
PAKCS 3.6.1
The Portland Aachen Kiel Curry System

User Manual
Version of 2024-03-19

Michael Hanus1 [editor]

Additional Contributors:

Sergio Antoy2

Bernd Braßel3

Martin Engelke4

Klaus Höppner5

Johannes Koj6

Philipp Niederau7

Björn Peemöller8

Ramin Sadre9

Frank Steiner10

Finn Teegen11

(1) University of Kiel, Germany, mh@informatik.uni-kiel.de
(2) Portland State University, USA, antoy@cs.pdx.edu

(3) University of Kiel, Germany, bbr@informatik.uni-kiel.de
(4) University of Kiel, Germany, men@informatik.uni-kiel.de
(5) University of Kiel, Germany, klh@informatik.uni-kiel.de

(6) RWTH Aachen, Germany, johannes.koj@sdm.de
(7) RWTH Aachen, Germany, philipp@navigium.de

(8) University of Kiel, Germany, bjp@informatik.uni-kiel.de
(9) RWTH Aachen, Germany, ramin@lvs.informatik.rwth-aachen.de
(10) LMU Munich, Germany, fst@bio.informatik.uni-muenchen.de

(11) University of Kiel, Germany, fte@informatik.uni-kiel.de



Contents

Preface 5

1 Overview of PAKCS 6
1.1 General Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Modules in PAKCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 PAKCS: An Interactive Curry Development System 8
2.1 Invoking PAKCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Commands of PAKCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Options of PAKCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Using PAKCS in Batch Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Command Line Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 Emacs Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Extensions 17
3.1 Recursive Variable Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Functional Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Order of Pattern Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Type Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5 Free Variables, Equality, and the Type Class Data . . . . . . . . . . . . . . . . . . . 20
3.6 Parser Options in Source Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.7 Conditional Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.8 Language Pragmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Recognized Syntax of Curry 26
4.1 Notational Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Lexicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 Identifiers and Keywords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.3 Numeric and Character Literals . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Context-Free Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Optimization of Curry Programs 33

6 cypm: The Curry Package Manager 34

7 CurryCheck: A Tool for Testing Properties of Curry Programs 35
7.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Testing Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.3 Generating Test Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.4 Checking Equivalence of Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1



7.5 Checking Contracts and Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.6 Combining Testing and Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.7 Checking Usage of Specific Operations . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8 CurryBrowser: A Tool for Analyzing and Browsing Curry Programs 47
8.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.2 Basic Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

9 curry-doc: A Documentation Generator for Curry Programs 50
9.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9.2 Documentation Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9.3 Generating Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

10 CurryVerify: A Tool to Support the Verification of Curry Programs 53
10.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.2 Basic Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.3 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

11 CurryPP: A Preprocessor for Curry Programs 57
11.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
11.2 Basic Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
11.3 Integrated Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

11.3.1 Regular Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
11.3.2 Format Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
11.3.3 HTML Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
11.3.4 XML Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

11.4 SQL Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
11.4.1 ER Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
11.4.2 SQL Statements as Integrated Code . . . . . . . . . . . . . . . . . . . . . . . 64

11.5 Default Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
11.6 Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

12 runcurry: Running Curry Programs 70
12.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
12.2 Using runcurry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

13 CASS: A Generic Curry Analysis Server System 73
13.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
13.2 Using CASS to Analyze Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

13.2.1 Batch Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
13.2.2 API Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
13.2.3 Server Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

13.3 Implementing Program Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2



14 ERD2Curry: A Tool to Generate Programs from ER Specifications 82
14.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
14.2 Basic Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

15 Spicey: An ER-based Web Framework 84
15.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
15.2 Basic usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
15.3 Further remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

16 curry-peval: A Partial Evaluator for Curry 86
16.1 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
16.2 Basic Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
16.3 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

17 Preprocessing FlatCurry Files 90

18 Technical Problems 92
18.1 SWI-Prolog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
18.2 Distributed Programming and Sockets . . . . . . . . . . . . . . . . . . . . . . . . . . 92
18.3 Contact for Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography 94

A Libraries of the PAKCS Distribution 97
A.1 AbstractCurry and FlatCurry: Meta-Programming in Curry . . . . . . . . . . . . . . 98
A.2 System Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.2.1 Library Control.Applicative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.2.2 Library Control.Monad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.2.3 Library Control.Search.AllValues . . . . . . . . . . . . . . . . . . . . . . . . . 102
A.2.4 Library Control.Search.SetFunctions . . . . . . . . . . . . . . . . . . . . . . . 103
A.2.5 Library Control.Search.Unsafe . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
A.2.6 Library Curry.Compiler.Distribution . . . . . . . . . . . . . . . . . . . . . . . 109
A.2.7 Library Data.Char . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
A.2.8 Library Data.Either . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
A.2.9 Library Data.Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
A.2.10 Library Data.Functor.Compose . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.2.11 Library Data.Functor.Const . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
A.2.12 Library Data.Functor.Identity . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.2.13 Library Data.IORef . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
A.2.14 Library Data.List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
A.2.15 Library Data.Maybe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.2.16 Library Debug.Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.2.17 Library Numeric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.2.18 Library Prelude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
A.2.19 Library System.Console.GetOpt . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3



A.2.20 Library System.CPUTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
A.2.21 Library System.Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
A.2.22 Library System.IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
A.2.23 Library System.IO.Unsafe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
A.2.24 Library Test.Prop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
A.2.25 Library Test.Prop.Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
A.2.26 Library Text.Show . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

B SQL Syntax Supported by CurryPP 160

C Overview of the PAKCS Distribution 165

D Auxiliary Files 167

E External Operations 168

Index 171

4



Preface

This document describes PAKCS (formerly called “PACS”), an implementation of the multi-
paradigm language Curry, jointly developed at the University of Kiel, the Technical University
of Aachen and Portland State University. Curry is a universal programming language aiming at
the amalgamation of the most important declarative programming paradigms, namely functional
programming and logic programming. Curry combines in a seamless way features from functional
programming (nested expressions, lazy evaluation, higher-order functions), logic programming (log-
ical variables, partial data structures, built-in search), and concurrent programming (concurrent
evaluation of constraints with synchronization on logical variables). Moreover, the PAKCS im-
plementation of Curry also supports constraint programming over various constraint domains, the
high-level implementation of distributed applications, graphical user interfaces, and web services
(as described in more detail in [20, 21, 22]). Since PAKCS compiles Curry programs into Prolog
programs, the availability of some of these features might depend on the underlying Prolog system.

We assume familiarity with the ideas and features of Curry as described in the Curry language
definition [30]. Therefore, this document only explains the use of the different components of PAKCS
and the differences and restrictions of PAKCS (see Section 1.2) compared with the language Curry
(Version 0.9.0).

Important Note

This version of PAKCS implements type classes. The concept of type classes is not yet part of the
Curry language report. The recognized syntax of type classes is specified in Section 4. Although
the implemented concept of type classes is not fully described in this manual, it is quite similar to
Haskell 98 [36] so that one can look there to find a detailed description.

Acknowledgements

This work has been supported in part by the DAAD/NSF grant INT-9981317, the NSF grants
CCR-0110496 and CCR-0218224, the Acción Integrada hispano-alemana HA1997-0073, and the
DFG grants Ha 2457/1-2, Ha 2457/5-1, and Ha 2457/5-2.

Many thanks to the users of PAKCS for bug reports, bug fixes, and improvements, in particular,
to Marco Comini, Sebastian Fischer, Massimo Forni, Carsten Heine, Stefan Junge, Frank Huch,
Parissa Sadeghi.

5



1 Overview of PAKCS

1.1 General Use

This version of PAKCS has been tested on Linux systems. In principle, it should be also executable
on other platforms on which a Prolog system like SICStus-Prolog or SWI-Prolog exists (see the file
INSTALL.html in the PAKCS directory for a description of the necessary software to install PAKCS).

All executable files required to use the different components of PAKCS are stored in
the directory pakcshome /bin (where pakcshome is the installation directory of the complete
PAKCS installation). You should add this directory to your path (e.g., by the bash command
“export PATH=pakcshome /bin:$PATH”).

The source code of the Curry program must be stored in a file with the suffix “.curry”, e.g.,
prog.curry. Literate programs must be stored in files with the extension “.lcurry”.

Since the translation of Curry programs with PAKCS creates some auxiliary files (see Section D
for details), you need write permission in the directory where you have stored your Curry programs.
The auxiliary files for all Curry programs in the current directory can be deleted by the command

cleancurry

(this is a shell script stored in the bin directory of the PAKCS installation, see above). The command

cleancurry -r

also deletes the auxiliary files in all subdirectories.

1.2 Restrictions

There are a few minor restrictions on Curry programs when they are processed with PAKCS:

• Singleton pattern variables, i.e., variables that occur only once in a rule, should be denoted
as an anonymous variable “_”, otherwise the parser will print a warning since this is a typical
source of programming errors.

• PAKCS translates all local declarations into global functions with additional arguments
(“lambda lifting”, see Appendix D of the Curry language report). Thus, in the compiled
target code, the definition of functions with local declarations look different from their origi-
nal definition (in order to see the result of this transformation, you can use the CurryBrowser,
see Section 8).

• Tabulator stops instead of blank spaces in source files are interpreted as stops at columns 9,
17, 25, 33, and so on. In general, tabulator stops should be avoided in source programs.

• Since PAKCS compiles Curry programs into Prolog programs, non-deterministic computations
are treated as in Prolog by a backtracking strategy, which is known to be incomplete. Thus,
the order of rules could influence the ability to find solutions for a given goal.

• Threads created by a concurrent conjunction are not executed in a fair manner (usually,
threads corresponding to leftmost constraints are executed with higher priority).

6



• Encapsulated search: In order to allow the integration of non-deterministic computations in
programs performing I/O at the top-level, PAKCS supports the search operators findall

and findfirst. Note that they are not part of the standard prelude but these and some
other operators are available in the library Control.Findall which is part of the package
searchtree. In contrast to the general definition of encapsulated search [28], the current
implementation suspends the evaluation of findall and findfirst until the argument does
not contain unbound global variables. Moreover, the evaluation of findall is strict, i.e., it
computes all solutions before returning the complete list of solutions.

Since it is known that the result of these search operators might depend on the evaluation
strategy due to the combination of sharing and lazy evaluation (see [15] for a detailed dis-
cussion), it is recommended to use set functions [7] as a strategy-independent encapsulation
of non-deterministic computations. Set functions compute the set of all results of a defined
function but do not encapsulate non-determinism occurring in the actual arguments. See the
library Control.SetFunctions (available in package setfunctions) for more details.

• There is no general connection to external constraint solvers. However, the PAKCS com-
piler provides constraint solvers for arithmetic and finite domain constraints via the package
clp-pakcs (see Appendix A).

1.3 Modules in PAKCS

PAKCS searches for imported modules in various directories. By default, imported modules are
searched in the directory of the main program and the system module directory “pakcshome /lib”.
This search path can be extended by setting the environment variable CURRYPATH (which can be also
set in a PAKCS session by the option “:set path”, see below) to a list of directory names separated
by colons (“:”). In addition, a local standard search path can be defined in the “.pakcsrc” file (see
Section 2.6). Thus, modules to be loaded are searched in the following directories (in this order,
i.e., the first occurrence of a module file in this search path is imported):

1. Current working directory (“.”) or directory prefix of the main module (e.g., directory
“/home/joe/curryprogs” if one loads the Curry program “/home/joe/curryprogs/main”).

2. The directories enumerated in the environment variable CURRYPATH.

3. The directories enumerated in the “.pakcsrc” variable “libraries”.

4. The directory “pakcshome /lib”.

The same strategy also applies to modules with a hierarchical module name with the only difference
that the hierarchy prefix of a module name corresponds to a directory prefix of the module. For
instance, if the main module is stored in directory MAINDIR and imports the module Test.Func, then
the module stored in MAINDIR/Test/Func.curry is imported (without setting any additional import
path) according to the module search strategy described above.

Note that the standard prelude (pakcshome /lib/Prelude.curry) will be always implicitly im-
ported to all modules if a module does not contain an explicit import declaration for the module
Prelude.

7



2 PAKCS: An Interactive Curry Development System

PAKCS is an interactive system to develop applications written in Curry. It is implemented in
Prolog and compiles Curry programs into Prolog programs. It contains various tools, a source-level
debugger, solvers for arithmetic constraints over real numbers and finite domain constraints, etc.
The compilation process and the execution of compiled programs is fairly efficient if a good Prolog
implementation like SICStus-Prolog is used.

2.1 Invoking PAKCS

To start PAKCS, execute the command “pakcs” or “curry” (these are shell scripts stored in
pakcshome /bin where pakcshome is the installation directory of PAKCS). When the system is ready
(i.e., when the prompt “Prelude>” occurs), the prelude (pakcshome /lib/Prelude.curry) is already
loaded, i.e., all definitions in the prelude are accessible. Now you can type various commands (see
next section) or an expression to be evaluated.

One can also invoke PAKCS with parameters. These parameters are usual a sequence of com-
mands (see next section) that are executed before the user interaction starts. For instance, the
invocation

pakcs :load Mod :add List

starts PAKCS, loads the main module Mod, and adds the additional module List. The invocation

pakcs :load Mod :eval config

starts PAKCS, loads the main module Mod, and evaluates the operation config before the user
interaction starts. As a final example, the invocation

pakcs :load Mod :save :quit

starts PAKCS, loads the main module Mod, creates an executable, and terminates PAKCS. This
invocation could be useful in “make” files for systems implemented in Curry.

There are also some additional options that can be used when invoking PAKCS:

-h or --help : Print only a help message.

-V or --version : Print the version information of PAKCS and quit.

--compiler-name : Print the compiler name (pakcs) and quit.

--numeric-version : Print the version number and quit.

--base-version : Print the version of the base (system) libraries and quit.

--noreadline : Do not use input line editing (see Section 2.5).

-Dname=val (these options must come before any PAKCS command): Overwrite values defined
in the configuration file “.pakcsrc” (see Section 2.6), where name is a property defined in the
configuration file and val its new value.

8



-q or --quiet : With this option, PAKCS works silently, i.e., the initial banner and the input
prompt are not shown. The output of other information is determined by the option “vn” (see
Section 2.3).

One can also invoke PAKCS with some run-time arguments that can be accessed inside a Curry
program by the I/O operation getArgs (see library System.Environment, Section A.2.21). These
run-time arguments must be written at the end after the separator “--”. For instance, if PAKCS is
invoked by

pakcs :load Mod -- first and second

then a call to the I/O operation getArgs returns the list value

["first", "and", "second"]

2.2 Commands of PAKCS

The most important commands of PAKCS are (it is sufficient to type a unique prefix of a
command if it is unique, e.g., one can type “:r” instead of “:reload”):

:help Show a list of all available commands.

:load prog Compile and load the program stored in prog.curry or prog.lcurry together with all
its imported modules.1 The program name can also be a hierarchical module name. In this
case, the actual module must be stored in the subdirectory of the given hierachy, e.g., when
loading the module A.B.Mod, PAKCS looks for a Curry program Mod.curry or Mod.lcurry

stored in the directory A/B in the load path. If the program name contains a directory prefix,
e.g.,

:load DirA/DirB.Mod

PAKCS switches to the directory before loading the program, i.e., the command above is
equivalent to

:cd DirA/DirB
:load Mod

:reload Recompile all currently loaded modules.

:add m1 . . .mn Add modules m1, . . . ,mn to the set of currently loaded modules so that their
exported entities are available in the top-level environment.

expr Evaluate the expression expr to normal form and show the computed results. Since PAKCS
compiles Curry programs into Prolog programs, non-deterministic computations are imple-
mented by backtracking. Therefore, computed results are shown one after the other. In the
interactive mode (which can be set in the configuration file “.pakcsrc” or by setting the option
interactive, see below), you will be asked after each computed result whether you want to

1If the Curry source file does not exist, the system looks for a FlatCurry file (see Appendix A.1) prog.fcy and
compiles from this intermediate representation.

9



see the next alternative result or all alternative results. The default answer value for this
question can be defined in the configuration file “.pakcsrc” file (see Section 2.6).

Free variables in initial expressions must be declared as in Curry programs. In order to
see the results of their bindings, they must be introduced by a “where...free” declaration.
For instance, one can write

not b where b free

in order to obtain the following bindings and results:

{b = True} False
{b = False} True

Without these declarations, an error is reported in order to avoid the unintended introduction
of free variables in initial expressions by typos.

:eval expr Same as expr. This command might be useful when putting commands as arguments
when invoking pakcs.

let x = e Add a let binding for the main expression where x is a variable or a pattern and e

is some expression. When a main expression expr is evaluated, this let binding is put in
front of the expression, i.e., the expression “let x = e in expr” is evaluated. Several let

expressions are sequentially combined. This let expression is visible until the next load or
reload command.

:quit Exit the system.

There are also a number of further commands that are often useful:

:type expr Show the type of the expression expr.

:browse Start the CurryBrowser to analyze the currently loaded module together with all its
imported modules (see Section 8 for more details).

:edit Load the source code of the current main module into a text editor. If the variable
editcommand is set in the configuration file “.pakcsrc” (see Section 2.6), its value is used
as an editor command, otherwise the environment variable “EDITOR” or a default editor (e.g.,
“vi”) is used.

:edit m Load the source text of module m (which must be accessible via the current load path if
no path specification is given) into a text editor which is defined as in the command “:edit”.

:interface Show the interface of the currently loaded module, i.e., show the names of all imported
modules, the fixity declarations of all exported operators, the exported datatypes declarations
and the types of all exported functions.

:interface prog Similar to “:interface” but shows the interface of the module “prog.curry”
which must be accessible via the current load path. For instance, the command
“:interface Data.List” shows the interface of the system module Data.List containing some
useful operations on lists (see Appendix A.2.14).

10



:usedimports Show all calls to imported functions in the currently loaded module. This might be
useful to see which import declarations are really necessary.

:modules Show the list of all currently loaded modules.

:programs Show the list of all Curry programs that are available in the load path.

:set option Set or turn on/off a specific option of the PAKCS environment (see 2.3 for a description
of all options). Options are turned on by the prefix “+” and off by the prefix “-”. Options that
can only be set (e.g., printdepth) must not contain a prefix.

:set Show a help text on the possible options together with the current values of all options.

:show Show the source text of the currently loaded Curry program. If the variable showcommand

is set in the configuration file “.pakcsrc” (see Section 2.6), its value is used as a command
to show the source text, otherwise the environment variable PAGER or the standard command
“cat” is used. If the source text is not available (since the program has been directly compiled
from a FlatCurry file), the loaded program is decompiled and the decompiled Curry program
text is shown.

:show m Show the source text of module m which must be accessible via the current load path.

:source f Show the source code of function f (which must be visible in the currently loaded
module) in a separate window.

:source m.f Show the source code of function f defined in module m in a separate window.

:cd dir Change the current working directory to dir.

:dir Show the names of all Curry programs in the current working directory.

:!cmd Shell escape: execute cmd in a Unix shell.

:save Save the currently loaded program as an executable evaluating the main expression “main”.
The executable is stored in the file Mod if Mod is the name of the currently loaded main module.

:save expr Similar as “:save” but the expression expr (typically: a call to the main function) will
be evaluated by the executable.

:fork expr The expression expr, which must be of type “IO ()”, is evaluated in an independent
process which runs in parallel to the current PAKCS process. All output and error messages
from this new process are suppressed. This command is useful to test distributed Curry
programs where one can start a new server process by this command. The new process will
be terminated when the evaluation of the expression expr is finished.

:coosy Start the Curry Object Observation System COOSy, a tool to observe the execution of
Curry programs. This commands starts a graphical user interface to show the observation
results and adds to the load path the directory containing the modules that must be imported
in order to annotate a program with observation points. Details about the use of COOSy can
be found in the COOSy interface (under the “Info” button), and details about the general idea
of observation debugging and the implementation of COOSy can be found in [14].

11



:peval Translate the currently loaded program module into an equivalent program where some
subexpressions are partially evaluated so that these subexpressions are (hopefully) more ef-
ficiently executed. An expression e to be partially evaluated must be marked in the source
program by (PEVAL e) (where PEVAL is defined as the identity function in the prelude so that
it has no semantical meaning).

The partial evaluator translates a source program prog.curry into the partially evaluated
program in intermediate representation stored in prog_pe.fcy. The latter program is implicitly
loaded by the peval command so that the partially evaluated program is directly available.
The corresponding source program can be shown by the show command (see above).

The current partial evaluator is an experimental prototype (so it might not work on all pro-
grams) based on the ideas described in [1, 2, 3, 4].

2.3 Options of PAKCS

The following options (which can be set by the command “:set”) are currently supported:

+/-allfails If this option is set, all failures (i.e., also failures on backtracking and failures of
enclosing functions that fail due to the failure of an argument evaluation) are printed if
the option printfail is set. Otherwise, only the first failure (i.e., the first non-reducible
subexpression) is printed.

+/-compact Reduce the size of target programs by using the parser option “--compact” (see Sec-
tion 17 for details about this option).

+/-consfail Print constructor failures. If this option is set, failures due to application of functions
with non-exhaustive pattern matching or failures during unification (application of “=:=”) are
shown. Inside encapsulated search (e.g., inside evaluations of findall and findfirst), failures
are not printed (since they are a typical programming technique there). In contrast to the
option printfail, this option creates only a small overhead in execution time and memory
use.

+consfail all Similarly to “+consfail”, but the complete trace of all active (and just failed)
function calls from the main function to the failed function are shown.

+consfail file:f Similarly to “+consfail all”, but the complete fail trace is stored in the file f .
This option is useful in non-interactive program executions like web scripts.

+consfail int Similarly to “+consfail all”, but after each failure occurrence, an interactive mode
for exploring the fail trace is started (see help information in this interactive mode). When
the interactive mode is finished, the program execution proceeds with a failure.

+/-debug Debug mode. In the debug mode, one can trace the evaluation of an expression, setting
spy points (break points) etc. (see the commands for the debug mode described below).

+/-echo Turn on/off echoing of commands. If echoing is on, each command is printed again on the
standard output. This is useful to show or evaluate the output of scripts which call PAKCS
and run it with a given list of commands.

12



+/-first Turn on/off the first-only mode. In the first-only mode, only the first value of the main
expression is printed (instead of all values).

+/-interactive Turn on/off the interactive mode. In the interactive mode, the next non-
deterministic value is computed only when the user requests it. Thus, one has also the
possibility to terminate the enumeration of all values after having seen some values. The
default value for this option can be set in the configuration file “.pakcsrc” (initially, the
interactive mode is turned off).

+/-printfail Print failures. If this option is set, failures occurring during evaluation (i.e., non-
reducible demanded subexpressions) are printed. This is useful to see failed reductions due
to partially defined functions or failed unifications. Inside encapsulated search (e.g., inside
evaluations of findall and findfirst), failures are not printed (since they are a typical pro-
gramming technique there). Note that this option causes some overhead in execution time
and memory so that it could not be used in larger applications.

+/-profile Profile mode. If the profile mode is on, then information about the number of calls,
failures, exits etc. are collected for each function during the debug mode (see above) and
shown after the complete execution (additionaly, the result is stored in the file prog.profile
where prog is the current main program). The profile mode has no effect outside the debug
mode.

+/-suspend Suspend mode (initially, it is off). If the suspend mode is on, all suspended expressions
(if there are any) are shown (in their internal representation) at the end of a computation.

+/-time Time mode. If the time mode is on, the cpu time and the elapsed time of the computation
is always printed together with the result of an evaluation.

+/-warn Parser warnings. If the parser warnings are turned on (default), the parser will print
warnings about variables that occur only once in a program rule (see Section 1.2) or locally
declared names that shadow the definition of globally declared names. If the parser warnings
are switched off, these warnings are not printed during the reading of a Curry program.

path path Set the additional search path for loading modules to path. Note that this search path is
only used for loading modules inside this invocation of PAKCS, i.e., the environment variable
“CURRYPATH” (see also Section 1.3) is set to path in this invocation of PAKCS.

The path is a list of directories separated by “:”. The prefix “~” is replaced by the home
directory as in the following example:

:set path aux:~/tests

Relative directory names are replaced by absolute ones so that the path is independent of
later changes of the current working directory.

printdepth n Set the depth for printing terms to the value n (initially: 0). In this case subterms
with a depth greater than n are abbreviated by dots when they are printed as a result of a
computation or during debugging. A value of 0 means infinite depth so that the complete
terms are printed.

13



vn Set the verbosity level to n. The following values are allowed for n:

n = 0: Do not show any messages (except for errors).

n = 1: Show only statusmessages of the front-end, like loading of modules.

n = 2: Show also invoked commands, e.g., to call the front end, and the standard messages of
the front-end, like parsing and compiling Curry modules. Moreover, the initial expression
of a computation together with its type is printed before it is evaluated, and the output
of the evaluation is a bit more detailed.

n = 3: Show also messages of the back end, like loading intermediate files or generating Prolog
target files.

n = 4: Show also messages related to loading Prolog files and libraries into the run-time
systems and other intermediate messages and results.

safe Turn on the safe execution mode. In the safe execution mode, the initial goal is not allowed to
be of type IO and the program should not import the module System.IO.Unsafe. Furthermore,
only the commands eval, load, quit, and reload are allowed. This mode is useful to use
PAKCS in uncontrolled environments, like a computation service in a web page, where PAKCS
could be invoked by

pakcs :set safe

parser opts Define additional options passed to the front end of PAKCS, i.e., the parser program
pakcshome /bin/pakcs-frontend. For instance, setting the option

:set parser -F --pgmF=transcurry

has the effect that each Curry module to be compiled is transformed by the preprocessor
command transcurry into a new Curry program which is actually compiled.

args arguments Define run-time arguments for the evaluation of the main expression. For in-
stance, setting the option

:set args first second

has the effect that the I/O operation getArgs (see library System.Environment (Section A.2.21)
returns the value ["first","second"].

PAKCS can also execute programs in the debug mode. The debug mode is switched on by setting
the debug option with the command “:set +debug”. In order to switch back to normal evaluation
of the program, one has to execute the command “:set -debug”.

In the debug mode, PAKCS offers the following additional options:

+/-single Turn on/off single mode for debugging. If the single mode is on, the evaluation of an
expression is stopped after each step and the user is asked how to proceed (see the options
there).

14



+/-trace Turn on/off trace mode for debugging. If the trace mode is on, all intermediate expres-
sions occurring during the evaluation of an expressions are shown.

spy f Set a spy point (break point) on the function f . In the single mode, you can “leap” from
spy point to spy point (see the options shown in the single mode).

+/-spy Turn on/off spy mode for debugging. If the spy mode is on, the single mode is automatically
activated when a spy point is reached.

2.4 Using PAKCS in Batch Mode

Although PAKCS is primarily designed as an interactive system, it can also be used to process data
in batch mode. For example, consider a Curry program, say myprocessor, that reads argument
strings from the command line and processes them. Suppose the entry point is a function called
just_doit that takes no arguments. Such a processor can be invoked from the shell as follows:

> pakcs :set args string1 string2 :load myprocessor.curry :eval just_doit :quit

The “:quit” directive in necessary to avoid PAKCS going into interactive mode after the excution
of the expression being evaluated. The actual run-time arguments (string1, string2) are defined
by setting the option args (see above).

Here is an example to use PAKCS in this way:

> pakcs :set args Hi World :add System.Environment :eval "getArgs >>= putStrLn . unwords" :quit
Hi World
>

2.5 Command Line Editing

In order to have support for line editing or history functionality in the command line of PAKCS
(as often supported by the readline library), you should have the Unix command rlwrap installed
on your local machine. If rlwrap is installed, it is used by PAKCS if called on a terminal. If it
should not be used (e.g., because it is executed in an editor with readline functionality), one can
call PAKCS with the parameter “--noreadline”.

2.6 Customization

In order to customize the behavior of PAKCS to your own preferences, there is a configuration file
which is read by PAKCS when it is invoked. When you start PAKCS for the first time, a standard
version of this configuration file is copied with the name “.pakcsrc” into your home directory. The
file contains definitions of various settings, e.g., about showing warnings, progress messages etc.
After you have started PAKCS for the first time, look into this file and adapt it to your own
preferences.

2.7 Emacs Interface

Emacs is a powerful programmable editor suitable for program development. It is freely available for
many platforms (see http://www.emacs.org). The distribution of PAKCS contains also a special

15

http://www.emacs.org


Curry mode that supports the development of Curry programs in the Emacs environment. This
mode includes support for syntax highlighting, finding declarations in the current buffer, and loading
Curry programs into PAKCS in an Emacs shell.

The Curry mode has been adapted from a similar mode for Haskell programs. Its installation is
described in the file README in directory “pakcshome /tools/emacs” which also contains the sources
of the Curry mode and a short description about the use of this mode.

16



3 Extensions

PAKCS supports some extensions in Curry programs that are not (yet) part of the definition of
Curry. These extensions are described below.

3.1 Recursive Variable Bindings

Local variable declarations (introduced by let or where) can be (mutually) recursive in PAKCS.
For instance, the declaration

ones5 = let ones = 1 : ones
in take 5 ones

introduces the local variable ones which is bound to a cyclic structure representing an infinite list
of 1’s. Similarly, the definition

onetwo n = take n one2
where

one2 = 1 : two1
two1 = 2 : one2

introduces a local variables one2 that represents an infinite list of alternating 1’s and 2’s so that the
expression (onetwo 6) evaluates to [1,2,1,2,1,2].

3.2 Functional Patterns

Functional patterns [6] are a useful extension to implement operations in a more readable way.
Furthermore, defining operations with functional patterns avoids problems caused by strict equality
(“=:=”) and leads to programs that are potentially more efficient.

Consider the definition of an operation to compute the last element of a list xs based on the
prelude operation “++” for list concatenation:

last xs | _ ++ [y] =:= xs = y where y free

Since the equality constraint “=:=” evaluates both sides to a constructor term, all elements of the
list xs are fully evaluated in order to satisfy the constraint.

Functional patterns can help to improve this computational behavior. A functional pattern is a
function call at a pattern position. With functional patterns, we can define the operation last as
follows:

last (_ ++ [y]) = y

This definition is not only more compact but also avoids the complete evaluation of the list elements:
since a functional pattern is considered as an abbreviation for the set of constructor terms obtained
by all evaluations of the functional pattern to normal form (see [6] for an exact definition), the
previous definition is conceptually equivalent to the set of rules

last [y] = y
last [_,y] = y
last [_,_,y] = y
. . .

17



which shows that the evaluation of the list elements is not demanded by the functional pattern.
In general, a pattern of the form (f t1...tn) for n > 0 (or of the qualified form (M.f t1...tn)

for n ≥ 0) is interpreted as a functional pattern if f is not a visible constructor but a defined
function that is visible in the scope of the pattern. Furthermore, for a functional pattern to be well
defined, there are two additional requirements to be satisfied:

1. If a function f is defined by means of a functional pattern fp, then the evaluation of fp must
not depend on f , i.e., the semantics of a function defined using functional patterns must not
(transitively) depend on its own definition. This excludes definitions such as

(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

and is necessary to assign a semantics to funtions employing functional patterns (see [6] for
more details).

2. Only functions that are globally defined may occur inside a functional pattern. This restriction
ensures that no local variable might occur in the value of a functional pattern, which might
lead to an non-intuitive semantics. Consider, for instance, the following (complicated) equality
operation

eq :: a → a → Bool
eq x y = h y
where
g True = x
h (g a) = a

where the locally defined function g occurs in the functional pattern (g a) of h. Since (g a)

evaluates to the value of x whereas a is instantiated to True, the call h y now evaluates to
True if the value of y equals the value of x. In order to check this equality condition, a strict
unification between x and y is required so that an equivalent definition without functional
patterns would be:

eq :: a → a → Bool
eq x y = h y
where
h x1 | x =:= x1 = True

However, this implies that variables occuring in the value of a functional pattern imply a strict
unification if they are defined in an outer scope, whereas variables defined inside a functional
pattern behave like pattern variables. In consequence, the occurrence of variables from an
outer scope inside a functional pattern might lead to an non-intuitive behavior. To avoid such
problems, locally defined functions are excluded as functional patterns. Note that this does
not exclude a functional pattern inside a local function, which is still perfectly reasonable.

It is also possible to combine functional patterns with as-patterns. Similarly to the meaning of
as-patterns in standard constructor patterns, as-patterns in functional patterns are interpreted as
a sequence of pattern matching where the variable of the as-pattern is matched before the given
pattern is matched. This process can be described by introducing an auxiliary operation for this
two-level pattern matching process. For instance, the definition

18



f (_ ++ x@[(42,_)] ++ _) = x

is considered as syntactic sugar for the expanded definition

f (_ ++ x ++ _) = f’ x
where
f’ [(42,_)] = x

However, as-patterns are usually implemented in a more efficient way without introducing auxiliary
operations.

Optimization of programs containing functional patterns. Since functions patterns can
evaluate to non-linear constructor terms, they are dynamically checked for multiple occurrences of
variables which are, if present, replaced by equality constraints so that the constructor term is always
linear (see [6] for details). Since these dynamic checks are costly and not necessary for functional
patterns that are guaranteed to evaluate to linear terms, there is an optimizer for functional patterns
that checks for occurrences of functional patterns that evaluate always to linear constructor terms
and replace such occurrences with a more efficient implementation. This optimizer can be enabled
by the following possibilities:

• Set the environment variable FCYPP to “--fpopt” before starting PAKCS, e.g., by the shell
command

export FCYPP="--fpopt"

Then the functional pattern optimization is applied if programs are compiled and loaded in
PAKCS.

• Put an option into the source code: If the source code of a program contains a line with a
comment of the form (the comment must start at the beginning of the line)

{-# PAKCS_OPTION_FCYPP --fpopt #-}

then the functional pattern optimization is applied if this program is compiled and loaded in
PAKCS.

