpr a → b) → ABranchExpr a → b

transform branch expression

branchPattern :: ABranchExpr a → APattern a

get pattern from branch expression

branchExpr :: ABranchExpr a → AExpr a

get expression from branch expression

255

updBranch :: (APattern a → APattern a) → (AExpr a → AExpr a) → ABranchExpr a

→ ABranchExpr a

update branch expression

updBranchPattern :: (APattern a → APattern a) → ABranchExpr a → ABranchExpr a

update pattern of branch expression

updBranchExpr :: (AExpr a → AExpr a) → ABranchExpr a → ABranchExpr a

update expression of branch expression

trPattern :: (a → ((String,String),a) → [(Int,a)] → b) → (a → Literal → b)

→ APattern a → b

transform pattern

patCons :: APattern a → (String,String)

get name from constructor pattern

patArgs :: APattern a → [(Int,a)]

get arguments from constructor pattern

patLiteral :: APattern a → Literal

get literal from literal pattern

isConsPattern :: APattern a → Bool

is pattern a constructor pattern?

updPattern :: (((String,String),a) → ((String,String),a)) → ([(Int,a)] →
[(Int,a)]) → (Literal → Literal) → APattern a → APattern a

update pattern

updPatCons :: ((String,String) → (String,String)) → APattern a → APattern a

update constructors name of pattern

updPatArgs :: ([(Int,a)] → [(Int,a)]) → APattern a → APattern a

update arguments of constructor pattern

updPatLiteral :: (Literal → Literal) → APattern a → APattern a

update literal of pattern

patExpr :: APattern a → AExpr a

build expression from pattern

256

annRule :: ARule a → a

annExpr :: AExpr a → a

Extract the annotation of an annotated expression.

annPattern :: APattern a → a

Extract the annotation of an annotated pattern.

unAnnProg :: AProg a → Prog

unAnnFuncDecl :: AFuncDecl a → FuncDecl

unAnnRule :: ARule a → Rule

unAnnExpr :: AExpr a → Expr

unAnnPattern :: APattern a → Pattern

A.5.8 Library CompactFlatCurry

This module contains functions to reduce the size of FlatCurry programs by combining the main

module and all imports into a single program that contains only the functions directly or indirectly

called from a set of main functions.

Exported types:

data Option

Options to guide the compactification process.

Exported constructors:

• Verbose :: Option

Verbose

– for more output

• Main :: String → Option

Main

257

– optimize for one main (unqualified!) function supplied here

• Exports :: Option

Exports

– optimize w.r.t. the exported functions of the module only

• InitFuncs :: [(String,String)] → Option

InitFuncs

– optimize w.r.t. given list of initially required functions

• Required :: [RequiredSpec] → Option

Required

– list of functions that are implicitly required and, thus, should not be deleted if the

corresponding module is imported

• Import :: String → Option

Import

– module that should always be imported (useful in combination with option InitFuncs)

data RequiredSpec

Data type to specify requirements of functions.

Exported constructors:

Exported functions:

requires :: (String,String) → (String,String) → RequiredSpec

(fun requires reqfun) specifies that the use of the function ”fun” implies the application

of function ”reqfun”.

alwaysRequired :: (String,String) → RequiredSpec

(alwaysRequired fun) specifies that the function ”fun” should be always present if the

corresponding module is loaded.

defaultRequired :: [RequiredSpec]

Functions that are implicitly required in a FlatCurry program (since they might be

generated by external functions like ”==” or ”=:=” on the fly).

generateCompactFlatCurryFile :: [Option] → String → String → IO ()

Computes a single FlatCurry program containing all functions potentially called from

a set of main functions and writes it into a FlatCurry file. This is done by merging all

imported FlatCurry modules and removing the imported functions that are definitely

not used.

258

computeCompactFlatCurry :: [Option] → String → IO Prog

Computes a single FlatCurry program containing all functions potentially called from a

set of main functions. This is done by merging all imported FlatCurry modules (these

are loaded demand-driven so that modules that contains no potentially called functions

are not loaded) and removing the imported functions that are definitely not used.

A.5.9 Library CurryStringClassifier

The Curry string classifier is a simple tool to process strings containing Curry source code. The

source string is classified into the following categories:

• moduleHead - module interface, imports, operators

• code - the part where the actual program is defined

• big comment - parts enclosed in {- ... -}

• small comment - from ”–” to the end of a line

• text - a string, i.e. text enclosed in ”...”

• letter - the given string is the representation of a character

• meta - containing information for meta programming

For an example to use the state scanner cf. addtypes, the tool to add function types to a given

program.

Exported types:

type Tokens = [Token]

data Token

The different categories to classify the source code.

Exported constructors:

• SmallComment :: String → Token

• BigComment :: String → Token

• Text :: String → Token

• Letter :: String → Token

• Code :: String → Token

• ModuleHead :: String → Token

• Meta :: String → Token

259

Exported functions:

isSmallComment :: Token → Bool

test for category ”SmallComment”

isBigComment :: Token → Bool

test for category ”BigComment”

isComment :: Token → Bool

test if given token is a comment (big or small)

isText :: Token → Bool

test for category ”Text” (String)

isLetter :: Token → Bool

test for category ”Letter” (Char)

isCode :: Token → Bool

test for category ”Code”

isModuleHead :: Token → Bool

test for category ”ModuleHead”, ie imports and operator declarations

isMeta :: Token → Bool

test for category ”Meta”, ie between {+ and +}

scan :: String → [Token]

Divides the given string into the six categories. For applications it is important to

know whether a given part of code is at the beginning of a line or in the middle. The

state scanner organizes the code in such a way that every string categorized as ”Code”

always starts in the middle of a line.

plainCode :: [Token] → String

Yields the program code without comments (but with the line breaks for small com-

ments).

unscan :: [Token] → String

Inverse function of scan, i.e., unscan (scan x) = x. unscan is used to yield a program

after changing the list of tokens.

readScan :: String → IO [Token]

return tokens for given filename

testScan :: String → IO ()

test whether (unscan . scan) is identity

260

A.5.10 Library FlatCurry

This library supports meta-programming, i.e., the manipulation of Curry programs in Curry.

For this purpose, the library contains definitions of datatypes for the representation of so-called

FlatCurry programs and an I/O action to read Curry programs and transform them into this

representation.

Exported types:

type QName = (String,String)

The data type for representing qualified names. In FlatCurry all names are qualified to

avoid name clashes. The first component is the module name and the second component

the unqualified name as it occurs in the source program.

type TVarIndex = Int

The data type for representing type variables. They are represented by (TVar i) where

i is a type variable index.

type VarIndex = Int

Data type for representing object variables. Object variables occurring in expressions

are represented by (Var i) where i is a variable index.

data Prog

Data type for representing a Curry module in the intermediate form. A value of this

data type has the form

(Prog modname imports typedecls functions opdecls)

where modname is the name of this module, imports is the list of modules names that are

imported, and typedecls, functions, and opdecls are the list of data type, function,

and operator declarations contained in this module, respectively.

Exported constructors:

• Prog :: String → [String] → [TypeDecl] → [FuncDecl] → [OpDecl] → Prog

data Visibility

Data type to specify the visibility of various entities.

Exported constructors:

• Public :: Visibility

• Private :: Visibility

261

data TypeDecl

Data type for representing definitions of algebraic data types and type synonyms.

A data type definition of the form

data t x1...xn = ...| c t1....tkc |...

is represented by the FlatCurry term

(Type t [i1,...,in] [...(Cons c kc [t1,...,tkc])...])

where each ij is the index of the type variable xj.

Note: the type variable indices are unique inside each type declaration and are usually

numbered from 0

Thus, a data type declaration consists of the name of the data type, a list of type

parameters and a list of constructor declarations.

Exported constructors:

• Type :: (String,String) → Visibility → [Int] → [ConsDecl] → TypeDecl

• TypeSyn :: (String,String) → Visibility → [Int] → TypeExpr → TypeDecl

data ConsDecl

A constructor declaration consists of the name and arity of the constructor and a list

of the argument types of the constructor.

Exported constructors:

• Cons :: (String,String) → Int → Visibility → [TypeExpr] → ConsDecl

data TypeExpr

Data type for type expressions. A type expression is either a type variable, a function

type, or a type constructor application.

Note: the names of the predefined type constructors are ”Int”, ”Float”, ”Bool”, ”Char”,

”IO”, ”Success”, ”()” (unit type), ”(,...,)” (tuple types), ”[]” (list type)

Exported constructors:

• TVar :: Int → TypeExpr

• FuncType :: TypeExpr → TypeExpr → TypeExpr

• TCons :: (String,String) → [TypeExpr] → TypeExpr

data OpDecl

262

Data type for operator declarations. An operator declaration fix p n in Curry corre-

sponds to the FlatCurry term (Op n fix p).

Exported constructors:

• Op :: (String,String) → Fixity → Int → OpDecl

data Fixity

Data types for the different choices for the fixity of an operator.

Exported constructors:

• InfixOp :: Fixity

• InfixlOp :: Fixity

• InfixrOp :: Fixity

data FuncDecl

Data type for representing function declarations.

A function declaration in FlatCurry is a term of the form

(Func name k type (Rule [i1,...,ik] e))

and represents the function name with definition

name :: type

name x1...xk = e

where each ij is the index of the variable xj.

Note: the variable indices are unique inside each function declaration and are usually

numbered from 0

External functions are represented as

(Func name arity type (External s))

where s is the external name associated to this function.

Thus, a function declaration consists of the name, arity, type, and rule.

Exported constructors:

• Func :: (String,String) → Int → Visibility → TypeExpr → Rule → FuncDecl

data Rule

263

A rule is either a list of formal parameters together with an expression or an ”External”

tag.

Exported constructors:

• Rule :: [Int] → Expr → Rule

• External :: String → Rule

data CaseType

Data type for classifying case expressions. Case expressions can be either flexible or

rigid in Curry.

Exported constructors:

• Rigid :: CaseType

• Flex :: CaseType

data CombType

Data type for classifying combinations (i.e., a function/constructor applied to some

arguments).

Exported constructors:

• FuncCall :: CombType

FuncCall

– a call to a function where all arguments are provided

• ConsCall :: CombType

ConsCall

– a call with a constructor at the top, all arguments are provided

• FuncPartCall :: Int → CombType

FuncPartCall

– a partial call to a function (i.e., not all arguments are provided) where the parameter is

the number of missing arguments

• ConsPartCall :: Int → CombType

ConsPartCall

– a partial call to a constructor (i.e., not all arguments are provided) where the parameter

is the number of missing arguments

data Expr

264

Data type for representing expressions.

Remarks:

if-then-else expressions are represented as function calls:

(if e1 then e2 else e3)

is represented as

(Comb FuncCall ("Prelude","if_then_else") [e1,e2,e3])

Higher-order applications are represented as calls to the (external) function apply. For

instance, the rule

app f x = f x

is represented as

(Rule [0,1] (Comb FuncCall ("Prelude","apply") [Var 0, Var 1]))

A conditional rule is represented as a call to an external function cond where the first

argument is the condition (a constraint). For instance, the rule

equal2 x | x=:=2 = success

is represented as

(Rule [0]

(Comb FuncCall ("Prelude","cond")

[Comb FuncCall ("Prelude","=:=") [Var 0, Lit (Intc 2)],

Comb FuncCall ("Prelude","success") []]))

Exported constructors:

• Var :: Int → Expr

Var

– variable (represented by unique index)

• Lit :: Literal → Expr

Lit

– literal (Int/Float/Char constant)

265

• Comb :: CombType → (String,String) → [Expr] → Expr

Comb

– application (f e1 ... en) of function/constructor f with n<=arity(f)

• Let :: [(Int,Expr)] → Expr → Expr

Let

– introduction of local variables via (recursive) let declarations

• Free :: [Int] → Expr → Expr

Free

– introduction of free local variables

• Or :: Expr → Expr → Expr

Or

– disjunction of two expressions (used to translate rules with overlapping left-hand sides)

• Case :: CaseType → Expr → [BranchExpr] → Expr

Case

– case distinction (rigid or flex)

• Typed :: Expr → TypeExpr → Expr

Typed

– typed expression to represent an expression with a type declaration

data BranchExpr

Data type for representing branches in a case expression.

