
ETAPS’2000

Multi-Paradigm Programming

Michael Hanus

Christian-Albrechts-Universität Kiel

Extend functional languages with features for

➀ logic (constraint) programming

➁ object-oriented programming

➂ concurrent programming

➃ distributed programming

1

DECLARATIVE PROGRAMMING

General idea:
� no coding of algorithms

� description of logical relationships

� powerful abstractions

➜ domain specific languages

� higher programming level

� reliable and maintainable programs

➜ pointer structures � algebraic data types

➜ complex procedures � comprehensible parts
(pattern matching, local definitions)

DECLARATIVE PROGRAMMING 2

DECLARATIVE PROGRAMMING: PARADIGMS

Functional programming:

➜ functions, � -calculus

➜ equations

➜ (lazy) deterministic reduction

Logic programming:

➜ predicates, predicate logic

➜ logical formulas, Horn clauses

➜ constraint solving (unification)

➜ non-deterministic search for solutions

DECLARATIVE PROGRAMMING: PARADIGMS 3

FUNCTIONAL LOGIC LANGUAGES

� efficient execution principles of functional languages

� flexibility of logic languages

� avoid non-declarative features of Prolog
(arithmetic, I/O, cut)

� combine best of both worlds in a single model

➜ higher-order functions � design patterns

➜ declarative I/O

➜ concurrent constraints

FUNCTIONAL LOGIC LANGUAGES 4

IMPERATIVE VS. DECLARATIVE PROGRAMMING

Readability, safety:
� �� �� �� � �� � �� 	
� � 	
� � �

�� � ��
� � � � � � � � � �

�� �� � �� � � � � �

�� � �� � � � ��� � � � � � � � � � � � �

�� � � �� � �

� � �

!

"
#

�� � $ � �

�� � �� � � � �� � � � � �� � �

IMPERATIVE VS. DECLARATIVE PROGRAMMING 5

Quicksort: Classical imperative version:

� � � �� � � �� ��� � � � �� � � 	 �
 �� � �

� � � � � 	 	 �
 �� � �
 � � 	 � �� �

�� � ��
� � � � � 	 � � � �

 � � � � �� � � � � � � �

�� �� � �
�� �� � � � � � �
 � � � � � � � � �

�� �� �
 � � � 	 � � � 	 � � 	�� � �

� � � � � 	 � � � �

�� � �� � � � � � � � � � � � � � � � � 	 � � � � 	 � � � � �

� � � � � � � 	 � � 	�� �

� � �

�� � �� � � 	 �

� � � � 	 � � � � ��� � � � �� � 	 �

� � � � � � � � � ��� � � � � � � � �

� � �

IMPERATIVE VS. DECLARATIVE PROGRAMMING 6

Quicksort: Classical imperative version:

Declarative version:

��� � � � � � � � �

��� � � � �
 �� �

��� � � � � � �� � � � ��
 �

� � �
 �

� � ��� � � � � � �� � � � � � �
 �

� � � �� � � �� ��� � � � �� � � 	 �
 �� � �

� � � � � 	 	 �
 �� � �
 � � 	 � �� �

�� � ��
� � � � � 	 � � � �

 � � � � �� � � � � � � �

�� �� � �
�� �� � � � � � �
 � � � � � � � � �

�� �� �
 � � � 	 � � � 	 � � 	�� � �

� � � � � 	 � � � �

�� � �� � � � � � � � � � � � � � � � � 	 � � � � 	 � � � � �

� � � � � � � 	 � � 	�� �

� � �

�� � �� � � 	 �

� � � � 	 � � � � ��� � � � �� � 	 �

� � � � � � � � � ��� � � � � � � � �

� � �

IMPERATIVE VS. DECLARATIVE PROGRAMMING 7

IMPERATIVE VS. DECLARATIVE PROGRAMMING

Program development and maintenance:
� �� �� �� � � �� 	
� � 	
� � �

�� � ��
� � �� � ��� �� � � � � �

�� � � �� �� � �

� � �
� � � � � � � �� � � �� � � �

Optimization: � � �
 � � � �� � � � �
�
 � � � (?)

� side effects complicate program optimization and transformation

IMPERATIVE VS. DECLARATIVE PROGRAMMING 8

CURRY

As a language for concrete examples, we use Curry:
[Dagstuhl’96, POPL’97]

� multi-paradigm language

� extension of Haskell (non-strict functional language)

� developed by an international initiative

� provide a standard for functional logic languages
(research, teaching, application)

� several implementations available

CURRY 9

BASIS OF DECLARATIVE PROGRAMMING: ALGEBRAIC DATA TYPES

Values in imperative languages: basic types + pointer structures

Declarative languages: algebraic data types (Haskell-like syntax)
�� � � � � � � � � � �� � � � � � �

�� � � �� � � � � � �� �

�� � � � �� � � � � � � � � � �� � � � � �� �

�� � � � �� � � � �� � � � � � � �� � � �� � � �

�� � � �� � � $ � � �
� � � �
� � � � �

Value 	 data term, constructor term:
well-formed expression containing variables and data type constructors

� � � � � � � � � � � � � � � �� � �� � � � � � � �� � �� � �
 � �� � � � � �

BASIS OF DECLARATIVE PROGRAMMING: ALGEBRAIC DATA TYPES 10

FUNCTIONAL PROGRAMS

Functions: operations on values defined by equations (or rules)

� � � � � � � � ��� � �

defined
operation data terms condition

(optional) expression

� � 	 � 	 �
 	 � � � ��

� �
 � 	 � � �
 � 	 � �

 � � � � � � �

� �

 � � 	 �

 	

� � � � 	 � � 	 �

�
 �
 � � � 	 � �
 � �
 � � � 	 �

�� � � � � �� � � � � �

�� � � � � � � �� � � � �

�� � � � � � � �� �� �� � � � �
 � � � �� � � � � � �� � � � � � � �� � �

FUNCTIONAL PROGRAMS 11

EVALUATION: COMPUTING VALUES

Reduce expressions to their values

Replace equals by equals

Apply reduction step to a subterm (redex, reducible expression):

variables in rule’s left-hand side are universally quantified

� match lhs against subterm (instantiate these variables)

� � 	 � 	 �
 	 � � � ��

� �
 � 	 � � �
 � 	 � �

 � � � � � � �

� �

 � � 	 �

 	

� � � � � � � � � � � � � � � � � � � �

EVALUATION: COMPUTING VALUES 12

EVALUATION STRATEGIES

Expressions with several redexes: which evaluate first?