The optimizer also report errors in case of wrong uses of functional patterns (i.e., in case of a
function f defined with functional patterns that recursively depend on f).

3.3 Order of Pattern Matching

Curry allows multiple occurrences of pattern variables in standard patterns. These are an abbrevi-
ation of equational constraints between pattern variables. Functional patterns might also contain
multiple occurrences of pattern variables. For instance, the operation

f (_ ++ [x] ++ _ ++ [x] ++ _) = x

returns all elements with at least two occurrences in a list.
If functional patterns as well as multiple occurrences of pattern variables occur in a pattern

defining an operation, there are various orders to match an expression against such an operation.
In the current implementation, the order is as follows:

19



1. Standard pattern matching: First, it is checked whether the constructor patterns match.
Thus, functional patterns and multiple occurrences of pattern variables are ignored.

2. Functional pattern matching: In the next phase, functional patterns are matched but occur-
rences of standard pattern variables in the functional patterns are ignored.

3. Non-linear patterns: If standard and functional pattern matching is successful, the equational
constraints which correspond to multiple occurrences pattern variables are solved.

4. Guards: Finally, the guards supplied by the programmer are checked.

The order of pattern matching should not influence the computed result. However, it might have
some influence on the termination behavior of programs, i.e., a program might not terminate instead
of finitely failing. In such cases, it could be necessary to consider the influence of the order of pattern
matching. Note that other orders of pattern matching can be obtained using auxiliary operations.

3.4 Type Classes

The concept of type classes is not yet part of the Curry language report. The recognized syntax of
type classes is specified in Section 4. Although the implemented concept of type classes is not fully
described in this manual, it is quite similar to Haskell 98 [36] so that one can look there to find a
detailed description.

3.5 Free Variables, Equality, and the Type Class Data

Curry extends purely functional programming languages, like Haskell, with built-in non-determinism
and free variables. The value of a free variable is unknown when it is introduced. A free variable
is instantiated to some value if it occurs as a demanded argument of an operation to be evaluated
(or by unification, which can be considered as an optimization of evaluating an equality operator
[11]). Since patterns occurring in program rules are built from variables and data constructors, free
variables cannot be instantiated to values of a functional type. As a consequence, the type of a
polymorphic variable should be restricted to non-functional types only.

Another potential problem when dealing with free variables and unification is the precise notion
of equality. Since Curry is intended as an extension of Haskell, Curry supports the type class Eq

with operations “==” and “/=”. Although standard textbooks on Haskell define this operation as
equality, its actual implementation can be different since, as a member of the type class Eq, it
can be defined with a behavior different than equality on concrete type instances. Actually, the
documentation of the type class Eq2 denotes “==” as “equality” but also contains the remark: “== is
customarily expected to implement an equivalence relationship where two values comparing equal
are indistinguishable by “public” functions.” Thus, it is intended that e1 == e2 evaluates to True even
if e1 and e2 have not the same but only equivalent values.

For instance, consider a data type for values indexed by a unique number:

data IVal a = IVal Int a

If the index is assumed to be unique when IVal values are used, one might define the comparison
of indexed values by just comparing the indices:

2http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Eq.html

20

http://hackage.haskell.org/package/base-4.12.0.0/docs/Data-Eq.html


instance Eq a => Eq (IVal a) where
IVal i1 _ == IVal i2 _ = i1 == i2

With this definition, the prelude operation elem yields surprising results:

> elem (IVal 1 ’b’) [IVal 1 ’a’]
True

Such a result is not intended since the element (first argument) does not occur in the list.
As a further example, consider the functional logic definition of the operation last to compute

the last element of a list:

last xs | _ ++ [e] == xs = e
where e free

Since “==” denotes equivalence rather than equality, last might not return the last element of a list
but one (or more than one) value which is equivalent to the last element. For instance, we get the
following answer when computing the last element of a given IVal list:

> last [IVal 1 ’a’]
IVal 1 _

Hence, instead of the actual last element, we get a rather general representation of it where “ ”
denotes a free variable of type Char.

These problems are avoided in PAKCS by the predefined type class Data, as proposed in [29]:

class Data a where
(===) :: a → a → Bool
aValue :: a

The operation “===” implements strict equality (rather than an equivalence relation) on type a,
i.e., e1 === e2 evaluates to True if both expressions e1 and e2 evaluate to some ground value v. The
operation aValue non-deterministically returns all values of type a. In contrast to other type classes,
Data is predefined so that the following holds:

1. It is not allowed to define explicit Data instances for particular types. This avoids the definition
of unintended instances.

2. Data instances are automatically derived for all first-order types. A type is first-order if all its
values do not contain functional components, i.e., all constructors have non-functional type
arguments and refer to other first-order types only.

Thus, the prelude base types Bool, Char, Int, Float,3 Ordering as well as type constructors like Maybe,
Either, list and tuple constructors have Data instances. For instance, we can non-deterministically
enumerate values by specifying the desired type instance for aValue:

> aValue :: Maybe Bool
Nothing
Just False
Just True

3Since there is no reasonable value generator for floats, aValue :: Float returns a free variable.

21



Moreover, free variables have the class constraint Data so that they cannot be used as unknown
functional values. Hence, the definition of last shown above can be modified as follows to work as
intended:

last :: Data a => [a] → a
last xs | _ ++ [e] === xs = e

where e free

The type signature implies that last cannot be applied to a list of functional values.
The unification operation “=:=” returns True if both arguments can be evaluated to unifiable

data values. Thus, it can be considered as an optimization of “===” that can be used when only
True should be computed, as in conditions of rules (see [11]). As a consequence, the type of “=:=”
is identical to the type of “===”:

(=:=) :: Data a => a → a → Bool

Hence, the operation last can also be defined by

last :: Data a => [a] → a
last xs | _ ++ [e] =:= xs = e

where e free

3.6 Parser Options in Source Programs

The front end of PAKCS understands various options. These options can be passed to the front
end by setting the PAKCS option parser, e.g., by

:set parser -F --pgmF=transcurry

or for individual modules by providing an option line as a specific comment at the beginning of the
source program. For instance, the option above can be set for a specific module by putting the line

{-# OPTIONS_FRONTEND -F --pgmF=transcurry #-}

at the beginning of the module. This is useful to switch off specific warnings when parsing a module.
For instance,

{-# OPTIONS_FRONTEND -Wno-incomplete-patterns -Wno-overlapping #-}

suppresses warnings about incompletely defined operations and operations defined by overlapping
rules.

Generally, the string following OPTIONS_FRONTEND will be split at white spaces and treated like
an ordinary command line argument string passed to the front end. If one wishes to provide options
containing spaces, e.g., directory paths, this can be achieved by quoting the respective argument
using either single or double quotes. The list of all available options can be listed by the help
command of the front end:

pakcshome /bin/pakcs-frontend --help

Note that the following options are excluded:

• A change of the compilation targets (e.g., change from FlatCurry to AbstractCurry).

22



• A change of the import paths.

• A change of the library paths.

These options can only be set via the command line.

3.7 Conditional Compilation

PAKCS also supports conditional compilation in the C preprocessor (CPP) style. Actually, only a
subset of the C preprocessor is supported (see below), e.g., “includes” are not allowed. Although
conditional compilation might cause problems and should be avoided, sometimes it is useful to
support libraries across different Curry compilers with different features in their back ends.

To enable conditional compilation, the header of the program text should contain the line

{-# LANGUAGE CPP #-}

Then the source code might contain compilation directives like

#ifdef __KICS2__
eqChar external
#elif defined(__PAKCS__)
eqChar x y = (prim_eqChar $# y) $# x

prim_eqChar :: Char → Char → Bool
prim_eqChar external
#endif

Thus, if the front end is invoked with option

-D__PAKCS__=303

(which is automatically done by PAKCS in version 3.3.x), the first three and the last lines are
replaced by blank lines in the source code above before it is passed to the parser. Thus, the line
numbers of the remaining code are not changed by preprocessing.

Each directive has to be written in a separate line and will be replaced by a blank line after
processing it. In the following, we discuss the supported directives.

#define id val

In the subsequent source text following that directive, the identifier id is defined with value val . An
identifier is a letter or an underscore followed by zero or more letters, underscores or digits. The
value val consists of one or more digits.

#undef id

In the subsequent source text following that directive, the identifier id becomes undefined (regardless
whether it was defined before).

23



#if cond

If the condition cond is true, then all lines between the subsequent matching #else or #elif and
the corresponding #endif directive, if present, are replaced by blank lines. Otherwise, all lines up to
the subsequent matching #else, #elif, or #endif directive, if present, are replaced by blank lines.
Conditions have one of the following forms:

• id op val : If the comparison expression evaluates to true, this condition is true. The operator
op is one of ==, /=, <, <=, >, or >=. If the identifier used in the expression is not currently
defined, it is assumed to have value 0.

• defined(id): If the identifier id is currently defined, then this condition is true.

• !defined(id): If the identifier id is not currently defined, then this condition is true.

#ifdef id

This directive is equivalent to #if defined(id).

#ifndef id

This directive is equivalent to #if !defined(id).

#else

This directive marks the start of the lines which are kept if the preceding #if or #elif has a false
condition.

#elif cond

This directive is interpreted as an #else followed by a new #if.

#endif

This directive terminates the preceding #if, #else, or #elif directive.

3.8 Language Pragmas

PAKCS supports a couple of language pragmas to influence the kind of the source language to be
processed. One such pragma, conditional compilation, has been described in the previous section.
In this section we describe two pragmas which might be useful for experimental purposes.

The Curry prelude (library Prelude) contains many definition of standard data types, operations,
and type classes and instances. Thus, it is a fairly large module. When developing new tools for
analyzing or manipulating programs, the complexity of the prelude, which is imported by any
simple program, hinders sometimes the initial development of such tools. For this purpose, it could
be useful to compile a program without the prelude. This can be achieved by putting the following
language pragma into the header of the module:

{-# LANGUAGE NoImplicitPrelude #-}

24



Note that such a module has to define all data types on which operations are defined, since nothing
from the prelude is available in such a module.

As described in Section 3.5, instances of class Data are automatically derived by PAKCS. Since
the implementation of these instances refer to the prelude and are sometimes complex, one can
suppress the derivation of Data instances by the language pragma

{-# LANGUAGE NoDataDeriving #-}

Since the implementation of Data instances refer to operations defined in the prelude, it is not possi-
ble to derive such instances without the prelude. Therefore, the language pragma NoImplicitPrelude

automatically implies the pragma NoDataDeriving.
For example, the compilation target of the following program contains two type declarations

and two operations without any implicitly generated auxiliary operations:

{-# LANGUAGE NoImplicitPrelude #-}

data Nat = Z | S Nat

data MyBool = False | True

-- Addition on natural numbers.
add :: Nat → Nat → Nat
add Z n = n
add (S m) n = S (add m n)

-- Less-or-equal predicate on natural numbers.
leq :: Nat → Nat → MyBool
leq Z _ = True
leq (S _) Z = False
leq (S x) (S y) = leq x y

Note that it is not possible to use free variables in this program, since free variables require the type
class constraint Data (see Section 3.5).

25



4 Recognized Syntax of Curry

The PAKCS Curry compiler accepts a slightly extended version of the grammar specified in the
Curry Report [30]. Furthermore, the syntax recognized by PAKCS differs from that specified in the
Curry Report regarding numeric or character literals. We therefore present the complete description
of the syntax below, whereas syntactic extensions are highlighted.

4.1 Notational Conventions

The syntax is given in extended Backus-Naur-Form (eBNF), using the following notation:

NonTerm ::= α production
NonTerm nonterminal symbol

Term terminal symbol
[α] optional
{α} zero or more repetitions
(α) grouping

α | β alternative
α〈β〉 difference – elements generated by α

without those generated by β

The Curry files are expected to be encoded in UTF-8. However, source programs are biased towards
ASCII for compatibility reasons.

4.2 Lexicon

4.2.1 Comments

Comments either begin with “--” and terminate at the end of the line, or begin with “{-” and
terminate with a matching “-}”, i.e., the delimiters “{-” and “-}” act as parentheses and can be
nested.

4.2.2 Identifiers and Keywords

The case of identifiers is important, i.e., the identifier “abc” is different from “ABC”. Although the
Curry Report specifies four different case modes (Prolog, Gödel, Haskell, free), the PAKCS only
supports the free mode which puts no constraints on the case of identifiers in certain language
constructs.

Letter ::= any ASCII letter
Dashes ::= -- {-}

Ident ::= (Letter {Letter | Digit | _ | ’})〈ReservedID〉
Symbol ::= ~ | ! | @ | # | $ | % | ^ | & | * | + | - | = | < | > | ? | . | / | | | \ | :

ModuleID ::= {Ident .} Ident
TypeConstrID ::= Ident

TypeVarID ::= Ident | _
ClassVarID ::= Ident

26



ExistVarID ::= Ident
DataConstrID ::= Ident

InfixOpID ::= (Symbol {Symbol})〈Dashes | ReservedSym〉
FunctionID ::= Ident
VariableID ::= Ident

LabelID ::= Ident
ClassID ::= Ident

QTypeConstrID ::= [ModuleID .] TypeConstrID
QDataConstrID ::= [ModuleID .] DataConstrID

QInfixOpID ::= [ModuleID .] InfixOpID
QFunctionID ::= [ModuleID .] FunctionID

QLabelID ::= [ModuleID .] LabelID
QClassID ::= [ModuleID .] ClassID

The following identifiers are recognized as keywords and cannot be used as regular identifiers.

ReservedID ::= case | class | data | default | deriving | do | else | external
| fcase | free | if | import | in | infix | infixl | infixr
| instance | let | module | newtype | of | then | type | where

Note that the identifiers as, forall, hiding and qualified are no keywords. They have only a
special meaning in module headers and can thus be used as ordinary identifiers elsewhere. The
following symbols also have a special meaning and cannot be used as an infix operator identifier.

ReservedSym ::= .. | : | :: | = | \ | | | <- | -> | @ | ~ | =>

4.2.3 Numeric and Character Literals

In contrast to the Curry Report, PAKCS adopts Haskell’s notation of literals for both numeric as
well as character and string literals, extended with the ability to denote binary integer literals.

Int ::= Decimal
| 0b Binary | 0B Binary
| 0o Octal | 0O Octal
| 0x Hexadecimal | 0X Hexadecimal

Float ::= Decimal . Decimal [Exponent ]
| Decimal Exponent

Exponent ::= (e | E) [+ | -] Decimal

Decimal ::= Digit {Digit}
Binary ::= Binit {Binit}
Octal ::= Octit {Octit}

Hexadecimal ::= Hexit {Hexit}

Digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Binit ::= 0 | 1
Octit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
Hexit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F | a | b | c | d | e | f

For character and string literals, the syntax is as follows:

Char ::= ’ ( Graphic〈\〉 | Space | Escape〈\&〉 ) ’
String ::= " { Graphic〈" | \〉 | Space | Escape | Gap } "

27



Escape ::= \ ( CharEsc | AsciiEsc | Decimal | o Octal | x Hexadecimal )
CharEsc ::= a | b | f | n | r | t | v | \ | " | ’ | &
AsciiEsc ::= ^ Cntrl | NUL | SOH | STX | ETX | EOT | ENQ | ACK

| BEL | BS | HT | LF | VT | FF | CR | SO | SI | DLE
| DC1 | DC2 | DC3 | DC4 | NAK | SYN | ETB | CAN
| EM | SUB | ESC | FS | GS | RS | US | SP | DEL

Cntrl ::= A | . . . | Z | @ | [ | \ | ] | ^ | _
Gap ::= \ WhiteChar {WhiteChar} \

Graphic ::= any graphical character
WhiteChar ::= any whitespace character

4.3 Layout

Similarly to Haskell, a Curry programmer can use layout information to define the structure of
blocks. For this purpose, we define the indentation of a symbol as the column number indicating
the start of this symbol, and the indentation of a line is the indentation of its first symbol.4

The layout (or “off-side”) rule applies to lists of syntactic entities after the keywords let, where,
do, or of. In the subsequent context-free syntax, these lists are enclosed with curly braces ({ }) and
the single entities are separated by semicolons (;). Instead of using the curly braces and semicolons
of the context-free syntax, a Curry programmer can also specify these lists by indentation: the
indentation of a list of syntactic entities after let, where, do, or of is the indentation of the next
symbol following the let, where, do, of. Any item of this list starts with the same indentation
as the list. Lines with only whitespaces or an indentation greater than the indentation of the list
continue the item in the previous line. Lines with an indentation less than the indentation of the
list terminate the entire list. Moreover, a list started by let is terminated by the keyword in. Thus,
the sentence

f x = h x where { g y = y + 1 ; h z = (g z) * 2 }

which is valid w.r.t. the context-free syntax, can be written with the layout rules as

f x = h x
where g y = y + 1

h z = (g z) * 2

or also as

f x = h x where
g y = y + 1
h z = (g z)

* 2

To avoid an indentation of top-level declarations, the keyword module and the end-of-file token are
assumed to start in column 0.

4In order to determine the exact column number, we assume a fixed-width font with tab stops at each 8th column.

28



4.4 Context-Free Grammar

Module ::= module ModuleID [Exports] where Block
| Block

Block ::= { [ImportDecls ;] BlockDecl1 ; . . . ; BlockDecln } (no fixity declarations here, n ≥ 0)

Exports ::= ( Export1 , . . . , Exportn ) (n ≥ 0)

Export ::= QFunction
| QTypeConstrID [( ConsLabel1 , . . . , ConsLabeln )] (n ≥ 0)

| QTypeConstrID (..)
| QClassID [( Function1 , . . . , Functionn )] (n ≥ 0)

| QClassID (..)
| module ModuleID

ConsLabel ::= DataConstr | Label

ImportDecls ::= ImportDecl1 ; . . . ; ImportDecln (n ≥ 1)

ImportDecl ::= import [qualified] ModuleID [as ModuleID ] [ImportSpec]
ImportSpec ::= ( Import1 , . . . , Importn ) (n ≥ 0)

| hiding ( Import1 , . . . , Importn ) (n ≥ 0)

Import ::= Function
| TypeConstrID [( ConsLabel1 , . . . , ConsLabeln )] (n ≥ 0)

| TypeConstrID (..)
| ClassID [( Function1 , . . . , Functionn )] (n ≥ 0)

| ClassID (..)

BlockDecl ::= TypeSynDecl
| DataDecl
| NewtypeDecl
| FixityDecl
| FunctionDecl
| DefaultDecl
| ClassDecl
| InstanceDecl

TypeSynDecl ::= type SimpleType = TypeExpr
SimpleType ::= TypeConstrID TypeVarID1 . . . TypeVarIDn (n ≥ 0)

DataDecl ::= external data SimpleType (external data type)
| data SimpleType [= ConstrDecls] [deriving DerivingDecl ]

ConstrDecls ::= ConstrDecl1 | . . . | ConstrDecln (n ≥ 1)

ConstrDecl ::= [ExistVars] [Context =>] ConDecl
ExistVars ::= forall ExistVarID1 . . . ExistVarIDn . (n ≥ 1)

ConDecl ::= DataConstr SimpleTypeExpr1 . . . SimpleTypeExprn (n ≥ 0)

| TypeAppExpr ConOp TypeAppExpr (infix data constructor)
| DataConstr { FieldDecl1 , . . . , FieldDecln } (n ≥ 0)

FieldDecl ::= Label1 , . . . , Labeln :: TypeExpr (n ≥ 1)

DerivingDecl ::= ( QClassID1 , . . . , QClassIDn ) (n ≥ 0)

NewtypeDecl ::= newtype SimpleType = NewConstrDecl [deriving DerivingDecl ]
NewConstrDecl ::= DataConstr SimpleTypeExpr

| DataConstr { Label :: TypeExpr }

QualTypeExpr ::= [Context =>] TypeExpr
Context ::= Constraint

29



| ( Constraint1 , . . . , Constraintn ) (n ≥ 0)

Constraint ::= QClassID ClassVarID
| QClassID ( ClassVarID SimpleTypeExpr1 . . . SimpleTypeExprn ) (n ≥ 1)

TypeExpr ::= TypeAppExpr [-> TypeExpr ]
TypeAppExpr ::= [TypeAppExpr ] SimpleTypeExpr

SimpleTypeExpr ::= TypeVarID
| GTypeConstr
| ( TypeExpr1 , . . . , TypeExprn ) (tuple type, n ≥ 2)

| [ TypeExpr ] (list type)
| ( TypeExpr ) (parenthesized type)

GTypeConstr ::= () (unit type constructor)
| [] (list type constructor)
| (->) (function type constructor)
| (, {,} ) (tuple type constructor)
| QTypeConstrID

DefaultDecl ::= default ( TypeExpr1 , . . . , TypeExprn ) (n ≥ 0)

ClassDecl ::= class [SimpleContext =>] ClassID ClassVarID [where ClsDecls]
ClsDecls ::= { ClsDecl1 ; . . . ; ClsDecln } (n ≥ 0)

ClsDecl ::= Signature
| Equat

SimpleContext ::= SimpleConstraint
| ( SimpleConstraint1 , . . . , SimpleConstraintn ) (n ≥ 0)

SimpleConstraint ::= QClassID ClassVarID

InstanceDecl ::= instance [SimpleContext =>] QClassID InstType [where InstDecls]
InstDecls ::= { InstDecl1 ; . . . ; InstDecln } (n ≥ 0)

InstDecl ::= Equat
InstType ::= GTypeConstr

| ( GTypeConstr ClassVarID1 . . . ClassVarIDn ) (n ≥ 0)

| ( ClassVarID1 , . . . , ClassVarIDn ) (n ≥ 2)

| [ ClassVarID ]
| ( ClassVarID -> ClassVarID )

FixityDecl ::= Fixity [Int ] Op1 , . . . , Opn (n ≥ 1)

Fixity ::= infixl | infixr | infix

FunctionDecl ::= Signature | ExternalDecl | Equation
Signature ::= Functions :: QualTypeExpr

ExternalDecl ::= Functions external (externally defined operations)
Functions ::= Function1 , . . . , Functionn (n ≥ 1)

Equation ::= FunLhs Rhs
FunLhs ::= Function SimplePat1 . . . SimplePatn (n ≥ 0)

| ConsPattern FunOp ConsPattern
| ( FunLhs ) SimplePat1 . . . SimplePatn (n ≥ 1)

Rhs ::= = Expr [where LocalDecls]
| CondExprs [where LocalDecls]

CondExprs ::= | InfixExpr = Expr [CondExprs]

LocalDecls ::= { LocalDecl1 ; . . . ; LocalDecln } (n ≥ 0)

LocalDecl ::= FunctionDecl

30



| PatternDecl
| Variable1 , . . . , Variablen free (n ≥ 1)

| FixityDecl
PatternDecl ::= Pattern Rhs

Pattern ::= ConsPattern [QConOp Pattern] (infix constructor pattern)
ConsPattern ::= GDataConstr SimplePat1 . . . SimplePatn (constructor pattern, n ≥ 1)

| - (Int | Float) (negative pattern)
| SimplePat

SimplePat ::= Variable
| _ (wildcard)
| GDataConstr (constructor)
| Literal (literal)
| ( Pattern ) (parenthesized pattern)
| ( Pattern1 , . . . , Patternn ) (tuple pattern, n ≥ 2)

| [ Pattern1 , . . . , Patternn ] (list pattern, n ≥ 1)

| Variable @ SimplePat (as-pattern)
| ~ SimplePat (irrefutable pattern)
| ( QFunction SimplePat1 . . . SimplePatn ) (functional pattern, n ≥ 1)

| ( ConsPattern QFunOp Pattern ) (infix functional pattern)
| QDataConstr { FieldPat1 , . . . , FieldPatn } (labeled pattern, n ≥ 0)

FieldPat ::= QLabel = Pattern

Expr ::= InfixExpr :: QualTypeExpr (expression with type signature)
| InfixExpr

InfixExpr ::= NoOpExpr QOp InfixExpr (infix operator application)
| - InfixExpr (unary minus)
| NoOpExpr

NoOpExpr ::= \ SimplePat1 . . . SimplePatn -> Expr (lambda expression, n ≥ 1)

| let LocalDecls in Expr (let expression)
| if Expr then Expr else Expr (conditional)
| case Expr of { Alt1 ; . . . ; Altn } (case expression, n ≥ 1)

| fcase Expr of { Alt1 ; . . . ; Altn } (fcase expression, n ≥ 1)

| do { Stmt1 ; . . . ; Stmtn ; Expr } (do expression, n ≥ 0)

| FuncExpr
FuncExpr ::= [FuncExpr ] BasicExpr (application)
BasicExpr ::= Variable (variable)

| _ (anonymous free variable)
| QFunction (qualified function)
| GDataConstr (general constructor)
| Literal (literal)
| ( Expr ) (parenthesized expression)
| ( Expr1 , . . . , Exprn ) (tuple, n ≥ 2)

| [ Expr1 , . . . , Exprn ] (finite list, n ≥ 1)

| [ Expr [, Expr ] .. [Expr ] ] (arithmetic sequence)
| [ Expr | Qual1 , . . . , Qualn ] (list comprehension, n ≥ 1)

| ( InfixExpr QOp ) (left section)
| ( QOp〈-〉 InfixExpr ) (right section)
| QDataConstr { FBind1 , . . . , FBindn } (record construction, n ≥ 0)

| BasicExpr〈QDataConstr〉 { FBind1 , . . . , FBindn } (record update, n ≥ 1)

31



Alt ::= Pattern -> Expr [where LocalDecls]
| Pattern GdAlts [where LocalDecls]

GdAlts ::= | InfixExpr -> Expr [GdAlts]

FBind ::= QLabel = Expr

Qual ::= Pattern <- Expr (generator)
| let LocalDecls (local declarations)
| Expr (guard)

Stmt ::= Pattern <- Expr
| let LocalDecls
| Expr

Literal ::= Int | Float | Char | String

GDataConstr ::= () (unit)
| [] (empty list)
| (,{,}) (tuple)
| QDataConstr

Variable ::= VariableID | ( InfixOpID ) (variable)
Function ::= FunctionID | ( InfixOpID ) (function)

QFunction ::= QFunctionID | ( QInfixOpID ) (qualified function)
DataConstr ::= DataConstrID | ( InfixOpID ) (constructor)

QDataConstr ::= QDataConstrID | ( QInfixOpID ) (qualified constructor)
Label ::= LabelID | ( InfixOpID ) (label)

QLabel ::= QLabelID | ( QInfixOpID ) (qualified label)

VarOp ::= InfixOpID | ` VariableID ` (variable operator)
FunOp ::= InfixOpID | ` FunctionID ` (function operator)

QFunOp ::= QInfixOpID | ` QFunctionID ` (qualified function operator)
ConOp ::= InfixOpID | ` DataConstrID ` (constructor operator)

QConOp ::= GConSym | ` QDataConstrID ` (qualified constructor operator)
LabelOp ::= InfixOpID | ` LabelID ` (label operator)

QLabelOp ::= QInfixOpID | ` QLabelID ` (qualified label operator)

Op ::= FunOp | ConOp | LabelOp (operator)
QOp ::= VarOp | QFunOp | QConOp | QLabelOp (qualified operator)

GConSym ::= : | QInfixOpID (general constructor symbol)

32



5 Optimization of Curry Programs

After the invocation of the Curry front end, which parses a Curry program and translates it into
the intermediate FlatCurry representation, PAKCS applies a transformation to optimize Boolean
equalities occurring in the Curry program. The ideas and details of this optimization are described
in [9]. Therefore, we sketch only some basic ideas and options to influence this optimization.

Consider the following definition of the operation last to extract the last element in list:

last :: Data a => [a] → a
last xs | xs === _ ++ [x]

= x
where x free

In order to evaluate the condition “xs === ++[x]”, the Boolean equality is evaluated to True or
False by instantiating the free variables and x. However, since we know that a condition must
be evaluated to True only and all evaluations to False can be ignored, we can use the constrained
equality to obtain a more efficient program:

last :: Data a => [a] → a
last xs | xs =:= _++[x]

= x
where x free

Since the selection of the appropriate equality operator is not obvious and might be tedious, PAKCS
encourages programmers to use only the Boolean equality operator “===” in programs. The con-
straint equality operator “=:=” can be considered as an optimization of “===” if it is ensured that
only positive results are required, e.g., in conditions of program rules.

To support this programming style, PAKCS has a built-in optimization phase on FlatCurry
files. For this purpose, the optimizer analyzes the FlatCurry programs for occurrences of “===” and
replaces them by “=:=” whenever the result False is not required.5 The usage of the optimizer can
be influenced by setting the property flag bindingoptimization in the configuration file .pakcsrc.
The following values are recognized for this flag:

no: Do not apply this transformation.

fast: This is the default value. The transformation is based on pre-computed values for the prelude
operations in order to decide whether the value False is not required as a result of a Boolean
equality. Hence, the transformation can be efficiently performed without any complex analysis.

full: Perform a complete “required values” analysis of the program (see [9]) and use this information
to optimize programs. In most cases, this does not yield better results so that the fast mode
is sufficient.

Hence, to turn off this optimization, one can either modify the flag bindingoptimization in the
configuration file .pakcsrc or dynamically pass this change to the invocation of PAKCS by

. . . -Dbindingoptimization=no . . .

5The current optimizer also replaces occurrences of (==) although this transformation is valid only if the corre-
sponding Eq instances define equality rather than equivalence.

33



6 cypm: The Curry Package Manager

The Curry package manager (CPM) is a tool to distribute and install Curry libraries and applications
and manage version dependencies between these libraries. Since CPM offers a lot of functionality,
there is a separate manual available.6 Therefore, we describe here only some basic CPM commands.

The executable cypm is located in the bin directory of PAKCS. Hence, if you have this directory
in your path, you can start CPM by cloning a copy of the central package index repository:

> cypm update

Now you can show a short list of all packages in this index by

> cypm list
Name Synopsis Version
---- -------- -------
abstract-curry Libraries to deal with AbstractCurry programs 2.0.0
abstract-haskell Libraries to represent Haskell programs in Curry 2.0.0
addtypes A tool to add missing type signatures in a Curry 2.0.0

program
base Base libraries for Curry systems 1.0.0
. . .

The command

> cypm info PACKAGE

can be used to show more information about the package with name PACKAGE.
Some packages do not contain only useful libraries but also tools with some binary. In order to

install such tools, one can use the command

> cypm install PACKAGE

This command checks out the package in some internal directory ($HOME/.cpm/apps_...) and installs
the binary of the tool provided by the package in $HOME/.cpm/bin. Hence it is recommended to add
this directory to your path.

For instance, the most recent version of CPM can be installed by the following commands:

> cypm update
. . .

> cypm install cpm
. . . Package ’cpm-xxx’ checked out . . .

. . .

INFO Installing executable ’cypm’ into ’/home/joe/.cpm/bin’

Now, the binary cypm of the most recent CPM version can be used if $HOME/.cpm/bin is in your path
(before pakcshome /bin!).

A detailed description how to write your own packages with the use of other packages can be
found in the manual of CPM.

6http://curry-lang.org/tools/cpm

34

http://curry-lang.org/tools/cpm


7 CurryCheck: A Tool for Testing Properties of Curry Programs

CurryCheck is a tool that supports the automation of testing Curry programs. The tests to be
executed can be unit tests as well as property tests parameterized over some arguments. The
tests can be part of any Curry source program and, thus, they are also useful to document the
code. CurryCheck is based on EasyCheck [17]. Actually, the properties to be tested are written
by combinators proposed for EasyCheck, which are actually influenced by QuickCheck [18] but
extended to the demands of functional logic programming.

7.1 Installation

The current implementation of CurryCheck is a package managed by the Curry Package Manager
CPM. Thus, to install the newest version of CurryCheck, use the following commands:

> cypm update
> cypm install currycheck

This downloads the newest package, compiles it, and places the executable curry-check into the
directory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to
execute CurryCheck as described below.

7.2 Testing Properties

To start with a concrete example, consider the following naive definition of reversing a list:

rev :: [a] → [a]
rev [] = []
rev (x:xs) = rev xs ++ [x]

To get some confidence in the code, we add some unit tests, i.e., test with concrete test data:

revNull = rev [] -=- []
rev123 = rev [1,2,3] -=- [3,2,1]

The operator “-=-” specifies a test where both sides must have a single identical value. Since this
operator (as many more, see below) are defined in the library Test.Prop,7 we also have to import
this library. Apart from unit tests, which are often tedious to write, we can also write a property,
i.e., a test parameterized over some arguments. For instance, an interesting property of reversing a
list is the fact that reversing a list two times provides the input list:

revRevIsId xs = rev (rev xs) -=- xs

Note that each property is defined as a Curry operation where the arguments are the parameters
of the property. Altogether, our program is as follows:

module Rev(rev) where

7The library Test.Prop is a clone of the library Test.EasyCheck (see package easycheck) which defines only
the interface but not the actual test implementations. Thus, the library Test.Prop has less import dependencies.
When CurryCheck generates programs to execute the tests, it automatically replaces references to Test.Prop by
references to Test.EasyCheck in the generated programs.

35



import Test.Prop

rev :: [a] → [a]
rev [] = []
rev (x:xs) = rev xs ++ [x]

revNull = rev [] -=- []
rev123 = rev [1,2,3] -=- [3,2,1]

revRevIsId xs = rev (rev xs) -=- xs

Now we can run all tests by invoking the CurryCheck tool. If our program is stored in the file
Rev.curry, we can execute the tests as follows:

> curry-check Rev
...
Executing all tests...
revNull (module Rev, line 7):
Passed 1 test.

rev123 (module Rev, line 8):
Passed 1 test.

revRevIsId_ON_BASETYPE (module Rev, line 10):
OK, passed 100 tests.