Branches ”(m.c x1...xn) -> e” in case expressions are represented as

(Branch (Pattern (m,c) [i1,...,in]) e)

where each ij is the index of the pattern variable xj, or as

(Branch (LPattern (Intc i)) e)

for integers as branch patterns (similarly for other literals like float or character con-

stants).

Exported constructors:

• Branch :: Pattern → Expr → BranchExpr

266

data Pattern

Data type for representing patterns in case expressions.

Exported constructors:

• Pattern :: (String,String) → [Int] → Pattern

• LPattern :: Literal → Pattern

data Literal

Data type for representing literals occurring in an expression or case branch. It is either

an integer, a float, or a character constant.

Exported constructors:

• Intc :: Int → Literal

• Floatc :: Float → Literal

• Charc :: Char → Literal

Exported functions:

readFlatCurry :: String → IO Prog

I/O action which parses a Curry program and returns the corresponding FlatCurry

program. Thus, the argument is the module path (without suffix ”.curry” or ”.lcurry”)

and the result is a FlatCurry term representing this program.

readFlatCurryWithParseOptions :: String → FrontendParams → IO Prog

I/O action which parses a Curry program with respect to some parser options and

returns the corresponding FlatCurry program. This I/O action is used by the standard

action readFlatCurry.

flatCurryFileName :: String → String

Transforms a name of a Curry program (with or without suffix ”.curry” or ”.lcurry”)

into the name of the file containing the corresponding FlatCurry program.

flatCurryIntName :: String → String

Transforms a name of a Curry program (with or without suffix ”.curry” or ”.lcurry”)

into the name of the file containing the corresponding FlatCurry program.

readFlatCurryFile :: String → IO Prog

I/O action which reads a FlatCurry program from a file in ”.fcy” format. In contrast to

readFlatCurry, this action does not parse a source program. Thus, the argument must

be the name of an existing file (with suffix ”.fcy”) containing a FlatCurry program in

”.fcy” format and the result is a FlatCurry term representing this program.

267

readFlatCurryInt :: String → IO Prog

I/O action which returns the interface of a Curry module, i.e., a FlatCurry program

containing only ”Public” entities and function definitions without rules (i.e., external

functions). The argument is the file name without suffix ”.curry” (or ”.lcurry”) and the

result is a FlatCurry term representing the interface of this module.

writeFCY :: String → Prog → IO ()

Writes a FlatCurry program into a file in ”.fcy” format. The first argument must be

the name of the target file (with suffix ”.fcy”).

showQNameInModule :: String → (String,String) → String

Translates a given qualified type name into external name relative to a module. Thus,

names not defined in this module (except for names defined in the prelude) are prefixed

with their module name.

A.5.11 Library FlatCurryGoodies

This library provides selector functions, test and update operations as well as some useful auxiliary

functions for FlatCurry data terms. Most of the provided functions are based on general trans-

formation functions that replace constructors with user-defined functions. For recursive datatypes

the transformations are defined inductively over the term structure. This is quite usual for trans-

formations on FlatCurry terms, so the provided functions can be used to implement specific trans-

formations without having to explicitly state the recursion. Essentially, the tedious part of such

transformations - descend in fairly complex term structures - is abstracted away, which hopefully

makes the code more clear and brief.

Exported types:

type Update a b = (b → b) → a → a

Exported functions:

trProg :: (String → [String] → [TypeDecl] → [FuncDecl] → [OpDecl] → a) →
Prog → a

transform program

progName :: Prog → String

get name from program

progImports :: Prog → [String]

get imports from program

progTypes :: Prog → [TypeDecl]

268

get type declarations from program

progFuncs :: Prog → [FuncDecl]

get functions from program

progOps :: Prog → [OpDecl]

get infix operators from program

updProg :: (String → String) → ([String] → [String]) → ([TypeDecl] →
[TypeDecl]) → ([FuncDecl] → [FuncDecl]) → ([OpDecl] → [OpDecl]) → Prog →
Prog

update program

updProgName :: (String → String) → Prog → Prog

update name of program

updProgImports :: ([String] → [String]) → Prog → Prog

update imports of program

updProgTypes :: ([TypeDecl] → [TypeDecl]) → Prog → Prog

update type declarations of program

updProgFuncs :: ([FuncDecl] → [FuncDecl]) → Prog → Prog

update functions of program

updProgOps :: ([OpDecl] → [OpDecl]) → Prog → Prog

update infix operators of program

allVarsInProg :: Prog → [Int]

get all program variables (also from patterns)

updProgExps :: (Expr → Expr) → Prog → Prog

lift transformation on expressions to program

rnmAllVarsInProg :: (Int → Int) → Prog → Prog

rename programs variables

updQNamesInProg :: ((String,String) → (String,String)) → Prog → Prog

update all qualified names in program

rnmProg :: String → Prog → Prog

rename program (update name of and all qualified names in program)

269

trType :: ((String,String) → Visibility → [Int] → [ConsDecl] → a) →
((String,String) → Visibility → [Int] → TypeExpr → a) → TypeDecl → a

transform type declaration

typeName :: TypeDecl → (String,String)

get name of type declaration

typeVisibility :: TypeDecl → Visibility

get visibility of type declaration

typeParams :: TypeDecl → [Int]

get type parameters of type declaration

typeConsDecls :: TypeDecl → [ConsDecl]

get constructor declarations from type declaration

typeSyn :: TypeDecl → TypeExpr

get synonym of type declaration

isTypeSyn :: TypeDecl → Bool

is type declaration a type synonym?

updType :: ((String,String) → (String,String)) → (Visibility → Visibility)

→ ([Int] → [Int]) → ([ConsDecl] → [ConsDecl]) → (TypeExpr → TypeExpr) →
TypeDecl → TypeDecl

update type declaration

updTypeName :: ((String,String) → (String,String)) → TypeDecl → TypeDecl

update name of type declaration

updTypeVisibility :: (Visibility → Visibility) → TypeDecl → TypeDecl

update visibility of type declaration

updTypeParams :: ([Int] → [Int]) → TypeDecl → TypeDecl

update type parameters of type declaration

updTypeConsDecls :: ([ConsDecl] → [ConsDecl]) → TypeDecl → TypeDecl

update constructor declarations of type declaration

updTypeSynonym :: (TypeExpr → TypeExpr) → TypeDecl → TypeDecl

update synonym of type declaration

270

updQNamesInType :: ((String,String) → (String,String)) → TypeDecl → TypeDecl

update all qualified names in type declaration

trCons :: ((String,String) → Int → Visibility → [TypeExpr] → a) → ConsDecl →
a

transform constructor declaration

consName :: ConsDecl → (String,String)

get name of constructor declaration

consArity :: ConsDecl → Int

get arity of constructor declaration

consVisibility :: ConsDecl → Visibility

get visibility of constructor declaration

consArgs :: ConsDecl → [TypeExpr]

get arguments of constructor declaration

updCons :: ((String,String) → (String,String)) → (Int → Int) → (Visibility →
Visibility) → ([TypeExpr] → [TypeExpr]) → ConsDecl → ConsDecl

update constructor declaration

updConsName :: ((String,String) → (String,String)) → ConsDecl → ConsDecl

update name of constructor declaration

updConsArity :: (Int → Int) → ConsDecl → ConsDecl

update arity of constructor declaration

updConsVisibility :: (Visibility → Visibility) → ConsDecl → ConsDecl

update visibility of constructor declaration

updConsArgs :: ([TypeExpr] → [TypeExpr]) → ConsDecl → ConsDecl

update arguments of constructor declaration

updQNamesInConsDecl :: ((String,String) → (String,String)) → ConsDecl →
ConsDecl

update all qualified names in constructor declaration

tVarIndex :: TypeExpr → Int

get index from type variable

271

domain :: TypeExpr → TypeExpr

get domain from functional type

range :: TypeExpr → TypeExpr

get range from functional type

tConsName :: TypeExpr → (String,String)

get name from constructed type

tConsArgs :: TypeExpr → [TypeExpr]

get arguments from constructed type

trTypeExpr :: (Int → a) → ((String,String) → [a] → a) → (a → a → a) →
TypeExpr → a

transform type expression

isTVar :: TypeExpr → Bool

is type expression a type variable?

isTCons :: TypeExpr → Bool

is type declaration a constructed type?

isFuncType :: TypeExpr → Bool

is type declaration a functional type?

updTVars :: (Int → TypeExpr) → TypeExpr → TypeExpr

update all type variables

updTCons :: ((String,String) → [TypeExpr] → TypeExpr) → TypeExpr → TypeExpr

update all type constructors

updFuncTypes :: (TypeExpr → TypeExpr → TypeExpr) → TypeExpr → TypeExpr

update all functional types

argTypes :: TypeExpr → [TypeExpr]

get argument types from functional type

resultType :: TypeExpr → TypeExpr

get result type from (nested) functional type

rnmAllVarsInTypeExpr :: (Int → Int) → TypeExpr → TypeExpr

rename variables in type expression

272

updQNamesInTypeExpr :: ((String,String) → (String,String)) → TypeExpr →
TypeExpr

update all qualified names in type expression

trOp :: ((String,String) → Fixity → Int → a) → OpDecl → a

transform operator declaration

opName :: OpDecl → (String,String)

get name from operator declaration

opFixity :: OpDecl → Fixity

get fixity of operator declaration

opPrecedence :: OpDecl → Int

get precedence of operator declaration

updOp :: ((String,String) → (String,String)) → (Fixity → Fixity) → (Int →
Int) → OpDecl → OpDecl

update operator declaration

updOpName :: ((String,String) → (String,String)) → OpDecl → OpDecl

update name of operator declaration

updOpFixity :: (Fixity → Fixity) → OpDecl → OpDecl

update fixity of operator declaration

updOpPrecedence :: (Int → Int) → OpDecl → OpDecl

update precedence of operator declaration

trFunc :: ((String,String) → Int → Visibility → TypeExpr → Rule → a) →
FuncDecl → a

transform function

funcName :: FuncDecl → (String,String)

get name of function

funcArity :: FuncDecl → Int

get arity of function

funcVisibility :: FuncDecl → Visibility

get visibility of function

273

funcType :: FuncDecl → TypeExpr

get type of function

funcRule :: FuncDecl → Rule

get rule of function

updFunc :: ((String,String) → (String,String)) → (Int → Int) → (Visibility →
Visibility) → (TypeExpr → TypeExpr) → (Rule → Rule) → FuncDecl → FuncDecl

update function

updFuncName :: ((String,String) → (String,String)) → FuncDecl → FuncDecl

update name of function

updFuncArity :: (Int → Int) → FuncDecl → FuncDecl

update arity of function

updFuncVisibility :: (Visibility → Visibility) → FuncDecl → FuncDecl

update visibility of function

updFuncType :: (TypeExpr → TypeExpr) → FuncDecl → FuncDecl

update type of function

updFuncRule :: (Rule → Rule) → FuncDecl → FuncDecl

update rule of function

isExternal :: FuncDecl → Bool

is function externally defined?