Strict evaluation: select an innermost redex (call-by-value)

Lazy evaluation: select an outermost redex
� � 	 � 	 �
 	 � � � ��

� �
 � 	 � � �
 � 	 � �

 � � � � � � �

� �

 � � 	 �

 	

Strict evaluation:

�
 � � � � � � � � �
 � � � � � � � � � �
 � � � � � � � � ��

Lazy evaluation:

�
 � � � � � � � � � � ��

EVALUATION STRATEGIES 13

Strict evaluation might need more steps, but it can be even worse. . .

� � 	 � 	 �
 	 � � � ��

� �
 � 	 � � �
 � 	 � �

 � � � � � � �

� �

 � � 	 �

 	

� � �

Lazy evaluation:

� � �
 � � �
 � � � � ��

Strict evaluation:

� � �
 � � � � �
 � � � � �
 � � � � �

Ideal strategy: evaluate only needed redexes
(i.e., redexes necessary to compute a value)

Determine needed redexes with definitional trees

EVALUATION STRATEGIES 14

DEFINITIONAL TREES [ANTOY 92]

➜ data structure to organize the rules of an operation

➜ each node has a distinct pattern

➜ branch nodes (case distinction), rule nodes

�
 	 � � � ��

� �

 � � � � � � �

� �

 � � 	 �

 	

� �
 � �

�
 � �

� � ��

� � � � �
 � �

� � � � �
 �

� � � � �

� � � � �
 � � � � �

� �
 � �

DEFINITIONAL TREES [ANTOY 92] 15

EVALUATION WITH DEFINITIONAL TREES

� �
 � �

�
 � �

� � ��

� � � � �
 � �

� � � � �
 �

� � � � �

� � � � �
 � � � � �

� �
 � �

Evaluating function call � �
 � � :

➀ Reduce � � to head normal form (constructor-rooted expression)

➁ If � � � � : apply rule

➂ If � � � ��� � � � � : reduce � 	 to head normal form

EVALUATION WITH DEFINITIONAL TREES 16

PROPERTIES OF REDUCTION WITH DEFINITIONAL TREES

� Normalizing strategy
i.e., always computes value if it exists 	 sound and complete

� Independent on the order of rules

� Definitional trees can be automatically generated

� pattern matching compiler

� Identical to lazy functional languages (e.g, Miranda, Haskell) for the
subclass of uniform programs
(i.e., programs with strong left-to-right pattern matching)

� Optimal strategy: each reduction step is needed

� Easily extensible to more general classes

PROPERTIES OF REDUCTION WITH DEFINITIONAL TREES 17

HIGHER-ORDER FUNCTIONS

Functions are first class citizens

➜ passing functions as parameters and results

➜ combinator-oriented programming

➜ expressing design patterns

➜ code reuse
� � � � � �� � � � � � �� � � � � � �

� � � � � � � � �

� � � � �
 �
 � � � �
 � � � � �
 �

� � � � � � � �� �
 � � �� �
 � � �

Partial application: � � � is a function of type �� � � � �� �

� -abstraction: �
 � � � �
 (anonymous function)

H IGHER-ORDER FUNCTIONS 18

HIGHER-ORDER FUNCTIONS: EXAMPLES

Accumulate list elements with a binary operator:

!

"
#

� � � � � � � � � � �

� � � � � � � �
 �
 � � �
 � � � � � � � �
 �

Multiply all list elements: � � � � � �� �
 �

Concatenate a list of lists: � � � �� �
 � � � � � � � � � � � �
 �

Tree example: computing list of all leaves in a tree:

� � � � � �� � � � � �� � � � � �� �

� � � � � �� � � �� � � � � � � �

� � � � � �� � � � � �� � � � � � � �� � � � � � � � � � � �� � � �

H IGHER-ORDER FUNCTIONS: EXAMPLES 19

Filter all elements in a list satisfying a given predicate:

� �� � � � � � �� � � � � � � � � �� � � � �� �

� �� � � � � � � � � �

� �� � � � � �
 �
 � � � � �
 � � � �
 � � �� � � � �
 �

� � � � � �� � � � �
 �

Now the code for quicksort becomes straightforward:

��� � � � � � � � �

��� � � � �
 �� � ��� � � � � � �� � � � ��
 �

� � �
 � � � ��� � � � � � �� � � � � � �
 �

H IGHER-ORDER FUNCTIONS: EXAMPLES 20

APPLICATION: HTML PROGRAMMING

Data type for representing HTML expressions:

!

"
#

�� � � � � � � �
 � � � ��
 � � � � �� �

� � � � � � �� � � � �� � � � � � � �� � � � � � �� � � � � � � � �
 � �

� � � � � �� � � � � � � � � � �
� � �� � � � � � � � � � � � � � ��
 � � � � � �� � � �� � �

Get all hypertext links in an HTML document:

� �� �� � � � � �

� �� �� � � ��
 � � � � � � � �� �� � �

� �� �� � � � � � � �� � � � � � � �� � � � � � � �

� �� � � � � � �� � � � � � � � � � � � � � � � � ��

� � � � � � � � � �� �� � � � � � � �� �� � �
APPLICATION: HTML PROGRAMMING 21

NON-DETERMINISTIC EVALUATION

Previous functions: inductively defined on data structures

Sometimes overlapping rules more natural:

� � �� �
 � � � ��

 � � � �� � � � ��

� � � � � � � � � � � � � � � � �

First two rules overlap on � � �� � � � ��

� Problem: no needed argument:
�

�

�
�

� � � � � evaluate� � or� � ?

Functional languages: backtracking: Evaluate� � , if not successful:� �

Disadvantage: not normalizing (� � may not terminate)

NON-DETERMINISTIC EVALUATION 22

NON-DETERMINISTIC EVALUATION

� � �� �
 � � � ��

 � � � �� � � � ��

� � � � � � � � � � � � � � � � �

Evaluation of
�

�

�
�

� � � � � ?

1. Parallel reduction of� � and� � [Sekar/Ramakrishnan 93]

2. Non-deterministic reduction: try (don’t know)� � or� �

Extension to definitional trees / pattern matching:
Introduce � � -nodes to describe non-deterministic selection of redexes

� non-deterministic evaluation: � � � � � � � � �� �

� �� �

disjunctive expression

� non-deterministic functions

NON-DETERMINISTIC EVALUATION 23

NON-DETERMINISTIC FUNCTIONS

Functions can have more than one result value:

!

"
#

�� � � � �
 	 �

�� � � � �
 	 � 	

�� � � � � � � � �

Non-deterministic list insertion and permutations:

�� � � � �
 � � � �
 �

�� � � � �
 � 	 � 	 � � �� � � � � �
 � 	 � 	 � � 	 � �� � � � �
 	 �

�� � � � � � � � � � �

�� � � � � � �
 �
 � � �� � � � �
 � �� � � � � �
 �

�� � � � � � � � � �� � �

� � � �� � � � � � �� � � � �� � � � � � � �� � � � �� � � � � � �� � � � �

NON-DETERMINISTIC FUNCTIONS 24

LOGIC PROGRAMMING

Distinguished features:

➜ compute with partial information (constraints)

➜ deal with free variables in expressions

➜ compute solutions to free variables

➜ built-in search

➜ non-deterministic evaluation

Functional programming: values, no free variables

Logic programming: computed answers for free variables

Operational extension: instantiate free variables, if necessary

LOGIC PROGRAMMING 25

FROM FUNCTIONAL PROGRAMMING TO LOGIC PROGRAMMING

!