Since the operation rev is polymorphic, the property revRevIsId is also polymorphic in its argument.
In order to select concrete values to test this property, CurryCheck replaces such polymorphic tests
by defaulting the type variable to prelude type Ordering (the actual default type can also be set
by a command-line flag). If we want to test this property on integers numbers, we can explicitly
provide a type signature, where Prop denotes the type of a test:

revRevIsId :: [Int] → Prop
revRevIsId xs = rev (rev xs) -=- xs

The command curry-check has some options to influence the output, like “-q” for a quiet execution
(only errors and failed tests are reported) or “-v” for a verbose execution where all generated test
cases are shown. Moreover, the return code of curry-check is 0 in case of successful tests, otherwise,
it is 1. Hence, CurryCheck can be easily integrated in tool chains for automatic testing.

In order to support the inclusion of properties in the source code, the operations defined the
properties do not have to be exported, as show in the module Rev above. Hence, one can add
properties to any library and export only library-relevant operations. To test these properties,
CurryCheck creates a copy of the library where all operations are public, i.e., CurryCheck requires
write permission on the directory where the source code is stored.

The library Test.Prop defines many combinators to construct properties. In particular, there
are a couple of combinators for dealing with non-deterministic operations (note that this list is
incomplete):

• The combinator “<~>” is satisfied if the set of values of both sides are equal.

• The property x ~> y is satisfied if x evaluates to every value of y. Thus, the set of values of
y must be a subset of the set of values of x.

36



• The property x <~y is satisfied if y evaluates to every value of x, i.e., the set of values of x
must be a subset of the set of values of y.

• The combinator “<~~>” is satisfied if the multi-set of values of both sides are equal. Hence,
this operator can be used to compare the number of computed solutions of two expressions.

• The property always x is satisfied if all values of x are true.

• The property eventually x is satisfied if some value of x is true.

• The property failing x is satisfied if x has no value, i.e., its evaluation fails.

• The property x # n is satisfied if x has n different values.

For instance, consider the insertion of an element at an arbitrary position in a list:

insert :: a → [a] → [a]
insert x xs = x : xs
insert x (y:ys) = y : insert x ys

The following property states that the element is inserted (at least) at the beginning or the end of
the list:

insertAsFirstOrLast :: Int → [Int] → Prop
insertAsFirstOrLast x xs = insert x xs ~> (x:xs ? xs++[x])

A well-known application of insert is to use it to define a permutation of a list:

perm :: [a] → [a]
perm [] = []
perm (x:xs) = insert x (perm xs)

We can check whether the length of a permuted lists is unchanged:

permLength :: [Int] → Prop
permLength xs = length (perm xs) <~> length xs

Note that the use of “<~>” is relevant since we compare non-deterministic values. Actually, the left
argument evaluates to many (identical) values.

One might also want to check whether perm computes the correct number of solutions. Since we
know that a list of length n has n! permutations, we write the following property:

permCount :: [Int] → Prop
permCount xs = perm xs # fac (length xs)

where fac is the factorial function. However, this test will be falsified with the argument [1,1].
Actually, this list has only one permuted value since the two possible permutations are identical
and the combinator “#” counts the number of different values. The property would be correct if all
elements in the input list xs are different. This can be expressed by a conditional property: the
property b ==> p is satisfied if p is satisfied for all values where b evaluates to True. Therefore, if
we define a predicate allDifferent by

allDifferent [] = True
allDifferent (x:xs) = x ‘notElem‘ xs && allDifferent xs

37



then we can reformulate our property as follows:

permCount xs = allDifferent xs ==> perm xs # fac (length xs)

Now consider a predicate to check whether a list is sorted:

sorted :: [Int] → Bool
sorted [] = True
sorted [_] = True
sorted (x:y:zs) = x<=y && sorted (y:zs)

This predicate is useful to test whether there are also sorted permutations:

permIsEventuallySorted :: [Int] → Prop
permIsEventuallySorted xs = eventually $ sorted (perm xs)

The previous operations can be exploited to provide a high-level specification of sorting a list:

psort :: [Int] → [Int]
psort xs | sorted ys = ys
where ys = perm xs

Again, we can write some properties:

psortIsAlwaysSorted xs = always $ sorted (psort xs)

psortKeepsLength xs = length (psort xs) <~> length xs

Of course, the sort specification via permutations is not useful in practice. However, it can be used
as an oracle to test more efficient sorting algorithms like quicksort:

qsort :: [Int] → [Int]
qsort [] = []
qsort (x:l) = qsort (filter (<x) l) ++ x : qsort (filter (>x) l)

The following property specifies the correctness of quicksort:

qsortIsSorting xs = qsort xs <~> psort xs

Actually, if we test this property, we obtain a failure:

> curry-check ExampleTests
...
qsortIsSorting (module ExampleTests, line 53) failed
Falsified by third test.
Arguments:
[1,1]
Results:
[1]

The result shows that, for the given argument [1,1], an element has been dropped in the result.
Hence, we correct our implementation, e.g., by replacing (>x) with (>=x), and obtain a successful
test execution.

For I/O operations, it is difficult to execute them with random data. Hence, CurryCheck only
supports specific I/O unit tests:

• a ‘returns‘ x is satisfied if the I/O action a returns the value x.

38



• a ‘sameReturns‘ b is satisfied if the I/O actions a and b return identical values.

Since CurryCheck executes the tests written in a source program in their textual order, one can
write several I/O tests that are executed in a well-defined order.

7.3 Generating Test Data

CurryCheck test properties by enumerating test data and checking a given property with these
values. Since these values are generated in a systematic way, one can even prove a property if the
number of test cases is finite. For instance, consider the following property from Boolean logic:

neg_or b1 b2 = not (b1 || b2) -=- not b1 && not b2

This property is validated by checking it with all possible values:

> curry-check -v ExampleTests
...
0:
False
False
1:
False
True
2:
True
False
3:
True
True
neg_or (module ExampleTests, line 67):
Passed 4 tests.

However, if the test data is infinite, like lists of integers, CurryCheck stops checking after a given
limit for all tests. As a default, the limit is 100 tests but it can be changed by the command-line
flag “-m”. For instance, to test each property with 200 tests, CurryCheck can be invoked by

> curry-check -m 200 ExampleTests

For a given type, CurryCheck automatically enumerates all values of this type (except for function
types). In KiCS2, this is done by exploiting the functional logic features of Curry, i.e., by simply
collecting all values of a free variable. For instance, the library Test.EasyCheck defines an operation

valuesOf :: a → [a]

which computes the list of all values of the given argument according to a fixed strategy (in the
current implementation: randomized level diagonalization [17]). For instance, we can get 20 values
for a list of integers by

Test.EasyCheck> take 20 (valuesOf (_::[Int]))
[[],[-1],[-3],[0],[1],[-1,0],[-2],[0,0],[3],[-1,1],[-3,0],[0,1],[2],
[-1,-1],[-5],[0,-1],[5],[-1,2],[-9],[0,2]]

39



Since the features of PAKCS for search space exploration are more limited, PAKCS uses
in CurryCheck explicit generators for search tree structures which are defined in the
module Control.Search.SearchTree.Generators (which is contained in the Curry package
searchtree-extra). For instance, the operations

genInt :: SearchTree Int

genList :: SearchTree a → SearchTree [a]

generates (infinite) trees of integer and lists values. To extract all values in a search tree, the library
Test.EasyCheck also defines an operation

valuesOfSearchTree :: SearchTree a → [a]

so that we obtain 20 values for a list of integers in PAKCS by

...> take 20 (valuesOfSearchTree (genList genInt))
[[],[1],[1,1],[1,-1],[2],[6],[3],[5],[0],[0,1],[0,0],[-1],[-1,0],[-2],
[-3],[1,5],[1,0],[2,-1],[4],[3,-1]]

Apart from the different implementations, CurryCheck can test properties on predefined types,
as already shown, as well as on user-defined types. For instance, we can define our own Peano
representation of natural numbers with an addition operation and two properties as follows:

data Nat = Z | S Nat

add :: Nat → Nat → Nat
add Z n = n
add (S m) n = S(add m n)

addIsCommutative x y = add x y -=- add y x

addIsAssociative x y z = add (add x y) z -=- add x (add y z)

Properties can also be defined for polymorphic types. For instance, we can define general polymor-
phic trees, operations to compute the leaves of a tree and mirroring a tree as follows:

data Tree a = Leaf a | Node [Tree a]

leaves (Leaf x) = [x]
leaves (Node ts) = concatMap leaves ts

mirror (Leaf x) = Leaf x
mirror (Node ts) = Node (reverse (map mirror ts))

Then we can state and check two properties on mirroring:

doubleMirror t = mirror (mirror t) -=- t

leavesOfMirrorAreReversed t = leaves t -=- reverse (leaves (mirror t))

In some cases, it might be desirable to define own test data since the generated structures are
not appropriate for testing (e.g., balanced trees to check algorithms that require work on balanced
trees). Of course, one could drop undesired values by an explicit condition. For instance, consider
the following operation that adds all numbers from 0 to a given limit:

sumUp n = if n==0 then 0 else n + sumUp (n-1)

40



Since there is also a simple formula to compute this sum, we can check it:

sumUpIsCorrect n = n>=0 ==> sumUp n -=- n * (n+1) ‘div‘ 2

Note that the condition is important since sumUp diverges on negative numbers. CurryCheck tests
this property by enumerating integers, i.e., also many negative numbers which are dropped for the
tests. In order to generate only valid test data, we define our own generator for a search tree
containing only valid data:

genInt = genCons0 0 ||| genCons1 (+1) genInt

The combinator genCons0 constructs a search tree containing only this value, whereas genCons1

constructs from a given search tree a new tree where the function given in the first argument is
applied to all values. Similarly, there are also combinators genCons2, genCons3 etc. for more than
one argument. The combinator “|||” combines two search trees.

If the Curry program containing properties defines a generator operation with the name genτ ,
then CurryCheck uses this generator to test properties with argument type τ . Hence, if we put
the definition of genInt in the Curry program where sumUpIsCorrect is defined, the values to check
this property are only non-negative integers. Since these integers are slowly increasing, i.e., the
search tree is actually degenerated to a list, we can also use the following definition to obtain a
more balanced search tree:

genInt = genCons0 0 ||| genCons1 (\n → 2*(n+1)) genInt
||| genCons1 (\n → 2*n+1) genInt

The library SearchTree defines the structure of search trees as well as operations on search trees, like
limiting the depth of a search tree (limitSearchTree) or showing a search tree (showSearchTree).
For instance, to structure of the generated search tree up to some depth can be visualized as follows:

...SearchTree> putStr (showSearchTree (limitSearchTree 6 genInt))

If we want to use our own generator only for specific properties, we can do so by introducing a
new data type and defining a generator for this data type. For instance, to test only the operation
sumUpIsCorrect with non-negative integers, we do not define a generator genInt as above, but define
a wrapper type for non-negative integers and a generator for this type:

data NonNeg = NonNeg { nonNeg :: Int }

genNonNeg = genCons1 NonNeg genNN
where

genNN = genCons0 0 ||| genCons1 (\n → 2*(n+1)) genNN
||| genCons1 (\n → 2*n+1) genNN

Now we can either redefine sumUpIsCorrect on this type

sumUpIsCorrectOnNonNeg (NonNeg n) = sumUp n -=- n * (n+1) ‘div‘ 2

or we simply reuse the old definition by

sumUpIsCorrectOnNonNeg = sumUpIsCorrect . nonNeg

41



7.4 Checking Equivalence of Operations

CurryCheck supports also equivalence tests for operations. Two operations are considered as equiv-
alent if they can be replaced by each other in any possible context without changing the computed
values (this is also called contextual equivalence and precisely defined in [8] for functional logic
programs). For instance, the Boolean operations

f1 :: Bool → Bool f2 :: Bool → Bool
f1 x = not (not x) f2 x = x

are equivalent, whereas

g1 :: Bool → Bool g2 :: Bool → Bool
g1 False = True g2 x = True
g1 True = True

are not equivalent: g1 failed has no value but g2 failed evaluates to True.
To check the equivalence of operations, one can use the property combinator <=>:

f1_equiv_f2 = f1 <=> f2
g1_equiv_g2 = g1 <=> g2

The left and right argument of this combinator must be a defined operation or a defined operation
with a type annotation in order to specify the argument types used for checking this property.

CurryCheck transforms such properties into properties where both operations are compared
w.r.t. all partial values and partial results. The details are described in [12].

It should be noted that CurryCheck can test the equivalence of non-terminating operations pro-
vided that they are productive, i.e., always generate (outermost) constructors after a finite number
of steps (otherwise, the test of CurryCheck might not terminate). For instance, CurryCheck reports
a counter-example to the equivalence of the following non-terminating operations:

ints1 n = n : ints1 (n+1)

ints2 n = n : ints2 (n+2)

-- This property will be falsified by CurryCheck:
ints1_equiv_ints2 = ints1 <=> ints2

This is done by iteratively guessing depth-bounds, computing both operations up to these depth-
bounds, and comparing the computed results. Since this might be a long process, CurryCheck
supports a faster comparison of operations when it is known that they are terminating. If the name
of a test contains the suffix ’TERMINATE, CurryCheck assumes that the operations to be tested are
terminating, i.e., they always yields a result when applied to ground terms. In this case, CurryCheck
does not iterate over depth-bounds but evaluates operations completely. For instance, consider the
following definition of permutation sort (the operations perm and sorted are defined above):

psort :: Ord a => [a] → [a]
psort xs | sorted ys = ys

where ys = perm xs

A different definition can be obtained by defining a partial identity on sorted lists:

isort :: Ord a => [a] → [a]

42



isort xs = idSorted (perm xs)
where idSorted [] = []

idSorted [x] = [x]
idSorted (x:y:ys) | x<=y = x : idSorted (y:ys)

We can test the equivalence of both operations by specializing both operations on some ground type
(otherwise, the type checker reports an error due to an unspecified type Ord context):

psort_equiv_isort = psort <=> (isort :: [Int] → [Int])

CurryCheck reports a counter example by the 274th test. Since both operations are terminating,
we can also check the following property:

psort_equiv_isort’TERMINATE = psort <=> (isort :: [Int] → [Int])

Now a counter example is found by the 21th test.
Instead of annotating the property name to use more efficient equivalence tests for terminating

operations, one can also ask CurryCheck to analyze the operations in order to safely approximate
termination or productivity properties. For this purpose, one can call CurryCheck with the option
“--equivalence=equiv” or “-eequiv”. The parameter equiv determines the mode for equivalence
checking which must have one of the following values (or a prefix of them):

manual: This is the default mode. In this mode, all equivalence tests are executed with first technique
described above, unless the name of the test has the suffix ’TERMINATE.

autoselect: This mode automatically selects the improved transformation for terminating opera-
tions by a program analysis, i.e., if it can be proved that both operations are terminating,
then the equivalence test for terminating operations is used. It is also used when the name of
the test has the suffix ’TERMINATE.

safe: This mode analyzes the productivity behavior of operations. If it can be proved that both
operations are terminating or the test name has the suffix ’TERMINATE, then the more efficient
equivalence test for terminating operations is used. If it can be proved that both operations
are productive or the test name has the suffix ’PRODUCTIVE, then the first general test technique
is used. Otherwise, the equivalence property is not tested. Thus, this mode is useful if one
wants to ensure that all equivalence tests always terminate (provided that the additional user
annotations are correct).

ground: In this mode, only ground equivalence is tested, i.e., each equivalence property

g1_equiv_g2 = g1 <=> g2

is transformed into a property which states that both operations must deliver the same values
on same input values, i.e.,

g1_equiv_g2 x1 ... xn = g1 x1 ... xn <~> g2 x1 ... xn

Note this property is more restrictive than contextual equivalence. For instance, the non-
equivalence of g1 and g2 as shown above cannot be detected by testing ground equivalence
only.

43



7.5 Checking Contracts and Specifications

The expressive power of Curry supports writing high-level specifications as well as efficient im-
plementations for a given problem in the same programming language, as discussed in [8]. If a
specification or contract is provided for some function, then CurryCheck automatically generates
properties to test this specification or contract.

Following the notation proposed in [8], a specification for an operation f is an operation f’spec
of the same type as f . A contract consists of a pre- and a postcondition, where the precondition
could be omitted. A precondition for an operation f of type τ → τ ′ is an operation

f’pre :: τ → Bool

whereas a postcondition for f is an operation

f’post :: τ → τ ′ → Bool

which relates input and output values (the generalization to operations with more than one argument
is straightforward).

As a concrete example, consider again the problem of sorting a list. We can write a postcondition
and a specification for a sort operation sort and an implementation via quicksort as follows (where
sorted and perm are defined as above):

-- Postcondition: input and output lists should have the same length
sort’post xs ys = length xs == length ys

-- Specification:
-- A correct result is a permutation of the input which is sorted.
sort’spec :: [Int] → [Int]
sort’spec xs | sorted ys = ys where ys = perm xs

-- An implementation of sort with quicksort:
sort :: [Int] → [Int]
sort [] = []
sort (x:xs) = sort (filter (<x) xs) ++ [x] ++ sort (filter (>=x) xs)

If we process this program with CurryCheck, properties to check the specification and postcondi-
tion are automatically generated. For instance, a specification is satisfied if it is equivalent to its
implementation, and a postcondition is satisfied if each value computed for some input satisfies
the postcondition relation between input and output. For our example, CurryCheck generates the
following properties (if there are also preconditions for some operation, these preconditions are used
to restrict the test cases via the condition operater “==>”):

sortSatisfiesPostCondition :: [Int] → Prop
sortSatisfiesPostCondition x = always (sort’post x (sort x))

sortSatisfiesSpecification :: Prop
sortSatisfiesSpecification = sort <=> sort’spec

44



7.6 Combining Testing and Verification

Usually, CurryCheck tests all user-defined properties as well as postconditions or specifications, as
described in Section 7.5. If a programmer uses some other tool to verify such properties, it is not
necessary to check such properties with test data. In order to advice CurryCheck to do so, it is
sufficient to store the proofs in specific files. Since the proof might be constructed by some tool
unknown to CurryCheck or even manually, CurryCheck does not check the proof file but trusts the
programmer and uses a naming convention for files containing proofs. If there is a property p in a
module M for which a proof in file proof-M-p.* (the name is case independent), then CurryCheck
assumes that this file contains a valid proof for this property. For instance, the following property
states that sorting a list does not change its length:

sortlength xs = length (sort xs) <~> length xs

If this property is contained in module Sort and there is a file proof-Sort-sortlength.txt contain-
ing a proof for this property, CurryCheck considers this property as valid and does not check it.
Moreover, it uses this information to simplify other properties to be tested. For instance, consider
the property sortSatisfiesPostCondition of Section 7.5. This can be simplified to always True so
that it does not need to be tested.

One can also provide proofs for generated properties, e.g., determinism, postconditions, specifi-
cations, so that they are not tested:

• If there is a proof file proof-M-f-IsDeterministic.*, a determinism annotation for operation
M.f is not tested.

• If there is a proof file proof-M-f-SatisfiesPostCondition.*, a postcondition for operation
M.f is not tested.

• If there is a proof file proof-M-f-SatisfiesSpecification.*, a specification for operation
M.f is not tested.

Note that the file suffix and all non-alpha-numberic characters in the name of the proof file are
ignored. Furthermore, the name is case independent This should provide enough flexibility when
other verification tools require specific naming conventions. For instance, a proof for the property
Sort.sortlengh could be stored in the following files in order to be considered by CurryCheck:

proof-Sort-sortlength.tex
PROOF_Sort_sortlength.agda
Proof-Sort_sortlength.smt
ProofSortSortlength.smt

7.7 Checking Usage of Specific Operations

In addition to testing dynamic properties of programs, CurryCheck also examines the source code
of the given program for unintended uses of specific operations (these checks can be omitted via the
option “--nosource”). Currently, the following source code checks are performed:

• The prelude operation “=:<=” is used to implement functional patterns [6]. It should not be

45



used in source programs to avoid unintended uses. Hence, CurryCheck reports such unin-
tended uses.

• Set functions [7] are used to encapsulate all non-deterministic results of some function in a set
structure. Hence, for each top-level function f of arity n, the corresponding set function can
be expressed in Curry (via operations defined in the library SetFunctions) by the application
“setn f” (this application is used in order to extend the syntax of Curry with a specific
notation for set functions). However, it is not intended to apply the operator “setn” to
lambda abstractions, locally defined operations or operations with an arity different from n.
Hence, CurryCheck reports such unintended uses of set functions.

46



8 CurryBrowser: A Tool for Analyzing and Browsing Curry Pro-
grams

CurryBrowser is a tool to browse through the modules and operations of a Curry application, show
them in various formats, and analyze their properties.8 Moreover, it is constructed in a way so that
new analyzers can easily be connected to CurryBrowser. A detailed description of the ideas behind
this tool can be found in [23, 24].

8.1 Installation

The current implementation of CurryBrowser is a package managed by the Curry Package Manager
CPM (see also Section 6). Thus, to install the newest version of CurryBrowser, use the following
commands:

> cypm update
> cypm install currybrowse

This downloads the newest package, compiles it, and places the executable curry-browse into the
directory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to
execute CurryBrowser as described below.

8.2 Basic Usage

When CurryBrowser is installed as described above, it can be started in two ways:

• In the PAKCS environment after loading the module mod and typing the command “:browse”.

• As a shell command (provided that $HOME/.cpm/bin is in your path): curry-browse mod

Here, “mod” is the name of the main module of a Curry application. After the start, CurryBrowser
loads the interfaces of the main module and all imported modules before a GUI is created for
interactive browsing.

To get an impression of the use of CurryBrowser, Figure 1 shows a snapshot of its use on
a particular application (here: the implementation of CurryBrowser). The upper list box in the
left column shows the modules and their imports in order to browse through the modules of an
application. Similarly to directory browsers, the list of imported modules of a module can be
opened or closed by clicking. After selecting a module in the list of modules, its source code,
interface, or various other formats of the module can be shown in the main (right) text area. For
instance, one can show pretty-printed versions of the intermediate flat programs (see below) in order
to see how local function definitions are translated by lambda lifting [31] or pattern matching is
translated into case expressions [19, 37]. Since Curry is a language with parametric polymorphism
and type inference, programmers often omit the type signatures when defining functions. Therefore,
one can also view (and store) the selected module as source code where missing type signatures are
added.

8Although CurryBrowser is implemented in Curry, some functionalities of it require an installed graph visualization
tool (dot http://www.graphviz.org/), otherwise they have no effect.

47

http://www.graphviz.org/


Figure 1: Snapshot of the main window of CurryBrowser

Below the list box for selecting modules, there is a menu (“Analyze selected module”) to analyze
all functions of the currently selected module at once. This is useful to spot some functions of a
module that could be problematic in some application contexts, like functions that are impure (i.e.,
the result depends on the evaluation time) or partially defined (i.e., not evaluable on all ground
terms). If such an analysis is selected, the names of all functions are shown in the lower list box of the
left column (the “function list”) with prefixes indicating the properties of the individual functions.

The function list box can be also filled with functions via the menu “Select functions”. For
instance, all functions or only the exported functions defined in the currently selected module can
be shown there, or all functions from different modules that are directly or indirectly called from a
currently selected function. This list box is central to focus on a function in the source code of some
module or to analyze some function, i.e., showing their properties. In order to focus on a function,
it is sufficient to check the “focus on code” button. To analyze an individually selected function,
one can select an analysis from the list of available program analyses (through the menu “Select
analysis”). In this case, the analysis results are either shown in the text box below the main text
area or visualized by separate tools, e.g., by a graph drawing tool for visualizing call graphs. Some
analyses are local, i.e., they need only to consider the local definition of this function (e.g., “Calls

48



directly,” “Overlapping rules,” “Pattern completeness”), where other analyses are global, i.e., they
consider the definitions of all functions directly or indirectly called by this function (e.g., “Depends
on,” “Solution complete,” “Set-valued”). Finally, there are a few additional tools integrated into
CurryBrowser, for instance, to visualize the import relation between all modules as a dependency
graph. These tools are available through the “Tools” menu.

More details about the use of CurryBrowser and all built-in analyses are available through the
“Help” menu of CurryBrowser.

49



9 curry-doc: A Documentation Generator for Curry Programs

CurryDoc is a tool in the PAKCS distribution that generates the documentation for a Curry program
(i.e., the main module and all its imported modules) in HTML format. The generated HTML
pages contain information about all data types and functions exported by a module as well as
links between the different entities. Furthermore, some information about the definitional status
of functions (like rigid, flexible, external, complete, or overlapping definitions) are provided and
combined with documentation comments provided by the programmer.

9.1 Installation

The current implementation of CurryDoc is a package managed by the Curry Package Manager
CPM (see also Section 6). Thus, to install the newest version of CurryDoc, use the following
commands:

> cypm update
> cypm install currydoc

This downloads the newest package, compiles it, and places the executable curry-doc into the
directory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to
execute CurryDoc as described below.

9.2 Documentation Comments

A documentation comment starts at the beginning of a line with “--- ” (also in literate programs!).
All documentation comments immediately before a definition of a datatype or (top-level) function
are kept together.9 The documentation comments for the complete module occur before the first
“module” or “import” line in the module. The comments can also contain several special tags. These
tags must be the first thing on its line (in the documentation comment) and continues until the
next tag is encountered or until the end of the comment. The following tags are recognized:

@author comment
Specifies the author of a module (only reasonable in module comments).

@version comment
Specifies the version of a module (only reasonable in module comments).

@cons id comment
A comment for the constructor id of a datatype (only reasonable in datatype comments).

@param id comment
A comment for function parameter id (only reasonable in function comments). Due to pattern
matching, this need not be the name of a parameter given in the declaration of the function
but all parameters for this functions must be commented in left-to-right order (if they are
commented at all).

9The documentation tool recognizes this association from the first identifier in a program line. If one wants to
add a documentation comment to the definition of a function which is an infix operator, the first line of the operator
definition should be a type definition, otherwise the documentation comment is not recognized.

50



@return comment
A comment for the return value of a function (only reasonable in function comments).

The comment of a documented entity can be any string in Markdown syntax (the currently
supported set of elements is described in the Curry package markdown). For instance, it can
contain Markdown annotations for emphasizing elements (e.g., _verb_), strong elements (e.g.,
**important**), code elements (e.g., ‘3+4‘), code blocks (lines prefixed by four blanks), un-
ordered lists (lines prefixed by “ * ”), ordered lists (lines prefixed by blanks followed by a digit
and a dot), quotations (lines prefixed by “> ”), and web links of the form “<http://...>” or
“[link text](http://...)”. If the Markdown syntax should not be used, one could run Curry-
Doc with the parameter “--nomarkdown”.

The comments can also contain markups in HTML format so that special characters like “<” must
be quoted (e.g., “&lt;”). However, header tags like <h1> should not be used since the structuring is
generated by CurryDoc. In addition to Markdown or HTML markups, one can also mark references
to names of operations or data types in Curry programs which are translated into links inside
the generated HTML documentation. Such references have to be enclosed in single quotes. For
instance, the text ’conc’ refers to the Curry operation conc inside the current module whereas the
text ’Prelude.reverse’ refers to the operation reverse of the module Prelude. If one wants to
write single quotes without this specific meaning, one can escape them with a backslash:

--- This is a comment without a \’reference\’.

To simplify the writing of documentation comments, such escaping is only necessary for single words,
i.e., if the text inside quotes has not the syntax of an identifier, the escaping can be omitted, as in

--- This isn’t a reference.

The following example text shows a Curry program with some documentation comments:

--- This is an
--- example module.
--- @author Michael Hanus
--- @version 0.1

module Example where

--- The function ‘conc‘ concatenates two lists.
--- @param xs - the first list
--- @param ys - the second list
--- @return a list containing all elements of ‘xs‘ and ‘ys‘
conc [] ys = ys
conc (x:xs) ys = x : conc xs ys
-- this comment will not be included in the documentation

--- The function ‘last‘ computes the last element of a given list.
--- It is based on the operation ’conc’ to concatenate two lists.
--- @param xs - the given input list
--- @return last element of the input list
last xs | conc ys [x] =:= xs = x where x,ys free

51

http://en.wikipedia.org/wiki/Markdown
https://www-ps.informatik.uni-kiel.de/~cpm/pkgs/markdown.html


--- This data type defines _polymorphic_ trees.
--- @cons Leaf - a leaf of the tree
--- @cons Node - an inner node of the tree
data Tree a = Leaf a | Node [Tree a]

9.3 Generating Documentation

To generate the documentation, execute the command

curry-doc Example

This command creates the directory DOC_Example (if it does not exist) and puts all HTML docu-
mentation files for the main program module Example and all its imported modules in this directory
together with a main index file index.html. If one prefers another directory for the documentation
files, one can also execute the command

curry-doc docdir Example

where docdir is the directory for the documentation files.
In order to generate the common documentation for large collections of Curry modules (e.g., the

libraries contained in the PAKCS distribution), one can call curry-doc with the following options:

curry-doc --noindexhtml docdir Mod : This command generates the documentation for module Mod
in the directory docdir without the index pages (i.e., main index page and index pages for all
functions and constructors defined in Mod and its imported modules).

curry-doc --onlyindexhtml docdir Mod1 Mod2 ...Modn : This command generates only the index
pages (i.e., a main index page and index pages for all functions and constructors defined in
the modules Mod1, Mod2,. . . ,Modn and their imported modules) in the directory docdir.

52



10 CurryVerify: A Tool to Support the Verification of Curry Pro-
grams

CurryVerify is a tool that supports the verification of Curry programs with the help of other theo-
rem provers or proof assistants. Basically, CurryVerify extends CurryCheck (see Section 7), which
tests given properties of a program, by the possibility to verify these properties. For this purpose,
CurryVerify translates properties into the input language of other theorem provers or proof assis-
tants. This is done by collecting all operations directly or indirectly involved in a given property
and translating them together with the given property.

Currently, only Agda [34] is supported as a target language for verification (but more target
languages may be supported in future releases). The basic schemes to translate Curry programs
into Agda programs are presented in [13]. That paper also describes the limitations of this ap-
proach. Since Curry is a quite rich programming language, not all constructs of Curry are currently
supported in the translation process (e.g., no case expressions, local definitions, list comprehen-
sions, do notations, etc). Only a kernel language, where the involved rules correspond to a term
rewriting system, are translated into Agda. However, these limitations might be relaxed in future
releases. Hence, the current tool should be considered as a first prototypical approach to support
the verification of Curry programs.

10.1 Installation

The current implementation of CurryVerify is a package managed by the Curry Package Manager
CPM (see also Section 6). Thus, to install the newest version of CurryVerify, use the following
commands:

> cypm update
> cypm install verify

This downloads the newest package, compiles it, and places the executable curry-verify into the
directory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to
execute CurryVerify as described below.

10.2 Basic Usage

To translate the properties of a Curry program stored in the file prog.curry into Agda, one can
invoke the command

curry-verify prog

This generates for each property p in module prog an Agda program “TO-PROVE-p.agda”. If one
completes the proof obligation in this file, the completed file should be renamed into “PROOF-p.agda”.
This has the effect that CurryCheck does not test this property again but trusts the proof and use
this knowledge to simplify other tests.

As a concrete example, consider the following Curry module Double, shown in Figure 2, which
uses the Peano representation of natural numbers (module Nat) to define an operation to double the
value of a number, a non-deterministic operation coin which returns its argument or its incremented

53



module Double(double,coin,even) where

import Nat
import Test.Prop

double x = add x x

coin x = x ? S x

even Z = True
even (S Z) = False
even (S (S n)) = even n

evendoublecoin x = always (even (double (coin x)))

Figure 2: Curry program Double.curry

argument, and a predicate to test whether a number is even. Furthermore, it contains a property
specifying that doubling the coin of a number is always even.

In order to prove the correctness of this property, we translate it into an Agda program by
executing

> curry-verify Double
. . .

Agda module ’TO-PROVE-evendoublecoin.agda’ written.
If you completed the proof, rename it to ’PROOF-evendoublecoin.agda’.

The Curry program is translated with the default scheme (see further options below) based on the
“planned choice” scheme, described in [13]. The result of this translation is shown in Figure 3.

The Agda program contains all operations involved in the property and the property itself.
Non-deterministic operations, like coin, have an additional additional argument of the abstract
type Choice that represents the plan to execute some non-deterministic branch of the program. By
proving the property for all possible branches as correct, it universally holds.

In our example, the proof is quite easy. First, we prove that the addition of a number to itself
is always even (lemma even-add-x-x, which uses an auxiliary lemma add-suc). Then, the property
is an immediate consequence of this lemma:

add-suc : ∀ (x y : N) → add x (suc y) ≡ suc (add x y)
add-suc zero y = refl
add-suc (suc x) y rewrite add-suc x y = refl

even-add-x-x : ∀ (x : N) → even (add x x) ≡ tt
even-add-x-x zero = refl
even-add-x-x (suc x) rewrite add-suc x x | even-add-x-x x = refl

evendoublecoin : (c1 : Choice) → (x : N) → (even (double (coin c1 x))) ≡ tt
evendoublecoin c1 x rewrite even-add-x-x (coin c1 x) = refl

54



As the proof is complete, we rename this Agda program into PROOF-evendoublecoin.agda so that
the proof can be used by further invocations of CurryCheck.

10.3 Options

The command curry-verify can be parameterized with various options. The available options can
also be shown by executing

curry-verify --help

The options are briefly described in the following.

-h, -?, --help These options trigger the output of usage information.

-q, --quiet Run quietly and produce no informative output. However, the exit code will be
non-zero if some translation error occurs.