allVarsInFunc :: FuncDecl → [Int]

get variable names in a function declaration

funcArgs :: FuncDecl → [Int]

get arguments of function, if not externally defined

funcBody :: FuncDecl → Expr

get body of function, if not externally defined

funcRHS :: FuncDecl → [Expr]

rnmAllVarsInFunc :: (Int → Int) → FuncDecl → FuncDecl

rename all variables in function

274

updQNamesInFunc :: ((String,String) → (String,String)) → FuncDecl → FuncDecl

update all qualified names in function

updFuncArgs :: ([Int] → [Int]) → FuncDecl → FuncDecl

update arguments of function, if not externally defined

updFuncBody :: (Expr → Expr) → FuncDecl → FuncDecl

update body of function, if not externally defined

trRule :: ([Int] → Expr → a) → (String → a) → Rule → a

transform rule

ruleArgs :: Rule → [Int]

get rules arguments if it’s not external

ruleBody :: Rule → Expr

get rules body if it’s not external

ruleExtDecl :: Rule → String

get rules external declaration

isRuleExternal :: Rule → Bool

is rule external?

updRule :: ([Int] → [Int]) → (Expr → Expr) → (String → String) → Rule →
Rule

update rule

updRuleArgs :: ([Int] → [Int]) → Rule → Rule

update rules arguments

updRuleBody :: (Expr → Expr) → Rule → Rule

update rules body

updRuleExtDecl :: (String → String) → Rule → Rule

update rules external declaration

allVarsInRule :: Rule → [Int]

get variable names in a functions rule

rnmAllVarsInRule :: (Int → Int) → Rule → Rule

rename all variables in rule

275

updQNamesInRule :: ((String,String) → (String,String)) → Rule → Rule

update all qualified names in rule

trCombType :: a → (Int → a) → a → (Int → a) → CombType → a

transform combination type

isCombTypeFuncCall :: CombType → Bool

is type of combination FuncCall?

isCombTypeFuncPartCall :: CombType → Bool

is type of combination FuncPartCall?

isCombTypeConsCall :: CombType → Bool

is type of combination ConsCall?

isCombTypeConsPartCall :: CombType → Bool

is type of combination ConsPartCall?

missingArgs :: CombType → Int

varNr :: Expr → Int

get internal number of variable

literal :: Expr → Literal

get literal if expression is literal expression

combType :: Expr → CombType

get combination type of a combined expression

combName :: Expr → (String,String)

get name of a combined expression

combArgs :: Expr → [Expr]

get arguments of a combined expression

missingCombArgs :: Expr → Int

get number of missing arguments if expression is combined

letBinds :: Expr → [(Int,Expr)]

get indices of variables in let declaration

276

letBody :: Expr → Expr

get body of let declaration

freeVars :: Expr → [Int]

get variable indices from declaration of free variables

freeExpr :: Expr → Expr

get expression from declaration of free variables

orExps :: Expr → [Expr]

get expressions from or-expression

caseType :: Expr → CaseType

get case-type of case expression

caseExpr :: Expr → Expr

get scrutinee of case expression

caseBranches :: Expr → [BranchExpr]

get branch expressions from case expression

isVar :: Expr → Bool

is expression a variable?

isLit :: Expr → Bool

is expression a literal expression?

isComb :: Expr → Bool

is expression combined?

isLet :: Expr → Bool

is expression a let expression?

isFree :: Expr → Bool

is expression a declaration of free variables?

isOr :: Expr → Bool

is expression an or-expression?

isCase :: Expr → Bool

is expression a case expression?

277

trExpr :: (Int → a) → (Literal → a) → (CombType → (String,String) → [a] →
a) → ([(Int,a)] → a → a) → ([Int] → a → a) → (a → a → a) → (CaseType →
a → [b] → a) → (Pattern → a → b) → (a → TypeExpr → a) → Expr → a

transform expression

updVars :: (Int → Expr) → Expr → Expr

update all variables in given expression

updLiterals :: (Literal → Expr) → Expr → Expr

update all literals in given expression

updCombs :: (CombType → (String,String) → [Expr] → Expr) → Expr → Expr

update all combined expressions in given expression

updLets :: ([(Int,Expr)] → Expr → Expr) → Expr → Expr

update all let expressions in given expression

updFrees :: ([Int] → Expr → Expr) → Expr → Expr

update all free declarations in given expression

updOrs :: (Expr → Expr → Expr) → Expr → Expr

update all or expressions in given expression

updCases :: (CaseType → Expr → [BranchExpr] → Expr) → Expr → Expr

update all case expressions in given expression

updBranches :: (Pattern → Expr → BranchExpr) → Expr → Expr

update all case branches in given expression

updTypeds :: (Expr → TypeExpr → Expr) → Expr → Expr

update all typed expressions in given expression

isFuncCall :: Expr → Bool

is expression a call of a function where all arguments are provided?

isFuncPartCall :: Expr → Bool

is expression a partial function call?

isConsCall :: Expr → Bool

is expression a call of a constructor?

isConsPartCall :: Expr → Bool

278

is expression a partial constructor call?

isGround :: Expr → Bool

is expression fully evaluated?

allVars :: Expr → [Int]

get all variables (also pattern variables) in expression

rnmAllVars :: (Int → Int) → Expr → Expr

rename all variables (also in patterns) in expression

updQNames :: ((String,String) → (String,String)) → Expr → Expr

update all qualified names in expression

trBranch :: (Pattern → Expr → a) → BranchExpr → a

transform branch expression

branchPattern :: BranchExpr → Pattern

get pattern from branch expression

branchExpr :: BranchExpr → Expr

get expression from branch expression

updBranch :: (Pattern → Pattern) → (Expr → Expr) → BranchExpr → BranchExpr

update branch expression

updBranchPattern :: (Pattern → Pattern) → BranchExpr → BranchExpr

update pattern of branch expression

updBranchExpr :: (Expr → Expr) → BranchExpr → BranchExpr

update expression of branch expression

trPattern :: ((String,String) → [Int] → a) → (Literal → a) → Pattern → a

transform pattern

patCons :: Pattern → (String,String)

get name from constructor pattern

patArgs :: Pattern → [Int]

get arguments from constructor pattern

patLiteral :: Pattern → Literal

279

get literal from literal pattern

isConsPattern :: Pattern → Bool

is pattern a constructor pattern?

updPattern :: ((String,String) → (String,String)) → ([Int] → [Int]) → (Literal

→ Literal) → Pattern → Pattern

update pattern

updPatCons :: ((String,String) → (String,String)) → Pattern → Pattern

update constructors name of pattern

updPatArgs :: ([Int] → [Int]) → Pattern → Pattern

update arguments of constructor pattern

updPatLiteral :: (Literal → Literal) → Pattern → Pattern

update literal of pattern

patExpr :: Pattern → Expr

build expression from pattern

A.5.12 Library FlatCurryRead

This library defines operations to read a FlatCurry programs or interfaces together with all its

imported modules in the current load path.

Exported functions:

readFlatCurryWithImports :: String → IO [Prog]

Reads a FlatCurry program together with all its imported modules. The argument is

the name of the main module, possibly with a directory prefix.

readFlatCurryWithImportsInPath :: [String] → String → IO [Prog]

Reads a FlatCurry program together with all its imported modules in a given load path.

The arguments are a load path and the name of the main module.

readFlatCurryIntWithImports :: String → IO [Prog]

Reads a FlatCurry interface together with all its imported module interfaces. The

argument is the name of the main module, possibly with a directory prefix. If there is

no interface file but a FlatCurry file (suffix ”.fcy”), the FlatCurry file is read instead of

the interface.

readFlatCurryIntWithImportsInPath :: [String] → String → IO [Prog]

Reads a FlatCurry interface together with all its imported module interfaces in a given

load path. The arguments are a load path and the name of the main module. If there

is no interface file but a FlatCurry file (suffix ”.fcy”), the FlatCurry file is read instead

of the interface.

280

A.5.13 Library FlatCurryShow

This library contains operations to transform FlatCurry programs into string representations, either

in a FlatCurry format or in a Curry-like syntax.

This library contains

• show functions for a string representation of FlatCurry programs (showFlatProg,

showFlatType, showFlatFunc)

• functions for showing FlatCurry (type) expressions in (almost) Curry syntax (showCurryType,

showCurryExpr,...).

Exported functions:

showFlatProg :: Prog → String

Shows a FlatCurry program term as a string (with some pretty printing).

showFlatType :: TypeDecl → String

showFlatFunc :: FuncDecl → String

showCurryType :: ((String,String) → String) → Bool → TypeExpr → String

Shows a FlatCurry type in Curry syntax.

showCurryExpr :: ((String,String) → String) → Bool → Int → Expr → String

Shows a FlatCurry expressions in (almost) Curry syntax.

showCurryVar :: a → String

showCurryId :: String → String

Shows an identifier in Curry form. Thus, operators are enclosed in brackets.

A.5.14 Library FlatCurryXML

This library contains functions to convert FlatCurry programs into corresponding XML expressions

and vice versa. This can be used to store Curry programs in a way independent of a Curry system

or to use a Curry system, like PAKCS, as back end by other functional logic programming systems.

281

Exported functions:

flatCurry2XmlFile :: Prog → String → IO ()

Transforms a FlatCurry program term into a corresponding XML file.

flatCurry2Xml :: Prog → XmlExp

Transforms a FlatCurry program term into a corresponding XML expression.

xmlFile2FlatCurry :: String → IO Prog

Reads an XML file with a FlatCurry program and returns the FlatCurry program.

xml2FlatCurry :: XmlExp → Prog

Transforms an XML term into a FlatCurry program.

A.5.15 Library FlexRigid

This library provides a function to compute the rigid/flex status of a FlatCurry expression (right-

hand side of a function definition).

Exported types:

data FlexRigidResult

Datatype for representing a flex/rigid status of an expression.

Exported constructors:

• UnknownFR :: FlexRigidResult

• ConflictFR :: FlexRigidResult

• KnownFlex :: FlexRigidResult

• KnownRigid :: FlexRigidResult

Exported functions:

getFlexRigid :: Expr → FlexRigidResult

Computes the rigid/flex status of a FlatCurry expression. This function checks all cases

in this expression. If the expression has rigid as well as flex cases (which cannot be the

case for source level programs but might occur after some program transformations),

the result ConflictFR is returned.

282

B Markdown Syntax

This document describes the syntax of texts containing markdown elements. The markdown syntax

is intended to simplify the writing of texts whose source is readable and can be easily formatted,

e.g., as part of a web document. It is a subset of the original markdown syntax (basically, only

internal links and pictures are missing) supported by the Curry library Markdown.

B.1 Paragraphs and Basic Formatting

Paragraphs are separated by at least one line which is empty or does contain only blanks.

Inside a paragraph, one can emphasize text or also strongly emphasize text. This is done by

wrapping it with one or two or * characters:

emphasize

emphasize

__strong__

strong

Furthermore, one can also mark program code text by backtick quotes (‘):

The function ‘fib‘ computes Fibonacci numbers.

Web links can be put in angle brackets, like in the link http://www.google.com:

<http://www.google.com>

Currently, only links starting with ’http’ are recognized (so that one can also use HTML markup).