"
#

� $ �

� � � �

Evaluate � �
 : – bind
 to $ and reduce � � $ to , or:

– bind
 to � and reduce � � � to�

Computation step: bind� �� �

logic

and reduce� �� �

functional

: � �

� � � � � � � � � � � � � � � � �

� �� �

disjunctive expression

Reduce: � � $ �
Bind and reduce: � �
 �

�

 � $ �

 � �

 � �

� �

Compute necessary bindings with needed strategy

� needed narrowing [Antoy/Echahed/Hanus POPL’94/JACM’00]

FROM FUNCTIONAL PROGRAMMING TO LOGIC PROGRAMMING 26

EVALUATION WITH DEFINITIONAL TREES

� �
 � �

�
 � �

� � ��

� � � � �
 � �

� � � � �
 �

� � � � �

� � � � �
 � � � � �

� �
 � �

Evaluating function call � �
 � � :

➀ Reduce � � to head normal form

➁ If � � � � : apply rule

➂ If � � � ��� � � � � : reduce � 	 to head normal form

EVALUATION WITH DEFINITIONAL TREES 27

NEEDED NARROWING

� �
 � �

�
 � �

� � ��

� � � � �
 � �

� � � � �
 �

� � � � �

� � � � �
 � � � � �

� �
 � �

Evaluating function call � �
 � � :

➀ Reduce � � to head normal form

➁ If � � � � : apply rule

➂ If � � � ��� � � � � : reduce � 	 to head normal form

➃ If � � variable: bind � � to � or � � � �

NEEDED NARROWING 28

PROPERTIES OF NEEDED NARROWING

Sound and complete (w.r.t. strict equality, no termination requirement)

Optimality:

➀ No unnecessary steps:
Each narrowing step is needed, i.e., it cannot be avoided if a solution should be
computed.

➁ Shortest derivations:
If common subterms are shared, needed narrowing derivations have minimal
length.

➂ Minimal set of computed solutions:
Two solutions � and ��� computed by two distinct derivations are independent.

PROPERTIES OF NEEDED NARROWING 29

PROPERTIES OF NEEDED NARROWING

Determinism:
No non-deterministic step during the evaluation of ground expressions
(functional programming)

Restriction: inductively sequential rules
(i.e., no overlapping left-hand sides)

Extensible to

➜ conditional rules [Hanus ICLP’95]

➜ overlapping left-hand sides [Antoy/Echahed/Hanus ICLP’97]

➜ multiple right-hand sides [Antoy ALP’97]

➜ concurrent evaluation [Hanus POPL’97]

PROPERTIES OF NEEDED NARROWING 30

STRICT EQUALITY

Problems with equality in the presence of non-terminating rules:

1. Equality on infinite objects undecidable:
�

�

�
�

� � $ � � � � $ � �

Is � � � valid?

2. Semantics of non-terminating functions:

�
�

�
�

�
 � � �
 � � �
 � � �
 � �

Is � $ � � $ valid?

Avoided by strict equality: identity on finite objects
(both sides reducible to same ground data term)

STRICT EQUALITY 31

EQUATIONAL CONSTRAINTS

Logic programming: solve goals, compute solutions

Functional logic programming: solve equations

Strict equality: only reasonable notion of equality in the presence of
non-terminating functions

Equational constraint �
�

�
�

� � � � � � �
satisfied if both sides evaluable to unifiable data terms

� � � � � � � � does not hold if� � or� � undefined or infinite

� � � � � � � � and� � �� � data terms 	 unification in logic programming

EQUATIONAL CONSTRAINTS 32

FUNCTIONAL LOGIC PROGRAMMING: EXAMPLES

List concatenation:

� � �� � � � � �� � � � �� � � � �� �

� � �� � � � � 	 � � 	 �

� � �� � � �
 �
 � 	 � �
 � � � �� � �
 � 	 �

Functional programming:

� � �� � � � � � � �� �
 � � � � � �� �
 �

Logic programming:

� � �� � �
 	 � � � � � � � �

�

 � � � � 	 � � � � � � � �

 � � � � � 	 � � � � � �

 � � � � � � 	 � � � �

Last list element:

�
�

�
�

� � � �
 � � � � �� � � 	 � �
 � � � �
 � �

FUNCTIONAL LOGIC PROGRAMMING: EXAMPLES 33

FUNCTIONAL LOGIC PROGRAMMING: EXAMPLES

Infinite list of natural numbers:

� � � �
 �
 � � � � � � �

� � �� � � 	 � � � �

� � �� � � �
 � 	 � 	 � � 	 � � � �� �
 	 �

Lazy functional programming:

� � �� � � � � � � � � � � � � � � � � � � � �

Lazy functional logic programming:

� � �� �
 � � � � � 	 � � � � � � �

�

 � � � � � 	 � �

�
FUNCTIONAL LOGIC PROGRAMMING: EXAMPLES 34

PROGRAMMING DEMAND-DRIVEN SEARCH

Non-deterministic functions for generating permutations:

�� � � � �
 � � � �
 �

�� � � � �
 � 	 � 	 � � �� � � � � �
 � 	 � 	 � � 	 � �� � � � �
 	 �

�� � � � � � � � � � �

�� � � � � � �
 �
 � � �� � � � �
 � �� � � � � �
 �

Sorting lists with test-of-generate principle:

� � � � � � � � � � �

� � � � � � �
 � � �
 �

� � � � � � �
 � 	 � 	 � �
 � � 	 �
 � � � � � � � � 	 � 	 �

� � � � �
 � � � � � � � � � �� � � � � �
 �

PROGRAMMING DEMAND-DRIVEN SEARCH 35

Advantages of non-deterministic functions as generators:

➜ demand-driven generation of solutions (due to laziness)

➜ modular program structure
� � � � � � � �
 �� � � � � � � � � � � � � �� � � � � � � � �
 �� � � � �

��� � � � � � � � � �
 � �� � � � � � �� � � � �

� �� �

undefined: discard this alternative

� � � �

Effect: Permutations of �� � � � � are not enumerated!

Permutation sort for �
 �
 � � � � � � � � � � : #or-branches/disjunctions

Length of the list: 4 5 6 8 10

generate-and-test 24 120 720 40320 3628800

test-of-generate 19 59 180 1637 14758

PROGRAMMING DEMAND-DRIVEN SEARCH 36

SEARCH STRATEGIES AND ENCAPSULATED SEARCH

How to deal with non-deterministic computation steps?