-v[n], --verbosity[=n] Set the verbosity level to an optional value. The verbosity level 0 is the
same as option -q. The default verbosity level 1 shows the translation progress. The verbosity
level 2 (which is the same as omitting the level) shows also the generated (Agda) program.
The verbosity level 3 shows also more details about the translation process.

-n, --nostore Do not store the translated program in a file but show it only.

-p p, --property=p As a default, all properties occurring in the source program are translated. If
this option is provided, only property p is translated.

-t t, --target=t Define the target language of the translation. Currently, only t = Agda is sup-
ported, which is also the default.

-s s, --scheme=s Define the translation scheme used to represent Curry programs in the target
language.

For the target Agda, the following schemes are supported:

choice Use the “planned choice” scheme, see [13] (this is the default). In this scheme, the
choices made in a non-deterministic computation are abstracted by passing a parameter
for these choices.

nondet Use the “set of values” scheme, see [13], where non-deterministic values are represented
in a tree structure.

55



-- Agda program using the Iowa Agda library

open import bool

module TO-PROVE-evendoublecoin
(Choice : Set)
(choose : Choice → B)
(lchoice : Choice → Choice)
(rchoice : Choice → Choice)
where

open import eq
open import nat
open import list
open import maybe

---------------------------------------------------------------------------
-- Translated Curry operations:

add : N → N → N
add zero x = x
add (suc y) z = suc (add y z)

coin : Choice → N → N
coin c1 x = if choose c1 then x else suc x

double : N → N
double x = add x x

even : N → B
even zero = tt
even (suc zero) = ff
even (suc (suc x)) = even x

---------------------------------------------------------------------------

evendoublecoin : (c1 : Choice) → (x : N) → (even (double (coin c1 x))) ≡ tt
evendoublecoin c1 x = ?

Figure 3: Agda program TO-PROVE-evendoublecoin.agda

56



11 CurryPP: A Preprocessor for Curry Programs

The Curry preprocessor “currypp” implements various transformations on Curry source programs.
It supports some experimental language extensions that might become part of the standard parser
of Curry in some future version.

Currently, the Curry preprocessor supports the following extensions that will be described below
in more detail:

Integrated code: This extension allows to integrate code written in some other language into
Curry programs, like regular expressions, format specifications (“printf”), HTML and XML
code.

Default rules: If this feature is used, one can add a default rule to top-level operations defined in
a Curry module. The idea of default rules is described in [10].

Contracts: If this feature is used, the Curry preprocessor looks for contracts (i.e., specification,
pre- and postconditions) occurring in a Curry module and adds them as assertions that are
checked during the execution of the program. Currently, only strict assertion checking is
supported which might change the operational behavior of the program. The idea and usage
of contracts is described in [8].

11.1 Installation

The current implementation of Curry preprocessor is a package managed by the Curry Package
Manager CPM. Thus, to install the newest version of currypp, use the following commands:

> cypm update
> cypm install currypp

This downloads the newest package, compiles it, and places the executable currypp into the direc-
tory $HOME/.cpm/bin. Hence one should add this directory to the path in order to use the Curry
preprocessor as described below.

11.2 Basic Usage

In order to apply the preprocessor when loading a Curry source program into PAKCS, one has to
add an option line at the beginning of the source program. For instance, in order to use default
rules in a Curry program, one has to put the line

{-# OPTIONS_FRONTEND -F --pgmF=currypp --optF=defaultrules #-}

at the beginning of the program. This option tells the PAKCS front end to process the Curry source
program with the program currypp before actually parsing the source text.

The option “defaultrules” has to be replaced by “contracts” to enable dynamic contract check-
ing. To support integrated code, one has to set the option “foreigncode” (which can also be com-
bined with “defaultrules”). If one wants to see the result of the transformation, one can also
set the option “-o”. This has the effect that the transformed source program is stored in the file
Prog.curry.CURRYPP if the name of the original program is Prog.curry.

57



For instance, in order to use integrated code and default rules in a module and store the trans-
formed program, one has to put the line

{-# OPTIONS_FRONTEND -F --pgmF=currypp --optF=foreigncode --optF=defaultrules --optF=-o #-}

at the beginning of the program. If the options about the kind of preprocessing is omitted, all kinds
of preprocessing are applied. Thus, the preprocessor directive

{-# OPTIONS_FRONTEND -F --pgmF=currypp #-}

is equivalent to

{-# OPTIONS_FRONTEND -F --pgmF=currypp --optF=foreigncode --optF=defaultrules --optF=contracts #-}

11.3 Integrated Code

Integrated code is enclosed in at least two back ticks and ticks in a Curry program. The number
of starting back ticks and ending ticks must always be identical. After the initial back ticks, there
must be an identifier specifying the kind of integrated code, e.g., regex or html (see below). For
instance, if one uses regular expressions (see below for more details), the following expressions are
valid in source programs:

match ‘‘regex (a|(bc*))+’’
match ‘‘‘‘regex aba*c’’’’

The Curry preprocessor transforms these code pieces into regular Curry expressions. For this
purpose, the program containing this code must start with the preprocessing directive

{-# OPTIONS_FRONTEND -F --pgmF=currypp --optF=foreigncode #-}

The next sections describe the currently supported foreign languages.

11.3.1 Regular Expressions

In order to match strings against regular expressions, i.e., to check whether a string is contained in
the language generated by a regular expression, one can specify regular expression similar to POSIX.
The foreign regular expression code must be marked by “regex”. Since this code is transformed into
operations of the PAKCS library RegExp, this library must be imported.

For instance, the following module defines a predicate to check whether a string is a valid
identifier:

{-# OPTIONS_FRONTEND -F --pgmF=currypp --optF=foreigncode #-}

import RegExp

isID :: String → Bool
isID = match ‘‘regex [a-zA-Z][a-zA-Z0-9_’]*’’

58



11.3.2 Format Specifications

In order to format numerical and other data as strings, one can specify the desired format with
foreign code marked by “format”. In this case, one can write a format specification, similarly to the
printf statement of C, followed by a comma-separated list of arguments. This format specification
is transformed into operations of the library Data.Format (of package printf) so that it must be
imported. For instance, the following program defines an operation that formats a string, an integer
(with leading sign and zeros), and a float with leading sign and precision 3:

{-# OPTIONS_FRONTEND -F --pgmF=currypp --optF=foreigncode #-}

import Data.Format

showSIF :: String → Int → Float → String
showSIF s i f = ‘‘format "Name: %s | %+.5i | %+6.3f",s,i,f’’

main = putStrLn $ showSIF "Curry" 42 3.14159

Thus, the execution of main will print the line

Name: Curry | +00042 | +3.142

Instead of “format”, one can also write a format specification with printf. In this case, the
formatted string is printed with putStr. Hence, we can rewrite our previous definitions as follows:

showSIF :: String → Int → Float → IO ()
showSIF s i f = ‘‘printf "Name: %s | %+.5i | %+6.3f\n",s,i,f’’

main = showSIF "Curry" 42 3.14159

11.3.3 HTML Code

The foreign language tag “html” introduces a notation for HTML expressions (see PAKCS library
HTML) with the standard HTML syntax extended by a layout rule so that closing tags can be omitted.
In order to include strings computed by Curry expressions into these HTML syntax, these Curry
expressions must be enclosed in curly brackets. The following example program shows its use:

{-# OPTIONS_FRONTEND -F --pgmF=currypp --optF=foreigncode #-}

import HTML

htmlPage :: String → [HtmlExp]
htmlPage name = ‘‘html
<html>

<head>
<title>Simple Test

<body>
<h1>Hello {name}!</h1>
<p>

59



Bye!
<p>Bye!

<h2>{reverse name}
Bye!’’

If a Curry expression computes an HTML expression, i.e., it is of type HtmlExp instead of String, it
can be integrated into the HTML syntax by double curly brackets. The following simple example,
taken from [22], shows the use of this feature:

{-# OPTIONS_FRONTEND -F --pgmF=currypp --optF=foreigncode #-}

import HTML

main :: IO HtmlForm
main = return $ form "Question" $

‘‘html
Enter a string: {{textfield tref ""}}
<hr>
{{button "Reverse string" revhandler}}
{{button "Duplicate string" duphandler}}’’

where
tref free

revhandler env = return $ form "Answer"
‘‘html <h1>Reversed input: {reverse (env tref)}’’

duphandler env = return $ form "Answer"
‘‘html

<h1>
Duplicated input:
{env tref ++ env tref}’’

11.3.4 XML Expressions

The foreign language tag “xml” introduces a notation for XML expressions (see PAKCS library XML).
The syntax is similar to the language tag “html”, i.e., the use of the layout rule avoids closing tags
and Curry expressions evaluating to strings (String) and XML expressions (XmlExp) can be included
by enclosing them in curly and double curly brackets, respectively. The following example program
shows its use:

{-# OPTIONS_FRONTEND -F --pgmF=currypp --optF=foreigncode #-}

import HTML

import XML

main :: IO ()
main = putStrLn $ showXmlDoc $ head ‘‘xml

60



<contact>
<entry>
<phone>+49-431-8807271
<name>Hanus
<first>Michael
<email>mh@informatik.uni-kiel.de
<email>hanus@email.uni-kiel.de

<entry>
<name>Smith
<first>Bill
<phone>+1-987-742-9388

’’

11.4 SQL Statements

The Curry preprocessor also supports SQL statements in their standard syntax as integrated code.
In order to ensure a type-safe integration of SQL statements in Curry programs, SQL queries are
type-checked in order to determine their result type and ensure that the entities used in the queries
are type correct with the underlying relational database. For this purpose, SQL statements are
integrated code require a specification of the database model in form of entity-relationship (ER)
model. From this description, a set of Curry data types are generated which are used to represent
entities in the Curry program (see Section 11.4.1). The Curry preprocessor uses this information to
type check the SQL statements and replace them by type-safe access methods to the database. In
the following, we sketch the use of SQL statements as integrated code. A detailed description of the
ideas behind this technique can be found in [26]. Currently, only SQLite databases are supported.

11.4.1 ER Specifications

The structure of the data stored in underlying database must be described as an entity-relationship
model. Such a description consists of

1. a list of entities where each entity has attributes,

2. a list of relationships between entities which have cardinality constraints that must be satisfied
in each valid state of the database.

Entity-relationships models are often visualized as entity-relationship diagrams (ERDs). Figure 4
shows an ERD which we use in the following examples.

Instead of requiring the use of soem graphical ER modeling tool, ERDs must be specified in
textual form as a Curry data term, see also [16]. In this representation, an ERD has a name, which
is also used as the module name of the generated Curry code, lists of entities and relationships:

data ERD = ERD String [Entity] [Relationship]

Each entity consists of a name and a list of attributes, where each attribute has a name, a domain,
and specifications about its key and null value property:

61



(1,1)

(0..n)

Taking

+has_a

+belongs_to

Student

Name
Firstname
MatNum
Email
Age

Result

Attempt
Grade
Points

Lecture

Title
Topic

Lecturer

Name
Firstname

Exam

GradeAverage

Place

Street
StrNr
RoomNr

Time

Time

Participation

+participated_by +participated

(0..n) (0..n)

Teaching

+teaches

+taught_by

(1,1)

(1,1)

(0..n)+belongs_to

Resulting

+results_in

+result_of

(0..n)

(1,1)

Belonging

(0..n)
+has_a ExamPlace

ExamTime

+taking_place
(0..n)

(1,1)
+in

+ taking_place +at

(0..n) (1,1)

Figure 4: A simple entity-relationship diagram for university lectures [26]

data Entity = Entity String [Attribute]

data Attribute = Attribute String Domain Key Null

data Key = NoKey | PKey | Unique

type Null = Bool

data Domain = IntDom (Maybe Int)
| FloatDom (Maybe Float)
| CharDom (Maybe Char)
| StringDom (Maybe String)
| BoolDom (Maybe Bool)
| DateDom (Maybe ClockTime)
| UserDefined String (Maybe String)
| KeyDom String -- later used for foreign keys

62



Thus, each attribute is part of a primary key (PKey), unique (Unique), or not a key (NoKey). Fur-
thermore, it is allowed that specific attributes can have null values, i.e., can be undefined. The
domain of each attribute is one of the standard domains or some user-defined type. In the latter
case, the first argument of the constructor UserDefined is the qualified type name used in the Curry
application program. For each kind of domain, one can also have a default value (modeled by the
Maybe type). The constructor KeyDom is not necessary to represent ERDs but it is internally used to
transform complex ERDs into relational database schemas.

Finally, each relationship has a name and a list of connections to entities (REnd), where each
connection has the name of the connected entity, the role name of this connection, and its cardinality
as arguments:

data Relationship = Relationship String [REnd]

data REnd = REnd String String Cardinality

data Cardinality = Exactly Int | Between Int MaxValue

data MaxValue = Max Int | Infinite

The cardinality is either a fixed integer or a range between two integers (where Infinite as the upper
bound represents an arbitrary cardinality). For instance, the simple-complex (1:n) relationship
Teaching in Fig.4 can be represented by the term

Relationship "Teaching"
[REnd "Lecturer" "taught_by" (Exactly 1),
REnd "Lecture" "teaches" (Between 0 Infinite)]

The PAKCS library Database.ERD contains the ER datatypes described above. Thus, the specifica-
tion of the conceptual database model must be a data term of type Database.ERD.ERD. Figure 5 on
(page 69) shows the complete ER data term specification corresponding to the ERD of Fig. 4.

Such a data term specification should be stored in Curry program file as an (exported!) top-level
operation type ERD. If our example term is defined as a constant in the Curry program UniERD.curry,
then one has to use the tool “erd2curry” to process the ER model so that it can be used in SQL
statements. This tool is invoked with the parameter “--cdbi”, the (preferably absolute) file name
of the SQLite database, and the name of the Curry program containing the ER specification. If the
SQLite database file does not exist, it will be initialized by the tool. In our example, we execute
the following command (provided that the tool erd2curry is already installed:

> erd2curry --db ‘pwd‘/Uni.db --cdbi UniERD.curry

This initializes the SQLite database Uni.db and performs the following steps:

1. The ER model is transformed into tables of a relational database, i.e., the relations of the
ER model are either represented by adding foreign keys to entities (in case of (0/1:1) or
(0/1:n) relations) or by new entities with the corresponding relations (in case of complex
(n:m) relations).

2. A new Curry module Uni CDBI is generated. It contains the definitions of entities and rela-
tionships as Curry data types. Since entities are uniquely identified via a database key, each

63



entity definition has, in addition to its attributes, this key as the first argument. For instance,
the following definitions are generated for our university ERD (among many others):

data StudentID = StudentID Int

data Student = Student StudentID String String Int String Int

-- Representation of n:m relationship Participation:
data Participation = Participation StudentID LectureID

Note that the two typed foreign key columns (StudentID, LectureID) ensures a type-safe
handling of foreign-key constraints. These entity descriptions are relevant for SQL queries
since some queries (e.g., those that do not project on particular database columns) return lists
of such entities. Moreover, the generated module contains useful getter and setter functions
for each entity. Other generated operations, like entity description and definitions of their
columns, are not relevant for the programming but only used for the translation of SQL
statements.

3. Finally, an info file Uni SQLCODE.info is created. It contains information about all entities,
attributes and their types, and relationships. This file is used by the SQL parser and translator
of the Curry preprocessor to type check the SQL statements and generate appropriate Curry
library calls.

11.4.2 SQL Statements as Integrated Code

After specifying and processing the ER model of the database, one can write SQL statements in
their standard syntax as integrated code (marked by the language tag “sql”) in Curry programs.
Since the SQL translator checks the correct use of these statements against the ER model, it needs
access to the generated info file Uni SQLCODE.info. This can be ensured in one of the following ways:

• The path to the info file is passed as a parameter prefixed by “--model:” to the Curry prepro-
cessor, e.g., by the preprocessor directive

{-# OPTIONS_FRONTEND -F --pgmF=currypp --optF=--model:. . ./Uni_SQLCode.info #-}

• The info file is placed in the same directory as the Curry source file to be processed or in one
of its parent directories. The directories are searched from the directory of the source file up
to its parent directories. If one of these directories contain more than one file with the name
“... SQLCODE.info”, an error is reported.

After this preparation, one can write SQL statements in the Curry program. For instance, to
retrieve all students from the database, one can define the following SQL query:

allStudents :: IO (SQLResult [Student])
allStudents = ‘‘sql Select * From Student;’’

Since the execution of database accesses might produce errors, the result of SQL statements is
always of type “SQLResult τ ”, where SQLResult is a type synonym defined in the PAKCS library
Database.CDBI.Connection:

type SQLResult a = Either DBError a

64



This library defines also an operation

fromSQLResult :: SQLResult a → a

which returns the retrieved database value or raises a run-time error. Hence, if one does not want to
check the occurrence of database errors immediately, one can also define the above query as follows:

allStudents :: IO [Student]
allStudents = liftM fromSQLResult ‘‘sql Select * From Student;’’

In order to get more control on executing the SQL statement, one can add a star character after
the language tag. In this case, the SQL statement is translated into a database action, i.e., into the
type DBAction defined in the PAKCS library Database.CDBI.Connection:

allStudentsAction :: DBAction [Student]
allStudentsAction = ‘‘sql* Select * From Student;’’

Then one can put allStudentsAction inside a database transaction or combine it with other database
actions (see Database.CDBI.Connection for operations for this purpose).

In order to select students with an age between 20 and 25, one can put a condition as usual:

youngStudents :: IO (SQLResult [Student])
youngStudents = ‘‘sql Select * From Student

Where Age between 18 and 21;’’

Usually, one wants to parameterize queries over some values computed by the context of the Curry
program. Therefore, one can embed Curry expressions instead of concrete values in SQL statements
by enclosing them in curly brackets:

studAgeBetween :: Int → Int → IO (SQLResult [Student])
studAgeBetween min max =

‘‘sql Select * From Student
Where Age between {min} and {max};’’

Instead of retrieving complete entities (database tables), one can also project on some attributes
(database columns) and one can also order them with the usual “Order By” clause:

studAgeBetween :: Int → Int → IO (SQLResult [(String,Int)])
studAgeBetween min max =

‘‘sql Select Name, Age
From Student Where Age between {min} and {max}
Order By Name Desc;’’

In addition to the usual SQL syntax, one can also write conditions on relationships between entities.
For instance, the following code will be accepted:

studGoodGrades :: IO (SQLResult [(String, Float])
studGoodGrades = ‘‘sql Select Distinct s.Name, r.Grade

From Student as s, Result as r
Where Satisfies s has_a r And r.Grade < 2.0;’’

This query retrieves a list of pairs containing the names and grades of students having a grade
better than 2.0. This query is beyond pure SQL since it also includes a condition on the relation
has a specified in the ER model (“Satisfies s has a r”).

65



The complete SQL syntax supported by the Curry preprocessor is shown in Appendix B. More
details about the implementation of this SQL translator can be found in [26, 32].

11.5 Default Rules

Default rules are activated by the preprocessor option “defaultrules”. In this case, one can add to
each top-level operation a default rule. A default rule for a function f is defined as a rule defining the
operation “f’default” (this mechanism avoids any language extension for default rules). A default
rule is applied only if no “standard” rule is applicable, either because the left-hand sides’ pattern
do not match or the conditions are not satisfiable. The idea and detailed semantics of default rules
are described in [10].

As a simple example, the following program defines a lookup operation in association lists by a
functional pattern. The default rule is applied only if there is no appropriate key in the association
list (the role of the import declarations is discussed below):

{-# OPTIONS_FRONTEND -F --pgmF=currypp --optF=defaultrules #-}

mlookup key (_ ++ [(key,value)] ++ _) = Just value
mlookup’default _ _ = Nothing

Default rules are often a good replacement for “negation as failure” used in logic programming. For
instance, the following program defines a solution to the n-queens puzzle, where the default rule is
useful since it is easier to characterize the unsafe positions of the queens on the chessboard (see the
first rule of safe):

{-# OPTIONS_FRONTEND -F --pgmF=currypp --optF=defaultrules #-}

-- Some permutation of a list of elements:
perm :: [a] → [a]
perm [] = []
perm (x:xs) = ndinsert (perm xs)
where ndinsert ys = x : ys

ndinsert (y:ys) = y : ndinsert ys

-- A placement is safe if two queens are not in a same diagonal:
safe :: [Int] → [Int]
safe (_++[x]++ys++[z]++_) | abs (x-z) == length ys + 1 = failed
safe’default xs = xs

-- A solution to the n-queens puzzle is a safe permutation:
queens :: Int → [Int]
queens n = safe (permute [1..n])

Important notes:

1. Default rules can only be added to operations defined at the top-level (i.e., not to locally
defined operations). A reason for this restriction is that default rules are applied after searching
for all possibilities to apply a previous standard rule. With local definitions, the precise scope

66



of the “previous” search is difficult to define.

11.6 Contracts

Contracts are annotations in Curry program to specify the intended meaning and use of operations
by other operations or predicates expressed in Curry. The idea of using contracts for the devel-
opment of reliable software is discussed in [8]. The Curry preprocessor supports dynamic contract
checking by transforming contracts, i.e., specifications and pre-/postconditions, into assertions that
are checked during the execution of a program. If some contract is violated, the program terminates
with an error.

The transformation of contracts into assertions is described in [8]. Note that only strict asser-
tion checking is supported at the moment. Strict assertion checking might change the operational
behavior of the program. The notation of contracts is defined in [8]. To transform such contracts
into assertions, one has to use the option “contracts” for the preprocessor.

As a concrete example, consider an implementation of quicksort with a postcondition and a
specification (where the code for sorted and perm is not shown here):

{-# OPTIONS_FRONTEND -F --pgmF=currypp --optF=contracts #-}

. . .

-- Trivial precondition:
sort’pre xs = length xs >= 0

-- Postcondition: input and output lists should have the same length
sort’post xs ys = length xs == length ys

-- Specification:
-- A correct result is a permutation of the input which is sorted.
sort’spec :: [Int] → [Int]
sort’spec xs | ys == perm xs && sorted ys = ys where ys free

-- A buggy implementation of quicksort:
sort :: [Int] → [Int]
sort [] = []
sort (x:xs) = sort (filter (<x) xs) ++ [x] ++ sort (filter (>x) xs)

If this program is executed, the generated assertions report a contract violation for some inputs:

Quicksort> sort [3,1,4,2,1]
Postcondition of ’sort’ (module Quicksort, line 27) violated for:
[1,2,1] → [1,2]

ERROR: Execution aborted due to contract violation!

Important note: The implementation of default rules is based on the auxiliary package to check
contracts at run time. Therefore, the package contracts should be installed as dependencies. This
can easily done by executing

67



> cypm add contracts

before compiling a program containing contracts with the Curry preprocessor.

68



ERD "Uni"
[Entity "Student"

[Attribute "Name" (StringDom Nothing) NoKey False,
Attribute "Firstname" (StringDom Nothing) NoKey False,
Attribute "MatNum" (IntDom Nothing) Unique False,
Attribute "Email" (StringDom Nothing) Unique False,
Attribute "Age" (IntDom Nothing) NoKey True],

Entity "Lecture"
[Attribute "Title" (StringDom Nothing) NoKey False,
Attribute "Topic" (StringDom Nothing) NoKey True],

Entity "Lecturer"
[Attribute "Name" (StringDom Nothing) NoKey False,
Attribute "Firstname" (StringDom Nothing) NoKey False],

Entity "Place"
[Attribute "Street" (StringDom Nothing) NoKey False,
Attribute "StrNr" (IntDom Nothing) NoKey False,
Attribute "RoomNr" (IntDom Nothing) NoKey False],

Entity "Time"
[Attribute "Time" (DateDom Nothing) Unique False],

Entity "Exam"
[Attribute "GradeAverage" (FloatDom Nothing) NoKey True],

Entity "Result"
[Attribute "Attempt" (IntDom Nothing) NoKey False,
Attribute "Grade" (FloatDom Nothing) NoKey True,
Attribute "Points" (IntDom Nothing) NoKey True]]

[Relationship "Teaching"
[REnd "Lecturer" "taught_by" (Exactly 1),
REnd "Lecture" "teaches" (Between 0 Infinite)],

Relationship "Participation"
[REnd "Student" "participated_by" (Between 0 Infinite),
REnd "Lecture" "participates" (Between 0 Infinite)],

Relationship "Taking"
[REnd "Result" "has_a" (Between 0 Infinite),
REnd "Student" "belongs_to" (Exactly 1)],

Relationship "Resulting"
[REnd "Exam" "result_of" (Exactly 1),
REnd "Result" "results_in" (Between 0 Infinite)],

Relationship "Belonging"
[REnd "Exam" "has_a" (Between 0 Infinite),
REnd "Lecture" "belongs_to" (Exactly 1)],

Relationship "ExamDate"
[REnd "Exam" "taking_place" (Between 0 Infinite),
REnd "Time" "at" (Exactly 1)],

Relationship "ExamPlace"
[REnd "Exam" "taking_place" (Between 0 Infinite),
REnd "Place" "in" (Exactly 1)]]

Figure 5: The ER data term specification of Fig. 4

69



12 runcurry: Running Curry Programs

runcurry is a simple tool to support the execution of Curry programs without explicitly invoking
the interactive environment. Hence, it can be useful to write short scripts in Curry intended for
direct execution. The Curry program must always contain the definition of an operation main of
type IO (). The execution of the program consists of the evaluation of this operation.

12.1 Installation

The implementation of runcurry is a package managed by the Curry Package Manager CPM. Thus,
to install the newest version of runcurry, use the following commands:

> cypm update
> cypm install runcurry

This downloads the newest package, compiles it, and places the executable runcurry into the direc-
tory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to use
runcurry as described below.

12.2 Using runcurry

Basically, the command runcurry supports three modes of operation:

• One can execute a Curry program whose file name is provided as an argument when runcurry is
called. In this case, the suffix (“.curry” or “.lcurry”) must be present and cannot be dropped.
One can write additional commands for the interactive environment, typically settings of some
options, before the Curry program name. All arguments after the Curry program name are
passed as run-time arguments. For instance, consider the following program stored in the file
ShowArgs.curry:

import System(getArgs)

main = getArgs >>= print

This program can be executed by the shell command

> runcurry ShowArgs.curry Hello World!

which produces the output

["Hello","World!"]

• One can also execute a Curry program whose program text comes from the standard input.
Thus, one can either “pipe” the program text into this command or type the program text on
the keyboard. For instance, if we type

> runcurry
main = putStr . unlines . map show . take 8 $ [1..]

(followed by the end-of-file marker Ctrl-D), the output

70



1
2
3
4
5
6
7
8

is produced.

• One can also write the program text in a script file to be executed like a shell script. In this
case, the script must start with the line

#!/usr/bin/env runcurry

followed by the source text of the Curry program. If the name of the script file has a suffix,
it must be different from .curry and .lcurry.

For instance, we can write a simple Curry script to count the number of code lines in a Curry
program by removing all blank and comment lines and counting the remaining lines:

#!/usr/bin/env runcurry

import Char(isSpace)
import System(getArgs)

-- count number of program lines in a file:
countCLines :: String → IO Int
countCLines f =

readFile f >>=
return . length . filter (not . isEmptyLine) . map stripSpaces . lines

where
stripSpaces = reverse . dropWhile isSpace . reverse . dropWhile isSpace

isEmptyLine [] = True
isEmptyLine [_] = False
isEmptyLine (c1:c2:_) = c1==’-’ && c2==’-’

-- The main program reads Curry file names from arguments:
main = do

args <- getArgs
mapIO_ (\f → do ls <- countCLines f

putStrLn $ "Stripped lines of file "++f++": " ++ show ls)
args

If this script is stored in the (executable) file “codelines.sh”, we can count the code lines of
the file Prog.curry by the shell command

> ./codelines.sh Prog.curry

71



When this command is executed, the command runcurry compiles the program and evaluates
the expression main. Since the compilation might take some time in more complex scripts,
one can also save the result of the compilation in a binary file. To obtain this behavior, one
has to insert the line

#jit

in the script file, e.g., in the second line. With this option, a binary of the compiled program
is saved (in the same directory as the script). Now, when the same script is executed the next
time, the stored binary file is executed (provided that it is still newer than the script file itself,
otherwise it will be recompiled). This feature combines easy scripting with Curry together
with fast execution.

72



13 CASS: A Generic Curry Analysis Server System

CASS (Curry Analysis Server System) is a tool for the analysis of Curry programs. CASS is generic
so that various kinds of analyses (e.g., groundness, non-determinism, demanded arguments) can be
easily integrated into CASS. In order to analyze larger applications consisting of dozens or hundreds
of modules, CASS supports a modular and incremental analysis of programs. Moreover, it can be
used by different programming tools, like documentation generators, analysis environments, program
optimizers, as well as Eclipse-based development environments. For this purpose, CASS can also
be invoked as a server system to get a language-independent access to its functionality. CASS is
completely implemented Curry as a master/worker architecture to exploit parallel or distributed
execution environments. The general design and architecture of CASS is described in [27]. In the
following, CASS is presented from a perspective of a programmer who is interested to analyze Curry
programs.

13.1 Installation

The current implementation of CASS is a package managed by the Curry Package Manager CPM.
Thus, to install the newest version of CASS, use the following commands:

> cypm update
> cypm install cass

This downloads the newest package, compiles it, and places the executable cass into the directory
$HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to execute
CASS as described below.

13.2 Using CASS to Analyze Programs

CASS is intended to analyze various operational properties of Curry programs. Currently, it contains
more than a dozen program analyses for various properties. Since most of these analyses are based
on abstract interpretations, they usually approximate program properties. To see the list of all
available analyses, use the help option of CASS:

> cass -h
Usage: . . .
...
Registered analyses names:
. . .

Demand : Demanded arguments
Deterministic : Deterministic operations
...

More information about the meaning of the various analyses can be obtained by adding the short
name of the analysis:

> cass -h Deterministic
. . .

For instance, consider the following Curry module Rev.curry:

73



append :: [a] → [a] → [a]
append [] ys = ys
append (x:xs) ys = x : append xs ys

rev :: [a] → [a]
rev [] = []
rev (x:xs) = append (rev xs) [x]

main :: Int → Int → [Int]
main x y = rev [x .. y]

CASS supports three different usage modes to analyze this program.

13.2.1 Batch Mode

In the batch mode, CASS is started as a separate application via the shell command cass, where
the analysis name and the name of the module to be analyzed must be provided:10

> cass Demand Rev
append : demanded arguments: 1
main : demanded arguments: 1,2
rev : demanded arguments: 1

The Demand analysis shows the list of argument positions (e.g., 1 for the first argument) which are
demanded in order to reduce an application of the operation to some constructor-rooted value. Here
we can see that both arguments of main are demanded whereas only the first argument of append
is demanded. This information could be used in a Curry compiler to produce more efficient target
code.

The batch mode is useful to test a new analysis and get the information in human-readable form
so that one can experiment with different abstractions or analysis methods.

13.2.2 API Mode

The API mode is intended to use analysis information in some application implemented in Curry.
Since CASS is implemented in Curry, one can import the modules of the CASS implementation and
use the CASS interface operations to start an analysis and use the computed results. For instance,
CASS provides an operation (defined in the module CASS.Server)

analyzeGeneric :: Analysis a → String → IO (Either (ProgInfo a) String)

to apply an analysis (first argument) to some module (whose name is given in the second argument).
The result is either the analysis information computed for this module or an error message in case
of some execution error.

In order to use CASS via the API mode in a Curry program, one has to use the package cass by
the Curry package manager CPM (the subsequent explanation assumes familiarity with the basic
features of CPM):

10More output is generated when the property debugLevel is changed in the configuration file .curryanalysisrc
which is installed in the user’s home directory when CASS is started for the first time.

74



1. Add the dependency on package cass and also on package cass-analysis, which contains some
base definitions, in the package specification file package.json.

2. Install these dependencies by “cypm install”.

Then you can import in your application the modules provided by CASS.
The module Analysis.ProgInfo (from package cass-analysis) contains operations to access the

analysis information computed by CASS. For instance, the operation

lookupProgInfo:: QName → ProgInfo a → Maybe a

returns the information about a given qualified name in the analysis information, if it ex-
ists. As a simple example, consider the demand analysis which is implemented in the module
Analysis.Demandedness by the following operation:

demandAnalysis :: Analysis DemandedArgs

DemendedArgs is just a type synonym for [Int]. We can use this analysis in the following simple
program:

import CASS.Server ( analyzeGeneric )
import Analysis.ProgInfo ( lookupProgInfo )
import Analysis.Demandedness ( demandAnalysis )

demandedArgumentsOf :: String → String → IO [Int]
demandedArgumentsOf modname fname = do

deminfo <- analyzeGeneric demandAnalysis modname >>= return . either id error
return $ maybe [] id (lookupProgInfo (modname,fname) deminfo)

Of course, in a realistic program, the program analysis is performed only once and the computed
information deminfo is passed around to access it several times. Nevertheless, we can use this simple
program to compute the demanded arguments of Rev.main:

. . .> demandedArgumentsOf "Rev" "main"
[1,2]

13.2.3 Server Mode

The server mode of CASS can be used in an application implemented in some language that does
not have a direct interface to Curry. In this case, one can connect to CASS via some socket using
a simple communication protocol that is specified in the file Protocol.txt (in package cass) and
sketched below.