If one wants to put a link under a text, one can put the text in square brackets directly followed

by the link in round brackets, as in Google:

[Google](http://www.google.com)

If one wants to put a character that has a specific meaning in the syntax of Markdown, like * or , in

the output document, it should be escaped with a backslash, i.e., a backslash followed by a special

character in the source text is translated into the given character (this also holds for program code,

see below). For instance, the input text

word

produces the output ” word ”. The following backslash escapes are recognized:

\ backslash

‘ backtick

* asterisk

_ underscore

{} curly braces

[] square brackets

283

http://en.wikipedia.org/wiki/Markdown
http://curry-language.org/
http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/Markdown.html
http://www.google.com
http://www.google.com

() parentheses

hash symbol

+ plus symbol

- minus symbol (dash)

. dot

blank

! exclamation mark

B.2 Lists and Block Formatting

An unordered list (i.e., without numbering) is introduced by putting a star in front of the list

elements (where the star can be preceded by blanks). The individual list elements must contain

the same indentation, as in

* First list element

with two lines

* Next list element.

It contains two paragraphs.

* Final list element.

This is formatted as follows:

• First list element with two lines

• Next list element.

It contains two paragraphs.

• Final list element.

Instead of a star, one can also put dashes or plus to mark unordered list items. Furthermore, one

could nest lists. Thus, the input text

- Color:

+ Yellow

+ Read

+ Blue

- BW:

+ Black

+ White

is formatted as

• Color:

284

– Yellow

– Read

– Blue

• BW:

– Black

– White

Similarly, ordered lists (i.e., with numbering each item) are introduced by a number followed by

a dot and at least one blank. All following lines belonging to the same numbered item must have

the same indent as the first line. The actual value of the number is not important. Thus, the input

1. First element

99. Second

element

is formatted as

1. First element

2. Second element

A quotation block is marked by putting a right angle followed by a blank in front of each line:

> This is

> a quotation.

It will be formatted as a quote element:

This is a quotation.

A block containing program code starts with a blank line and is marked by intending each input

line by at least four spaces where all following lines must have at least the same indentation as the

first non-blank character of the first line:

f x y = let z = (x,y)

in (z,z)

The indentation is removed in the output:

f x y = let z = (x,y)

in (z,z)

To visualize the structure of a document, one can also put a line containing only blanks and at

least three dashes (stars would also work) in the source text:

This is formatted as a horizontal line:

285

B.3 Headers

The are two forms to mark headers. In the first form, one can ”underline” the main header in the

source text by equal signs and the second-level header by dashes:

First-level header

==================

Second-level header

Alternatively (and for more levels), one can prefix the header line by up to six hash characters,

where the number of characters corresponds to the header level (where level 1 is the main header):

Main header

Level 2 header

Level 3

Level 4

Level 5

Level 6

286

C Overview of the PAKCS Distribution

A schematic overview of the various components contained in the distribution of PAKCS and the

translation process of programs inside PAKCS is shown in Figure 3 on page 288. In this figure,

boxes denote different components of PAKCS and names in boldface denote files containing various

intermediate representations during the translation process (see Section D below). The PAKCS

distribution contains a front end for reading (parsing and type checking) Curry programs that can

be also used by other Curry implementations. The back end (formerly known as “Curry2Prolog”)

compiles Curry programs into Prolog programs. It also support constraint solvers for arithmetic

constraints over real numbers and finite domain constraints, and further libraries for GUI pro-

gramming, meta-programming etc. Currently, it does not implement encapsulated search in full

generality (only a strict version of findall is supported), and concurrent threads are not executed

in a fair manner.

287

Figure 3: Overview of PAKCS

288

D Auxiliary Files

During the translation and execution of a Curry program with PAKCS, various intermediate repre-

sentations of the source program are created and stored in different files which are shortly explained

in this section. If you use PAKCS, it is not necessary to know about these auxiliary files because

they are automatically generated and updated. You should only remember the command for delet-

ing all auxiliary files (“cleancurry”, see Section 1.1) to clean up your directories.

The various components of PAKCS create the following auxiliary files.

prog.fcy: This file contains the Curry program in the so-called “FlatCurry” representation where

all functions are global (i.e., lambda lifting has been performed) and pattern matching is

translated into explicit case/or expressions (compare Appendix A.1.4). This representation

might be useful for other back ends and compilers for Curry and is the basis doing meta-

programming in Curry. This file is implicitly generated when a program is read by PAKCS.

It can be also explicitly generated by the Curry front end

cymake --flat -ipakcshome /lib -ipakcshome /lib/meta prog

The FlatCurry representation of a Curry program is usually generated by the front-end after

parsing, type checking and eliminating local declarations.

If the Curry module M is stored in the directory dir, the corresponding FlatCurry pro-

gram is stored in the directory “dir/.curry”. This is also the case for hierarchical module

names: if the module D1.D2.M is stored in the directory dir (i.e., the module is actu-

ally stored in dir/D1/D2/M.curry), then the corresponding FlatCurry program is stored in

“dir/.curry/D1/D2/M.fcy”.

prog.fint: This file contains the interface of the program in the so-called “FlatCurry” represen-

tation, i.e., it is similar to prog.fcy but contains only exported entities and the bodies of all

functions omitted (i.e., “external”). This representation is useful for providing a fast access

to module interfaces. It can be also implicitly generated by the Curry front end

cymake --flat -ipakcshome /lib -ipakcshome /lib/meta prog

and stored in the same directory as prog.fcy.

prog.pl: This file contains a Prolog program as the result of translating the Curry program with

PAKCS.

If the Curry module M is stored in the directory dir, the corresponding Prolog program

is stored in the directory “dir/.curry/pakcs”. This is also the case for hierarchical module

names: if the module D1.D2.M is stored in the directory dir (i.e., the module is actu-

ally stored in dir/D1/D2/M.curry), then the corresponding Prolog program is stored in

“dir/.curry/pakcs/D1/D2/prog.pl”.

prog.po: This file contains the Prolog program prog.pl in an intermediate format for faster loading.

This file is stored in the same directory as prog.pl.

prog: This file contains the executable after compiling and saving a program with PAKCS (see

Section 2.2).

289

E External Functions

Currently, PAKCS has no general interface to external functions. Therefore, if a new external func-

tion should be added to the system, this function must be declared as external in the Curry source

code and then an implementation for this external function must be inserted in the corresponding

back end. An external function is defined as follows in the Curry source code:

1. Add a type declaration for the external function somewhere in the body of the appropriate

file (usually, the prelude or some system module).

2. For external functions it is not allowed to define any rule since their semantics is determined

by an external implementation. Instead of the defining rules, you have to write

f external

somewhere in the file containing the type declaration for the external function f.

For instance, the addition on integers can be declared as an external function as follows:

(+) :: Int → Int → Int

(+) external

The further modifications to be done for an inclusion of an external function has to be done in the

back end. A new external function is added to the back end of PAKCS by informing the compiler

about the existence of an external function and adding an implementation of this function in the

run-time system. Therefore, the following items must be added in the PAKCS compiler system:

1. If the Curry module Mod contains external functions, there must be a file named Mod.prim_c2p

containing the specification of these external functions. The contents of this file is in XML

format and has the following general structure:13

<primitives>

specification of external function f1
. . .

specification of external function fn
</primitives>

The specification of an external function f with arity n has the form

<primitive name="f" arity="n">

<library>lib</library>

<entry>pred</entry>

</primitive>

where lib is the Prolog library (stored in the directory of the Curry module or in the global

directory pakcshome /curry2prolog/lib_src) containing the code implementing this function

and pred is a predicate name in this library implementing this function. Note that the

function f must be declared in module Mod: either as an external function or defined in

13http://www.informatik.uni-kiel.de/~pakcs/primitives.dtd contains a DTD describing the exact structure

of these files.

290

http://www.informatik.uni-kiel.de/~pakcs/primitives.dtd

Curry by equations. In the latter case, the Curry definition is not translated but calls to this

function are redirected to the Prolog code specified above.

Furthermore, the list of specifications can also contain entries of the form

<ignore name="f" arity="n" />

for functions f with arity n that are declared in module Mod but should be ignored for code

generation, e.g., since they are never called w.r.t. to the current implementation of external

functions. For instance, this is useful when functions that can be defined in Curry should be

(usually more efficiently) are implemented as external functions.

Note that the arguments are passed in their current (possibly unevaluated) form. Thus, if

the external function requires the arguments to be evaluated in a particular form, this must

be done before calling the external function. For instance, the external function for adding

two integers requires that both arguments must be evaluated to non-variable head normal

form (which is identical to the ground constructor normal form). Therefore, the function “+”

is specified in the prelude by

(+) :: Int → Int → Int

x + y = (prim_Int_plus $# y) $# x

prim_Int_plus :: Int → Int → Int

prim_Int_plus external

where prim_Int_plus is the actual external function implementing the addition on integers.

Consequently, the specification file Prelude.prim_c2p has an entry of the form

<primitive name="prim_Int_plus" arity="2">

<library>prim_standard</library>

<entry>prim_Int_plus</entry>

</primitive>

where the Prolog library prim_standard.pl contains the Prolog code implementing this func-

tion.

2. For most external functions, a standard interface is generated by the compiler so that an

n-ary function can be implemented by an (n + 1)-ary predicate where the last argument

must be instantiated to the result of evaluating the function. The standard interface can

be used if all arguments are ensured to be fully evaluated (e.g., see definition of (+) above)

and no suspension control is necessary, i.e., it is ensured that the external function call

does not suspend for all arguments. Otherwise, the raw interface (see below) must be used.

For instance, the Prolog code implementing prim_Int_plus contained in the Prolog library

prim_standard.pl is as follows (note that the arguments of (+) are passed in reverse order to

prim_Int_plus in order to ensure a left-to-right evaluation of the original arguments by the

calls to ($#)):

prim_Int_plus(Y,X,R) :- R is X+Y.

3. The standard interface for I/O actions, i.e., external functions with result type IO a, assumes

291

that the I/O action is implemented as a predicate (with a possible side effect) that instantiates

the last argument to the returned value of type “a”. For instance, the primitive predicate

prim_getChar implementing prelude I/O action getChar can be implemented by the Prolog

code

prim_getChar(C) :- get_code(N), char_int(C,N).

where char_int is a predicate relating the internal Curry representation of a character with

its ASCII value.

4. If some arguments passed to the external functions are not fully evaluated or the external

function might suspend, the implementation must follow the structure of the PAKCS run-

time system by using the raw interface. In this case, the name of the external entry must

be suffixed by “[raw]” in the prim_c2p file. For instance, if we want to use the raw interface

for the external function prim_Int_plus, the specification file Prelude.prim_c2p must have an

entry of the form

<primitive name="prim_Int_plus" arity="2">

<library>prim_standard</library>

<entry>prim_Int_plus[raw]</entry>

</primitive>

In the raw interface, the actual implementation of an n-ary external function consists of the

definition of an (n + 3)-ary predicate pred. The first n arguments are the corresponding

actual arguments. The (n + 1)-th argument is a free variable which must be instantiated

to the result of the function call after successful execution. The last two arguments control

the suspension behavior of the function (see [5] for more details): The code for the predicate

pred should only be executed when the (n + 2)-th argument is not free, i.e., this predicate

has always the SICStus-Prolog block declaration

?- block pred(?,. . .,?,-,?).

In addition, typical external functions should suspend until the actual arguments are instan-

tiated. This can be ensured by a call to ensureNotFree or ($#) before calling the external

function. Finally, the last argument (which is a free variable at call time) must be unified

with the (n + 2)-th argument after the function call is successfully evaluated (and does not

suspend). Additionally, the actual (evaluated) arguments must be dereferenced before they

are accessed. Thus, an implementation of the external function for adding integers is as

follows in the raw interface:

?- block prim_Int_plus(?,?,?,-,?).

prim_Int_plus(RY,RX,Result,E0,E) :-

deref(RX,X), deref(RY,Y), Result is X+Y, E0=E.

Here, deref is a predefined predicate for dereferencing the actual argument into a constant

(and derefAll for dereferencing complex structures).