➜ explore alternatives in parallel � parallel architectures

➜ explore alternatives by backtracking � Prolog

➜ support flexible search strategies � encapsulate search

Disadvantages of fixed search (like backtracking):

➜ no application-dependent strategy or efficiency control

➜ global search: local search has global effects

➜ I/O operations not backtrackable

➜ problems with concurrency and backtracking

Solution: provide primitives for user-definable search strategies
(Oz [Schulte/Smolka 94], Curry [Hanus/Steiner 98])

SEARCH STRATEGIES AND ENCAPSULATED SEARCH 37

ENCAPSULATED SEARCH

Idea:
Compute until a non-deterministic step occurs, then give programmer
control over this situation

Search:

➜ solve constraint

➜ evaluate until failure, success, or non-determinism

➜ return result in a list

First approach to primitive search operator:

�
�

�
�

� � 	 � � � � � � � �� �� � � � � � � � � � �� �� � �
ENCAPSULATED SEARCH 38

SEARCH OPERATOR: FIRST APPROACH

�
�

�
�

� � 	 � � � � � � � �� �� � � � � � � � � � �� �� � �

!

"
#

� $ �

� � � �

� � 	 � � � � � � � � failure

� � 	 � �
 � � � � � $ � � �
 � � � $ � success

� � 	 � �
 � � � � � �
 � � � $ � � $ � � � � �

 � � � � � � � � � � � � disjunction

Problem: incompatible bindings for
 in disjunctions!

Solution: abstract search variable in constraints: �
 � � �
SEARCH OPERATOR: F IRST APPROACH 39

SEARCH OPERATOR: FINAL APPROACH

Search goal: constraint with abstracted search variable

Search operator� � 	 : maps search goal into list of search goals

�
�

�
�

� � 	 � � �� � � � � � � � �� �� � � � �� � � � � � � � �� �� � �

!

"
#

� $ �

� � � �

� � 	 �
 � � � � � � � � � failure

� � 	 �
 � � �
 � � � � � $ � � � �
 � �
 � � � $ � success

� � 	 �
 � � �
 � � � � � � �
 � �
 � � � $ � � $ � � � � �

�
 � �
 � � � � � � � � � � � � disjunction

SEARCH OPERATOR: F INAL APPROACH 40

ENCAPSULATED SEARCH: SEARCH STRATEGIES
� � 	 � � � � � : evaluate� , stop after non-deterministic step

Depth-first search: collect all solutions in a list

� � � � � �� � � � � � � � �� �� � � � �� � � � � � � � �� �� � �

� � � � � � � � � � �� �� � 	 �

�� � �� � � � � � �� � � � � �

� � � � � �� � � � � � � �

� � � � � �� � � � � � � � � � � � � �� � � � � � � � � � � � � � � � �

� � � � �
 � � � � � �� � �
 � � � � � � � � $ � � � � � �
 � � �
 � � � � � $ � �

ENCAPSULATED SEARCH: SEARCH STRATEGIES 41

ENCAPSULATED SEARCH: FURTHER SEARCH STRATEGIES

� compute only the first solution:

�
�

�
�

� � �� � � � � � � �� � � � �� � �� � � � � �
 �
 � �

Note: lazy evaluation is important here!

(strict languages, like Oz, must define new search operator)

� lazy evaluation supports better reuse

� � �� �� � � , best solution search, parallel search, . . .

� negation as failure:

�
�

�
�

� � � � � �� � � � �� � � � � � � �

� control failures

ENCAPSULATED SEARCH: FURTHER SEARCH STRATEGIES 42

HANDLING SOLUTIONS

Extract value of the search variable by application of search goal:

� �
 � �
 � � � � � �� � � � � � � �� � � � � � � � �

�

�
� �� � � � � � �

�
� � � �� � �

Prolog’s findall:

�� � � �� � � �� � � � � � � � �� �� � � � �

�� � � �� � � �
 �
 �� � ��
 � �� �

� �� �� � � � � � � � �� � � �� �� � � �

Compute all splittings of a list:

� �� �� � � � � �
 � 	 � � � � �� � �
 	 � � � � � � �

�
� � � � � � � � � � � � � � � � � � � � � � � � � � � �

HANDLING SOLUTIONS 43

EXPLOITING LAZINESS

Show a list of search goals, as requested by the user:
� � �� � � � � � � � � � � � � � � �� � �� �

� � �� � � � � � �� �� � � � � � � � � � � � � � � � � � �
�

� � �

�� � �� � � � � � � � � � �� � �� � � �

� � � � �� � �� � � � � �� � � � � � �� � � � � � �� � � � � � � �

� � � � �� � �� � � � �
�� � � � � � � �� � � � � � � � � � � 	� � �� �

Prolog’s top-level: � � � � � � � � � � �� � � � � � �� � � �

� � � � � � � �
 � 	 � � � � �� � �
 	 � � � � � � ��
� � � � � � � � � � �

� � � � � � � � � �

	� �

� � � � � � �
 � � � � � � �
� � �

EXPLOITING LAZINESS 44

Laziness easily supports demand-driven encapsulated search

� Separation of Logic and Control

� Modularity:

� Prolog’s top-level with breadth-first search:

� � � � � � � � �� � � � � �� � � � � � � � �� �

� Prolog’s top-level with depth-bounded search:

� � � � � � � � � �� � � � � � � � �� � � � � � � � � �� � � � �
EXPLOITING LAZINESS 45

MONADIC INPUT/OUTPUT

Problem: Handling input/output in a declarative manner?

Solution: Consider the external world as a parameter to all I/O operations
(Haskell, Mercury)

I/O actions: transformations on the external world

Interactive program: sequence(!) of actions applied to the external world

Type of I/O actions:

�
�

�
�

� � � 	 � � � � � � � �� � � � � � �

But: the “world” is implicit parameter, not explicitly accessible!

MONADIC INPUT/OUTPUT 46

Some primitive I/O actions:.