To start CASS in the server mode, one has to execute the command

> cass --server [ -p <port> ]

where an optional port number for the communication can be provided. Otherwise, a free port
number is chosen and shown. In the server mode, CASS understands the following commands:

GetAnalysis
SetCurryPath <dir1>:<dir2>:...
AnalyzeModule <analysis name> <output type> <module name>

75



AnalyzeInterface <analysis name> <output type> <module name>
AnalyzeFunction <analysis name> <output type> <module name> <function name>
AnalyzeDataConstructor <analysis name> <output type> <module name> <constructor name>
AnalyzeTypeConstructor <analysis name> <output type> <module name> <type name>
StopServer

The output type can be Text, CurryTerm, or XML. The answer to each request can have two formats:

error <error message>

if an execution error occured, or

ok <n>
<result text>

where <n> is the number of lines of the result text. For instance, the answer to the command
GetAnalysis is a list of all available analyses. The list has the form

<analysis name> <output type>

For instance, a communication could be:

> GetAnalysis
< ok 5
< Deterministic CurryTerm
< Deterministic Text
< Deterministic XML
< HigherOrder CurryTerm
< DependsOn CurryTerm

The command SetCurryPath instructs CASS to use the given directories to search for modules to
be analyzed. This is necessary since the CASS server might be started in a different location than
its client.

Complete modules are analyzed by AnalyzeModule, whereas AnalyzeInterface returns only the
analysis information of exported entities. Furthermore, the analysis results of individual functions,
data or type constructors are returned with the remaining analysis commands. Finally, StopServer
terminates the CASS server.

For instance, if we start CASS by

> cass --server -p 12345

we can communicate with CASS as follows (user inputs are prefixed by “>”);

> telnet localhost 12345
Connected to localhost.
> GetAnalysis
ok 57
Overlapping XML
Overlapping CurryTerm
Overlapping Text
Deterministic XML
...
> AnalyzeModule Demand Text Rev

76



ok 3
append : demanded arguments: 1
main : demanded arguments: 1,2
rev : demanded arguments: 1
> AnalyzeModule Demand CurryTerm Rev
ok 1
[(("Rev","append"),"demanded arguments: 1"),(("Rev","main"),"demanded arguments: 1,2"),(("Rev","rev"),"demanded arguments: 1")]
> AnalyzeModule Demand XML Rev
ok 19
<?xml version="1.0" standalone="yes"?>

<results>
<operation>

<module>Rev</module>
<name>append</name>
<result>demanded arguments: 1</result>

</operation>
<operation>

<module>Rev</module>
<name>main</name>
<result>demanded arguments: 1,2</result>

</operation>
<operation>

<module>Rev</module>
<name>rev</name>
<result>demanded arguments: 1</result>

</operation>
</results>
> StopServer
ok 0
Connection closed by foreign host.

13.3 Implementing Program Analyses

This section explains the implementation of program analyses available in CASS. Since CASS is
implemented in Curry, a program analysis must also be implemented in Curry and added to the
source code of CASS. Therefore, one has to download the source code which is easily done by the
command

> cypm checkout cass

This downloads the most recent version of CASS as a Curry package into the directory cass.
Each program analysis accessible by CASS must be registered in the CASS module

CASS.Registry. Such an analysis must contain an operation of type

Analysis a

where “a” denotes the type of analysis results. Furthermore, the analysis must also contain a “show”
operation of type

77



AOutFormat → a → String

intended to show the analysis results in various formats. The type AOutFormat is defined in module
Analysis.Types of package cass-analysis as

data AOutFormat = AText | ANote

It is intended to specify the desired kind of output, e.g., AText for a longer standard textual repre-
sentation or ANote for a short note (e.g., in the Curry Browser).

Thus, in order to add a new analysis to CASS, one has to do the following steps:

1. Implement a corresponding analysis operation and show operation.

2. Registering it in the module CASS.Registry (in the constant registeredAnalysis).

3. Compile/install the modified CASS implementation.

In the following, we explain these steps by some examples. For instance, the Overlapping analysis
should indicate whether a Curry operation is defined by overlapping rules. This analysis can be
implemented as a function

overlapAnalysis :: Analysis Bool

so that the analysis result is False if the analyzed operation is not defined by overlapping rules.
In general, an analysis is implemented as a mapping from Curry operations, represented in

FlatCurry, into the analysis result. Hence, to implement the Overlapping analysis, we define the
following operation on function declarations in FlatCurry format:

import FlatCurry.Types
. . .

isOverlappingFunction :: FuncDecl → Bool
isOverlappingFunction (Func _ _ _ _ (Rule _ e)) = orInExpr e
isOverlappingFunction (Func f _ _ _ (External _)) = f == ("Prelude","?")

-- Check an expression for occurrences of Or:
orInExpr :: Expr → Bool
orInExpr (Var _) = False
orInExpr (Lit _) = False
orInExpr (Comb _ f es) = f == ("Prelude","?") || any orInExpr es
orInExpr (Free _ e) = orInExpr e
orInExpr (Let bs e) = any orInExpr (map snd bs) || orInExpr e
orInExpr (Or _ _) = True
orInExpr (Case _ e bs) = orInExpr e || any orInBranch bs
where orInBranch (Branch _ be) = orInExpr be

orInExpr (Typed e _) = orInExpr e

In order to support the inclusion of different kinds of analyses in CASS, CASS offers several con-
structor operations for the abstract type “Analysis a” (which is defined in module Analysis.Types).
Each analysis has a name provided as a first argument to these constructors. The name is used to
store the analysis information persistently and to pass specific analysis tasks to analysis workers.
For instance, a simple function analysis which depends only on a given function definition can be
defined by the analysis constructor

78



simpleFuncAnalysis :: String → (FuncDecl → a) → Analysis a

The arguments are the analysis name and the actual analysis function. Hence, the “overlapping
rules” analysis can be specified as

import Analysis.Types
. . .

overlapAnalysis :: Analysis Bool
overlapAnalysis = simpleFuncAnalysis "Overlapping" isOverlappingFunction

In order to integrate this analysis into CASS, we also have to define an operation to show the
analysis results in a human-readable form:

showOverlap :: AOutFormat → Bool → String
showOverlap _ True = "overlapping"
showOverlap AText False = "non-overlapping"
showOverlap ANote False = ""

Here, the typical case of non-overlapping rules is not printed in case of short notes.
Now we have all elements available in order to add this analysis to CASS. To support this easily,

there is an operation

cassAnalysis :: (Read a, Show a, Eq a)
=> String → Analysis a → (AOutFormat → a → String)
→ RegisteredAnalysis

to transform an analysis with some title, an analysis operation, and a “show” operation into an
analysis ready to be registered in CASS. The actually registered analyses are specified by the
constant

registeredAnalysis :: [RegisteredAnalysis]

defined in module CASS.Registry. Hence, the Overlapping can be integrated into CASS by adding
it to the definition of registeredAnalysis, e.g.,

registeredAnalysis :: [RegisteredAnalysis]
registeredAnalysis =

[
...
cassAnalysis "Overlapping rules" overlapAnalysis showOverlap
...
]

As a final step, we have to compile and install this extended version of CASS by executing

> cypm install

in the downloaded package. After this step, one can executed

> cass --help

to check whether the Overlapping analysis occurs in the list of registered analyses names.
To show an example of a more complex kind of analysis, we consider a determinism analysis.

79



Such an analysis could be based on an abstract domain described by the data type

data Deterministic = NDet | Det

Here, Det is interpreted as “the operation always evaluates in a deterministic manner on ground
constructor terms.” However, NDet is interpreted as “the operation might evaluate in different ways
for given ground constructor terms.” The apparent imprecision is due to the approximation of the
analysis. For instance, if the function f is defined by overlapping rules and the function g might
call f, then g is judged as non-deterministic (since it is generally undecidable whether f is actually
called by g in some run of the program).

The determinism analysis requires to examine the current function as well as all directly or
indirectly called functions for overlapping rules. Due to recursive function definitions, this analysis
cannot be done in one shot for a given function—it requires a fixpoint computation. CASS provides
such fixpoint computations and simplifies its implementation by requiring only the implementation
of an operation of type

FuncDecl → [(QName,a)] → a

where “a” denotes the type of abstract values. The second argument of type [(QName,a)] represents
the currently known analysis values for the functions directly used in this function declaration.
Hence, in the implementation one can assume that the analysis results of all functions occurring in
the definition of the function to be analyzed are already known, although they will be approximated
by a fixpoint computation performed by CASS. Technically, the abstract values must be a domain
with some bottom element and the analysis operation must be monotone. Since this is not checked
by CASS, we omit these details.

In our example, the determinism analysis can be implemented by the following operation:

detFunc :: FuncDecl → [(QName,Deterministic)] → Deterministic
detFunc (Func f _ _ _ (External _)) _ = f == ("Prelude","?")
detFunc (Func f _ _ _ (Rule _ e)) calledFuncs =

if orInExpr e || freeVarInExpr e || any (==NDet) (map snd calledFuncs)
then NDet
else Det

Thus, it computes the abstract value NDet if the function itself is defined by overlapping rules
or contains free variables that might cause non-deterministic guessing (we omit the definition of
freeVarInExpr since it is quite similar to orInExpr), or if it depends on some non-deterministic
function.

To support the integration of such fixpoint analyses in CASS, there exists the following analysis
constructor:

dependencyFuncAnalysis :: String → a → (FuncDecl → [(QName,a)] → a)
→ Analysis a

Here, the second argument specifies the start value of the fixpoint analysis, i.e., the bottom element
of the abstract domain. Hence, the complete determinism analysis can be specified as

detAnalysis :: Analysis Deterministic
detAnalysis = dependencyFuncAnalysis "Deterministic" Det detFunc

80



In order to register this analysis, we define a show function

showDet :: AOutFormat → Deterministic → String
showDet _ NDet = "non-deterministic"
showDet AText Det = "deterministic"
showDet ANote Det = ""

extend the definiton of registeredAnalysis by the line

cassAnalysis "Deterministic operations" detAnalysis showDet

and compile and install the package.
This simple definition is sufficient to execute this analysis with CASS, since the analysis system

takes care of computing fixpoints, calling the analysis functions with appropriate values, analyzing
imported modules, caching analysis results, etc. The actual analysis time depends on the size of
modules and their imports, the size of the dependencies, and the number of fixpoint iterations (which
depends also on the depth of the abstract domain).11 Beyond the analysis time, it is also important
that the analysis terminates, which is not ensured in general fixpoint computations. Termination
can be achieved by using an abstract domain with finitely many values and defining the analysis
function so that it is monotone w.r.t. some ordering on the abstract values.

11CASS supports different methods to compute fixpoints, see the property fixpoint in the configuration file
.curryanalysisrc which is installed in the user’s home directory when CASS is started for the first time. This
property can also be set in the command to invoke CASS.

81



14 ERD2Curry: A Tool to Generate Programs from ER Specifica-
tions

ERD2Curry is a tool to generate Curry code to access and manipulate data persistently stored in
relational databases. The Curry code is generated from a description of the logical model of the
database in form of an entity relationship diagram. The idea of this tool is described in detail in
[16]. Thus, we describe only the basic steps to use this tool.

14.1 Installation

The current implementation of ERD2Curry is a package managed by the Curry Package Manager
CPM (see also Section 6). Thus, to install the newest version of ERD2Curry, use the following
commands:

> cypm update
> cypm install ertools

This downloads the newest package, compiles it, and places the executable erd2curry into the
directory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to
execute ERD2Curry as described below.

14.2 Basic Usage

If one creates an entity relationship diagram (ERD) with the Umbrello UML Modeller, one has to
store its XML description in XMI format (as offered by Umbrello) in a file, e.g., “myerd.xmi”. This
description can be compiled into a Curry program by the command

erd2curry -x myerd.xmi

If MyData is the name of the ERD, the Curry program file “MyData.curry” is generated containing all
the necessary database access code as described in [16]. In addition to the generated Curry program
file, two auxiliary program files ERDGeneric.curry and KeyDatabase.curry are created in the same
directory.

If one does not want to use the Umbrello UML Modeller, which might be the preferred method
since the interface to the Umbrello UML Modeller is no longer actively supported, one can also
define an ERD in a Curry program as a (exported!) top-level operation of type ERD (w.r.t. the type
definition given in the library pakcshome /lib/Database/ERD.curry). The directory examples in the
package ertools12 contains two examples for such ERD program files:

BlogERD.curry: This is a simple ERD model for a blog with entries, comments, and tags.

UniERD.curry: This is an ERD model for university lectures as presented in the paper [16].

Figure 6 shows the ER specification stored in the Curry program file “BlogERD.curry”. This ER
specification can be compiled into a Curry program by the command

erd2curry BlogERD.curry

12If you installed ERD2Curry as described above, the downloaded ertools package is located in the directory
$HOME/.cpm/bin_packages/ertools.

82



import Database.ERD

blogERD :: ERD
blogERD =
ERD "Blog"

[Entity "Entry"
[Attribute "Title" (StringDom Nothing) Unique False,
Attribute "Text" (StringDom Nothing) NoKey False,
Attribute "Author" (StringDom Nothing) NoKey False,
Attribute "Date" (DateDom Nothing) NoKey False],

Entity "Comment"
[Attribute "Text" (StringDom Nothing) NoKey False,
Attribute "Author" (StringDom Nothing) NoKey False,
Attribute "Date" (DateDom Nothing) NoKey False],

Entity "Tag"
[Attribute "Name" (StringDom Nothing) Unique False]

]
[Relationship "Commenting"

[REnd "Entry" "commentsOn" (Exactly 1),
REnd "Comment" "isCommentedBy" (Between 0 Infinite)],

Relationship "Tagging"
[REnd "Entry" "tags" (Between 0 Infinite),
REnd "Tag" "tagged" (Between 0 Infinite)]

]

Figure 6: The Curry program BlogERD.curry

There is also the possibility to visualize an ER specification as a graph with the graph visualization
program dotty (for this purpose, it might be necessary to adapt the definition of dotviewcommand in
your “.pakcsrc” file, see Section 2.6, according to your local environment). The visualization can
be performed by the command

erd2curry -v BlogERD.curry

83



15 Spicey: An ER-based Web Framework

Spicey is a framework to support the implementation of web-based systems in Curry. Spicey gener-
ates an initial implementation from an entity-relationship (ER) description of the underlying data.
The generated implementation contains operations to create and manipulate entities of the data
model, supports authentication, authorization, session handling, and the composition of individ-
ual operations to user processes. Furthermore, the implementation ensures the consistency of the
database w.r.t. the data dependencies specified in the ER model, i.e., updates initiated by the user
cannot lead to an inconsistent state of the database.

15.1 Installation

The actual implementation of Spicey is a package managed by the Curry Package Manager CPM.
Thus, to install the newest version of Spicey, use the following commands:

> cypm update
> cypm install spicey

This downloads the newest package, compiles it, and places the executable spiceup into the directory
$HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to execute
Spicey as described below.

15.2 Basic usage

The idea of this tool, which is part of the distribution of PAKCS, is described in detail in [25].
Thus, we summarize only the basic steps to use this tool in order to generate a web application.

First, one has to create a textual description of the entity-relationship model in a Curry program
file as an (exported!) top-level operation type ERD (w.r.t. the type definitions defined in the module
Database.ERD of the package cdbi) and store it in some program file, e.g., “MyERD.curry”. The
directory examples in the package spicey13 contains two examples for such ERD program files:

BlogERD.curry: This is a simple ER model for a blog with entries, comments, and tags, as presented
in the paper [25].

UniERD.curry: This is an ER model for university lectures as presented in the paper [16].

Then you can generate the sources of your web application by the command

> spiceup MyERD.curry

with the ERD program as a parameter. You can also provide a file name for the SQLite3 database
used by the application generated by Spicey, e.g.,

> spiceup --db MyData.db MyERD.curry

If the parameter “--db DBFILE” is not provided, then DBDFILE is set to the default name “ERD.db”
(where ERD is the name of the specified ER model). Since this specification will be used in the
generated web programs, a relative database file name will be relative to the place where the web

13If you installed Spicey as described above, the downloaded spicey package is located in the directory
$HOME/.cpm/app packages/spicey.

84



programs are stored. In order to avoid such confusion, it might be better to specify an absolute path
name for the database file. This path could also be set in the definition of the constant sqliteDBFile
in the generated Curry program Model/ERD.curry.

Spicey generates the web application as a Curry package in a new directory. Thus, change into
this directory (e.g., cd ERD) and install all required packages by the command

> make install

The generated file README.txt contains some information about the generated project structure.
One can compile the generated programs by

> make compile

In order to generate the executable web application, configure the generated Makefile by adapting
the variable WEBSERVERDIR to the location where the compiled cgi programs should be stored, and
run

> make deploy

After the successful compilation and deployment of all files, the application is executable in a web
browser by selecting the URL <URL of web dir>/spicey.cgi.

15.3 Further remarks

The application generated by Spicey is a schematic initial implementation. It provides an appropri-
ate basic programming structure but it can be extended in various ways. In particular, one can also
use embedded SQL statements (see [26] for details) when further developing the Curry code, since
the underlying database access operations are generated with the cdbi package. The syntax and
use of such embedded SQL statements is sketched in [26] and described in the Curry preprocessor.

85



16 curry-peval: A Partial Evaluator for Curry

peval is a tool for the partial evaluation of Curry programs. It operates on the FlatCurry represen-
tation and can thus easily be incorporated into the normal compilation chain. The essence of partial
evaluation is to anticipate at compile time (or partial evaluation time) some of the computations
normally performed at run time. Typically, partial evaluation is worthwhile for functions or opera-
tions where some of the input arguments are already known at compile time, or operations built by
the composition of multiple other ones. The theoretical foundations, design and implementation of
the partial evaluator is described in detail in [35].

16.1 Installation

The current implementation of the partial evaluator is a package managed by the Curry Package
Manager CPM (see also Section 6). Thus, to install the newest version of the partial evaluator, use
the following commands:

> cypm update
> cypm install peval

This downloads the newest package, compiles it, and places the executable curry-peval into the
directory $HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to
use the partial evaluator as described below.

16.2 Basic Usage

The partial evaluator is supplied as a binary that can be invoked for a single or multiple modules
that should be partially evaluated. In each module, the partially evaluator assumes the parts of the
program that should be partially evaluated to be annotated by the function

PEVAL :: a
PEVAL x = x

predefined in the module Prelude, such that the user can choose the parts to be considered.
To give an example, we consider the following module which is assumed to be placed in the file

Examples/power4.curry:

square x = x * x
even x = mod x 2 == 0
power n x = if n <= 0 then 1

else if (even n) then power (div n 2) (square x)
else x * (power (n - 1) x)

power4 x = PEVAL (power 4 x)

By the call to PEVAL, the expression power 4 x is marked for partial evaluation, such that the
function power will be improved w.r.t. the arguments 4 andx. Since the first argument is known
in this case, the partial evalautor is able to remove the case distinctions in the implementation of
power, and we invoke it via

$ curry-peval Examples/power4.curry
Curry Partial Evaluator

86



Version 0.1 of 12/09/2016
CAU Kiel

Annotated Expressions
---------------------
power4.power 4 v1

Final Partial Evaluation
------------------------
power4._pe0 :: Prelude.Int → Prelude.Int
power4._pe0 v1 = let { v2 = v1 * v1 } in v2 * v2

Writing specialized program into file ’Examples/.curry/power4_pe.fcy’.

Note that the partial evaluator successfully removed the case distinction, such that the opera-
tion power4 can be expected to run reasonably faster. The new auxiliary function power4._pe0 is
integrated into the existing module such that only the implementation of power4 is changed, which
becomes visible if we increase the level of verbosity:

$ curry-peval -v2 Examples/power4.curry
Curry Partial Evaluator
Version 0.1 of 12/09/2016
CAU Kiel

Annotated Expressions
---------------------
power4.power 4 v1

... (skipped output)

Resulting program
-----------------
module power4 ( power4.square, power4.even, power4.power, power4.power4 ) where

import Prelude

power4.square :: Prelude.Int → Prelude.Int
power4.square v1 = v1 * v1

power4.even :: Prelude.Int → Prelude.Bool
power4.even v1 = (Prelude.mod v1 2) == 0

power4.power :: Prelude.Int → Prelude.Int → Prelude.Int
power4.power v1 v2 = case (v1 <= 0) of

Prelude.True → 1
Prelude.False → case (power4.even v1) of

Prelude.True → power4.power (Prelude.div v1 2) (power4.square v2)
Prelude.False → v2 * (power4.power (v1 - 1) v2)

power4.power4 :: Prelude.Int → Prelude.Int

87



power4.power4 v1 = power4._pe0 v1

power4._pe0 :: Prelude.Int → Prelude.Int
power4._pe0 v1 = let { v2 = v1 * v1 } in v2 * v2

16.3 Options

The partial evaluator can be parametrized using a number of options, which can also be shown
using --help.

-h, -?, --help These options trigger the output of usage information.

-V, --version These options trigger the output of the version information of the partial evaluator.

-d, --debug This flag is intended for development and testing issues only, and necessary to print
the resulting program to the standard output stream even if the verbosity is set to zero.

--assert, --closed These flags enable some internal assertions which are reasonable during devel-
opment of the partial evaluator.

--no-funpats Normally, functions defined using functional patterns are automatically considered
for partial evaluation, since their annotation using PEVAL is a little bit cumbersome. However,
this automatic consideration can be disabled using this flag.

-v n, --verbosity=n Set the verbosity level to n, see above for the explanation of the different
levels.

--color=mode, --colour=mode Set the coloring mode to mode, see above for the explanation of the
different modes.

-S semantics, --semantics=semantics Allows the use to choose a semantics used during partial
evaluation. Note that only the natural semantics can be considered correct for non-confluent
programs, which is why it is the default semantics [35]. However, the rlnt calculus can also be
chosen which is based on term rewriting, thus implementing a run-time choice semantics [4].
The letrw semantics is currently not fully supported, but implements the gist of let-rewriting
[33].

-A mode, --abstract=mode During partial evaluation, all expressions that may potentially occur in
the evaluation of an annotated expression are considered and evaluated, in order to ensure that
all these expressions are also defined in the resulting program. Unfortunately, this imposes
the risk of non-termination, which is why similar expressions are generalized according to the
abstraction criterion. While the none criterion avoids generalizations and thus may lead to
non-termination of the partial evaluator, the criteria wqo and wfo both ensure termination.
In general, the criterion wqo seems to be a good compromise of ensured termination and the
quality of the computed result program.

-P mode, --proceed=mode While the abstraction mode is responsible to limit the number of different
expressions to be considered, the proceed mode limits the number of function calls to be

88



evaluated during the evaluation of a single expressions. While the mode one only allows a
single function call to be evaluated, the mode each allows a single call of each single function,
while all puts no restrictions on the number of function calls to be evaluated. Clearly, the
last alternative also imposes a risk of non-termination.

--suffix=SUFFIX Set the suffix appended to the file name to compute the output file. If the suffix
is set to the empty string, then the original FlatCurry file will be replaced.

89



17 Preprocessing FlatCurry Files

After the invocation of the Curry front end to parse Curry programs and translate them into the
intermediate FlatCurry representation, one can apply transformations on the FlatCurry files before
they are passed to the back end which translates the FlatCurry files into Prolog code. These
transformations are invoked by the FlatCurry preprocessor pakcs/bin/fycpp. Currently, only the
FlatCurry file corresponding to the main module can be transformed.

A transformation can be specified as follows:

1. Options to pakcs/bin/fcypp:

--fpopt Apply functional pattern optimization (see pakcs/tools/optimize/NonStrictOpt.curry
for details).

--compact Apply code compactification after parsing, i.e., transform the main module and
all its imported into one module and delete all non-accessible functions.

--compactexport Similar to --compact but delete all functions that are not accessible from
the exported functions of the main module.

--compactmain:f Similar to --compact but delete all functions that are not accessible from
the function “f” of the main module.

--fcypp cmd Apply command cmd to the main module after parsing. This is useful to in-
tegrate your own transformation into the compilation process. Note that the command
“cmd prog” should perform a transformation on the FlatCurry file prog.fcy, i.e., it re-
places the FlatCurry file by a new one.

2. Setting the environment variable FCYPP:
For instance, setting FCYPP by

export FCYPP="--fpopt"

will apply the functional pattern optimization if programs are compiled and loaded in the
PAKCS programming environment.

3. Putting options into the source code:
If the source code contains a line with a comment of the form (the comment must start at the
beginning of the line)

{-# PAKCS_OPTION_FCYPP <options> #-}

then the transformations specified by <options> are applied after translating the source code
into FlatCurry code. For instance, the functional pattern optimization can be set by the
comment

{-# PAKCS_OPTION_FCYPP --fpopt #-}

in the source code. Note that this comment must be in a single line of the source program. If
there are multiple lines containing such comments, only the first one will be considered.

90



Multiple options: Note that an arbitrary number of transformations can be specified by the
methods described above. If several specifications for preprocessing FlatCurry files are used, they
are executed in the following order:

1. all transformations specified by the environemnt variable FCYPP (from left to right)

2. all transformations specified as command line options of fcypp (from left to right)

3. all transformations specified by a comment line in the source code (from left to right)

91



18 Technical Problems

18.1 SWI-Prolog

Using PAKCS with SWI-Prolog as its back end is slower than SICStus-Prolog and might cause
some memory problems, since SWI-Prolog has stronger restrictions on the memory limits for the
different stack areas when executing Prolog programs. For instance, if the compiled Curry program
terminates with an error message like

ERROR: local

the Prolog system runs out of the local stack (although there might be enough memory available
on the host machine).

To avoid such problem, one can try to modify the script

pakcshome /scripts/pakcs-makesavedstate.sh

in order to change the SWI-Prolog default settings for memory limits of generated Curry applications
and before installing the system by “make”.14 To change the actual memory limits, one should change
the definition of the variable SWILIMITS at the beginning of this script. Since different versions of
SWI-Prolog have different command-line options, the correct setting depends on the version of
SWI-Prolog:

SWI-Prolog 7.*: For instance, to set the maximum limit for the local stack to 4 GB (on 64bit
machines, the default of SWI-Prolog is 1 GB), one change the definition in this script to

SWILIMITS="-L4G -G0 -T0"

SWI-Prolog 8.*: For instance, to use 8 GB for all stacks (on 64bit machines, the default of SWI-
Prolog is 1 GB), one change the definition in this script to

SWILIMITS="--stack_limit=8g"

After this change, recompile (with the PAKCS command “:save”) the Curry application.

18.2 Distributed Programming and Sockets

If Curry is used to implement distributed systems with the package cpns,15 it might be possible that
some technical problems arise due to the use of sockets for implementing these features. Therefore,
this section gives some information about the technical requirements of PAKCS and how to solve
problems due to these requirements.

There is one fixed port that is used by the implementation of PAKCS:

Port 8769: This port is used by the Curry Port Name Server (CPNS) to implement symbolic
names for named sockets in Curry (see package cpns). If some other process uses this port on
the machine, the distribution facilities defined in the the package cpns cannot be used.

14Note that this script is generated during the installation of PAKCS. Hence, it might be necessary to redo the
changes after a new installation of PAKCS.

15https://www-ps.informatik.uni-kiel.de/~cpm/pkgs/cpns.html

92

https://www-ps.informatik.uni-kiel.de/~cpm/pkgs/cpns.html


If these features do not work, you can try to find out whether this port is in use by the shell
command “netstat -a | grep 8769” (or similar).

The CPNS is implemented as a demon listening on its port 8767 in order to serve requests
about registering a new symbolic name for a Curry port or asking the physical port number of
a Curry port. The demon will be automatically started for the first time on a machine when a
user compiles a program using Curry ports. It can also be manually started and terminated by
the command curry-cpnsd (which is available by installing the package cpns, e.g., by the command
“cypm install cpnsd”) If the demon is already running, the command “curry-cpnsd start” does
nothing (so it can be always executed before invoking a Curry program using ports).

18.3 Contact for Help

If you detect any further technical problem, please write to

pakcs@curry-lang.org

93



References

[1] E. Albert, M. Alpuente, M. Hanus, and G. Vidal. A partial evaluation framework for Curry pro-
grams. In Proc. of the 6th International Conference on Logic for Programming and Automated
Reasoning (LPAR’99), pages 376–395. Springer LNCS 1705, 1999.

[2] E. Albert, M. Hanus, and G. Vidal. Using an abstract representation to specialize functional
logic programs. In Proc. of the 7th International Conference on Logic for Programming and
Automated Reasoning (LPAR 2000), pages 381–398. Springer LNCS 1955, 2000.

[3] E. Albert, M. Hanus, and G. Vidal. A practical partial evaluator for a multi-paradigm declara-
tive language. In Proc. of the 5th International Symposium on Functional and Logic Program-
ming (FLOPS 2001), pages 326–342. Springer LNCS 2024, 2001.

[4] E. Albert, M. Hanus, and G. Vidal. A practical partial evaluator for a multi-paradigm declar-
ative language. Journal of Functional and Logic Programming, 2002(1), 2002.

[5] S. Antoy and M. Hanus. Compiling multi-paradigm declarative programs into Prolog. In Proc.
International Workshop on Frontiers of Combining Systems (FroCoS’2000), pages 171–185.
Springer LNCS 1794, 2000.

[6] S. Antoy and M. Hanus. Declarative programming with function patterns. In Proceedings
of the International Symposium on Logic-based Program Synthesis and Transformation (LOP-
STR’05), pages 6–22. Springer LNCS 3901, 2005.

[7] S. Antoy and M. Hanus. Set functions for functional logic programming. In Proceedings of
the 11th ACM SIGPLAN International Conference on Principles and Practice of Declarative
Programming (PPDP’09), pages 73–82. ACM Press, 2009.

[8] S. Antoy and M. Hanus. Contracts and specifications for functional logic programming. In Proc.
of the 14th International Symposium on Practical Aspects of Declarative Languages (PADL
2012), pages 33–47. Springer LNCS 7149, 2012.

[9] S. Antoy and M. Hanus. From boolean equalities to constraints. In Proceedings of the 25th
International Symposium on Logic-based Program Synthesis and Transformation (LOPSTR
2015), pages 73–88. Springer LNCS 9527, 2015.

[10] S. Antoy and M. Hanus. Default rules for Curry. Theory and Practice of Logic Programming,
17(2):121–147, 2017.

[11] S. Antoy and M. Hanus. Transforming boolean equalities into constraints. Formal Aspects of
Computing, 29(3):475–494, 2017.

[12] S. Antoy and M. Hanus. Equivalence checking of non-deterministic operations. In Proc. of the
14th International Symposium on Functional and Logic Programming (FLOPS 2018), pages
149–165. Springer LNCS 10818, 2018.

[13] S. Antoy, M. Hanus, and S. Libby. Proving non-deterministic computations in Agda. In Proc. of
the 24th International Workshop on Functional and (Constraint) Logic Programming (WFLP

94



2016), volume 234 of Electronic Proceedings in Theoretical Computer Science, pages 180–195.
Open Publishing Association, 2017.

[14] B. Braßel, O. Chitil, M. Hanus, and F. Huch. Observing functional logic computations. In Proc.
of the Sixth International Symposium on Practical Aspects of Declarative Languages (PADL’04),
pages 193–208. Springer LNCS 3057, 2004.

[15] B. Braßel, M. Hanus, and F. Huch. Encapsulating non-determinism in functional logic compu-
tations. Journal of Functional and Logic Programming, 2004(6), 2004.

[16] B. Braßel, M. Hanus, and M. Müller. High-level database programming in Curry. In Proc. of
the Tenth International Symposium on Practical Aspects of Declarative Languages (PADL’08),
pages 316–332. Springer LNCS 4902, 2008.

[17] J. Christiansen and S. Fischer. EasyCheck - test data for free. In Proc. of the 9th International
Symposium on Functional and Logic Programming (FLOPS 2008), pages 322–336. Springer
LNCS 4989, 2008.

[18] K. Claessen and J. Hughes. Quickcheck: A lightweight tool for random testing of haskell
programs. In International Conference on Functional Programming (ICFP’00), pages 268–279.
ACM Press, 2000.

[19] M. Hanus. A unified computation model for functional and logic programming. In Proc. of the
24th ACM Symposium on Principles of Programming Languages (Paris), pages 80–93, 1997.

[20] M. Hanus. Distributed programming in a multi-paradigm declarative language. In Proc. of the
International Conference on Principles and Practice of Declarative Programming (PPDP’99),
pages 376–395. Springer LNCS 1702, 1999.

[21] M. Hanus. A functional logic programming approach to graphical user interfaces. In Inter-
national Workshop on Practical Aspects of Declarative Languages (PADL’00), pages 47–62.
Springer LNCS 1753, 2000.

[22] M. Hanus. High-level server side web scripting in Curry. In Proc. of the Third International
Symposium on Practical Aspects of Declarative Languages (PADL’01), pages 76–92. Springer
LNCS 1990, 2001.

[23] M. Hanus. A generic analysis environment for declarative programs. In Proc. of the ACM
SIGPLAN 2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005), pages
43–48. ACM Press, 2005.

[24] M. Hanus. CurryBrowser: A generic analysis environment for Curry programs. In Proc. of
the 16th Workshop on Logic-based Methods in Programming Environments (WLPE’06), pages
61–74, 2006.

[25] M. Hanus and S. Koschnicke. An ER-based framework for declarative web programming.
Theory and Practice of Logic Programming, 14(3):269–291, 2014.

95



[26] M. Hanus and J. Krone. A typeful integration of SQL into Curry. In Proceedings of the
24th International Workshop on Functional and (Constraint) Logic Programming, volume 234
of Electronic Proceedings in Theoretical Computer Science, pages 104–119. Open Publishing
Association, 2017.

[27] M. Hanus and F. Skrlac. A modular and generic analysis server system for functional logic
programs. In Proc. of the ACM SIGPLAN 2014 Workshop on Partial Evaluation and Program
Manipulation (PEPM’14), pages 181–188. ACM Press, 2014.