The Prolog code implementing the external functions must be accessible to the run-time system

of PAKCS by putting it into the directory containing the corresponding Curry module or into the

292

system directory pakcshome /curry2prolog/lib_src. Then it will be automatically loaded into the

run-time environment of each compiled Curry program.

Note that arbitrary functions implemented in C or Java can be connected to PAKCS by using

the corresponding interfaces of the underlying Prolog system.

293

Index

<, 134

***, 95

*., 66, 93

*#, 60, 64

+., 66, 92

+#, 60, 63

---, 28

--compact, 38

--fcypp, 38

-., 66, 92

-#, 60, 64

-fpopt, 38

., 67

./=, 67

./=., 54

.=., 54

.==, 67

.&&, 67

.pakcsrc, 15

.<, 68

.<., 54

.<=, 67

.<=., 54

.>, 68

.>., 55

.>=, 68

.>=., 54

/., 66, 93

//, 168

/=#, 60, 64

/\, 53, 56, 60

:!, 10

:&, 175

:add, 9

:browse, 9

:cd, 10

:coosy, 11

:dir, 10

:edit, 10

:eval, 9

:fork, 11

:help, 8

:interface, 10

:load, 9

:modules, 10

:peval, 11

:programs, 10

:quit, 9

:reload, 9

:save, 11

:set, 10

:set path, 7

:show, 10

:source, 10

:type, 9

:usedimports, 10

:xml, 9, 11

==>, 53

=#, 60, 64

@, 17

@author, 28

@cons, 28

@param, 28

@return, 28

@version, 28

#/=#, 64

#/\#, 65

#=#, 64

#=>#, 65

#<=#, 64

#<=>#, 65

#<#, 64

#>=#, 64

#>#, 64

#\/#, 65

$$, 140

&&&, 95

PAKCS, 8

{...}, 18

<*>, 134

<+>, 140

<., 66

294

<.>, 87

<//>, 141

</>, 89, 140

<:, 69

<=., 66

<=:, 69

<=#, 60, 64

<=>, 53

<#, 60, 64

<$

<$

$>, 141

<$+$>, 140

<$$>, 141

<>, 83, 140

>., 66

>:, 69

>=., 66

>=:, 69

>=#, 60, 64

>#, 60, 64

>>-, 132

>>>, 134

~>, 237

\\, 53, 128

^, 111

^., 93

aBool, 224

abortTransaction, 84

ABranchExpr, 244

abs, 112

AbstractCurry, 47

abstractCurryFileName, 235

aChar, 224

acos, 94

acosh, 94

adapt, 223

adaptWSpec, 205, 212

addAttr, 197

addAttrs, 197

addCanvas, 110

addClass, 197

addCookies, 190

addCurrySubdir, 80

addDays, 164

addDB, 73

addExtension, 87

addFormParam, 191

addHeadings, 194

addHours, 164

addListToFM, 170

addListToFM C, 170

addMinutes, 164

addMonths, 164

addPageParam, 191

addRegionStyle, 109

address, 193

addSeconds, 164

addSound, 191

addToFM, 170

addToFM C, 170

addTrailingPathSeparator, 89

addYears, 165

AExpr, 243

aFloat, 224

AFuncDecl, 243

aInt, 224

align, 139

all different, 65

allC, 61, 70

allCHR, 54, 56

allDBInfos, 120, 125

allDBKeyInfos, 120, 125

allDBKeys, 120, 125, 127

allDifferent, 61, 65

allfails, 12

allSolutions, 91

allValues, 90

allVars, 255, 279

allVarsInFunc, 251, 274

allVarsInProg, 245, 269

allVarsInRule, 252, 275

alwaysRequired, 258

anchor, 193

andC, 60, 69

andCHR, 54, 56

angles, 145

295

annExpr, 257

annPattern, 257

annRule, 257

answerEncText, 190

answerText, 190

anyC, 70

anyPrim, 55

APattern, 244

appendStyledValue, 109

appendValue, 109

applyAt, 168

applyE, 239

applyF, 239

applyJust, 239

applyMaybe, 239

applyV, 239

AProg, 243

ArgDescr, 96

ArgOrder, 96

args, 14

argTypes, 236, 249, 272

Arity, 229, 243

Array, 167

ARule, 243

as-pattern, 17

asin, 94

asinh, 94

assert, 75, 83

assertEqual, 50

assertEqualIO, 50

assertIO, 50, 75

Assertion, 50

assertSolutions, 50

assertTrue, 50

assertValues, 50

aString, 224

at, 147

atan, 94

atanh, 94

attr, 223

backslash, 147

bar, 147

baseName, 86

baseType, 237

best, 91

bgBlack, 150

bgBlue, 150

bgCyan, 150

bgGreen, 150

bgMagenta, 150

bgRed, 150

bgWhite, 150

bgYellow, 150

binomial, 112

bitAnd, 112

bitNot, 112

bitOr, 112

bitTrunc, 112

bitXor, 113

black, 149

blink, 193

blinkRapid, 149

blinkSlow, 149

block, 195

blockstyle, 195

blue, 149

bold, 148, 193

Boolean, 67

boolType, 238

both, 95

bound, 68

bquotes, 145

braces, 145

brackets, 145

BranchExpr, 266

branchExpr, 255, 279

branchPattern, 255, 279

breakline, 194

browse, 92

browseList, 92

buildGr, 175

Button, 110

button, 195

CalendarTime, 163

calendarTimeToString, 164

callFrontend, 82

296

callFrontendWithParams, 82

CanvasItem, 105

CanvasScroll, 110

caseBranches, 253, 277

caseExpr, 253, 277

CaseType, 264

caseType, 253, 277

cat, 142

categorizeByItemKey, 185

catMaybes, 132

cBranch, 239

CCaseType, 234

cChar, 240

CConsDecl, 230

center, 193

CExpr, 233

CField, 229

CFieldDecl, 230

CFixity, 231

cfunc, 238

CFuncDecl, 231

CgiEnv, 186

CgiRef, 186

CgiServerMsg, 199

cgiServerRegistry, 200

char, 145, 223

check, 68

checkAssertion, 51

checkbox, 195

checkedbox, 195

childFamilies, 184

children, 184

choiceSPEP, 137

choose, 159

chooseColor, 111

chooseValue, 159

CHR, 53

chr2success, 55

chrsToGoal, 54

cleancurry, 6

cleanDB, 121, 126, 127

CLiteral, 233

CLocalDecl, 232

ClockTime, 163

clockTimeToInt, 164

closeDBHandles, 126

Cmd, 110

cmpChar, 182

cmpList, 182

cmpString, 182

cmtfunc, 238

code, 193

col, 107

colon, 147

Color, 106

ColVal, 122

combArgs, 253, 276

combine, 89, 140, 168

combineSimilar, 168

combName, 253, 276

CombType, 264

combType, 253, 276

comma, 147

Command, 110

comment

documentation, 28

compact, 12

compareAnyTerm, 166

compareCalendarTime, 165

compareClockTime, 165

compareDate, 165

compileCHR, 55

compose, 141

computeCompactFlatCurry, 259

ConfCollection, 104

ConfigButton, 110

ConfItem, 101

connectPort, 46, 137

connectPortRepeat, 136

connectPortWait, 136

connectToCommand, 116

connectToSocket, 134, 161

connectToSocketRepeat, 133

connectToSocketWait, 134

cons, 169

consArgs, 247, 271

consArity, 247, 271

ConsDecl, 262

297

consfail, 12

consName, 236, 247, 271

constF, 239

Constraint, 62

consVis, 236

consVisibility, 247, 271

Context, 174

context, 176

Context’, 174

cookieForm, 190

CookieParam, 188

coordinates, 197

COpDecl, 231

copyFile, 77

cos, 93

cosh, 94

count, 61, 65, 68

CPattern, 232

cpnsAlive, 70

cpnsShow, 70

cpnsStart, 70

cpnsStop, 70

cpvar, 240

createDirectory, 76

createDirectoryIfMissing, 76

CRhs, 232

crossout, 149

CRule, 232

CStatement, 233

ctDay, 163

ctHour, 163

ctMin, 163

ctMonth, 163

ctSec, 163

ctTZ, 163

ctvar, 240

CTVarIName, 228

ctYear, 163

CTypeDecl, 229

CTypeExpr, 230

Curry mode, 15

Curry2Prolog, 287

curryCompiler, 78

curryCompilerMajorVersion, 78

curryCompilerMinorVersion, 78

CurryDoc, 28

currydoc, 29

CURRYPATH, 7, 13, 37

CurryProg, 229

curryRuntime, 78

curryRuntimeMajorVersion, 78

curryRuntimeMinorVersion, 78

currySubdir, 79

CurryTest, 33

currytest, 33

cvar, 240

CVarIName, 229

CVisibility, 229

cyan, 150

cycle, 131

cyclic structure, 16

cymake, 289

database programming, 35

dateType, 238

daysOfMonth, 165

debug, 11, 14

debug mode, 11, 14

debugTcl, 107

Decomp, 174

defaultEncoding, 190

defaultOptions, 241

defaultParams, 80

defaultRequired, 258

deg, 177

deg’, 178

delEdge, 175

delEdges, 176

delete, 128, 180

deleteBy, 128

deleteDB, 73

deleteDBEntries, 121, 126

deleteDBEntry, 121, 126, 127

deleteRBT, 181, 183

delFromFM, 170

delListFromFM, 171

delNode, 175

delNodes, 176

298

deqHead, 169

deqInit, 169

deqLast, 169

deqLength, 169

deqReverse, 169

deqTail, 169

deqToList, 169

digitToInt, 52

dirName, 85

dlist, 194

Doc, 137

documentation comment, 28

documentation generator, 28

doesDirectoryExist, 76

doesFileExist, 76

domain, 60, 63, 248, 272

doneT, 74, 124

doSend, 46, 136

dot, 147

doubleArrow, 147

doubleColon, 147

dquote, 146

dquotes, 145

dropDrive, 88

dropExtension, 87

dropExtensions, 88

dropFileName, 88

dropTrailingPathSeparator, 89

Dynamic, 82, 122

dynamic, 83

dynamicExists, 73

eBool, 224

eChar, 224

Edge, 173

edges, 178

eEmpty, 224

eFloat, 224

eInt, 224

element, 223

elemFM, 172

elemIndex, 128

elemIndices, 128

elemRBT, 181

elemsOf, 220

eltsFM, 172

Emacs, 15

emap, 179

emphasize, 193

empty, 134, 137, 169, 175, 180, 223

emptyDefaultArray, 168

emptyErrorArray, 168

emptyFM, 170

emptySetRBT, 181

emptyTableRBT, 183

encapsulated search, 7

enclose, 145

encloseSep, 143

encloseSepSpaced, 143

Encoding, 220

entity relationship diagrams, 35

EntryScroll, 110

eOpt, 225

eqFM, 171

equal, 177

equalFilePath, 89

equals, 147

ERD2Curry, 35

erd2curry, 35

eRep, 225

eRepSeq1, 225

eRepSeq2, 226

eRepSeq3, 226

eRepSeq4, 227

eRepSeq5, 227

eRepSeq6, 228

errorT, 74, 124

eSeq1, 225

eSeq2, 225

eSeq3, 226

eSeq4, 227

eSeq5, 227

eSeq6, 228

eString, 224

evalChildFamilies, 184

evalChildFamiliesIO, 185

evalCmd, 116

evalFamily, 184

299

evalFamilyIO, 185

evalSpace, 152

evalTime, 152

evaluate, 68

even, 113

Event, 103

exclusiveIO, 117

execCmd, 116

exists, 68

existsDBKey, 120, 125, 127

exitGUI, 109

exitWith, 162

exp, 93

expires, 191

Expr, 264

extended, 81

external function, 290

extSeparator, 87