�� � �� � � � � � � �� � � � � �� � � �� � �� �� � � � � � � � � � ��

� � � �� � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � � � � � � �

�� � � �� � � � � � � � � � � � � � � � � �� � � � � �� � � �� � � � � � � � �

�� � �� � � applied to a world � character + new (transformed) world

Compose actions: � � � � � � � � � � � �� � � � � � � � � � �

�� � �� � � � � � � � � �� � � : copy character from input to output

Specialized composition: ignore result of first action:

� � � � � � � � � � � � � � � � � �

 � � 	 �
 � � �
� �� � 	

MONADIC INPUT/OUTPUT 47

Example: output action for strings (� � � �� � 	 � �� � � �)
� � � � � � � � � � � �� � � � � � �

� � � � � � � � � �� � � �� �

� � � � � � � � � �� � � � � �� � � � � � � � � � � � ��

Example: read a line

�� � � �� � � � � � � � � �� �

�� � � �� � � �� � �� � � � � �
� � � �

� � � � � �
�� � � � � � �� � � �� � �

� � � � �� � � �� � � � �
� �� � � �� � � �� � � � ��

MONADIC INPUT/OUTPUT 48

Monadic composition not well readable
� syntactic sugar: Haskell’s � � notation

� � � � � � � 	 � � � � �
� �
� � � �

� �

Example: read a line (with � � notation)

�� � � �� � � � � � � � �� � �� � �

� � � � � �
�� � � � � � �� � � �� � �

� � � � � � �� � � �� � � �� �

�� � � �� � � � ��

Note: no I/O in disjunctions (“cannot copy the world”)

� encapsulate search between I/O actions

MONADIC INPUT/OUTPUT 49

CONSTRAINT PROGRAMMING

Logic Programming:

➜ compute with partial information (constraints)

➜ data structures (constraint domain): constructor terms

➜ basic constraint: (strict) equality

➜ constraint solver: unification

Constraint Programming: generalizes logic programming by

➜ new specific constraint domains (e.g., reals, finite sets)

➜ new basic constraints over these domains

➜ sophisticated constraint solvers for these constraints

CONSTRAINT PROGRAMMING 50

CONSTRAINT PROGRAMMING OVER REALS

Constraint domain: real numbers

Basic constraints: equations / inequations over real arithmetic expressions

Constraint solvers: Gaussian elimination, simplex method

Examples:

� � � � � �
 � � � � �

�

 � � � � �

 � � � � � �
 � � �� � � � � �

�

 � � � � �

CONSTRAINT PROGRAMMING OVER REALS 51

EXAMPLE: CIRCUIT ANALYSIS

Define relation � � � between electrical circuit, voltage, and current

Circuits are defined by the data type

�� � � � � � � � �� � �� � �� � � � � � � � �

� �� � �� � � � � � � �� � � � � � ��

� � � �� � � � � � � � � � �� � � � � � ��

���

Rules for relation � � � :

� � � � �� � �� � � � � � � � � � � � � � � � �
�� � � � � � �

� � � � �� � �� � � � � � � � � �
� � � �� � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � �� � � � � � � � � � � � �
� � � �� � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � �
EXAMPLE: C IRCUIT ANALYSIS 52

Querying the circuit specification:

Current in a sequence of resistors:

� � � � �� � �� � � �� � �� � � � � � $ � $ � �� � �� � � �
 � $ � $ � � $ �

�
�
� � $ � $ $ � � � � $ � � � � $ � � � � �

Relation between resistance and voltage in a circuit:

� � � � �� � �� � � �� � �� � � �� � �� � � � � � �� � �� � � � � � �� � �� � � � � � � � $

�
�
� � � � � $� �

�

Also synthesis of circuits possible

EXAMPLE: C IRCUIT ANALYSIS 53

CONSTRAINT PROGRAMMING WITH FINITE DOMAINS

Constraint domain: finite set of values

Basic constraints: equality / disequality / membership / . . .

Constraint solvers: OR methods (e.g., arc consistency)

Application areas: combinatorial problems
(job scheduling, timetabling, routing,. . .)

General method:

➀ define the domain of the variables (possible values)

➁ define the constraints between all variables

➂ “labeling”, i.e., non-deterministic instantiation of the variables

constraint solver reduces the domain of the variables by sophisticated
pruning techniques using the given constraints

Usually: finite domain 	 finite subset of integers

CONSTRAINT PROGRAMMING WITH F INITE DOMAINS 54

EXAMPLE: A CRYPTO-ARITHMETIC PUZZLE

Assign a different digit to each different letter

such that the following calculation is valid:

s e n d
+ m o r e

m o n e y

� � � � � � � � � � � � � 	 �

� � � � �� �� �� �� � � � � �� � � � 	 � $ � �

� � �� � �� � � � � � ��

� � $ � � � $ �

� � �� � �� � � � � � � �� �� � �

� � � � � � � �� �� � � �� �� �� � � � � �� � � � 	 � �

� $ $ $ � � � � $ $ � � � � $ � � � �

� � $ $ $ � � � � $ $ � � � � $ � � � �

� � $ $ $ $ � � � � $ $ $ � � � � $ $ � � � � $ � � � 	 �

� � �� � �� � �� �� �� � � � � �� � � � 	 � � � �� � � � � � �� � � � � � �� � � � �

� � � � � � � � � � � � � 	 �

�
� � � �� � � �� � � � � � � � � � � �� � $ � � � � � 	 �

�

EXAMPLE: A CRYPTO-ARITHMETIC PUZZLE 55

FROM FUNCTIONAL LOGIC TO CONCURRENT PROGRAMMING

Disadvantage of narrowing:

➜ functions on recursive data structures � narrowing may not terminate

➜ all rules must be explicitly known � combination with external functions?

Solution: Delay function calls if a needed argument is free

� residuation principle [Aı̈t-Kaci et al. 87]
(used in Escher, Le Fun, Life, NUE-Prolog, Oz,. . .)

Distinguish: rigid (consumer) and flexible (generator) functions

Necessary: Concurrent conjunction of constraints:� � � � �

Meaning: evaluate� � and� � concurrently, if possible

FROM FUNCTIONAL LOGIC TO CONCURRENT PROGRAMMING 56

FLEXIBLE VS. RIGID FUNCTIONS

!

"
#

� $ �

� � � �

rigid/flexible status not relevant for ground calls:

� � � �

� flexible:

�
 � � � 	 �

�

 � $ � 	 �

� � �

 � � � 	 � � �

� rigid:

�
 � � � 	 � suspend

�
 � � � 	 �
 � � � � �

�

 � �

�

� � � � � 	 (suspend �
)

�

�

 � �

� � � � � 	 (evaluate � �)

�

�

 � � � 	 � � �

Default in Curry: constraints are flexible, all others are rigid

FLEXIBLE VS. R IGID FUNCTIONS 57

PARALLEL FUNCTIONAL PROGRAMMING

Parallel evaluation of arguments:
� � � � � � � � � � �
 � � � �

	 � � � �� �
 	

with concurrent conjunction of equations:

!

"
#

� � � � �
 � � � � � � � 	 � � � � �
 	

�� � ��
 � 	 � �� �

Skeleton-based parallel programming:

�� � � : parallel version of � � �

�� � � � � � � � �

�� � � � �
 �
 � � � � � � �
 � �� � � � �� � � �
 �

� � � �� �� � �� � � �� � �� �

PARALLEL FUNCTIONAL PROGRAMMING 58

EXTERNAL FUNCTIONS

External functions: implemented in another language (e.g., C, Java,. . .)