[28] M. Hanus and F. Steiner. Controlling search in declarative programs. In Principles of Declar-
ative Programming (Proc. Joint International Symposium PLILP/ALP’98), pages 374–390.
Springer LNCS 1490, 1998.

[29] M. Hanus and F. Teegen. Adding Data to Curry. In Declarative Programming and Knowledge
Management - Conference on Declarative Programming (DECLARE 2019), pages 230–246.
Springer LNCS 12057, 2020.

[30] M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.9.0). Available at
http://www.curry-language.org, 2016.

[31] T. Johnsson. Lambda lifting: Transforming programs to recursive functions. In Functional
Programming Languages and Computer Architecture, pages 190–203. Springer LNCS 201, 1985.

[32] J. Krone. Integration of SQL into Curry. Master’s thesis, University of Kiel, 2015.

[33] Francisco Javier López-Fraguas, Juan Rodríguez-Hortalá, and Jaime Sánchez-Hernández. A
simple rewrite notion for call-time choice semantics. In Proceedings of the 9th ACM SIGPLAN
International Conference on Principles and Practice of Declarative Programming, PPDP ’07,
pages 197–208, New York, NY, USA, 2007. ACM.

[34] U. Norell. Dependently typed programming in Agda. In Proceedings of the 6th International
Conference on Advanced Functional Programming (AFP’08), pages 230–266. Springer, 2009.

[35] Björn Peemöller. Normalization and Partial Evaluation of Functional Logic Programs. Depart-
ment of Computer Science, Kiel University, 2016. Dissertation, Faculty of Engineering, Kiel
University.

[36] S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report. Cambridge
University Press, 2003.

[37] P. Wadler. Efficient compilation of pattern-matching. In S.L. Peyton Jones, editor, The Im-
plementation of Functional Programming Languages, pages 78–103. Prentice Hall, 1987.

96

http://www.curry-language.org


A Libraries of the PAKCS Distribution

The PAKCS distribution comes with a set of base libraries and an extensive collection of li-
braries for application programming that can be downloaded with the Curry Package Manager
(see Section 6). The available packages (including packages for arithmetic constraints over real
numbers, finite domain constraints, ports for concurrent and distributed programming, or meta-
programming) can be found on-line.16 Below we sketch some packages for meta-programming
followed by the complete description of the base libraries with all exported types and func-
tions. For a more detailed online documentation of the base libraries of PAKCS, see https:
//www-ps.informatik.uni-kiel.de/~cpm/pkgs/base.html.

16https://www-ps.informatik.uni-kiel.de/~cpm/

97

https://www-ps.informatik.uni-kiel.de/~cpm/pkgs/base.html
https://www-ps.informatik.uni-kiel.de/~cpm/pkgs/base.html
https://www-ps.informatik.uni-kiel.de/~cpm/


A.1 AbstractCurry and FlatCurry: Meta-Programming in Curry

To support meta-programming, i.e., the manipulation of Curry programs in Curry, there are Curry
packages flatcurry and abstractcurry which define datatypes for the representation of Curry pro-
grams. AbstractCurry.Types (package abstractcurry) is a more direct representation of a Curry
program, whereas FlatCurry.Types (package flatcurry) is a simplified representation where local
function definitions are replaced by global definitions (i.e., lambda lifting has been performed) and
pattern matching is translated into explicit case/or expressions. Thus, FlatCurry.Types can be
used for more back-end oriented program manipulations (or, for writing new back ends for Curry),
whereas AbstractCurry.Types is intended for manipulations of programs that are more oriented
towards the source program.
There are predefined I/O actions to read AbstractCurry and FlatCurry programs:
AbstractCurry.Files.readCurry) and FlatCurry.Files.readFlatCurry). These actions parse the
corresponding source program and return a data term representing this program (according to the
definitions in the modules AbstractCurry.Types and FlatCurry.Types).
Since all datatypes are explained in detail in these modules, we refer to the online documentation17

of these packages.
As an example, consider a program file “test.curry” containing the following two lines:

rev :: [a] → [a]
rev [] = []
rev (x:xs) = (rev xs) ++ [x]

Then the I/O action (FlatCurry.Files.readFlatCurry "test") returns the following term:

Prog "test"
["Prelude"]
[]
[Func ("test","rev") 1 Public

(ForallType [(0,KStar)] (FuncType (TCons ("Prelude","[]") [TVar 0])
(TCons ("Prelude","[]") [TVar 0])))

(Rule [1]
(Case Flex (Var 1)

[Branch (Pattern ("Prelude","[]") [])
(Comb ConsCall ("Prelude","[]") []),

Branch (Pattern ("Prelude",":") [2,3])
(Comb FuncCall ("Prelude","++")

[Comb FuncCall ("test","rev") [Var 3],
Comb ConsCall ("Prelude",":")

[Var 2,Comb ConsCall ("Prelude","[]") []]
])]))]

[]

17https://www-ps.informatik.uni-kiel.de/~cpm/pkgs/flatcurry.html
https://www-ps.informatik.uni-kiel.de/~cpm/pkgs/abstract-curry.html

98

https://www-ps.informatik.uni-kiel.de/~cpm/pkgs/flatcurry.html
https://www-ps.informatik.uni-kiel.de/~cpm/pkgs/abstract-curry.html


A.2 System Libraries

A.2.1 Library Control.Applicative

Exported functions:

liftA :: Applicative a ⇒ (c → b) → Apply a c → Apply a b

Lift a function to actions. This function may be used as a value for fmap in a Functor
instance.

liftA3 :: Applicative c ⇒ (b → a → e → d) → Apply c b → Apply c a → Apply c

e → Apply c d

Lift a ternary function to actions.

when :: Applicative a ⇒ Bool → Apply a () → Apply a ()

sequenceA :: Applicative b ⇒ [Apply b a] → Apply b [a]

Evaluate each action in the list from left to right, and collect the results. For a version
that ignores the results see codesequenceA_</code>.

sequenceA :: Applicative a ⇒ [Apply a b] → Apply a ()

Evaluate each action in the structure from left to right, and ignore the results. For a
version that doesn’t ignore the results see codesequenceA/code.

99

code
code
/code


A.2.2 Library Control.Monad

Exported functions:

filterM :: Applicative b ⇒ (a → Apply b Bool) → [a] → Apply b [a]

This generalizes the list-based codefilter/code function.

(>=>) :: Monad c ⇒ (d → Apply c b) → (b → Apply c a) → d → Apply c a

Left-to-right composition of Kleisli arrows.

(<=<) :: Monad c ⇒ (b → Apply c a) → (d → Apply c b) → d → Apply c a

Right-to-left composition of Kleisli arrows. @(code>=>/code)@, with the arguments
flipped.

forever :: Applicative c ⇒ Apply c b → Apply c a

Repeat an action indefinitely.

mapAndUnzipM :: Applicative b ⇒ (a → Apply b (d,c)) → [a] → Apply b ([d],[c])

The codemapAndUnzipM/code function maps its first argument over a list, returning
the result as a pair of lists. This function is mainly used with complicated data structures
or a state-transforming monad.

zipWithM :: Applicative d ⇒ (b → a → Apply d c) → [b] → [a] → Apply d [c]

The codezipWithM/code function generalizes codezipWith/code to arbitrary applica-
tive functors.

zipWithM :: Applicative d ⇒ (b → a → Apply d c) → [b] → [a] → Apply d ()

codezipWithM_</code> is the extension of <code>zipWithM</code> which ignores
the final result.

foldM :: Monad a ⇒ (c → b → Apply a c) → c → [b] → Apply a c

The codefoldM/code function is analogous to codefoldl/code, except that its result is
encapsulated in a monad.

foldM :: Monad a ⇒ (c → b → Apply a c) → c → [b] → Apply a ()

Like codefoldM/code, but discards the result.

replicateM :: Applicative b ⇒ Int → Apply b a → Apply b [a]

replicateM :: Applicative b ⇒ Int → Apply b a → Apply b ()

Like codereplicateM/code, but discards the result.

unless :: Applicative a ⇒ Bool → Apply a () → Apply a ()

100

code
/code
code
/code
code
/code
code
/code
code
/code
code
code
/code
code
/code
code
/code
code
/code


The reverse of codewhen/code.

liftM3 :: Monad b ⇒ (e → d → c → a) → Apply b e → Apply b d → Apply b c →
Apply b a

join :: Monad b ⇒ Apply b (Apply b a) → Apply b a

Removes one level of monadic structure, i.e. codeflattens/code the monad.

void :: Functor b ⇒ Apply b a → Apply b ()

Ignores the result of the evaluation.

101

code
/code
code
/code


A.2.3 Library Control.Search.AllValues

Library with operations to encapsulate search, i.e., non-deterministic computations, as I/O oper-
ations in order to make the results dependend on the external world, e.g., the schedule for non-
determinism.
To encapsulate search in non-I/O computations, one can use set functions (see module
Control.Search.SetFunctions.

Exported functions:

getAllValues :: a → IO [a]

Gets all values of an expression (similarly to Prolog’s findall). Conceptually, the value
is computed on a copy of the expression, i.e., the evaluation of the expression does not
share any results. In PAKCS, the evaluation suspends as long as the expression contains
unbound variables or the computed value contains unbound variables.

getOneValue :: a → IO (Maybe a)

Gets one value of an expression. Returns Nothing if the search space is finitely failed.
Conceptually, the value is computed on a copy of the expression, i.e., the evaluation of
the expression does not share any results. In PAKCS, the evaluation suspends as long
as the expression contains unbound variables or the computed value contains unbound
variables.

getAllFailures :: a → (a → Bool) → IO [a]

Returns a list of values that do not satisfy a given constraint.

102



A.2.4 Library Control.Search.SetFunctions

This module contains an implementation of set functions. The general idea of set functions is
described in:

S. Antoy, M. Hanus: Set Functions for Functional Logic Programming Proc. 11th Inter-
national Conference on Principles and Practice of Declarative Programming (PPDP’09),
pp. 73-82, ACM Press, 2009

The general concept of set functions is as follows. If f is an n-ary function, then (setn f) is a set-
valued function that collects all non-determinism caused by f (but not the non-determinism caused
by evaluating arguments!) in a set. Thus, (setn f a1 ... an) returns the set of all values
of (f b1 ... bn) where b1,...,bn are values of the arguments a1,...,an (i.e., the arguments are
evaluated "outside" this capsule so that the non-determinism caused by evaluating these arguments
is not captured in this capsule but yields several results for (setn...). Similarly, logical variables
occuring in a1,...,an are not bound inside this capsule (in PAKCS they cause a suspension until
they are bound).
Remark: Since there is no special syntax for set functions, one has to write (setn f) for the set
function of the n-ary top-level function f. The correct usage of set functions is currently not checked
by the compiler, i.e., one can also write unintended uses like set0 ((+1) (1 ? 2)). In order to
check the correct use of set functions, it is recommended to apply the tool CurryCheck on Curry
programs which reports illegal uses of set functions (among other properties).
The set of values returned by a set function is represented by an abstract type codeValues/code
on which several operations are defined in this module. Actually, it is a multiset of values, i.e.,
duplicates are not removed.
The handling of failures and nested occurrences of set functions is not specified in the previous
paper. Thus, a detailed description of the semantics of set functions as implemented in this library
can be found in the paper

J. Christiansen, M. Hanus, F. Reck, D. Seidel: A Semantics for Weakly Encapsulated
Search in Functional Logic Programs Proc. 15th International Conference on Principles
and Practice of Declarative Programming (PPDP’13), pp. 49-60, ACM Press, 2013

Note that the implementation of this library uses multisets instead of sets. Thus, the result of a
set function might contain multiple values. From a declarative point of view, this is not relevant.
It has the advantage that equality is not required on values, i.e., encapsulated values can also be
functional.
The PAKCS implementation of set functions has several restrictions, in particular:

1. The multiset of values is completely evaluated when demanded. Thus, if it is infinite, its
evaluation will not terminate even if only some elements (e.g., for a containment test) are
demanded. However, for the emptiness test, at most one value will be computed

2. The arguments of a set function are strictly evaluated before the set functions itself will be
evaluated.

3. If the multiset of values contains unbound variables, the evaluation suspends.

103

https://cpm.curry-lang.org/pkgs/currycheck.html
code
/code


Exported types:

data Values

Abstract type representing multisets of values.

Exported constructors:

Exported functions:

set0 :: a → Values a

Combinator to transform a 0-ary function into a corresponding set function.

set1 :: (b → a) → b → Values a

Combinator to transform a unary function into a corresponding set function.

set2 :: (c → b → a) → c → b → Values a

Combinator to transform a binary function into a corresponding set function.

set3 :: (d → c → b → a) → d → c → b → Values a

Combinator to transform a function of arity 3 into a corresponding set function.

set4 :: (e → d → c → b → a) → e → d → c → b → Values a

Combinator to transform a function of arity 4 into a corresponding set function.

set5 :: (f → e → d → c → b → a) → f → e → d → c → b → Values a

Combinator to transform a function of arity 5 into a corresponding set function.

set6 :: (g → f → e → d → c → b → a) → g → f → e → d → c → b → Values

a

Combinator to transform a function of arity 6 into a corresponding set function.

set7 :: (h → g → f → e → d → c → b → a) → h → g → f → e → d → c → b

→ Values a

Combinator to transform a function of arity 7 into a corresponding set function.

isEmpty :: Values a → Bool

Is a multiset of values empty?

notEmpty :: Values a → Bool

Is a multiset of values not empty?

valueOf :: Eq a ⇒ a → Values a → Bool

Is some value an element of a multiset of values?

104



chooseValue :: Eq a ⇒ Values a → a

Chooses (non-deterministically) some value in a multiset of values and returns the chosen
value. For instance, the expression

chooseValue (set1 anyOf [1,2,3])

non-deterministically evaluates to the values 1, 2, and 3. Thus, (set1 chooseValue)
is the identity on value sets, i.e., (set1 chooseValue s) contains the same elements as
the value set s.

choose :: Eq a ⇒ Values a → (a,Values a)

Chooses (non-deterministically) some value in a multiset of values and returns the cho-
sen value and the remaining multiset of values. Thus, if we consider the operation
chooseValue defined by

chooseValue x = fst (choose x)

then (set1 chooseValue) is the identity on value sets, i.e., (set1 chooseValue s)
contains the same elements as the value set s.

selectValue :: Values a → a

Selects (indeterministically) some value in a multiset of values and returns the selected
value. Thus, selectValue has always at most one value, i.e., it is a deterministic
operation. It fails if the value set is empty.

NOTE: The usage of this operation is only safe (i.e., does not destroy completeness) if
all values in the argument set are identical.

select :: Values a → (a,Values a)

Selects (indeterministically) some value in a multiset of values and returns the selected
value and the remaining multiset of values. Thus, select has always at most one value,
i.e., it is a deterministic operation. It fails if the value set is empty.

NOTE: The usage of this operation is only safe (i.e., does not destroy completeness) if
all values in the argument set are identical.

getSomeValue :: Values a → IO (Maybe a)

Returns (indeterministically) some value in a multiset of values. If the value set is empty,
Nothing is returned.

getSome :: Values a → IO (Maybe (a,Values a))

Selects (indeterministically) some value in a multiset of values and returns the selected
value and the remaining multiset of values. Thus, select has always at most one value.
If the value set is empty, Nothing is returned.

105



mapValues :: (b → a) → Values b → Values a

Maps a function to all elements of a multiset of values.

foldValues :: (a → a → a) → a → Values a → a

Accumulates all elements of a multiset of values by applying a binary operation. This
is similarly to fold on lists, but the binary operation must be commutative so that
the result is independent of the order of applying this operation to all elements in the
multiset.

filterValues :: (a → Bool) → Values a → Values a

Keeps all elements of a multiset of values that satisfy a predicate.

minValue :: Ord a ⇒ Values a → a

Returns the minimum of a non-empty multiset of values according to the given compar-
ison function on the elements.

minValueBy :: (a → a → Ordering) → Values a → a

Returns the minimum of a non-empty multiset of values according to the given compar-
ison function on the elements.

maxValue :: Ord a ⇒ Values a → a

Returns the maximum of a non-empty multiset of values according to the given com-
parison function on the elements.

maxValueBy :: (a → a → Ordering) → Values a → a

Returns the maximum of a non-empty multiset of values according to the given com-
parison function on the elements.

values2list :: Values a → IO [a]

Puts all elements of a multiset of values in a list. Since the order of the elements in the
list might depend on the time of the computation, this operation is an I/O action.

printValues :: Show a ⇒ Values a → IO ()

Prints all elements of a multiset of values.

sortValues :: Ord a ⇒ Values a → [a]

Transforms a multiset of values into a list sorted by the standard term ordering. As a
consequence, the multiset of values is completely evaluated.

sortValuesBy :: (a → a → Bool) → Values a → [a]

Transforms a multiset of values into a list sorted by a given ordering on the values. As a
consequence, the multiset of values is completely evaluated. In order to ensure that the
result of this operation is independent of the evaluation order, the given ordering must
be a total order.

106



A.2.5 Library Control.Search.Unsafe

Library with operations to encapsulate search, i.e., non-deterministic computations. Note that these
operations are not fully declarative, i.e., the results depend on the order of evaluation and program
rules. This is due to the fact that the search operators work on a copy of the current expression to
be encapsulated. The potential problems of this method are discussed in this paper:

B. Brassel, M. Hanus, F. Huch: Encapsulating Non-Determinism in Functional Logic
Computations Journal of Functional and Logic Programming, No. 6, EAPLS, 2004

There are newer and better approaches the encapsulate search, in particular, set functions (see
module Control.Search.SetFunctions which should be used.

Exported functions:

allValues :: a → [a]

Returns all values of an expression. Conceptually, the value is computed on a copy
of the expression, i.e., the evaluation of the expression does not share any results. In
PAKCS, the evaluation suspends as long as the expression contains unbound variables
or the computed value contains unbound variables.

Note that this operation is not purely declarative since the ordering of the computed
values depends on the ordering of the program rules.

oneValue :: a → Maybe a

Returns just one value for an expression. If the expression has no value, Nothing is
returned. Conceptually, the value is computed on a copy of the expression, i.e., the
evaluation of the expression does not share any results. In PAKCS, the evaluation
suspends as long as the expression contains unbound variables or the computed value
contains unbound variables.

Note that this operation is not purely declarative since the computed value depends
on the ordering of the program rules. Thus, this operation should be used only if the
expression has a single value.

someValue :: a → a

Returns some value for an expression. If the expression has no value, the computation
fails. Conceptually, the value is computed on a copy of the expression, i.e., the evaluation
of the expression does not share any results. In PAKCS, the evaluation suspends as long
as the expression contains unbound variables or the computed value contains unbound
variables.

Note that this operation is not purely declarative since the computed value depends
on the ordering of the program rules. Thus, this operation should be used only if the
expression has a single value.

isFail :: a → Bool

107



Does the computation of the argument to a value fail? Conceptually, the argument is
evaluated on a copy, i.e., even if the computation does not fail, it has not been evaluated.

rewriteAll :: a → [a]

Gets all values computable by term rewriting. In contrast to allValues, this operation
does not wait until all "outside" variables are bound to values, but it returns all values
computable by term rewriting and ignores all computations that requires bindings for
outside variables.

rewriteSome :: a → Maybe a

Similarly to rewriteAll but returns only some value computable by term rewriting.
Returns Nothing if there is no such value.

108



A.2.6 Library Curry.Compiler.Distribution

This module contains definition of constants to obtain information concerning the current distribu-
tion of the Curry implementation, e.g., compiler version, run-time version, installation directory.

Exported functions:

curryCompiler :: String

The name of the Curry compiler (e.g., "pakcs" or "kics2").

curryCompilerMajorVersion :: Int

The major version number of the Curry compiler.

curryCompilerMinorVersion :: Int

The minor version number of the Curry compiler.

curryCompilerRevisionVersion :: Int

The revision version number of the Curry compiler.

curryRuntime :: String

The name of the run-time environment (e.g., "sicstus", "swi", or "ghc")

curryRuntimeMajorVersion :: Int

The major version number of the Curry run-time environment.

curryRuntimeMinorVersion :: Int

The minor version number of the Curry run-time environment.

baseVersion :: String

The version number of the base libraries (e.g., "1.0.5").

installDir :: String

Path of the main installation directory of the Curry compiler.

109



A.2.7 Library Data.Char

Library with some useful functions on characters.

Exported functions:

isAscii :: Char → Bool

Returns true if the argument is an ASCII character.

isLatin1 :: Char → Bool

Returns true if the argument is an Latin-1 character.

isAsciiLower :: Char → Bool

Returns true if the argument is an ASCII lowercase letter.

isAsciiUpper :: Char → Bool

Returns true if the argument is an ASCII uppercase letter.

isControl :: Char → Bool

Returns true if the argument is a control character.

toUpper :: Char → Char

Converts lowercase into uppercase letters.

toLower :: Char → Char

Converts uppercase into lowercase letters.

digitToInt :: Char → Int

Converts a (hexadecimal) digit character into an integer.

intToDigit :: Int → Char

Converts an integer into a (hexadecimal) digit character.

110



A.2.8 Library Data.Either

Library with some useful operations for the Either data type.

Exported functions:

lefts :: [Either b a] → [b]

Extracts from a list of Either all the Left elements in order.

rights :: [Either a b] → [b]

Extracts from a list of Either all the Right elements in order.

isLeft :: Either a b → Bool

Return True if the given value is a Left-value, False otherwise.

isRight :: Either a b → Bool

Return True if the given value is a Right-value, False otherwise.

fromLeft :: Either b a → b

Extract the value from a Left constructor.

fromRight :: Either a b → b

Extract the value from a Right constructor.

partitionEithers :: [Either b a] → ([b],[a])

Partitions a list of Either into two lists. All the Left elements are extracted, in order,
to the first component of the output. Similarly the Right elements are extracted to the
second component of the output.

111



A.2.9 Library Data.Function

This module provides some utility functions for function application.

Exported functions:

fix :: (a → a) → a

fix f is the least fixed point of the function f, i.e. the least defined x such that f x =
x.

on :: (a → a → b) → (c → a) → c → c → b

on f g x y applies the binary operation f to the results of applying operation g to two
arguments x and y. Thus, it transforms two inputs and combines the outputs.

(*) ‘on‘ f = \x y -> f x * f y

A typical usage of this operation is:

sortBy (compare ‘on‘ fst)

112



A.2.10 Library Data.Functor.Compose

This simple module defines the compose functor known from Haskell’s base libraries. The compose
functor is the composition of two functors which always is a functor too.

Exported types:

newtype Compose

Exported constructors:

• Compose :: (Apply a (Apply b c)) → Compose a b c

Exported functions:

getCompose :: Compose c b a → Apply c (Apply b a)

113



A.2.11 Library Data.Functor.Const

This simple module defines the const functor known from Haskell’s base libraries. It defines a
wrapper around a constant value that "ignores" functions mapped over it.

Exported types:

newtype Const

Exported constructors:

• Const :: a → Const a b

Exported functions:

getConst :: Const b a → b

114



A.2.12 Library Data.Functor.Identity

This simple module defines the identify functor and monad and has been adapted from the same
Haskell module (by Andy Gill). It defines a a trivial type constructor Identity which can be used
with functions parameterized by functor or monad classes or as a simple base to specialize monad
transformers.

Exported types:

newtype Identity

The Identity type constructor with Functor, Applicative, and Monad instances.

Exported constructors:

• Identity :: a → Identity a

Exported functions:

runIdentity :: Identity a → a

115



A.2.13 Library Data.IORef

Library with some useful extensions to the IO monad.

Exported types:

data IORef

Mutable variables containing values of some type. The values are not evaluated when
they are assigned to an IORef.

Exported constructors:

Exported functions:

newIORef :: a → IO (IORef a)

Creates a new IORef with an initial value.

readIORef :: IORef a → IO a

Reads the current value of an IORef.

writeIORef :: IORef a → a → IO ()

Updates the value of an IORef.

modifyIORef :: IORef a → (a → a) → IO ()

Modify the value of an IORef.

116



A.2.14 Library Data.List

Library with some useful operations on lists.

Exported functions:

elemIndex :: Eq a ⇒ a → [a] → Maybe Int

Returns the index i of the first occurrence of an element in a list as (Just i), otherwise
Nothing is returned.

elemIndices :: Eq a ⇒ a → [a] → [Int]

Returns the list of indices of occurrences of an element in a list.

find :: (a → Bool) → [a] → Maybe a

Returns the first element e of a list satisfying a predicate as (Just e), otherwise Nothing
is returned.

findIndex :: (a → Bool) → [a] → Maybe Int

Returns the index i of the first occurrences of a list element satisfying a predicate as
(Just i), otherwise Nothing is returned.

findIndices :: (a → Bool) → [a] → [Int]

Returns the list of indices of list elements satisfying a predicate.

nub :: Eq a ⇒ [a] → [a]

Removes all duplicates in the argument list.

nubBy :: (a → a → Bool) → [a] → [a]

Removes all duplicates in the argument list according to an equivalence relation.

delete :: Eq a ⇒ a → [a] → [a]

Deletes the first occurrence of an element in a list.

deleteBy :: (a → a → Bool) → a → [a] → [a]

Deletes the first occurrence of an element in a list according to an equivalence relation.

(\\) :: Eq a ⇒ [a] → [a] → [a]

Computes the difference of two lists.

union :: Eq a ⇒ [a] → [a] → [a]

Computes the union of two lists.

unionBy :: (a → a → Bool) → [a] → [a] → [a]

117



Computes the union of two lists according to the given equivalence relation

intersect :: Eq a ⇒ [a] → [a] → [a]

Computes the intersection of two lists.

intersectBy :: (a → a → Bool) → [a] → [a] → [a]

Computes the intersection of two lists according to the given equivalence relation

intersperse :: a → [a] → [a]

Puts a separator element between all elements in a list.

Example: (intersperse 9 [1,2,3,4]) = [1,9,2,9,3,9,4]

intercalate :: [a] → [[a]] → [a]

intercalate xs xss is equivalent to (concat (intersperse xs xss)). It inserts the
list xs in between the lists in xss and concatenates the result.

transpose :: [[a]] → [[a]]

Transposes the rows and columns of the argument.

Example: (transpose [[1,2,3],[4,5,6]]) = [[1,4],[2,5],[3,6]]

diagonal :: [[a]] → [a]

Diagonalization of a list of lists. Fairly merges (possibly infinite) list of (possibly infinite)
lists.

permutations :: [a] → [[a]]

Returns the list of all permutations of the argument.

partition :: (a → Bool) → [a] → ([a],[a])

Partitions a list into a pair of lists where the first list contains those elements that satisfy
the predicate argument and the second list contains the remaining arguments.

Example: (partition (&lt;4) [8,1,5,2,4,3]) = ([1,2,3],[8,5,4])

group :: Eq a ⇒ [a] → [[a]]

Splits the list argument into a list of lists of equal adjacent elements.

Example: (group [1,2,2,3,3,3,4]) = [[1],[2,2],[3,3,3],[4]]

groupBy :: (a → a → Bool) → [a] → [[a]]

Splits the list argument into a list of lists of related adjacent elements.

splitOn :: Eq a ⇒ [a] → [a] → [[a]]

118



Breaks the second list argument into pieces separated by the first list argument, con-
suming the delimiter. An empty delimiter is invalid, and will cause an error to be
raised.

split :: (a → Bool) → [a] → [[a]]

Splits a list into components delimited by separators, where the predicate returns True
for a separator element. The resulting components do not contain the separators. Two
adjacent separators result in an empty component in the output.

split (==<code>a</code>) "aabbaca" == ["","","bb","c",""]
split (==<code>a</code>) "" == [""]

inits :: [a] → [[a]]

Returns all initial segments of a list, starting with the shortest. Example: inits
[1,2,3] == [[],[1],[1,2],[1,2,3]]

tails :: [a] → [[a]]

Returns all final segments of a list, starting with the longest. Example: tails [1,2,3]
== [[1,2,3],[2,3],[3],[]]

replace :: a → Int → [a] → [a]

Replaces an element in a list.

isPrefixOf :: Eq a ⇒ [a] → [a] → Bool

Checks whether a list is a prefix of another.

isSuffixOf :: Eq a ⇒ [a] → [a] → Bool

Checks whether a list is a suffix of another.

isInfixOf :: Eq a ⇒ [a] → [a] → Bool

Checks whether a list is contained in another.

sort :: Ord a ⇒ [a] → [a]

The default sorting operation, mergeSort, with standard ordering &lt;=.

sortBy :: (a → a → Bool) → [a] → [a]

Sorts a list w.r.t. an ordering relation by the insertion method.

insertBy :: (a → a → Bool) → a → [a] → [a]

Inserts an object into a list according to an ordering relation.

last :: [a] → a

119



Returns the last element of a non-empty list.

init :: [a] → [a]

Returns the input list with the last element removed.

sum :: Num a ⇒ [a] → a

Returns the sum of a list of integers.

product :: Num a ⇒ [a] → a

Returns the product of a list of integers.

maximum :: Ord a ⇒ [a] → a

Returns the maximum of a non-empty list.

maximumBy :: (a → a → Ordering) → [a] → a

Returns the maximum of a non-empty list according to the given comparison function

minimum :: Ord a ⇒ [a] → a

Returns the minimum of a non-empty list.

minimumBy :: (a → a → Ordering) → [a] → a

Returns the minimum of a non-empty list according to the given comparison function

scanl :: (b → a → b) → b → [a] → [b]

scanl is similar to foldl, but returns a list of successive reduced values from the left:
scanl f z [x1, x2, ...] == [z, z f x1, (z f x1) f x2, ...]

scanl1 :: (a → a → a) → [a] → [a]

scanl1 is a variant of scanl that has no starting value argument: scanl1 f [x1, x2, ...]
== [x1, x1 f x2, ...]

scanr :: (a → b → b) → b → [a] → [b]

scanr is the right-to-left dual of scanl.

scanr1 :: (a → a → a) → [a] → [a]

scanr1 is a variant of scanr that has no starting value argument.

mapAccumL :: (c → b → (c,a)) → c → [b] → (c,[a])

The mapAccumL function behaves like a combination of map and foldl; it applies a
function to each element of a list, passing an accumulating parameter from left to right,
and returning a final value of this accumulator together with the new list.

mapAccumR :: (c → b → (c,a)) → c → [b] → (c,[a])

120



The mapAccumR function behaves like a combination of map and foldr; it applies a
function to each element of a list, passing an accumulating parameter from right to left,
and returning a final value of this accumulator together with the new list.

cycle :: [a] → [a]

Builds an infinite list from a finite one.

unfoldr :: (b → Maybe (a,b)) → b → [a]

Builds a list from a seed value.

121



A.2.15 Library Data.Maybe

Library with some useful functions on the Maybe datatype.

Exported functions:

isJust :: Maybe a → Bool

Return True iff the argument is of the form Just _.

isNothing :: Maybe a → Bool

Return True iff the argument is of the form Nothing.

fromJust :: Maybe a → a

Extract the argument from the Just constructor and throw an error if the argument is
Nothing.

fromMaybe :: a → Maybe a → a

Extract the argument from the Just constructor or return the provided default value if
the argument is Nothing.

listToMaybe :: [a] → Maybe a

Return Nothing on an empty list or Just x where x is the first list element.

maybeToList :: Maybe a → [a]

Return an empty list for Nothing or a singleton list for Just x.

catMaybes :: [Maybe a] → [a]

Return the list of all Just values.

mapMaybe :: (a → Maybe b) → [a] → [b]

Apply a function which may throw out elements using the Nothing constructor to a list
of elements.

122



A.2.16 Library Debug.Trace

This library contains some useful operation for debugging programs.

Exported functions:

trace :: String → a → a

Prints the first argument as a side effect and behaves as identity on the second argument.

traceId :: String → String

Prints the first argument as a side effect and returns it afterwards.

traceShow :: Show b ⇒ b → a → a

Prints the first argument using show and returns the second argument afterwards.

traceShowId :: Show a ⇒ a → a

Prints the first argument using show and returns it afterwards.

traceIO :: String → IO ()

Output a trace message from the IO monad.

assert :: Bool → String → a → a

Assert a condition w.r.t. an error message. If the condition is not met it fails with the
given error message, otherwise the third argument is returned.

assertIO :: Bool → String → IO ()

Assert a condition w.r.t. an error message from the IO monad. If the condition is not
met it fails with the given error message.

123



A.2.17 Library Numeric

Library with some functions for reading and converting numeric tokens.

Exported functions:

readInt :: String → [(Int,String)]

Read a (possibly negative) integer as a first token in a string. The string might contain
leadings blanks and the integer is read up to the first non-digit. On success returns
[(v,s)], where v is the value of the integer and s is the remaing string without the
integer token.

readNat :: String → [(Int,String)]

Read a natural number as a first token in a string. The string might contain leadings
blanks and the number is read up to the first non-digit. On success returns [(v,s)],
where v is the value of the number and s is the remaing string without the number
token.

readHex :: String → [(Int,String)]

Read a hexadecimal number as a first token in a string. The string might contain leadings
blanks and the number is read up to the first non-hexadecimal digit. On success returns
[(v,s)], where v is the value of the number and s is the remaing string without the
number token.

readOct :: String → [(Int,String)]

Read an octal number as a first token in a string. The string might contain leadings
blanks and the number is read up to the first non-octal digit. On success returns
[(v,s)], where v is the value of the number and s is the remaing string without the
number token.

readBin :: String → [(Int,String)]

Read a binary number as a first token in a string. The string might contain leadings
blanks and the number is read up to the first non-binary digit. On success returns
[(v,s)], where v is the value of the number and s is the remaing string without the
number token.

124



A.2.18 Library Prelude

The standard prelude of Curry with type classes. All exported functions, data types, type classes
and methods defined in this module are always available in any Curry program.