factorial, 112

fail, 53, 56

failT, 74, 124

faint, 149

false, 67

family, 184

FCYPP, 38

fcypp, 38

fd, 60

FDConstr, 59

FDExpr, 59

FDRel, 57

field label, 18

FilePath, 86

fileSize, 76

fileSuffix, 86

fill, 147

fillBreak, 148

fillCat, 142

fillEncloseSep, 144

fillEncloseSepSpaced, 144

fillSep, 142

filterFM, 171

find, 128

findall, 7, 92

findFileInLoadPath, 80

findfirst, 7, 92

findIndex, 128

findIndices, 128

firewall, 47

first, 12, 95

fix, 95

Fixity, 263

FlatCurry, 47

flatCurry2Xml, 282

flatCurry2XmlFile, 282

flatCurryFileName, 267

flatCurryIntName, 267

FlexRigidResult, 282

float, 146, 223

floatType, 238

FM, 170

fmSortBy, 172

fmToList, 172

fmToListPreOrder, 172

focusInput, 110

fold, 184

foldChildren, 185

foldFM, 171

foldValues, 160

footer, 192

form, 190

formatMarkdownFileAsPDF, 204

formatMarkdownInputAsPDF, 204

formBodyAttr, 190

formCSS, 190

formEnc, 190

formMetaInfo, 190

FormParam, 187

free, 11

free variable mode, 9, 11

freeExpr, 253, 277

freeVars, 253, 277

fromJust, 132

fromLeft, 85

fromMarkdownText, 203

fromMaybe, 132

fromRight, 85

FrontendParams, 78

300

FrontendTarget, 77

fullPath, 81

funcArgs, 251, 274

funcArity, 250, 273

funcBody, 251, 274

FuncDecl, 263

funcName, 236, 250, 273

funcRHS, 251, 274

funcRule, 250, 274

function

external, 290

functional pattern, 16

funcType, 250, 274

funcVis, 236

funcVisibility, 250, 273

garbageCollect, 152

garbageCollectorOff, 152

garbageCollectorOn, 152

GDecomp, 174

gelem, 177

generateCompactFlatCurryFile, 258

germanLatexDoc, 198

getAbsolutePath, 77

getAllFailures, 49

getAllSolutions, 49

getAllValues, 49, 90

getArgs, 162

getAssoc, 117

getClockTime, 163

getContents, 115

getContentsOfUrl, 204

getCookies, 197

getCPUTime, 161

getCurrentDirectory, 76

getCursorPosition, 109

getDB, 73, 124

getDBInfo, 120, 126, 127

getDBInfos, 121, 126, 127

getDirectoryContents, 76

getDynamicSolution, 83

getDynamicSolutions, 83

getElapsedTime, 161

getEnviron, 162

getFileInPath, 86

getFlexRigid, 282

getHomeDirectory, 76

getHostname, 162

getKnowledge, 83

getLoadPath, 80

getLoadPathForFile, 80

getLoadPathForModule, 80

getLocalTime, 164

getModificationTime, 76

getOneSolution, 49

getOneValue, 49

getOpenFile, 111

getOpenFileWithTypes, 111

getOpt, 97

getOpt’, 97

getPID, 162

getPortInfo, 70

getProcessInfos, 152

getProgName, 162

getRandomSeed, 179

getRcVar, 79

getRcVars, 79

getSaveFile, 111

getSaveFileWithTypes, 111

getSearchPath, 87

getSearchTree, 49

getSomeValue, 90

getTemporaryDirectory, 77

getUrlParameter, 197

getValue, 109

Global, 97

global, 98

GlobalSpec, 97

gmap, 178

Goal, 53, 56

Graph, 174

green, 149

ground, 55

group, 129, 138

groupBy, 129

groupByIndex, 121, 127

guardedRule, 238

GuiPort, 99

301

GVar, 98

gvar, 99

h1, 192

h2, 192

h3, 192

h4, 192

h5, 192

Handle, 113

hang, 139

hardline, 138

hasDrive, 88

hasExtension, 87

hasTrailingPathSeparator, 89

hcat, 142

hClose, 114

headedTable, 194

header, 192

hempty, 192

hEncloseSep, 143

hFlush, 114

hGetChar, 115

hGetContents, 115

hGetLine, 115

hiddenfield, 196

hIsEOF, 114

hIsReadable, 116

hIsTerminalDevice, 116

hIsWritable, 116

hPrint, 116

hPutChar, 115

hPutStr, 115

hPutStrLn, 115

hReady, 115

href, 193

hrule, 194

hSeek, 114

hsep, 141

htmldir, 82

HtmlExp, 186

HtmlForm, 187

HtmlHandler, 186

htmlIsoUmlauts, 196

HtmlPage, 189

htmlQuote, 196

htmlSpecialChars2tex, 198

htxt, 192

htxts, 192

hWaitForInput, 114

hWaitForInputOrMsg, 114

hWaitForInputs, 114

hWaitForInputsOrMsg, 115

i2f, 66, 93

identicalVar, 166

idOfCgiRef, 190

ilog, 111

image, 194

imageButton, 195

inCurrySubdir, 79

inCurrySubdirModule, 79

indeg, 177

indeg’, 178

indent, 140

index, 120, 127

indomain, 65

init, 130

inits, 130

inject, 91

inline, 195

inn, 177

inn’, 178

insEdge, 175

insEdges, 176

insertBy, 130

insertMultiRBT, 181

insertRBT, 181

insNode, 175

insNodes, 175

installDir, 78

int, 146, 222

interactive, 12

intercalate, 129

intersect, 128

intersectBy, 129

intersectFM, 171

intersectFM C, 171

intersectRBT, 181

302

intersperse, 129

intForm, 199

intFormMain, 199

intToDigit, 52

intType, 238

inverse, 149

invf1, 95

invf2, 95

invf3, 95

invf4, 95

invf5, 95

IOMode, 113

IORef, 116

ioType, 238

isAbsolute, 85, 90

isAlpha, 52

isAlphaNum, 52

isAscii, 51

isAsciiLower, 51

isAsciiUpper, 51

isBaseType, 236

isBigComment, 260

isBinDigit, 52

isCase, 254, 277

isCode, 260

isComb, 254, 277

isCombTypeConsCall, 252, 276

isCombTypeConsPartCall, 252, 276

isCombTypeFuncCall, 252, 276

isCombTypeFuncPartCall, 252, 276

isComment, 260

isConsCall, 255, 278

isConsPartCall, 255, 278

isConsPattern, 256, 280

isControl, 52

isDigit, 52

isDrive, 88

isEmpty, 138, 159, 169, 176, 180

isEmptyFM, 172

isEmptySetRBT, 181

isEmptyTable, 183

isEOF, 114

isExternal, 250, 274

isExtSeparator, 87

isFree, 254, 277

isFuncCall, 255, 278

isFuncPartCall, 255, 278

isFunctionalType, 236

isFuncType, 248, 272

isGround, 166, 255, 279

isHexDigit, 52

isInfixOf, 130

isIOReturnType, 236

isIOType, 236

isJust, 132

isKnown, 84

isLatin1, 51

isLeft, 85

isLet, 254, 277

isLetter, 260

isLit, 253, 277

isLower, 52

isMeta, 260

isModuleHead, 260

isNothing, 132

isOctDigit, 52

isOr, 254, 277

isPathSeparator, 87

isPolyType, 236

isPosix, 162

isPrefixOf, 130

isPrelude, 237

isqrt, 112

isRelative, 90

isRight, 85

isRuleExternal, 251, 275

isSearchPathSeparator, 87

isSmallComment, 260

isSpace, 52

isSuffixOf, 130

isTCons, 248, 272

isText, 260

isTVar, 248, 272

isTypeSyn, 246, 270

isUpper, 52

isValid, 90

isVar, 165, 253, 277

isWindows, 162

303

italic, 149, 193

joinDrive, 88

joinModuleIdentifiers, 79

joinPath, 89

JSBranch, 119

jsConsTerm, 120

JSExp, 117

JSFDecl, 119

JSStat, 118

Key, 122

keyOrder, 172

KeyPred, 122

keysFM, 172

lab, 176

lab’, 177

labEdges, 178

label, 18

labeling, 65

LabelingOption, 62

labNode’, 177

labNodes, 178

labUEdges, 179

labUNodes, 179

langle, 146

larrow, 147

last, 130

lbrace, 146

lbracket, 146

LEdge, 173

lefts, 84

leqChar, 182

leqCharIgnoreCase, 182

leqLexGerman, 182

leqList, 182

leqString, 182

leqStringIgnoreCase, 182

let, 16

letBinds, 253, 276

letBody, 253, 277

line, 138

linebreak, 138

linesep, 138

list, 144

list2ac, 240

list2CategorizedHtml, 185

ListBoxScroll, 110

listenOn, 133, 161

listenOnFresh, 161

listPattern, 239

listSpaced, 144

listToDefaultArray, 168

listToDeq, 169

listToErrorArray, 168

listToFM, 170

listToMaybe, 132

listType, 237

litem, 194

Literal, 267

literal, 252, 276

LNode, 173

log, 93

logBase, 93

logfile, 82

lookup, 180

lookupFileInLoadPath, 80

lookupFileInPath, 86

lookupFM, 172

lookupModuleSourceInLoadPath, 80

lookupRBT, 183

lookupWithDefaultFM, 172

lparen, 146

LPath, 174

lpre, 177

lpre’, 178

lsuc, 176

lsuc’, 178

magenta, 149

MailOption, 201

main, 70

mainWUI, 211, 219

makeRelative, 89

makeValid, 90

mapAccumL, 131

mapAccumR, 131

mapChildFamilies, 184

304

mapChildFamiliesIO, 185

mapChildren, 184

mapChildrenIO, 185

mapFamily, 184

mapFamilyIO, 185

mapFM, 171

mapMaybe, 132

mapMMaybe, 132

mapT, 74, 124

mapT , 74, 124

mapValues, 159

markdown, 28

MarkdownDoc, 202

MarkdownElem, 202

markdownEscapeChars, 203

markdownText2CompleteHTML, 203

markdownText2CompleteLaTeX, 204

markdownText2HTML, 203

markdownText2LaTeX, 203

markdownText2LaTeXWithFormat, 203

match, 176

matchAny, 175

matchHead, 169

matchLast, 169

matrix, 107

max3, 112

maxFM, 172

maximize, 67

maximum, 130

maximumBy, 131

maximumFor, 66

maxlist, 112

maxValue, 160

maybeToList, 132

maybeType, 238

MContext, 174

MenuItem, 104

mergeSort, 182

min3, 112

minFM, 172

minimize, 66

minimum, 131

minimumBy, 131

minimumFor, 66

minlist, 112

minusFM, 171

minValue, 160

missingArgs, 252, 276

missingCombArgs, 253, 276

mkGraph, 175

mkUGraph, 175

MName, 228

modifyIORef, 117

modNameToPath, 79

modsOfType, 236

mplus, 132

multipleSelection, 196

nav, 193

nbsp, 192

neg, 65, 67

neighbors, 176

neighbors’, 177

nest, 138

newDBEntry, 121, 126, 127

newDBKeyEntry, 121, 126

newIORef, 117

newNamedObject, 137

newNodes, 178

newObject, 137

newTreeLike, 180

nextBoolean, 179

nextInt, 179

nextIntRange, 179

nmap, 179

noChildren, 184

Node, 173

node’, 177

nodeRange, 176

nodes, 178

noGuard, 239

noHandlerPage, 200

noindex, 30

noNodes, 176

nonvar, 55

normalise, 89

notEmpty, 159

nub, 128

305

nubBy, 128

odd, 113

olist, 194

on, 95

once, 91

onlyindex, 30

OpDecl, 262

openFile, 114

openNamedPort, 46, 47, 136

openPort, 46, 136

openProcessPort, 136

opFixity, 249, 273

opName, 249, 273