Conceptually definable by an infinite set of equations, e.g.,

$ � $ � $ � � $ � � � $ � � � �

$ � � � � � � � � � � �

$ � � � � �

� � �

Definition not accessible, infinite disjunctions

➜ suspend external function calls until arguments are fully known, i.e., ground
[Bonnier/Maluszynski 88, Boye 91]

➜ no extension to presented computation model (external functions are rigid), but
not possible in narrowing-based languages!

➜ reuse of existing libraries

EXTERNAL FUNCTIONS 59

STANDARD ARITHMETIC

Implementation of standard arithmetic (� ,� ,� ,. . .) as external functions:

� � � ��� � � � � : constructors

� ,� ,� ,. . . : external functions

 � � � � � �
 �

�

 � �

�

 � � � � � � 	 �

� �

 � � � � � 	 (suspend)

 �
 � � � 	 �
 � � �

�

�

 �

�

 � � � � 	 (suspend
 �
)

�

�

 �

�

 � � � 	 (evaluate �)

�

�

 � � 	 �

�

� Rigid functions as passive constraints (Life)

STANDARD ARITHMETIC 60

External functions as passive constraints:

� � � �� $ � � � � �� � �

� � �
� � � �� � � � � � �� � �

The constraint � � � �� acts as a generator:

 �
 � � � 	 �
�
 � � � 	 � � � � ��

�
�

 � $ � 	 � $ � � �

 � � 	 �

�

STANDARD ARITHMETIC 61

HIGHER-ORDER FUNCTIONAL LOGIC PROGRAMMING

� � � � � �� � � � � � �� � � � � � �

� � � � � � � � �

� � � � �
 �
 � � � �
 � � � � �
 �

Functional programming: � � � � � � � �� �
 � � �� �
 � � �

Logic programming: � � � � � �� �
 � � � � �� �
 � � � � ???

➜ consider application function � � � �
� � � � as external

➜ consider partial applications as data terms

➜ first-order definition of application function � � � (as in [Warren 82]):

��� � � � �
� � � �

� � �� 	�
 � �
 � � �� �� � � � � �� ��

��� � � � � � � � � � � � � � � � � � � 	
 � �
 � � �� � �
H IGHER-ORDER FUNCTIONAL LOGIC PROGRAMMING 62

Reasonable: application function �� is rigid

� delay applications of unknown functions

� � � � � � �� �
 � suspends

Other solutions possible but more expensive:

➜ � � � is flexible � guess unknown functions

➜ solver for higher-order equations
(higher-order unification, higher-order needed narrowing)

H IGHER-ORDER FUNCTIONAL LOGIC PROGRAMMING 63

UNIFICATION OF DECLARATIVE COMPUTATION MODELS

Computation model Restrictions on programs

Needed narrowing inductively sequential rules; optimal strategy

Weakly needed narrowing
(� Babel)

only flexible functions

Resolution (� Prolog) only (flexible) predicates (� constraints)

Lazy functional languages
(� Haskell)

no free variables in expressions

Parallel functional langs.
(� Goffin, Eden)

only rigid functions, concurrent conjunction

Residuation (� Life, Oz) constraints are flexible; all others are rigid

UNIFICATION OF DECLARATIVE COMPUTATION MODELS 64

CONCURRENT OBJECTS WITH STATE

Modeling objects with state as a (rigid!) constraint function:

➜ first parameter: current state

➜ second parameter: message stream (rigid � wait for input)

Example: Counter object

�� � � � � �� � � �� � � � � �� � �� � �� � � �� � � �� � �� �

� � �� � � � � � �� � � � � � � �� � � �� � � � � �� � � � � � � � � �� �� �

� � �� � � � � � � � � � � � � � � �� � � � �� � � � � � � �

� � �� � � � � � �� � � � � � � � � �� � � � � � �

� � �� � � � � � �� � � � � � � � �� � � � �� � � � �

� � �� � � � � � �� � � � � � � � � � �� � � � �� � � � � � �

� � �� � � � � � � � � � � �� � �

CONCURRENT OBJECTS WITH STATE 65

CONCURRENT OBJECTS WITH STATE: A COUNTER

� � �� � � � � � �� � � � � � � � � �� � � � � � �

� � �� � � � � � �� � � � � � � � �� � � � �� � � � �

� � �� � � � � � �� � � � � � � � � � �� � � � �� � � � � � �

� � �� � � � � � � � � � � �� � �

� � �� � � � $ � �

� � � �� � � � � � �� � � � � � 	� ��

� � � � � �� �
 � � �� � � �� �
 �

�
�

 �
 � � � � � �

�

Also: incremental instantiation of� (message sending)

Several sending processes � merge message streams

CONCURRENT OBJECTS WITH STATE: A COUNTER 66

PORTS FOR DISTRIBUTED SYSTEMS

Distributed systems:
 � � -communication with dynamic connections

Port [Janson et al. 93, AKL]: constraint between multiset � and stream�

satisfied if elements in � and� are identical

Input n

Input 1

Stream s
Port p

Two constraints on ports:

� �� � � � � � � � open port � with stream�

� � � � � � constrain � to hold message �
Previous counter with two clients:

� �� � � � � � � � � � � � �� � � � $ � � � � �� � � � � � � � �� � � �

PORTS FOR D ISTRIBUTED SYSTEMS 67

PORTS FOR DISTRIBUTED SYSTEMS

� communication based on logic (constraint solving)

� simple extension of base semantics

� � � � � instantiates end of stream� (in constant time)

� � � � �� � � � � � �� � � �� � � � ��

� strict communication

� provides efficient implementation
(senders have no access to old messages)

� free variables in messages 	 reply channels

� dynamic extension of senders (pass port variable)

PORTS FOR D ISTRIBUTED SYSTEMS 68

EXTERNAL PORTS

I/O actions for external communication
(between different programs running on different machines):

� �� � �� � � � � � � � � � � � � �� � � � � � �� �

� � � � � �� � � � � � � � � � �� � � � � � � � � � � �

� �� � �� � � � � � � � �� : open new external port with global name �� and return
stream of incoming messages

� � � � � �� � � � � �� : return port with global name ��

(similar concepts: external objects in Oz, registered processes in Erlang)

EXTERNAL PORTS 69

A simple example: a global counter server

The server side: (started on � � � � � � �� � �� �� � �� � � ��)

�
�

�
�

� � �� � � �� � �� � � � � � � � � � � �� � � � � � � � � �� � � �� �

� �� � � �� � � � � � �� � � � $ � � � � � �

The client side:

�
�

�
�

� � �� � � �� � � � � � � � �� � � � � �� � � � � � � � � � � � �

� �

Increment the global counter:

� � �� � � � � � �� � � �� � � � � � � �� � �� �� � �� � � �� � �� �

Ask the counters current value:

� � �� � � � � � �� � � �� � � � � � � �� � �� �� � �� � � �� � � �� � � �

�
� � � � �

�

EXTERNAL PORTS 70

A NAME SERVER

Messages: “ � � � �� � �
 � ” (assign � to name
) “ �� � �� � �
 � ”

� � � � � � � �� � � � �� � �� � � � � � � � �� � � � � � � �� � � � � � � � � �� � � � � � � �� � $

� � � �� � � � � � � � � �� � �� � � � � � � � � � � � � �� � �

� � � � �� � � � � � � � � �

� � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � �� � � �

�� � �� � � � �� � � � � � � � �� � � � � � � � � � � � �

The client side:

� � �� � � �� � � � � � � �� �� � � � � � � � � �� � � �� � � � �

� � �� � � �� � � � � � � �� �� � � � � � �� � �� � � �� � � � �
 �

�

 �

�

A NAME SERVER 71

A HIERARCHICAL NAME SERVER

Internet domain name server: ask master server if name locally unknown

Implementation by slight modification of previous name server:

� � � �� � � � � � � � � �� � �� � � � � � � �

� � � �� � � � � $ � � � � � � � � � �� � �� � � � � � � � � � �

� � � � � � � � �� � �
� � � � �� � � � � � � � � �

� � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � �� � � �

�� � �� � � � �� � � � � � � � �� � � � � � � � � � � � �
A H IERARCHICAL NAME SERVER 72

A COMPUTATION SERVER

Strict communication, no RPCs � no direct way to distribute work

Computation server: accepts messages � � � � � �

�
�

�
�

� � � � � � �� � � �� � � � �� � �� � � � � � � � � � � � � � � � �� � � � � � � � � � � � � �� �

� � � � � � � �� � � � � �
 � 	 � � � � 	 � � � � �
 � � � � � � � � �� � � �

Client side: � � �� � � � � � � � � � � �� �� �� � � � � � � � � � $ $ $ � � �
� � � � � � � �

➜ consider partially applied function calls as data terms

➜ asynchronous RPCs
(free result variable � “promise” [Liskov/Shrira 88])

➜ concurrent server:

!

"
#

� � � � � � � �� � � � � � � � � � �

� � � � � � � �� � � � � �
 � 	 � � � � 	 � � � � �
 � � � � � � � � �� � � �

A COMPUTATION SERVER 73

A MODEL FOR MULTI-PARADIGM PROGRAMMING

Integration of different programming paradigms is possible

Functional programming is a good starting point:

➜ lazy evaluation � modularity, optimal evaluation

➜ higher-order functions � code reuse, design patterns

➜ polymorphism � type safety, static checking

Stepwise extensible in a conservative manner to cover

➜ logic programming: non-determinism, free variables

➜ constraint programming: specific constraint structures

➜ concurrent programming: suspending function calls, synchronization on logical
variables

➜ object-oriented programming: constraint functions, ports

➜ imperative programming: monadic I/O, sequential composition

➜ distributed programming: external ports

A MODEL FOR MULTI-PARADIGM PROGRAMMING 74

WHY INTEGRATION OF DECLARATIVE PARADIGMS?

� more expressive than pure functional languages
(compute with partial information/constraints)

� more structural information than in pure logic programs (functional
dependencies)

� more efficient than logic programs (determinism, laziness)

� functions: declarative notion to improve control in logic programming

� avoid impure features of Prolog (arithmetic, I/O)

� combine research efforts in FP and LP

� do not teach two paradigms, but one: declarative programming
[Hanus PLILP’97]

� choose the most appropriate features for application programming

WHY INTEGRATION OF DECLARATIVE PARADIGMS? 75

APPLICATION OF MULTI-PARADIGM LANGUAGES

So far: high-level approach to

➜ search problems

➜ constraint solving

➜ distributed systems

In the following: appropriate to develop domain-specific languages for

➜ graphical user interfaces

➜ parsing

➜ HTML/CGI programming

APPLICATION OF MULTI-PARADIGM LANGUAGES 76

FUNCTIONAL LOGIC GUI PROGRAMMING

[Hanus PADL’00]

Graphical User Interfaces (GUIs) have a

➜ layout structure � hierarchical structure, algebraic data type

➜ logical structure � dependencies in the layout structure

Tcl/Tk: assign strings to layout elements � run-time errors

Here: use logical variables as references � compiler errors

A simple “Hello world” GUI:

� �� � � � �� � � �� � � � �

� � � � � � � � � �� �� � � � � ��
 � � �� � � � � � � � � �

� � �

� � � � � � � � � � �
 �� � � � ��
 � �
� � � � � � �

FUNCTIONAL LOGIC GUI PROGRAMMING 77

LAYOUT STRUCTURE OF GUIS

Specify hiearchical GUI layout as a “ � � � � � �� � ” term:

�� � � � � � � � �� � � �

� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � �

� � � �� � �� � � � � � � � � � � � � � �� � � � �

� � � �� � � 	 � � � � � � � �� � � � �

� � � �� �� � � � � � � � � �� � � � �

� � � � �� � � �� � �� � � � � � � � � �� � � � �

� � � ��
 � � � �� � � � � � � � �� � � � �

���
� � � � � � � � � � � � �� � � �

� � � � � � � � � � � � �� � � �

LAYOUT STRUCTURE OF GUIS 78

EXAMPLE: A COUNTER GUI

A specification of a counter GUI:
� � � � �

� � � �� � � 	 � � � �� � � � � � � � ��
 � � $ � � �

� � � � � � � � � � � � � � �� � � � �� � � �� � � � � � � � � ��
 � � �� � �� � � � � � � �

� � � � � � � � �� � �� � � � � �� � � � � $ � � � � ��
 � � �� � � � � � �

� � � � � � � � � � �
 �� � � � ��
 � �
� � � � � � � �

�� � �� � � � � �� �

➜ the free variable � � is a reference to the entry widget

➜ � � is used in the event handlers of other widgets

➜ � � is part of the logical structure of the GUI

EXAMPLE: A COUNTER GUI 79

LOGICAL STRUCTURE OF GUIS

Configuration options for GUIs:
�� � � � � � � � � �� � � � �

� � ��
 � � � � �� � � � �� �� �� � � �
 �

� � � � � �� � � � �� � � � � �� � � � � � �� � � � �� � � � � � �

� � � �� � � � �� � � 	 �� � � � � � �� � �� �� �� � ��

� � � � � � � � � � �� � � � � � � � �� � � � � � � � � �

���
� � �� � : reference to a widget, used in event handlers

(� � �� � � 	 �� is abstract � argument is a logical variable)