Exported types:

data ()

Exported constructors:

• () :: ()

data (,)

Exported constructors:

• (,) :: a → b → (,) a b

data (,,)

Exported constructors:

• (,,) :: a → b → c → (,,) a b c

data (,,,)

Exported constructors:

• (,,,) :: a → b → c → d → (,,,) a b c d

data (,,,,)

Exported constructors:

• (,,,,) :: a → b → c → d → e → (,,,,) a b c d e

data (,,,,,)

Exported constructors:

125



• (,,,,,) :: a → b → c → d → e → f → (,,,,,) a b c d e f

data (,,,,,,)

Exported constructors:

• (,,,,,,) :: a → b → c → d → e → f → g → (,,,,,,) a b c d e f g

data (,,,,,,,)

Exported constructors:

• (,,,,,,,) :: a → b → c → d → e → f → g → h → (,,,,,,,) a b c d e f g

h

data (,,,,,,,,)

Exported constructors:

• (,,,,,,,,) :: a → b → c → d → e → f → g → h → i → (,,,,,,,,) a b c d

e f g h i

data (,,,,,,,,,)

Exported constructors:

• (,,,,,,,,,) :: a → b → c → d → e → f → g → h → i → j → (,,,,,,,,,)

a b c d e f g h i j

data (,,,,,,,,,,)

Exported constructors:

• (,,,,,,,,,,) :: a → b → c → d → e → f → g → h → i → j → k →
(,,,,,,,,,,) a b c d e f g h i j k

data (,,,,,,,,,,,)

Exported constructors:

126



• (,,,,,,,,,,,) :: a → b → c → d → e → f → g → h → i → j → k → l →
(,,,,,,,,,,,) a b c d e f g h i j k l

data (,,,,,,,,,,,,)

Exported constructors:

• (,,,,,,,,,,,,) :: a → b → c → d → e → f → g → h → i → j → k → l →
m → (,,,,,,,,,,,,) a b c d e f g h i j k l m

data (,,,,,,,,,,,,,)

Exported constructors:

• (,,,,,,,,,,,,,) :: a → b → c → d → e → f → g → h → i → j → k → l →
m → n → (,,,,,,,,,,,,,) a b c d e f g h i j k l m n

data (,,,,,,,,,,,,,,)

Exported constructors:

• (,,,,,,,,,,,,,,) :: a → b → c → d → e → f → g → h → i → j → k → l

→ m → n → o → (,,,,,,,,,,,,,,) a b c d e f g h i j k l m n o

data (->)

Exported constructors:

data Bool

The type of Boolean values.

Exported constructors:

• False :: Bool

• True :: Bool

data Char

Exported constructors:

127



data Either

The Either type can be used to combine values of two different types.

Exported constructors:

• Left :: a → Either a b

• Right :: b → Either a b

data Float

Exported constructors:

data IO

Exported constructors:

data IOError

The (abstract) type of error values. Currently, it distinguishes between general I/O er-
rors, user-generated errors (see userError), failures and non-determinism errors during
I/O computations. These errors can be caught by catch. Each error contains a string
shortly explaining the error. This type might be extended in the future to distinguish
further error situations.

Exported constructors:

• IOError :: String → IOError

• UserError :: String → IOError

• FailError :: String → IOError

• NondetError :: String → IOError

data Int

Exported constructors:

data Maybe

The Maybe type can be used for values which could also be absent.

Exported constructors:

128



• Nothing :: Maybe a

• Just :: a → Maybe a

data Ordering

Ordering type. Useful as a result of comparison functions.

Exported constructors:

• LT :: Ordering

• EQ :: Ordering

• GT :: Ordering

data []

Exported constructors:

• [] :: [] a

• : :: a → [a] → [] a

Exported functions:

(/==) :: Data a ⇒ a → a → Bool

The negation of strict equality.

shows :: Show a ⇒ a → String → String

Converts a showable value to a show function that prepends this value.

showChar :: Char → String → String

Converts a character to a show function that prepends the character.

showString :: String → String → String

Converts a string to a show function that prepends the string.

showParen :: Bool → (String → String) → String → String

If the first argument is True, Converts a show function to a show function adding
enclosing brackets, otherwise the show function is returned unchanged.

showTuple :: [String → String] → String → String

Converts a list of show functions to a show function combining the given show functions
to a tuple representation.

129



reads :: Read a ⇒ String → [(a,String)]

A parser to read data from a string. For instance, reads &quot;42&quot;
:: [(Int,String)] returns [(42,[])], and reads &quot;hello&quot; ::
[(Int,String)] returns [].

readParen :: Bool → (String → [(a,String)]) → String → [(a,String)]

readParen True p parses what p parses, but surrounded with parentheses. readParen
False p parses what p parses, but the string to be parsed can be optionally with paren-
theses.

read :: Read a ⇒ String → a

Reads data of the given type from a string. The operations fails if the data cannot
be parsed. For instance read &quot;42&quot; :: Int evaluates to 42, and read
&quot;hello&quot; :: Int fails.

lex :: String → [(String,String)]

Reads a single lexeme from the given string. Initial white space is discarded and the
characters of the lexeme are returned. If the input string contains only white space, lex
returns the empty string as lexeme. If there is no legal lexeme at the beginning of the
input string, the operation fails, i.e., [] is returned.

even :: Integral a ⇒ a → Bool

Returns whether an integer is even.

odd :: Integral a ⇒ a → Bool

Returns whether an integer is odd.

fromIntegral :: Integral a ⇒ Num b ⇒ a → b

General coercion from integral types.

realToFrac :: Real a ⇒ Fractional b ⇒ a → b

General coercion to fractional types.

(^) :: Num b ⇒ Integral a ⇒ b → a → b

Raises a number to a non-negative integer power.

(<$>) :: Functor c ⇒ (b → a) → Apply c b → Apply c a

liftM2 :: Monad b ⇒ (d → c → a) → Apply b d → Apply b c → Apply b a

Promotes a function to a monad. The function arguments are scanned from left to
right. For instance, liftM2 (+) [1,2] [3,4] evaluates to [4,5,5,6], and liftM2
(,) [1,2] [3,4] evaluates to [(1,3),(1,4),(2,3),(2,4)].

130



sequence :: Monad a ⇒ [Apply a b] → Apply a [b]

Executes a sequence of monadic actions and collects all results in a list.

sequence :: Monad a ⇒ [Apply a b] → Apply a ()

Executes a sequence of monadic actions and ignores the results.

mapM :: Monad c ⇒ (a → Apply c b) → [a] → Apply c [b]

Maps a monadic action function on a list of elements. The results of all monadic actions
are collected in a list.

mapM :: Monad c ⇒ (a → Apply c b) → [a] → Apply c ()

Maps an monadic action function on a list of elements. The results of all monadic actions
are ignored.

isUpper :: Char → Bool

Returns true if the argument is an uppercase letter.

isLower :: Char → Bool

Returns true if the argument is an lowercase letter.

isAlpha :: Char → Bool

Returns true if the argument is a letter.

isDigit :: Char → Bool

Returns true if the argument is a decimal digit.

isAlphaNum :: Char → Bool

Returns true if the argument is a letter or digit.

isBinDigit :: Char → Bool

Returns true if the argument is a binary digit.

isOctDigit :: Char → Bool

Returns true if the argument is an octal digit.

isHexDigit :: Char → Bool

Returns true if the argument is a hexadecimal digit.

isSpace :: Char → Bool

Returns true if the argument is a white space.

ord :: Char → Int

131



Converts a character into its ASCII value.

chr :: Int → Char

Converts a Unicode value into a character. The conversion is total, i.e., for out-of-bound
values, the smallest or largest character is generated.

lines :: String → [String]

Breaks a string into a list of lines where a line is terminated at a newline character. The
resulting lines do not contain newline characters.

unlines :: [String] → String

Concatenates a list of strings with terminating newlines.

words :: String → [String]

Breaks a string into a list of words where the words are delimited by white spaces.

unwords :: [String] → String

Concatenates a list of strings with a blank between two strings.

($) :: (b → a) → b → a

Right-associative application.

($!) :: (a → b) → a → b

Right-associative application with strict evaluation of its argument to head normal form.

($!!) :: (a → b) → a → b

Right-associative application with strict evaluation of its argument to normal form.

($#) :: (b → a) → b → a

Right-associative application with strict evaluation of its argument to a non-variable
term.

($##) :: (a → b) → a → b

Right-associative application with strict evaluation of its argument to ground normal
form.

seq :: b → a → a

Evaluates the first argument to head normal form (which could also be a free variable)
and returns the second argument.

ensureNotFree :: a → a

Evaluates the argument to head normal form and returns it. Suspends until the result
is bound to a non-variable term.

132



ensureSpine :: [a] → [a]

Evaluates the argument to spine form and returns it. Suspends until the result is bound
to a non-variable spine.

normalForm :: a → a

Evaluates the argument to normal form and returns it.

groundNormalForm :: a → a

Evaluates the argument to ground normal form and returns it. Suspends as long as the
normal form of the argument is not ground.

(.) :: (a → b) → (c → a) → c → b

Function composition.

id :: a → a

Identity function.

const :: b → a → b

Constant function.

asTypeOf :: a → a → a

asTypeOf is a type-restricted version of const. It is usually used as an infix operator,
and its typing forces its first argument (which is usually overloaded) to have the same
type as the second.

curry :: ((c,b) → a) → c → b → a

Converts an uncurried function to a curried function.

uncurry :: (c → b → a) → (c,b) → a

Converts an curried function to a function on pairs.

flip :: (b → c → a) → c → b → a

flip f is identical to f, but with the order of arguments reversed.

until :: (a → Bool) → (a → a) → a → a

Repeats application of a function until a predicate holds.

(&&) :: Bool → Bool → Bool

Sequential conjunction on Booleans.

(||) :: Bool → Bool → Bool

Sequential disjunction on Booleans.

133



not :: Bool → Bool

Negation on Booleans.

otherwise :: Bool

Useful name for the last condition in a sequence of conditional equations.

ifThenElse :: Bool → a → a → a

The standard conditional. It suspends if the condition is a free variable.

fst :: (b,a) → b

Selects the first component of a pair.

snd :: (b,a) → a

Selects the second component of a pair.

head :: [a] → a

Computes the first element of a list.

tail :: [a] → [a]

Computes the remaining elements of a list.

null :: [a] → Bool

Is a list empty?

(++) :: [a] → [a] → [a]

Concatenates two lists. Since it is flexible, it could be also used to split a list into two
sublists etc.

length :: [a] → Int

Computes the length of a list.

(!!) :: [a] → Int → a

List index (subscript) operator, head has index 0.

map :: (b → a) → [b] → [a]

Maps a function on all elements of a list.

foldl :: (b → a → b) → b → [a] → b

Accumulates all list elements by applying a binary operator from left to right.

foldl1 :: (a → a → a) → [a] → a

Accumulates a non-empty list from left to right.

134



foldr :: (a → b → b) → b → [a] → b

Accumulates all list elements by applying a binary operator from right to left.

foldr1 :: (a → a → a) → [a] → a

Accumulates a non-empty list from right to left:

filter :: (a → Bool) → [a] → [a]

Filters all elements satisfying a given predicate in a list.

zip :: [b] → [a] → [(b,a)]

Joins two lists into one list of pairs. If one input list is shorter than the other, the
additional elements of the longer list are discarded.

zip3 :: [c] → [b] → [a] → [(c,b,a)]

Joins three lists into one list of triples. If one input list is shorter than the other, the
additional elements of the longer lists are discarded.

zipWith :: (c → b → a) → [c] → [b] → [a]

Joins two lists into one list by applying a combination function to corresponding pairs
of elements. Thus zip = zipWith (,)

zipWith3 :: (d → c → b → a) → [d] → [c] → [b] → [a]

Joins three lists into one list by applying a combination function to corresponding triples
of elements. Thus zip3 = zipWith3 („)

unzip :: [(b,a)] → ([b],[a])

Transforms a list of pairs into a pair of lists.

unzip3 :: [(c,b,a)] → ([c],[b],[a])

Transforms a list of triples into a triple of lists.

concat :: [[a]] → [a]

Concatenates a list of lists into one list.

concatMap :: (a → [b]) → [a] → [b]

Maps a function from elements to lists and merges the result into one list.

iterate :: (a → a) → a → [a]

Infinite list of repeated applications of a function f to an element x. Thus, iterate f
x = [x, f x, f (f x), ...].

repeat :: a → [a]

135



Infinite list where all elements have the same value. Thus, repeat x = [x, x, x,
...].

replicate :: Int → a → [a]

List of length n where all elements have the same value.

take :: Int → [a] → [a]

Returns prefix of length n.

drop :: Int → [a] → [a]

Returns suffix without first n elements.

splitAt :: Int → [a] → ([a],[a])

splitAt n xs is equivalent to (take n xs, drop n xs)

takeWhile :: (a → Bool) → [a] → [a]

Returns longest prefix with elements satisfying a predicate.

dropWhile :: (a → Bool) → [a] → [a]

Returns suffix without takeWhile prefix.

span :: (a → Bool) → [a] → ([a],[a])

span p xs is equivalent to (takeWhile p xs, dropWhile p xs)

break :: (a → Bool) → [a] → ([a],[a])

break p xs is equivalent to (takeWhile (not . p) xs, dropWhile (not . p)
xs). Thus, it breaks a list at the first occurrence of an element satisfying p.

reverse :: [a] → [a]

Reverses the order of all elements in a list.

and :: [Bool] → Bool

Computes the conjunction of a Boolean list.

or :: [Bool] → Bool

Computes the disjunction of a Boolean list.

any :: (a → Bool) → [a] → Bool

Is there an element in a list satisfying a given predicate?

all :: (a → Bool) → [a] → Bool

Is a given predicate satisfied by all elements in a list?

136



elem :: Eq a ⇒ a → [a] → Bool

Element of a list?

notElem :: Eq a ⇒ a → [a] → Bool

Not element of a list?

lookup :: Eq b ⇒ b → [(b,a)] → Maybe a

Looks up a key in an association list.

maybe :: b → (a → b) → Maybe a → b

The maybe function takes a default value, a function, and a Maybe value. If the Maybe
value is Nothing, the default value is returned. Otherwise, the function is applied to
the value inside the Just and the result is returned.

either :: (b → a) → (c → a) → Either b c → a

Apply a case analysis to a value of the Either type. If the value is Left x, the first
function is applied to x. If the value is Right y, the second function is applied to y.

getChar :: IO Char

An action that reads a character from standard output and returns it.

getLine :: IO String

An action that reads a line from standard input and returns it.

putChar :: Char → IO ()

An action that puts its character argument on standard output.

putStr :: String → IO ()

Action to print a string on standard output.

putStrLn :: String → IO ()

Action to print a string with a newline on standard output.

print :: Show a ⇒ a → IO ()

Converts a term into a string and prints it.

readFile :: String → IO String

An action that (lazily) reads a file and returns its contents.

writeFile :: String → String → IO ()

An action that writes a file.

137



appendFile :: String → String → IO ()

An action that appends a string to a file. It behaves like writeFile if the file does not
exist.

userError :: String → IOError

A user error value is created by providing a description of the error situation as a string.

ioError :: IOError → IO a

Raises an I/O exception with a given error value.

catch :: IO a → (IOError → IO a) → IO a

Catches a possible error or failure during the execution of an I/O action. catch act
errfun executes the I/O action act. If an exception or failure occurs during this I/O
action, the function errfun is applied to the error value.

success :: Bool

The always satisfiable constraint. It is included for backward compatibility and should
be no longer used.

solve :: Bool → Bool

Enforce a Boolean condition to be true. The computation fails if the argument evaluates
to False.

doSolve :: Bool → IO ()

Solves a constraint as an I/O action. Note: The constraint should be always solvable in
a deterministic way.

(=:=) :: Data a ⇒ a → a → Bool

The equational constraint. (e1 =:= e2) is satisfiable if both sides e1 and e2 can be
reduced to a unifiable data term (i.e., a term without defined function symbols).

constrEq :: a → a → Bool

Internal operation to implement equational constraints. It is used by the strict equality
optimizer but should not be used in regular programs.

(=:<=) :: Data a ⇒ a → a → Bool

Non-strict equational constraint. This operation is not intended to be used in source
programs but it is used to implement functional patterns. Conceptually, (e1 =:&lt;=
e2) is satisfiable if e1 can be evaluated to some pattern (data term) that matches e2,
i.e., e2 is an instance of this pattern. The Data context is required since the resulting
pattern might be non-linear so that it abbreviates some further equational constraints,
see Section 7.

138

https://doi.org/10.1007/11680093_2
https://doi.org/10.1007/978-3-030-46714-2_15


(=:<<=) :: Data a ⇒ a → a → Bool

Non-strict equational constraint for linear functional patterns. Thus, it must be ensured
that the first argument is always (after evalutation by narrowing) a linear pattern.
Experimental.

(&) :: Bool → Bool → Bool

Concurrent conjunction. An expression like (c1 &amp; c2) is evaluated by evaluating
the c1 and c2 in a concurrent manner.

(&>) :: Bool → a → a

Conditional expression. An expression like (c &amp;&gt; e) is evaluated by evaluating
the first argument to True and then evaluating e. The expression has no value if the
condition does not evaluate to True.

(?) :: a → a → a

Non-deterministic choice par excellence. The value of x ? y is either x or y.

anyOf :: [a] → a

Returns non-deterministically any element of a list.

unknown :: Data a ⇒ a

Evaluates to a fresh free variable.

failed :: a

A non-reducible polymorphic function. It is useful to express a failure in a search branch
of the execution.

error :: String → a

Aborts the execution with an error message.

apply :: (a → b) → a → b

cond :: Bool → a → a

PEVAL :: a → a

Identity function used by the partial evaluator to mark expressions to be partially eval-
uated.

(===) :: Data a ⇒ a → a → Bool

139



aValue :: Data a ⇒ a

(==) :: Eq a ⇒ a → a → Bool

(/=) :: Eq a ⇒ a → a → Bool

compare :: Ord a ⇒ a → a → Ordering

(<) :: Ord a ⇒ a → a → Bool

(>) :: Ord a ⇒ a → a → Bool

(<=) :: Ord a ⇒ a → a → Bool

(>=) :: Ord a ⇒ a → a → Bool

min :: Ord a ⇒ a → a → a

max :: Ord a ⇒ a → a → a

show :: Show a ⇒ a → String

showsPrec :: Show a ⇒ Int → a → String → String

showList :: Show a ⇒ [a] → String → String

readsPrec :: Read a ⇒ Int → String → [(a,String)]

140



readList :: Read a ⇒ String → [([a],String)]

minBound :: Bounded a ⇒ a

maxBound :: Bounded a ⇒ a

succ :: Enum a ⇒ a → a

pred :: Enum a ⇒ a → a

toEnum :: Enum a ⇒ Int → a

fromEnum :: Enum a ⇒ a → Int

enumFrom :: Enum a ⇒ a → [a]

enumFromThen :: Enum a ⇒ a → a → [a]

enumFromTo :: Enum a ⇒ a → a → [a]

enumFromThenTo :: Enum a ⇒ a → a → a → [a]

(+) :: Num a ⇒ a → a → a

(-) :: Num a ⇒ a → a → a

(*) :: Num a ⇒ a → a → a

141



negate :: Num a ⇒ a → a

abs :: Num a ⇒ a → a

signum :: Num a ⇒ a → a

fromInt :: Num a ⇒ Int → a

(/) :: Fractional a ⇒ a → a → a

recip :: Fractional a ⇒ a → a

fromFloat :: Fractional a ⇒ Float → a

toFloat :: Real a ⇒ a → Float

div :: Integral a ⇒ a → a → a

mod :: Integral a ⇒ a → a → a

quot :: Integral a ⇒ a → a → a

rem :: Integral a ⇒ a → a → a

divMod :: Integral a ⇒ a → a → (a,a)

quotRem :: Integral a ⇒ a → a → (a,a)

142



toInt :: Integral a ⇒ a → Int

properFraction :: RealFrac a ⇒ forall b.Integral b ⇒ a → (b,a)

truncate :: RealFrac a ⇒ forall b.Integral b ⇒ a → b

round :: RealFrac a ⇒ forall b.Integral b ⇒ a → b

ceiling :: RealFrac a ⇒ forall b.Integral b ⇒ a → b

floor :: RealFrac a ⇒ forall b.Integral b ⇒ a → b

pi :: Floating a ⇒ a

exp :: Floating a ⇒ a → a

log :: Floating a ⇒ a → a

sqrt :: Floating a ⇒ a → a

(**) :: Floating a ⇒ a → a → a

logBase :: Floating a ⇒ a → a → a

sin :: Floating a ⇒ a → a

cos :: Floating a ⇒ a → a

143



tan :: Floating a ⇒ a → a

asin :: Floating a ⇒ a → a

acos :: Floating a ⇒ a → a

atan :: Floating a ⇒ a → a

sinh :: Floating a ⇒ a → a

cosh :: Floating a ⇒ a → a

tanh :: Floating a ⇒ a → a

asinh :: Floating a ⇒ a → a

acosh :: Floating a ⇒ a → a

atanh :: Floating a ⇒ a → a

mempty :: Monoid a ⇒ a

mappend :: Monoid a ⇒ a → a → a

mconcat :: Monoid a ⇒ [a] → a

fmap :: Functor a ⇒ forall b c.(c → b) → Apply a c → Apply a b

144



(<$) :: Functor a ⇒ forall b c.c → Apply a b → Apply a c

pure :: Applicative a ⇒ forall b.b → Apply a b

(<*>) :: Applicative a ⇒ forall b c.Apply a (c → b) → Apply a c → Apply a b

(*>) :: Applicative a ⇒ forall b c.Apply a c → Apply a b → Apply a b

(<*) :: Applicative a ⇒ forall b c.Apply a c → Apply a b → Apply a c

liftA2 :: Applicative a ⇒ forall b c d.(d → c → b) → Apply a d → Apply a c →
Apply a b

empty :: Alternative a ⇒ forall b.Apply a b

(<|>) :: Alternative a ⇒ forall b.Apply a b → Apply a b → Apply a b

some :: Alternative a ⇒ forall b.Apply a b → Apply a [b]

many :: Alternative a ⇒ forall b.Apply a b → Apply a [b]

(>>=) :: Monad a ⇒ forall b c.Apply a c → (c → Apply a b) → Apply a b

(>>) :: Monad a ⇒ forall b c.Apply a c → Apply a b → Apply a b

return :: Monad a ⇒ forall b.b → Apply a b

fail :: MonadFail a ⇒ forall b.String → Apply a b

145



A.2.19 Library System.Console.GetOpt

This module is a modified version of the module System.Console.GetOpt by Sven Panne from the
ghc-base package. It has been adapted for Curry by Bjoern Peemoeller
(c) Sven Panne 2002-2005 The Glasgow Haskell Compiler License
Copyright 2004, The University Court of the University of Glasgow. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:
this list of conditions and the following disclaimer.
this list of conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.
used to endorse or promote products derived from this software without specific prior written
permission.
THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY COURT OF THE UNIVERSITY
OF GLASGOW AND THE CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW
OR THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFT-
WARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Exported types:

data ArgOrder

Exported constructors:

• RequireOrder :: ArgOrder a

• Permute :: ArgOrder a

• ReturnInOrder :: (String → a) → ArgOrder a

data OptDescr

Exported constructors:

• Option :: String → [String] → (ArgDescr a) → String → OptDescr a

data ArgDescr

146



Exported constructors:

• NoArg :: a → ArgDescr a

• ReqArg :: (String → a) → String → ArgDescr a

• OptArg :: (Maybe String → a) → String → ArgDescr a

Exported functions:

usageInfo :: String → [OptDescr a] → String

getOpt :: ArgOrder a → [OptDescr a] → [String] → ([a],[String],[String])

getOpt’ :: ArgOrder a → [OptDescr a] → [String] → ([a],[String],[String],[String])

147



A.2.20 Library System.CPUTime

Exported functions:

getCPUTime :: IO Int

Returns the current cpu time of the process in milliseconds.

getElapsedTime :: IO Int

Returns the current elapsed time of the process in milliseconds. This operation is not
supported in KiCS2 (there it always returns 0), but only included for compatibility
reasons.

148



A.2.21 Library System.Environment

Library to access parts of the system environment.

Exported functions:

getArgs :: IO [String]

Returns the list of the program’s command line arguments. The program name is not
included.

getEnv :: String → IO String

Returns the value of an environment variable. The empty string is returned for undefined
environment variables.

setEnv :: String → String → IO ()

Set an environment variable to a value. The new value will be passed to subsequent shell
commands (see codesystem/code) and visible to subsequent calls to codegetEnv/code
(but it is not visible in the environment of the process that started the program execu-
tion).

unsetEnv :: String → IO ()

Removes an environment variable that has been set by codesetEnv/code.

getHostname :: IO String

Returns the hostname of the machine running this process.

getProgName :: IO String

Returns the name of the current program, i.e., the name of the main module currently
executed.

isPosix :: Bool

Is the underlying operating system a POSIX system (unix, MacOS)?

isWindows :: Bool

Is the underlying operating system a Windows system?

149

code
/code
code
/code
code
/code


A.2.22 Library System.IO

Library for IO operations like reading and writing files that are not already contained in the prelude.

Exported types:

data Handle

Exported constructors:

data IOMode

The modes for opening a file.

Exported constructors:

• ReadMode :: IOMode

• WriteMode :: IOMode

• AppendMode :: IOMode

data SeekMode

The modes for positioning with hSeek in a file.

Exported constructors:

• AbsoluteSeek :: SeekMode

• RelativeSeek :: SeekMode

• SeekFromEnd :: SeekMode

Exported functions:

stdin :: Handle

Standard input stream.

stdout :: Handle

Standard output stream.

stderr :: Handle

Standard error stream.

openFile :: String → IOMode → IO Handle

Opens a file in specified mode and returns a handle to it.

150



hClose :: Handle → IO ()

Closes a file handle and flushes the buffer in case of output file.

hFlush :: Handle → IO ()

Flushes the buffer associated to handle in case of output file.

hIsEOF :: Handle → IO Bool

Is handle at end of file?

isEOF :: IO Bool

Is standard input at end of file?

hSeek :: Handle → SeekMode → Int → IO ()

Set the position of a handle to a seekable stream (e.g., a file). If the second argument
is AbsoluteSeek, SeekFromEnd, or RelativeSeek, the position is set relative to the
beginning of the file, to the end of the file, or to the current position, respectively.

hWaitForInput :: Handle → Int → IO Bool

Waits until input is available on the given handle. If no input is available within t
milliseconds, it returns False, otherwise it returns True.

hWaitForInputs :: [Handle] → Int → IO Int

Waits until input is available on some of the given handles. If no input is available within
the given milliseconds, it returns -1, otherwise it returns the index of the corresponding
handle with the available data.

hReady :: Handle → IO Bool

Checks whether an input is available on a given handle.

hGetChar :: Handle → IO Char

Reads a character from an input handle and returns it. Throws an error if the end of
file has been reached.

hGetLine :: Handle → IO String

Reads a line from an input handle and returns it. Throws an error if the end of file has
been reached while reading the first character. If the end of file is reached later in the
line, it ist treated as a line terminator and the (partial) line is returned.

hGetContents :: Handle → IO String

Reads the complete contents from an input handle and closes the input handle before
returning the contents.

getContents :: IO String

151



Reads the complete contents from the standard input stream until EOF.

hPutChar :: Handle → Char → IO ()

Puts a character to an output handle.

hPutStr :: Handle → String → IO ()

Puts a string to an output handle.

hPutStrLn :: Handle → String → IO ()

Puts a string with a newline to an output handle.

hPrint :: Show a ⇒ Handle → a → IO ()

Converts a term into a string and puts it to an output handle.

hIsReadable :: Handle → IO Bool

Is the handle readable?

hIsWritable :: Handle → IO Bool

Is the handle writable?

hIsTerminalDevice :: Handle → IO Bool

Is the handle connected to a terminal?

152



A.2.23 Library System.IO.Unsafe

Library containing unsafe operations. These operations should be carefully used (e.g., for testing
or debugging). These operations should not be used in application programs!

Exported functions:

unsafePerformIO :: IO a → a

Performs and hides an I/O action in a computation (use with care!).

trace :: String → a → a

Prints the first argument as a side effect and behaves as identity on the second argument.

spawnConstraint :: Bool → a → a

Spawns a constraint and returns the second argument. This function can be considered
as defined by spawnConstraint c x | c = x. However, the evaluation of the constraint
and the right-hand side are performed concurrently, i.e., a suspension of the constraint
does not imply a blocking of the right-hand side and the right-hand side might be
evaluated before the constraint is successfully solved. Thus, a computation might return
a result even if some of the spawned constraints are suspended (use the PAKCS option
+suspend to show such suspended goals).

isVar :: Data a ⇒ a → Bool

Tests whether the first argument evaluates to a currently unbound variable (use with
care!).

identicalVar :: Data a ⇒ a → a → Bool

Tests whether both arguments evaluate to the identical currently unbound variable (use
with care!). For instance,

identicalVar (id x) (fst (x,1)) where x free

evaluates to True, whereas

identicalVar x y where x,y free

and

let x=1 in identicalVar x x

evaluate to False

isGround :: Data a ⇒ a → Bool

153



Tests whether the argument evaluates to a ground value (use with care!).

compareAnyTerm :: a → a → Ordering

Comparison of any data terms, possibly containing variables. Data constructors are
compared in the order of their definition in the datatype declarations and recursively in
the arguments. Variables are compared in some internal order.

showAnyTerm :: a → String

Transforms the normal form of a term into a string representation in stan-
dard prefix notation. Thus, showAnyTerm evaluates its argument to normal
form. This function is similar to the function ReadShowTerm.showTerm but it also
transforms logic variables into a string representation that can be read back by
Unsafe.read(s)AnyUnqualifiedTerm. Thus, the result depends on the evaluation and
binding status of logic variables so that it should be used with care!

readsAnyUnqualifiedTerm :: [String] → String → [(a,String)]

Transforms a string containing a term in standard prefix notation without module qual-
ifiers into the corresponding data term. The string might contain logical variable en-
codings produced by showAnyTerm. In case of a successful parse, the result is a one
element list containing a pair of the data term and the remaining unparsed string.

readAnyUnqualifiedTerm :: [String] → String → a

Transforms a string containing a term in standard prefix notation without module qual-
ifiers into the corresponding data term. The string might contain logical variable en-
codings produced by showAnyTerm.

showAnyExpression :: a → String

Transforms any expression (even not in normal form) into a string representation in
standard prefix notation without module qualifiers. The result depends on the evaluation
and binding status of logic variables so that it should be used with care!

154



A.2.24 Library Test.Prop

This module defines the interface of properties that can be checked with the CurryCheck tool,
an automatic property-based test tool based on the EasyCheck library. The ideas behind Easy-
Check are described in this paper. CurryCheck automatically tests properties defined with this
library. CurryCheck supports the definition of unit tests (also for I/O operations) and property
tests parameterized over some arguments. CurryCheck is described in more detail in this paper.
Basically, this module is a stub clone of the EasyCheck library which contains only the interface
of the operations used to specify properties. Hence, this library does not import any other library.
This supports the definition of properties in any other module (execept for the prelude).

Exported functions:

returns :: Eq a ⇒ Show a ⇒ IO a → a → PropIO

The property returns a x is satisfied if the execution of the I/O action a returns the
value x.

sameReturns :: Eq a ⇒ Show a ⇒ IO a → IO a → PropIO

The property sameReturns a1 a2 is satisfied if the execution of the I/O actions a1 and
a2 return identical values.

toError :: a → PropIO

The property toError a is satisfied if the evaluation of the argument to normal form
yields an exception.

toIOError :: IO a → PropIO

The property toIOError a is satisfied if the execution of the I/O action a causes an
exception.

(-=-) :: Eq a ⇒ Show a ⇒ a → a → Prop

The property x -=- y is satisfied if x and y have deterministic values that are equal.

(<~>) :: Eq a ⇒ Show a ⇒ a → a → Prop

The property x &lt;~&gt; y is satisfied if the sets of the values of x and y are equal.

(~>) :: Eq a ⇒ Show a ⇒ a → a → Prop

The property x ~&gt; y is satisfied if x evaluates to every value of y. Thus, the set of
values of y must be a subset of the set of values of x.

(<~) :: Eq a ⇒ Show a ⇒ a → a → Prop

The property x &lt;~ y is satisfied if y evaluates to every value of x. Thus, the set of
values of x must be a subset of the set of values of y.

(<~~>) :: Eq a ⇒ Show a ⇒ a → a → Prop

155

http://www-ps.informatik.uni-kiel.de/~sebf/pub/flops08.html
http://www.informatik.uni-kiel.de/~mh/papers/LOPSTR16.html


The property x &lt;~~&gt; y is satisfied if the multisets of the values of x and y are
equal.

(==>) :: Bool → Prop → Prop

A conditional property is tested if the condition evaluates to True.

solutionOf :: Data a ⇒ (a → Bool) → a

solutionOf p returns (non-deterministically) a solution of predicate p. This operation
is useful to test solutions of predicates.

is :: Show a ⇒ a → (a → Bool) → Prop

The property is x p is satisfied if x has a deterministic value which satisfies p.

isAlways :: Show a ⇒ a → (a → Bool) → Prop

The property isAlways x p is satisfied if all values of x satisfy p.

isEventually :: Show a ⇒ a → (a → Bool) → Prop

The property isEventually x p is satisfied if some value of x satisfies p.

uniquely :: Bool → Prop

The property uniquely x is satisfied if x has a deterministic value which is true.

always :: Bool → Prop

The property always x is satisfied if all values of x are true.

eventually :: Bool → Prop

The property eventually x is satisfied if some value of x is true.

failing :: Show a ⇒ a → Prop

The property failing x is satisfied if x has no value.

successful :: Show a ⇒ a → Prop

The property successful x is satisfied if x has at least one value.

deterministic :: Show a ⇒ a → Prop

The property deterministic x is satisfied if x has exactly one value.