opPrecedence, 249, 273

opt, 223

OptDescr, 96

Option, 58, 257

Options, 240

options, 241

orC, 70

orExps, 253, 277

out, 177

out’, 178

outdeg, 177

outdeg’, 178

overlapWarn, 81

page, 191

pageBodyAttr, 191

pageCSS, 191

pageEnc, 191

pageLinkInfo, 191

pageMetaInfo, 191

PageParam, 189

pakcs, 8

PAKCS_LOCALHOST, 47

PAKCS_OPTION_FCYPP, 38

PAKCS_SOCKET, 47

PAKCS_TRACEPORTS, 47

pakcsrc, 15

par, 192

parens, 145

parensIf, 145

parseHtmlString, 200

Parser, 134

parser, 14

ParserRep, 134

parseXmlString, 221

partition, 69, 129

partitionEithers, 85

password, 195

patArgs, 256, 279

patCons, 256, 279

patExpr, 256, 280

Path, 174

path, 7, 13

pathSeparator, 86

pathSeparatorChar, 85

pathSeparators, 86

patLiteral, 256, 279

Pattern, 267

pattern

functional, 16

pChar, 239

permutations, 129

permute, 69

persistent, 83

persistentSQLite, 125

pi, 92

ping, 136

plainCode, 260

PlClause, 153

PlGoal, 153

plList, 154

PlTerm, 153

plusFM, 171

plusFM C, 171

pNil, 239

popupMessage, 110

Port, 46, 135

ports, 46

pow, 111

ppCExpr, 242

ppCFuncDecl, 242

ppCFuncDeclWithoutSig, 242

ppCFuncSignature, 242

ppCLiteral, 242

306

ppCOpDecl, 242

ppCPattern, 242

ppCStatement, 242

ppCTypeDecl, 242

ppCTypeExpr, 242

ppCurryProg, 241

ppExports, 241

ppImports, 242

ppMName, 241

ppName, 242

ppQName, 242

pPrint, 137

pre, 176, 193, 234

pre’, 177

pretty, 150

prettyCurryProg, 241

printdepth, 13

printfail, 12

printMemInfo, 152

printValues, 160

ProcessInfo, 151

product, 130

profile, 13

profileSpace, 152

profileSpaceNF, 152

profileTime, 152

profileTimeNF, 152

Prog, 261

progFuncs, 245, 269

progImports, 245, 268

progName, 245, 268

progOps, 245, 269

program

documentation, 28

testing, 33

progTypes, 245, 268

ProtocolMsg, 50

punctuate, 142

pVars, 239

QName, 228, 261

Qualification, 240

Query, 72, 122

queryAll, 73

queryJustOne, 73

queryOne, 73

queryOneWithDefault, 73

Queue, 168

quickSort, 182

quiet, 81

radio main, 195

radio main off, 196

radio other, 196

range, 248, 272

rangle, 146

rarrow, 147

rbrace, 146

rbracket, 146

rcFileContents, 79

rcFileName, 78

rcParams, 81

readAbstractCurryFile, 235

readAnyQExpression, 167

readAnyQTerm, 167

readAnyUnqualifiedTerm, 166

readCgiServerMsg, 200

readCompleteFile, 117

readCSV, 71

readCSVFile, 71

readCSVFileWithDelims, 71

readCSVWithDelims, 71

readCurry, 48, 234

readCurryWithParseOptions, 234

readFileWithXmlDocs, 221

readFirstFileInLoadPath, 80

readFlatCurry, 48, 267

readFlatCurryFile, 267

readFlatCurryInt, 268

readFlatCurryIntWithImports, 280

readFlatCurryIntWithImportsInPath, 280

readFlatCurryWithImports, 280

readFlatCurryWithImportsInPath, 280

readFlatCurryWithParseOptions, 267

readFM, 173

readGlobal, 98

readGVar, 99

readHex, 155

307

readHtmlFile, 200

readInt, 155

readIORef, 117

readNat, 155

readOct, 155

readPropertyFile, 154

readQTerm, 157

readQTermFile, 157

readQTermListFile, 157

readsAnyQExpression, 167

readsAnyQTerm, 167

readsAnyUnqualifiedTerm, 166

readScan, 260

readsQTerm, 156

readsTerm, 156

readsUnqualifiedTerm, 156

readTerm, 156

readUnqualifiedTerm, 156

readUnsafeXmlFile, 221

readUntypedCurry, 234

readUntypedCurryWithParseOptions, 234

readXmlFile, 221

recip, 93

ReconfigureItem, 103

record syntax, 18

red, 149

RedBlackTree, 180

redirect, 191

registerCgiServer, 200

registerPort, 70

removeDirectory, 76

removeEscapes, 203

removeFile, 77

removeRegionStyle, 109

renameDirectory, 76

renameFile, 77

Rendering, 204, 211

renderList, 210, 219

renderTaggedTuple, 210, 219

renderTuple, 210, 218

rep, 223

replace, 130

replaceBaseName, 89

replaceChildren, 184

replaceChildrenIO, 185

replaceDirectory, 89

replaceExtension, 87

replaceFileName, 88

repSeq1, 225

repSeq2, 225

repSeq3, 226

repSeq4, 226

repSeq5, 227

repSeq6, 228

RequiredSpec, 258

requires, 258

resetbutton, 195

resultType, 236, 249, 272

retract, 83

returnT, 74, 124

rewriteAll, 92

rewriteSome, 92

rights, 85

rnmAllVars, 255, 279

rnmAllVarsInFunc, 251, 274

rnmAllVarsInProg, 246, 269

rnmAllVarsInRule, 252, 275

rnmAllVarsInTypeExpr, 249, 272

rnmProg, 246, 269

rotate, 169

round, 93

row, 107

rparen, 146

Rule, 263

ruleArgs, 251, 275

ruleBody, 251, 275

ruleExtDecl, 251, 275

runCgiServerCmd, 200

runCHR, 55

runCHRwithTrace, 55

runConfigControlledGUI, 108

runControlledGUI, 108

runFormServerWithKey, 197

runFormServerWithKeyAndFormParams, 198

runGUI, 107

runGUIwithParams, 107

runHandlesControlledGUI, 108

runInitControlledGUI, 108

308

runInitGUI, 107

runInitGUIwithParams, 107

runInitHandlesControlledGUI, 108

runJustT, 75, 123

runNamedServer, 137

runPassiveGUI, 107

runQ, 73, 123

runT, 74, 123

runTNA, 75

safe, 14

satisfied, 68

satisfy, 135

scalarProduct, 61, 65

scan, 260

scanl, 131

scanl1, 131

scanr, 131

scanr1, 131

sClose, 133, 161

searchPathSeparator, 87

SearchTree, 49

second, 95

section, 192

SeekMode, 113

seeText, 109

select, 159

selection, 196

selectionInitial, 196

selector function, 19

selectValue, 159

semi, 146

semiBraces, 144

semiBracesSpaced, 145

send, 46, 136

sendMail, 201

sendMailWithOptions, 201

sep, 142

separatorChar, 85

seq1, 225

seq2, 225

seq3, 226

seq4, 226

seq5, 227

seq6, 227

seqStrActions, 51

sequenceMaybe, 132

sequenceT, 74, 124

sequenceT , 74, 124

set, 144

set functions, 7

set0, 158

set1, 158

set2, 158

set3, 158

set4, 158

set5, 158

set6, 158

set7, 158

setAssoc, 117

setConfig, 108

setCurrentDirectory, 76

setEnviron, 162

setExtended, 81

setFullPath, 81

setHtmlDir, 81

setIndentWith, 241

setInsertEquivalence, 180

setLogfile, 81

setModName, 241

setOverlapWarn, 81

setPageWith, 241

setQualification, 241

setQuiet, 81

SetRBT, 181

setRBT2list, 181

setSpaced, 144

setSpecials, 81

setValue, 109

showAnyExpression, 167

showAnyQExpression, 167

showAnyQTerm, 166

showAnyTerm, 166

showCProg, 241

showCSV, 71

showCurryExpr, 281

showCurryId, 281

showCurryType, 281

309

showCurryVar, 281

showFlatFunc, 281

showFlatProg, 281

showFlatType, 281

showFM, 173

showGraph, 179

showHtmlExp, 197

showHtmlExps, 197

showHtmlPage, 197

showJSExp, 120

showJSFDecl, 120

showJSStat, 120

showLatexDoc, 198

showLatexDocs, 198

showLatexDocsWithPackages, 198

showLatexDocWithPackages, 198

showLatexExp, 198

showLatexExps, 198

showMemInfo, 152

showPlClause, 154

showPlGoal, 154

showPlGoals, 154

showPlProg, 154

showPlTerm, 154

showQNameInModule, 268

showQTerm, 156

showTerm, 156

showTError, 73, 126

showTestCase, 51

showTestCompileError, 51

showTestEnd, 51

showTestMod, 51

showXmlDoc, 221

showXmlDocWithParams, 221

simpleRule, 238

simplify, 68

sin, 93

single, 14

singleton variables, 6

sinh, 94

sizedSubset, 69

sizeFM, 171

sleep, 162

snoc, 169

Socket, 133, 161

socketAccept, 133, 161

socketName, 133

softbreak, 138

softline, 138

solve, 65

solveAll, 91

solveCHR, 55, 56

solveFD, 61

some, 135

someDBInfos, 125

someDBKeyInfos, 125

someDBKeyProjections, 125

someDBKeys, 125

someSolution, 91

someValue, 91

sort, 180

sortBy, 130

sortByIndex, 121, 127

sortRBT, 181

sortValues, 160

sortValuesBy, 160

SP_Msg, 135

space, 147

spawnConstraint, 165

specials, 82

spiceup, 36

Spicey, 36

split, 129

splitBaseName, 86

splitDirectories, 89

splitDirectoryBaseName, 86

splitDrive, 88

splitExtension, 87

splitExtensions, 88

splitFileName, 88

splitFM, 171

splitModuleFileName, 79

splitModuleIdentifiers, 79

splitOn, 129

splitPath, 86, 89

splitSearchPath, 87

splitSet, 69

spy, 14

310

sqrt, 93

squote, 146

squotes, 145

standardForm, 190

standardPage, 191

star, 135

stderr, 114

stdin, 114

stdout, 114

string, 145, 223

string2ac, 240

string2urlencoded, 197

stringList2ItemList, 185

stringPattern, 240

stringType, 238

stripCurrySuffix, 79

stripSuffix, 86

strong, 193

Style, 105

style, 194

styleSheet, 194

submitForm, 200

subset, 69

suc, 176

suc’, 177

suffixSeparatorChar, 85

sum, 61, 65, 130

system, 162

table, 194

TableRBT, 183

tableRBT2list, 183

tabulator stops, 6

tagOf, 220

tails, 130

takeBaseName, 88

takeDirectory, 89

takeDrive, 88

takeExtension, 87

takeExtensions, 88

takeFileName, 88

tan, 94

tanh, 94

tConsArgs, 248, 272

tConsName, 248, 272

teletype, 193

terminal, 134

TError, 72, 122

TErrorKind, 72, 122

testing programs, 33

testScan, 260

text, 138

textarea, 195

TextEditScroll, 110

textfield, 195

textOf, 220

textOfXml, 220

textstyle, 194

tilde, 147

time, 13

timeoutOnStream, 136

toCalendarTime, 164

toClockTime, 164

toDayString, 164

toGoal1, 54

toGoal2, 54

toGoal3, 54

toGoal4, 54

toGoal5, 54

toGoal6, 54

Token, 259

Tokens, 259

toLower, 52

toTimeString, 164

toUpper, 52

toUTCTime, 164

toVar, 240

trace, 14, 75, 165

traceId, 75

traceIO, 75

traceShow, 75

traceShowId, 75

Transaction, 72, 122

transaction, 84

transactionWithErrorCatch, 84

transformQ, 73, 123

transformWSpec, 205, 212

transpose, 129

311

Traversable, 183

trBranch, 255, 279

trCombType, 252, 276

trCons, 247, 271

tree2list, 180

trExpr, 254, 278

trFunc, 250, 273

trOp, 249, 273

trPattern, 256, 279

trProg, 245, 268

trRule, 251, 275

trType, 246, 270

trTypeExpr, 248, 272

true, 53, 56, 60, 67

truncate, 93

try, 91

tryReadACYFile, 235

tupled, 144

tupledSpaced, 144

tupleExpr, 239

tuplePattern, 239

tupleType, 238

TVarIndex, 261

tVarIndex, 248, 271

tvarsOfType, 236

typeCons, 235

typeConsDecls, 246, 270

TypeDecl, 262

TypeExpr, 262

typeName, 235, 246, 270

typeParams, 246, 270

typeSyn, 246, 270

typeVis, 235

typeVisibility, 246, 270

UContext, 174

UDecomp, 174

UEdge, 173

ufold, 178

UGr, 174

ulist, 194

unAnnExpr, 257

unAnnFuncDecl, 257

unAnnPattern, 257

unAnnProg, 257

unAnnRule, 257

underline, 149

unfoldr, 131

union, 128

unionBy, 128

unionRBT, 181

unitFM, 170

unitType, 238

UNode, 173

unpack, 92

unregisterCgiServer, 200

unregisterPort, 70

unsafePerformIO, 165

unscan, 260

unsetEnviron, 162

untypedAbstractCurryFileName, 235

UPath, 174

Update, 244, 268

update, 168, 180

updateDBEntry, 121, 126, 127

updateFile, 117

updatePropertyFile, 154

updateRBT, 183

updateValue, 109

updateXmlFile, 221

updBranch, 256, 279

updBranches, 255, 278

updBranchExpr, 256, 279

updBranchPattern, 256, 279

updCases, 255, 278

updCombs, 254, 278

updCons, 247, 271

updConsArgs, 248, 271

updConsArity, 247, 271

updConsName, 247, 271

updConsVisibility, 248, 271

updFM, 171

updFrees, 254, 278

updFunc, 250, 274

updFuncArgs, 251, 275

updFuncArity, 250, 274

updFuncBody, 251, 275

updFuncName, 250, 274

312

updFuncRule, 250, 274

updFuncType, 250, 274

updFuncTypes, 249, 272

updFuncVisibility, 250, 274

updLets, 254, 278

updLiterals, 254, 278

updOp, 249, 273

updOpFixity, 249, 273

updOpName, 249, 273

updOpPrecedence, 249, 273

updOrs, 254, 278

updPatArgs, 256, 280

updPatCons, 256, 280

updPatLiteral, 256, 280

updPattern, 256, 280

updProg, 245, 269

updProgExps, 246, 269

updProgFuncs, 245, 269

updProgImports, 245, 269

updProgName, 245, 269

updProgOps, 245, 269

updProgTypes, 245, 269

updQNames, 255, 279

updQNamesInConsDecl, 248, 271

updQNamesInFunc, 251, 275

updQNamesInProg, 246, 269

updQNamesInRule, 252, 276

updQNamesInType, 247, 271

updQNamesInTypeExpr, 249, 273

updRule, 251, 275

updRuleArgs, 252, 275

updRuleBody, 252, 275

updRuleExtDecl, 252, 275

updTCons, 248, 272

updTVars, 248, 272

updType, 246, 270

updTypeConsDecls, 247, 270

updTypeds, 255, 278

updTypeName, 246, 270

updTypeParams, 247, 270

updTypeSynonym, 247, 270

updTypeVisibility, 247, 270

updVars, 254, 278

urlencoded2string, 197

usageInfo, 97

user interface, 37

v, 13

validDate, 165

valueOf, 159

Values, 158

values2list, 160

variables

singleton, 6

VarIndex, 261

varNr, 252, 276

varsOfExp, 237

varsOfFDecl, 237

varsOfLDecl, 237

varsOfPat, 236

varsOfRhs, 237

varsOfRule, 237

varsOfStat, 237

vcat, 142

verbatim, 193

verbosity, 13

version, 234

Visibility, 261

vsep, 141

vsepBlank, 142

w10Tuple, 209, 216

w11Tuple, 209, 217

w12Tuple, 209, 217

w4Tuple, 207, 215

w5Tuple, 207, 215

w6Tuple, 208, 215

w7Tuple, 208, 215

w8Tuple, 208, 216

w9Tuple, 208, 216

waitForSocketAccept, 133, 161

warn, 13

warnSuspendedConstraints, 56

wCheckBool, 206, 213

wCheckMaybe, 210, 218

wCons10, 209, 217

wCons10JS, 217

wCons11, 209, 217

313

wCons11JS, 217

wCons12, 209, 217

wCons12JS, 218

wCons2, 207, 214

wCons2JS, 214

wCons3, 207, 214

wCons3JS, 214

wCons4, 207, 215

wCons4JS, 215

wCons5, 208, 215

wCons5JS, 215

wCons6, 208, 215

wCons6JS, 215

wCons7, 208, 216

wCons7JS, 216

wCons8, 208, 216

wCons8JS, 216

wCons9, 208, 216

wCons9JS, 216

wConstant, 206, 213

wEither, 210, 218

where, 16

wHidden, 205, 212

white, 150

wHList, 210, 218

Widget, 99

WidgetRef, 105

wInt, 206, 213

withCondition, 205, 212

withConditionJS, 212

withConditionJSName, 212

withError, 205, 212

withRendering, 205, 212

wJoinTuple, 209, 214

wList, 209, 218

wListWithHeadings, 210, 218

wMatrix, 210, 218

wMaybe, 210, 218

wMultiCheckSelect, 207, 213

wPair, 207, 214

wRadioBool, 207, 214

wRadioMaybe, 210, 218

wRadioSelect, 207, 214

wRequiredString, 206, 213

wRequiredStringSize, 206, 213

writeAbstractCurryFile, 235

writeAssertResult, 51

writeCSVFile, 71

writeFCY, 268

writeGlobal, 98

writeGVar, 99

writeIORef, 117

writeQTermFile, 157

writeQTermListFile, 157

writeXmlFile, 221

writeXmlFileWithParams, 221

wSelect, 206, 213

wSelectBool, 206, 213

wSelectInt, 206, 213

wString, 206, 213

wStringSize, 206, 213

wTextArea, 206, 213

WTree, 205, 212

wTree, 210, 218

wTriple, 207, 214

wui2html, 211, 219

WuiHandler, 204, 211

wuiHandler2button, 205, 212

wuiInForm, 211, 219

WuiSpec, 204, 211

wuiWithErrorForm, 211, 219

XAttrConv, 222

XElemConv, 222

xml, 221

xml2FlatCurry, 282

XmlDocParams, 220

XmlExp, 219

xmlFile2FlatCurry, 282

xmlRead, 222

XmlReads, 222

xmlReads, 222

xmlShow, 222

XmlShows, 222

xmlShows, 222

XOptConv, 222

XPrimConv, 222

XRepConv, 222

314

xtxt, 221

yellow, 149

315

	Title
	Contents
	Preface
	Overview of PAKCS
	General Use
	Restrictions
	Modules in PAKCS

	PAKCS: An Interactive Curry Development System
	Invoking PAKCS
	Commands of PAKCS
	Options of PAKCS
	Using PAKCS in Batch Mode
	Command Line Editing
	Customization
	Emacs Interface

	Extensions
	Recursive Variable Bindings
	Functional Patterns
	Order of Pattern Matching
	Datatypes with Field Labels
	Declaration of Constructors with Labeled Fields
	Field Selection
	Construction Using Field Labels
	Updates Using Field Labels
	Pattern Matching Using Field Labels
	Field Labels and Modules

	Recognized Syntax of Curry
	Notational Conventions
	Lexicon
	Case Mode
	Identifiers and Keywords
	Comments
	Numeric and Character Literals

	Layout
	Context Free Grammar

	CurryDoc: A Documentation Generator for Curry Programs
	CurryBrowser: A Tool for Analyzing and Browsing Curry Programs
	CurryTest: A Tool for Testing Curry Programs
	ERD2Curry: A Tool to Generate Programs from ER Specifications
	Spicey: An ER-based Web Framework
	UI: Declarative Programming of User Interfaces
	Preprocessing FlatCurry Files
	Technical Problems
	Bibliography
	Libraries of the PAKCS Distribution
	Constraints, Ports, Meta-Programming
	Arithmetic Constraints
	Finite Domain Constraints
	Ports: Distributed Programming in Curry
	AbstractCurry and FlatCurry: Meta-Programming in Curry

	General Libraries
	Library AllSolutions
	Library Assertion
	Library Char
	Library CHR
	Library CHRcompiled
	Library CLP.FD
	Library CLPFD
	Library CLPR
	Library CLPB
	Library Combinatorial
	Library Constraint
	Library CPNS
	Library CSV
	Library Database
	Library Debug
	Library Directory
	Library Distribution
	Library Dynamic
	Library Either
	Library FileGoodies
	Library FilePath
	Library Findall
	Library Float
	Library Function
	Library FunctionInversion
	Library GetOpt
	Library Global
	Library GlobalVariable
	Library GUI
	Library Integer
	Library IO
	Library IOExts
	Library JavaScript
	Library KeyDatabase
	Library KeyDatabaseSQLite
	Library KeyDB
	Library List
	Library Maybe
	Library NamedSocket
	Library Parser
	Library Ports
	Library Pretty
	Library Profile
	Library Prolog
	Library PropertyFile
	Library Read
	Library ReadNumeric
	Library ReadShowTerm
	Library SetFunctions
	Library Socket
	Library System
	Library Time
	Library Unsafe

	Data Structures and Algorithms
	Library Array
	Library Dequeue
	Library FiniteMap
	Library GraphInductive
	Library Random
	Library RedBlackTree
	Library SetRBT
	Library Sort
	Library TableRBT
	Library Traversal

	Libraries for Web Applications
	Library CategorizedHtmlList
	Library HTML
	Library HtmlCgi
	Library HtmlParser
	Library Mail
	Library Markdown
	Library URL
	Library WUI
	Library WUIjs
	Library XML
	Library XmlConv

	Libraries for Meta-Programming
	Library AbstractCurry.Types
	Library AbstractCurry.Files
	Library AbstractCurry.Select
	Library AbstractCurry.Build
	Library AbstractCurry.Pretty
	Library AnnotatedFlatCurry
	Library AnnotatedFlatCurryGoodies
	Library CompactFlatCurry
	Library CurryStringClassifier
	Library FlatCurry
	Library FlatCurryGoodies
	Library FlatCurryRead
	Library FlatCurryShow
	Library FlatCurryXML
	Library FlexRigid

	Markdown Syntax
	Paragraphs and Basic Formatting
	Lists and Block Formatting
	Headers

	Overview of the PAKCS Distribution
	Auxiliary Files
	External Functions
	Index