(#) :: Eq a ⇒ Show a ⇒ a → Int → Prop

The property x # n is satisfied if x has n values.

(#<) :: Eq a ⇒ Show a ⇒ a → Int → Prop

The property x #&lt; n is satisfied if x has less than n values.

156



(#>) :: Eq a ⇒ Show a ⇒ a → Int → Prop

The property x #&gt; n is satisfied if x has more than n values.

for :: Show a ⇒ a → (a → Prop) → Prop

The property for x p is satisfied if all values y of x satisfy property p y.

forAll :: Show a ⇒ [a] → (a → Prop) → Prop

The property forAll xs p is satisfied if all values x of the list xs satisfy property p x.

(<=>) :: a → a → Prop

The property f &lt;=&gt; g is satisfied if f and g are equivalent operations, i.e., they
can be replaced in any context without changing the computed results.

label :: String → Prop → Prop

Assign a label to a property. All labeled tests are counted and shown at the end.

classify :: Bool → String → Prop → Prop

Assign a label to a property if the first argument is True. All labeled tests are counted
and shown at the end. Hence, this combinator can be used to classify tests:

multIsComm x y = classify (x<0 || y<0) "Negative" $ x*y -=- y*x

trivial :: Bool → Prop → Prop

Assign the label "trivial" to a property if the first argument is True. All labeled tests
are counted and shown at the end.

collect :: Show a ⇒ a → Prop → Prop

Assign a label showing the given argument to a property. All labeled tests are counted
and shown at the end.

collectAs :: Show a ⇒ String → a → Prop → Prop

Assign a label showing a given name and the given argument to a property. All labeled
tests are counted and shown at the end.

valuesOf :: a → [a]

Computes the list of all values of the given argument according to a given strategy (here:
randomized diagonalization of levels with flattening).

157



A.2.25 Library Test.Prop.Types

This module defines some types used by the EasyCheck libraries.

Exported types:

data PropIO

Abstract type to represent properties involving IO actions.

Exported constructors:

• PropIO :: (Bool → String → IO (Maybe String)) → PropIO

data Prop

Abstract type to represent standard properties to be checked. Basically, it contains all
tests to be executed to check the property.

Exported constructors:

• Prop :: [Test] → Prop

data Test

Abstract type to represent a single test for a property to be checked. A test consists
of the result computed for this test, the arguments used for this test, and the labels
possibly assigned to this test by annotating properties.

Exported constructors:

• Test :: Result → [String] → [String] → Test

data Result

Data type to represent the result of checking a property.

Exported constructors:

• Undef :: Result

• Ok :: Result

• Falsified :: [String] → Result

• Ambigious :: [Bool] → [String] → Result

158



A.2.26 Library Text.Show

This library provides a type and combinators for show functions using functional lists.

Exported functions:

showString :: String → String → String

Prepend a string

showChar :: Char → String → String

Prepend a single character

showParen :: Bool → (String → String) → String → String

Surround the inner show function with parentheses if the first argument evaluates to
True.

shows :: Show a ⇒ a → String → String

Convert a value to ShowS using the standard show function.

159



B SQL Syntax Supported by CurryPP

This section contains a grammar in EBNF which specifies the SQL syntax recognized by the Curry
preprocessor in integrated SQL code (see Sect. 11.4). The grammar satisfies the LL(1) property
and is influenced by the SQLite dialect.18

--------------type of statements--------------------------------

statement ::= queryStatement | transactionStatement
queryStatement ::= ( deleteStatement

| insertStatement
| selectStatement
| updateStatement )
’;’

------------- transaction -------------------------------------

transactionStatement ::= (BEGIN
|IN TRANSACTION ’(’ queryStatement

{ queryStatement }’)’
|COMMIT
|ROLLBACK ) ’;’

-------------- delete ------------------------------------------

deleteStatement ::= DELETE FROM tableSpecification
[ WHERE condition ]

-------------insert -------------------------------------------

insertStatement ::= INSERT INTO tableSpecification
insertSpecification

insertSpecification ::= [’(’ columnNameList ’)’ ] valuesClause

valuesClause ::= VALUES valueList

------------update--------------------------------------------

updateStatement ::= UPDATE tableSpecification
SET (columnAssignment {’,’ columnAssignment}

[ WHERE condition ]
| embeddedCurryExpression )

columnAssignment ::= columnName ’=’ literal

18https://sqlite.org/lang.html

160

https://sqlite.org/lang.html


-------------select statement ---------------------------------

selectStatement ::= selectHead { setOperator selectHead }
[ orderByClause ]
[ limitClause ]

selectHead ::= selectClause fromClause
[ WHERE condition ]
[ groupByClause [ havingClause ]]

setOperator ::= UNION | INTERSECT | EXCEPT

selectClause ::= SELECT [( DISTINCT | ALL )]
( selectElementList | ’*’ )

selectElementList ::= selectElement { ’,’ selectElement }

selectElement ::= [ tableIdentifier’.’ ] columnName
| aggregation
| caseExpression

aggregation ::= function ’(’ [ DISTINCT ] columnReference ’)’

caseExpression ::= CASE WHEN condition THEN operand
ELSE operand END

function ::= COUNT | MIN | MAX | AVG | SUM

fromClause ::= FROM tableReference { ’,’ tableReference }

groupByClause ::= GROUP BY columnList

havingClause ::= HAVING conditionWithAggregation

orderByClause ::= ORDER BY columnReference [ sortDirection ]
{’,’ columnReference

[ sortDirection ] }

sortDirection ::= ASC | DESC

limitClause = LIMIT integerExpression

-------------common elements-----------------------------------

columnList ::= columnReference { ’,’ columnReference }

columnReference ::= [ tableIdentifier’.’ ] columnName

columnNameList ::= columnName { ’,’ columnName}

161



tableReference ::= tableSpecification [ AS tablePseudonym ]
[ joinSpecification ]

tableSpecification ::= tableName

condition ::= operand operatorExpression
[logicalOperator condition]

| EXISTS subquery [logicalOperator condition]
| NOT condition
| ’(’ condition ’)’
| satConstraint [logicalOperator condition]

operand ::= columnReference
| literal

subquery ::= ’(’ selectStatement ’)’

operatorExpression ::= IS NULL
| NOT NULL
| binaryOperator operand
| IN setSpecification
| BETWEEN operand operand
| LIKE quotes pattern quotes

setSpecification ::= literalList

binaryOperator ::= ’>’| ’<’ | ’>=’ | ’<=’ | ’=’ | ’!=’

logicalOperator ::= AND | OR

conditionWithAggregation ::=
aggregation [logicalOperator disaggregation]

| ’(’ conditionWithAggregation ’)’
| operand operatorExpression

[logicalOperator conditionWithAggregation]
| NOT conditionWithAggregation
| EXISTS subquery

[logicalOperator conditionWithAggregation]
| satConstraint

[logicalOperator conditionWithAggregation]

aggregation ::= function ’(’(ALL | DISTINCT) columnReference’)’
binaryOperator
operand

satConstraint ::= SATISFIES tablePseudonym
relation
tablePseudonym

162



joinSpecification ::= joinType tableSpecification
[ AS tablePseudonym ]
[ joinCondition ]
[ joinSpecification ]

joinType ::= CROSS JOIN | INNER JOIN

joinCondition ::= ON condition

-------------identifier and datatypes-------------------------

valueList ::= ( embeddedCurryExpression | literalList )
{’,’ ( embeddedCurryExpression | literalList )}

literalList ::= ’(’ literal { ’,’ literal } ’)’

literal ::= numericalLiteral
| quotes alphaNumericalLiteral quotes
| dateLiteral
| booleanLiteral
| embeddedCurryExpression
| NULL

numericalLiteral ::= integerExpression
|floatExpression

integerExpression ::= [ - ] digit { digit }

floatExpression := [ - ] digit { digit } ’.’ digit { digit }

alphaNumericalLiteral ::= character { character }
character ::= digit | letter

dateLiteral ::= year ’:’ month ’:’ day ’:’
hours ’:’ minutes ’:’ seconds

month ::= digit digit
day ::= digit digit
hours ::= digit digit
minutes ::= digit digit
seconds ::= digit digit
year ::= digit digit digit digit

booleanLiteral ::= TRUE | FALSE

embeddedCurryExpression ::= ’{’ curryExpression ’}’

pattern ::= ( character | specialCharacter )
{( character | specialCharacter )}

163



specialCharacter ::= ’%’ | ’_’

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

letter ::= (a...z) | (A...Z)

tableIdentifier ::= tablePseudonym | tableName
columnName ::= letter [alphanumericalLiteral]
tableName ::= letter [alphanumericalLiteral]
tablePseudonym ::= letter
relation ::= letter [[alphanumericalLiteral] | ’_’ ]
quotes ::= (’"’|’’’)

164



C Overview of the PAKCS Distribution

A schematic overview of the various components contained in the distribution of PAKCS and the
translation process of programs inside PAKCS is shown in Figure 7 on page 166. In this figure,
boxes denote different components of PAKCS and names in boldface denote files containing various
intermediate representations during the translation process (see Section D below). The PAKCS
distribution contains a front end for reading (parsing and type checking) Curry programs that can
be also used by other Curry implementations. The back end (formerly known as “Curry2Prolog”)
compiles Curry programs into Prolog programs. It also supports packages with constraint solvers
for arithmetic constraints over real numbers and finite domain constraints, and further libraries
for GUI programming, meta-programming etc. It does not implement encapsulated search in full
generality (only a strict version of findall is supported by the library Control.Findall which is
part of the package searchtree), and concurrent threads are not executed in a fair manner.

165



Figure 7: Overview of PAKCS

166



D Auxiliary Files

During the translation and execution of a Curry program with PAKCS, various intermediate repre-
sentations of the source program are created and stored in different files which are shortly explained
in this section. If you use PAKCS, it is not necessary to know about these auxiliary files because they
are automatically generated and updated. You should only remember the command for deleting all
auxiliary files (“cleancurry”, see Section 1.1) to clean up your directories.

Usually, the auxiliary files are invisible: if the Curry module M is stored in directory dir, the
corresponding auxiliary files are stored in directory “dir/.curry/pakcs-v” where v is the version of
PAKCS. Thus, the auxiliary files produced by different versions of PAKCS causes no conflicts. This
scheme is also used for hierarchical module names: if the module D1.D2.M is stored in directory
dir (i.e., the module is actually stored in dir/D1/D2/M.curry), then the corresponding Prolog
program is stored in directory “dir/.curry/pakcs-v/D1/D2”.

The various components of PAKCS create the following auxiliary files.

prog.fcy: This file contains the Curry program in the so-called “FlatCurry” representation where
all functions are global (i.e., lambda lifting has been performed) and pattern matching is
translated into explicit case/or expressions (compare Appendix A.1). This representation
might be useful for other back ends and compilers for Curry and is the basis doing meta-
programming in Curry. This file is implicitly generated when a program is compiled with
PAKCS. It can be also explicitly generated by the front end of PAKCS:

pakcs frontend --flat -ipakcshome /lib prog

The FlatCurry representation of a Curry program is usually generated by the front-end after
parsing, type checking and eliminating local declarations.

prog.fint: This file contains the interface of the program in the so-called “FlatCurry” representa-
tion, i.e., it is similar to prog.fcy but contains only exported entities and the bodies of all
functions omitted (i.e., “external”). This representation is useful for providing a fast access to
module interfaces. This file is implicitly generated when a program is compiled with PAKCS
and stored in the same directory as prog.fcy.

prog.icurry: This file contains the interface of the program used by the front end for modular
compilation.

prog.pl: This file contains a Prolog program as the result of translating the Curry program with
PAKCS.

prog.po: This file contains the Prolog program prog.pl in an intermediate format for faster loading
with SICStus-Prolog.

prog: This file contains the executable after compiling and saving a program with PAKCS (see
Section 2.2). In contrast to the auxuiliary files, it is stored in the main directory.

167



E External Operations

An external operation is an operation which have no defined rules in a Curry program. Instead,
such an operation must be declared as external in the Curry source code and an implementation for
this external operation must be inserted in the corresponding back end. In this section we describe
how external operations can be implemented in PAKCS.

In general, an external operation is defined as follows in the Curry source code:

1. Provide a type declaration for the external operation somewhere in the body of the appropriate
Curry file. Note that external operations should not be overloaded, i.e., the type declaration
should not contain any type class constraint.

2. For external operations it is not allowed to define any rule since their semantics is determined
by an external implementation. Instead of the defining rules, one has to write

f external

somewhere in the file containing the type declaration for the external operation f.

For instance, the addition on integers can be declared as an external operation as follows:

(+) :: Int → Int → Int
(+) external

Since PAKCS compiles Curry programs into Prolog programs, the actual implementation of an
external operation must be contained in some Prolog code that is added to the compiled code by
PAKCS. This can be done as follows:

1. The Prolog code implementing the external operations declared in module M must be put into
the Prolog file M.pakcs.pl. This file must be stored in the directory containing the source
code of the corresponding Curry module. The contents of this file will be automatically added
to the compiler Curry program.

2. In the general case (see below for exceptions), the PAKCS compiler generates a standard
interface to external operations so that an n-ary operation is implemented by an (n + 1)-
ary predicate where the last argument must be instantiated to the result of evaluating the
operation. If M.f is the qualified name of the external operation f defined in module M, then
the predicate implementing this operation must have the name ’M.f’ (note that this name
must be enclosed in ticks in Prolog). The standard interface passes all arguments in their
current form to the predicate, i.e., it can be used if it is ensured that all arguments are
fully evaluated. For the operation (+) shown above, this might not be the case: in a call like
“fac 4 + 3 * 7”, both arguments mube be evaluated to some number before the external code
for the addition is called. This can be ensured by enforcing the evaluation of the arguments
before calling the actual external operation. For instance, the external operation for adding
two integers requires that both arguments must be evaluated to a non-variable head normal
form (which is identical to the ground constructor normal form). Therefore, the operation “+”
can be implemented in the prelude by

(+) :: Int → Int → Int

168



x + y = (prim_plusInt $# y) $# x

prim_plusInt :: Int → Int → Int
prim_plusInt external

where prim_plusInt is the actual external operation implementing the addition on integers.
Hence, the Prolog code implementing prim_plusInt can be as follows (note that the arguments
of (+) are passed in reverse order to prim_plusInt in order to ensure a left-to-right evaluation
of the original arguments by the calls to ($#)):

’Prelude.prim_plusInt’(Y,X,R) :- R is X+Y.

3. The standard interface for I/O actions, i.e., external operations with result type IO a, assumes
that the I/O action is implemented as a predicate (with a possible side effect) that instantiates
the last argument to the returned value of type “a”. For instance, the primitive predicate
prim_getChar implementing the prelude I/O action getChar can be implemented by the Prolog
code

’Prelude.getChar’(C) :- get_code(N), char_int(C,N).

where char_int is a predicate (from the PAKCS run-time system) relating the internal Curry
representation of a character with its ASCII value.

4. If some arguments passed to the external operations are not fully evaluated or the external
operation might suspend, the implementation must follow the structure of the PAKCS run-
time system by using the raw interface instead of the standard interface. For this purpose, it
is necessary to tell PAKCS about the non-standard interface. Thus, if the Curry module Mod

contains external operations where the standard interface should not be used, there must be
a file named Mod.pakcs containing the specification of these external operations. The contents
of this file is in XML format and has the following general structure:19

<primitives>
specification of external operation f1
. . .

specification of external operation fn
</primitives>

The specification of an external operation f with arity n has the form

<primitive name="f" arity="n">
<entry>pred[raw]</entry>

</primitive>

where pred is the name of a predicate implementing this operation. Note that the operation
f must be declared in module Mod: either as an external operation or defined in Curry by
equations. In the latter case, the Curry definition is not translated but calls to this operation
are redirected to the Prolog code specified above.

19http://www.informatik.uni-kiel.de/~pakcs/primitives.dtd contains a DTD describing the exact structure
of these files.

169

http://www.informatik.uni-kiel.de/~pakcs/primitives.dtd


Furthermore, the list of specifications can also contain entries of the form

<ignore name="f" arity="n" />

for operations f with arity n that are declared in module Mod but should be ignored for code
generation, e.g., since they are never called w.r.t. to the current implementation of external
operations. For instance, this is useful when operations that can be defined in Curry should
be (usually more efficiently) are implemented as external operations.

The suffix “[raw]” used above indicates that the corresponding Prolog code follows the struc-
ture of the PAKCS compilation scheme. For instance, if we want to use the raw interface for
the external operation prim_plusInt, the specification file Prelude.pakcs must have an entry
of the form

<primitive name="prim_plusInt" arity="2">
<entry>prim_plusInt[raw]</entry>

</primitive>

In the raw interface, the actual implementation of an n-ary external operation consists of the
definition of an (n+3)-ary predicate pred. The first n arguments are the corresponding actual
arguments. The (n+1)-th argument is a free variable which must be instantiated to the result
of the operation call after successful execution. The last two arguments control the suspension
behavior of the operation (see [5] for more details): The code for the predicate pred should
only be executed when the (n+ 2)-th argument is not free, i.e., this predicate has always the
SICStus-Prolog block declaration

?- block pred(?,. . .,?,-,?).

In addition, typical external operations should suspend until the actual arguments are instan-
tiated. This can be ensured by a call to ensureNotFree or ($#) before calling the external
operation. Finally, the last argument (which is a free variable at call time) must be unified
with the (n+ 2)-th argument after the operation call is successfully evaluated (and does not
suspend). Additionally, the actual (evaluated) arguments must be dereferenced before they
are accessed. Thus, an implementation of the external operation for adding integers is as
follows in the raw interface:

?- block prim_plusInt(?,?,?,-,?).
prim_plusInt(RY,RX,Result,E0,E) :-

deref(RX,X), deref(RY,Y), Result is X+Y, E0=E.

Here, deref is a predefined predicate for dereferencing the actual argument into a constant
(and derefAll for dereferencing complex structures).

Note that arbitrary operations implemented in C or Java can be connected to PAKCS by using the
corresponding interfaces of the underlying Prolog system.

170



Index
(), 125
(,), 125
(,,), 125
(,,,), 125
(,,,,), 125
(,,,,,), 125
(,,,,,,), 126
(,,,,,,,), 126
(,,,,,,,,), 126
(,,,,,,,,,), 126
(,,,,,,,,,,), 126
(,,,,,,,,,,,), 126
(,,,,,,,,,,,,), 127
(,,,,,,,,,,,,,), 127
(,,,,,,,,,,,,,,), 127
(->), 127
*, 141
**, 143
*>, 145
+, 141
++, 134
-, 141
---, 50
--compact, 90
--fcypp, 90
-=-, 155
-fpopt, 90
., 133
.pakcsrc, 15
/, 142
/=, 140
/==, 129
:!, 11
:add, 9
:browse, 10
:cd, 11
:coosy, 11
:dir, 11
:edit, 10
:eval, 10
:fork, 11

:help, 9
:interface, 10
:load, 9
:modules, 11
:peval, 12
:programs, 11
:quit, 10
:reload, 9
:save, 11
:set, 11
:set path, 7
:show, 11
:source, 11
:type, 10
:usedimports, 11
=:=, 138
=:<=, 138
=:<<=, 139
==, 140
===, 21, 139
==>, 156
?, 139
@, 18
@author, 50
@cons, 50
@param, 50
@return, 51
@version, 50
[], 129
#, 156
#define, 23
#elif, 24
#else, 24
#endif, 24
#if, 24
#ifdef, 24
#ifndef, 24
#undef, 23
#<, 156
#>, 157
$, 132

171



$#, 132
$##, 132
&, 139
&&, 133
&>, 139
PAKCS, 8
<, 140
<*, 145
<*>, 145
<=, 140
<=<, 100
<=>, 157
<$, 145
<$>, 130
<~, 155
<~>, 155
<~~>, 155
>, 140
>=, 140
>=>, 100
>>, 145
>>=, 145
~>, 155
\\, 117
^, 130

abs, 142
AbstractCurry, 98
acos, 144
acosh, 144
all, 136
allfails, 12
allValues, 107
always, 156
analyzing programs, 73
and, 136
any, 136
anyOf, 139
appendFile, 138
apply, 139
ArgDescr, 146
ArgOrder, 146
args, 14
as-pattern, 18

asin, 144
asinh, 144
assert, 123
assertIO, 123
asTypeOf, 133
atan, 144
atanh, 144
aValue, 21, 140

baseVersion, 109
Bool, 127
break, 136

CASS, 73
catch, 138
catMaybes, 122
ceiling, 143
Char, 127
choose, 105
chooseValue, 105
chr, 132
classify, 157
cleancurry, 6
collect, 157
collectAs, 157
comment

documentation, 50
compact, 12
compare, 140
compareAnyTerm, 154
Compose, 113
concat, 135
concatMap, 135
cond, 139
conditional compilation, 23
consfail, 12
Const, 114
const, 133
constract, 44
constrEq, 138
cos, 143
cosh, 144
curry, 8, 133
curry erd2curry, 82

172



Curry mode, 16
Curry preprocessor, 57
curry-doc, 52
curry-peval, 86
curry-verify, 53
Curry2Prolog, 165
CurryCheck, 35
curryCompiler, 109
curryCompilerMajorVersion, 109
curryCompilerMinorVersion, 109
curryCompilerRevisionVersion, 109
CurryDoc, 50
CURRYPATH, 7, 13
curryRuntime, 109
curryRuntimeMajorVersion, 109
curryRuntimeMinorVersion, 109
CurryVerify, 53
cycle, 121
cyclic structure, 17

Data, 21
database programming, 82
debug, 12, 14
debug mode, 12, 14
delete, 117
deleteBy, 117
deterministic, 156
diagonal, 118
digitToInt, 110
div, 142
divMod, 142
doc, 52
documentation comment, 50
documentation generator, 50
doSolve, 138
drop, 136
dropWhile, 136

echo, 12
Either, 128
either, 137
elem, 137
elemIndex, 117
elemIndices, 117

Emacs, 16
empty, 145
encapsulated search, 7
ensureNotFree, 132
ensureSpine, 133
entity relationship diagram, 82
enumFrom, 141
enumFromThen, 141
enumFromThenTo, 141
enumFromTo, 141
equality, 20
ERD2Curry, 82
erd2curry, 82
error, 139
even, 130
eventually, 156
exp, 143
external operation, 168

fail, 145
failed, 139
failing, 156
FCYPP, 90
fcypp, 90
filter, 135
filterM, 100
filterValues, 106
find, 117
findall, 7
findfirst, 7
findIndex, 117
findIndices, 117
first, 13
fix, 112
FlatCurry, 98
flip, 133
Float, 128
floor, 143
fmap, 144
foldl, 134
foldl1, 134
foldM, 100
foldM , 100
foldr, 135

173



foldr1, 135
foldValues, 106
for, 157
forAll, 157
forever, 100
free variable, 20
fromEnum, 141
fromFloat, 142
fromInt, 142
fromIntegral, 130
fromJust, 122
fromLeft, 111
fromMaybe, 122
fromRight, 111
fst, 134
function

external, 168
functional pattern, 17

getAllFailures, 102
getAllValues, 102
getArgs, 149
getChar, 137
getCompose, 113
getConst, 114
getContents, 151
getCPUTime, 148
getElapsedTime, 148
getEnv, 149
getHostname, 149
getLine, 137
getOneValue, 102
getOpt, 147
getOpt’, 147
getProgName, 149
getSome, 105
getSomeValue, 105
groundNormalForm, 133
group, 118
groupBy, 118

Handle, 150
hClose, 151
head, 134

hFlush, 151
hGetChar, 151
hGetContents, 151
hGetLine, 151
hIsEOF, 151
hIsReadable, 152
hIsTerminalDevice, 152
hIsWritable, 152
hPrint, 152
hPutChar, 152
hPutStr, 152
hPutStrLn, 152
hReady, 151
hSeek, 151
hWaitForInput, 151
hWaitForInputs, 151

id, 133
identicalVar, 153
Identity, 115
ifThenElse, 134
init, 120
inits, 119
insertBy, 119
installDir, 109
Int, 128
interactive, 13
intercalate, 118
intersect, 118
intersectBy, 118
intersperse, 118
intToDigit, 110
IO, 128
IOError, 128
ioError, 138
IOMode, 150
IORef, 116
is, 156
isAlpha, 131
isAlphaNum, 131
isAlways, 156
isAscii, 110
isAsciiLower, 110
isAsciiUpper, 110

174



isBinDigit, 131
isControl, 110
isDigit, 131
isEmpty, 104
isEOF, 151
isEventually, 156
isFail, 107
isGround, 153
isHexDigit, 131
isInfixOf, 119
isJust, 122
isLatin1, 110
isLeft, 111
isLower, 131
isNothing, 122
isOctDigit, 131
isPosix, 149
isPrefixOf, 119
isRight, 111
isSpace, 131
isSuffixOf, 119
isUpper, 131
isVar, 153
isWindows, 149
iterate, 135

join, 101

label, 157
LANGUAGE, 24
language pragma, 24
last, 119
lefts, 111
length, 134
let, 10, 17
lex, 130
liftA, 99
liftA2, 145
liftA3, 99
liftM2, 130
liftM3, 101
lines, 132
listToMaybe, 122
log, 143

logBase, 143
lookup, 137

many, 145
map, 134
mapAccumL, 120
mapAccumR, 120
mapAndUnzipM, 100
mapM, 131
mapM , 131
mapMaybe, 122
mappend, 144
mapValues, 106
markdown, 51
max, 140
maxBound, 141
maximum, 120
maximumBy, 120
maxValue, 106
maxValueBy, 106
Maybe, 128
maybe, 137
maybeToList, 122
mconcat, 144
mempty, 144
min, 140
minBound, 141
minimum, 120
minimumBy, 120
minValue, 106
minValueBy, 106
mod, 142
modifyIORef, 116

negate, 142
newIORef, 116
NoDataDeriving, 25
NoImplicitPrelude, 24
noindex, 52
normalForm, 133
not, 134
notElem, 137
notEmpty, 104
nub, 117

175



nubBy, 117
null, 134

odd, 130
on, 112
oneValue, 107
onlyindex, 52
openFile, 150
operation

external, 168
OptDescr, 146
or, 136
ord, 131
Ordering, 129
otherwise, 134

pakcs, 8
pakcs frontend, 167
PAKCS_OPTION_FCYPP, 90
pakcsrc, 15
parser, 14
partial evaluation, 86
partition, 118
partitionEithers, 111
path, 7, 13
pattern

functional, 17
permutations, 118
PEVAL, 139
peval, 86
peval, 86
pi, 143
postcondition, 44
precondition, 44
pred, 141
preprocessor, 57
print, 137
printdepth, 13
printfail, 13
printValues, 106
product, 120
profile, 13
program

analysis, 73

documentation, 50
testing, 35
verification, 53

Prop, 158
properFraction, 143
PropIO, 158
pure, 145
putChar, 137
putStr, 137
putStrLn, 137

quot, 142
quotRem, 142

read, 130
readAnyUnqualifiedTerm, 154
readBin, 124
readCurry, 98
readFile, 137
readFlatCurry, 98
readHex, 124
readInt, 124
readIORef, 116
readList, 141
readNat, 124
readOct, 124
readParen, 130
reads, 130
readsAnyUnqualifiedTerm, 154
readsPrec, 140
realToFrac, 130
recip, 142
rem, 142
repeat, 135
replace, 119
replicate, 136
replicateM, 100
replicateM , 100
Result, 158
return, 145
returns, 155
reverse, 136
rewriteAll, 108
rewriteSome, 108

176



rights, 111
round, 143
runcurry, 70
runIdentity, 115

safe, 14
sameReturns, 155
scanl, 120
scanl1, 120
scanr, 120
scanr1, 120
SeekMode, 150
select, 105
selectValue, 105
seq, 132
sequence, 131
sequence , 131
sequenceA, 99
sequenceA , 99
set functions, 7
set0, 104
set1, 104
set2, 104
set3, 104
set4, 104
set5, 104
set6, 104
set7, 104
setEnv, 149
show, 140
showAnyExpression, 154
showAnyTerm, 154
showChar, 129, 159
showList, 140
showParen, 129, 159
shows, 129, 159
showsPrec, 140
showString, 129, 159
showTuple, 129
signum, 142
sin, 143
single, 14
singleton variables, 6
sinh, 144

snd, 134
solutionOf, 156
solve, 138
some, 145
someValue, 107
sort, 119
sortBy, 119
sortValues, 106
sortValuesBy, 106
span, 136
spawnConstraint, 153
specification, 44
spiceup, 84
Spicey, 84
split, 119
splitAt, 136
splitOn, 118
spy, 15
sqrt, 143
stderr, 150
stdin, 150
stdout, 150
succ, 141
success, 138
successful, 156
sum, 120

tabulator stops, 6
tail, 134
tails, 119
take, 136
takeWhile, 136
tan, 144
tanh, 144
Test, 158
Test.EasyCheck, 35, 39
Test.Prop, 35
testing programs, 35
time, 13
toEnum, 141
toError, 155
toFloat, 142
toInt, 143
toIOError, 155

177



toLower, 110
toUpper, 110
trace, 15, 123, 153
traceId, 123
traceIO, 123
traceShow, 123
traceShowId, 123
transpose, 118
trivial, 157
truncate, 143

uncurry, 133
unfoldr, 121
union, 117
unionBy, 117
uniquely, 156
unknown, 139
unless, 100
unlines, 132
unsafePerformIO, 153
unsetEnv, 149
until, 133
unwords, 132
unzip, 135
unzip3, 135
usageInfo, 147
userError, 138

v, 14
valueOf, 104
Values, 104
values2list, 106
valuesOf, 157
variable

free, 20
variables

singleton, 6
verbosity, 14
verify, 53
verifying programs, 53
void, 101

warn, 13
when, 99
where, 17

words, 132
writeFile, 137
writeIORef, 116

zip, 135
zip3, 135
zipWith, 135
zipWith3, 135
zipWithM, 100
zipWithM , 100

178


	Title
	Contents
	Preface
	Overview of PAKCS
	General Use
	Restrictions
	Modules in PAKCS

	PAKCS: An Interactive Curry Development System
	Invoking PAKCS
	Commands of PAKCS
	Options of PAKCS
	Using PAKCS in Batch Mode
	Command Line Editing
	Customization
	Emacs Interface

	Extensions
	Recursive Variable Bindings
	Functional Patterns
	Order of Pattern Matching
	Type Classes
	Free Variables, Equality, and the Type Class Data
	Parser Options in Source Programs
	Conditional Compilation
	Language Pragmas

	Recognized Syntax of Curry
	Notational Conventions
	Lexicon
	Comments
	Identifiers and Keywords
	Numeric and Character Literals

	Layout
	Context-Free Grammar

	Optimization of Curry Programs
	cypm: The Curry Package Manager
	CurryCheck: A Tool for Testing Properties of Curry Programs
	Installation
	Testing Properties
	Generating Test Data
	Checking Equivalence of Operations
	Checking Contracts and Specifications
	Combining Testing and Verification
	Checking Usage of Specific Operations

	CurryBrowser: A Tool for Analyzing and Browsing Curry Programs
	Installation
	Basic Usage

	curry-doc: A Documentation Generator for Curry Programs
	Installation
	Documentation Comments
	Generating Documentation

	CurryVerify: A Tool to Support the Verification of Curry Programs
	Installation
	Basic Usage
	Options

	CurryPP: A Preprocessor for Curry Programs
	Installation
	Basic Usage
	Integrated Code
	Regular Expressions
	Format Specifications
	HTML Code
	XML Expressions

	SQL Statements
	ER Specifications
	SQL Statements as Integrated Code

	Default Rules
	Contracts

	runcurry: Running Curry Programs
	Installation
	Using runcurry

	CASS: A Generic Curry Analysis Server System
	Installation
	Using CASS to Analyze Programs
	Batch Mode
	API Mode
	Server Mode

	Implementing Program Analyses

	ERD2Curry: A Tool to Generate Programs from ER Specifications
	Installation
	Basic Usage

	Spicey: An ER-based Web Framework
	Installation
	Basic usage
	Further remarks

	curry-peval: A Partial Evaluator for Curry
	Installation
	Basic Usage
	Options

	Preprocessing FlatCurry Files
	Technical Problems
	SWI-Prolog
	Distributed Programming and Sockets
	Contact for Help

	Bibliography
	Libraries of the PAKCS Distribution
	AbstractCurry and FlatCurry: Meta-Programming in Curry
	System Libraries
	Library Control.Applicative
	Library Control.Monad
	Library Control.Search.AllValues
	Library Control.Search.SetFunctions
	Library Control.Search.Unsafe
	Library Curry.Compiler.Distribution
	Library Data.Char
	Library Data.Either
	Library Data.Function
	Library Data.Functor.Compose
	Library Data.Functor.Const
	Library Data.Functor.Identity
	Library Data.IORef
	Library Data.List
	Library Data.Maybe
	Library Debug.Trace
	Library Numeric
	Library Prelude
	Library System.Console.GetOpt
	Library System.CPUTime
	Library System.Environment
	Library System.IO
	Library System.IO.Unsafe
	Library Test.Prop
	Library Test.Prop.Types
	Library Text.Show


	SQL Syntax Supported by CurryPP
	Overview of the PAKCS Distribution
	Auxiliary Files
	External Operations
	Index