� � �
 �� � � � � � �� � � � � � �

� � �� � � � � �� � � � � �� � � 	 �� � � � � � �� � � � � � � � � �� �

� � �� � � � � �� � � � � �� � � 	 �� � � � � � �� � � � � � � �� � � � � � �

� � � � �� � � � � � � � � �� � � � � � � �� � � � � � �� � � 	 �� � � � � � �� � � � � � �

Remark: event handlers also available as constraints

LOGICAL STRUCTURE OF GUIS 80

EXAMPLE: TEMPERATURE CONVERTER

Convert a temperature from Celsius into Fahrenheit:
� � � � � � � � �� �� � � � � ��
 � � �� � �� �� � � �� �� �� � � � � � � � � �

� � � �� � � $ � $ $ � � � �� � �� � � � � � � � � � � � �� � � � �

� � � � � � � � �� �� � � � � ��
 � � �� � �� �� � � �� �� � � � �� � � � �� � � � �

� � � � � � � �� � � � �� � �� � � � � � � � �� � � � �� � � �� �� � � � � �

�� � �� �� � � � �� � � � �� �

� � � �� � � � � �

� � �� � � � � �� �� � � � � � � �
� �� � �

� � �� � � � � �� �� � � �� � � � � � � � �� � �� � �� � �

� � � � �

� � � � �

EXAMPLE: TEMPERATURE CONVERTER 81

GUIS WITH STATE: A DESK CALCULATOR

Implementation consists of two parts:

1. Object for storing the state
state: � operand � accumulator function
messages: � �� � � � 	 � , � � � � � � �

2. GUI for showing the state

GUIS WITH STATE: A DESK CALCULATOR 82

Object for storing the state:

Message � �� � � � 	 � : instantiate� with current display
�� � �� � � � � � � � � �� � � � 	 � � � � � � � � � �� � � � � � �

�� � �� � � � � � � � �

Message � � � � � � � : the user has pressed button �

�� � �� � � � � � � � � � � � � � � � � �

� �� � � � �� � � �� � �� � � � � $� � � � � � � � � � � � $ � � � � �

� � � � � � � � �� � �� � � � $ � � � � � � � �

� � � � � � � � �� � �� � � � $ � � � � � � � �

� � � � � � � � �� � �� � � � $ � � � � � � � �

� � � � � � � � �� � �� � � � $ � � � � � � � � � � � �

� � � � � � � � �� � �� � � � � � � � � � �

� � � � � �
� � �� � �� � � � $ � � � � �

GUIS WITH STATE: A DESK CALCULATOR 83

GUI for showing the state with a reference � � to calculator object:

�� � � � � � � � � � � � � � � � � � �� � � 	 � � � �� � � �� � � � 	 � � � ��
 � � $ � � �

� � � � � � � � � � � � � � � � �� � � �� � �� � � �� � � � �

� � � � � � � � � � � � � � � � ��
 � �� � � �� �
� �� � � � �

� � � � � � � � � � � � � � � � �� �
� �� �
� �� �
� �� � � � �

� � � � � � � � � � � � � � � � �� �
� �� $ � �� � � �� � � � �

�� � �� � �� � � � 	 � �� �

� �� � � � � ��
 � � � � �

� � � �� � � � � � � � � � �� � �� � � � � � � � � � � � � � � � �

� � � � � � �� � � � 	 � � � � �

� � � �� � � � � �� � �� � � � 	 � � �

➜ model-view-controller paradigm à la Smalltalk-80

➜ different (distributed) views on one application

GUIS WITH STATE: A DESK CALCULATOR 84

FUNCTIONAL LOGIC GUI PROGRAMMING: SUMMARY

Functional features useful for

➜ layout specification

➜ event handlers (data structures with functional components)

➜ application-oriented extensions

Logic programming features useful for

➜ dealing with dependencies inside a structure (free variables)

➜ handling state (concurrent objects)

Distributed features � GUIs for distributed applications

Specification (rather than imperative programming) of GUIs

Domain-specific language for GUIs, but:

no extension to base language necessary

FUNCTIONAL LOGIC GUI PROGRAMMING: SUMMARY 85

FUNCTIONAL LOGIC PROGRAMMING OF PARSERS

[Caballero/Lopez-Fraguas FLOPS’99]

Logic programming of parsers:

➜ nonterminals consume corresponding tokens (difference lists)

➜ definite clause grammars for nice notation

➜ non-deterministic grammars/parsing

➜ resulting representations as arguments

Functional programming of parsers:

➜ parsers consume corresponding tokens

➜ powerful parser combinators

➜ more complex handling of alternatives and representations

FUNCTIONAL LOGIC PROGRAMMING OF PARSERS 86

Functional logic programming of parsers:

simpler handling of representations and alternatives due to

➜ non-deterministic functions

➜ free variables as arguments

Parser 	 function of type �� � � � � � � � �� � � � � �

Argument: list of tokens to be parsed
Result: list of remaining unparsed tokens

A parser recognizing token� � � :

� � �� � �� ��� � � �� � � � �

A parser recognizing a given token:

� � � � �� � � � 	 � �� �� � � � 	 � � � � � � � �
Parser recognizing the empty word:

� � � � 	 � � � � � � �� � � � � � � � ��

FUNCTIONAL LOGIC PROGRAMMING OF PARSERS 87

PARSER COMBINATORS

Parser combinators: higher-order functions to combine parsers

Alternative of two parsers � and � : combinator � � � � �

� � � � � � � � � � � � �� � � � � � � � � ��

� � � � � � � � � � � � �� � � � � � � � � ��

Sequence of two parsers � and � : combinator � � � � �

� � � � � � � � $ � � � � $ � � � � � � � � � �� � �� � � � �� �

Repetition of a parser: (zero or more times)

� � � � � � � � � � � � � � � � � � � � � � � 	
Parser for� �� ��� �

� :

� � � � �� � � � � � � � � � � � � �� � � � �� � � � � � � � � � � � � �� � � � � �

PARSER COMBINATORS 88

EXAMPLE: PARSING PALINDROMES

A parser for palindromes over the alphabet

�� � � �

� � � � � � � � � 	 �

� � � � � � �� � � � � �

� � � � � � �� � � � � �

Checking a sentence for a palindrome:

� � � � �� � � � � � � � � � � �

Using logic programming features, we can also generate palindromes:

� � � � �
 � 	 � � � � � � � �

�

�

 � � � � � 	 � � � � � � � � � �

� � �

 � � � � � 	 � � � � � � � � � �

�

� �

 � � � � � 	 � � � � � � � � � �

� � �

 � � � � � 	 � � � � � � � � � �

�
EXAMPLE: PARSING PALINDROMES 89

PARSERS WITH REPRESENTATIONS

Parsers should not only check a list of tokens but also return a
representation (e.g., abstract syntax tree)

➜ Functional programming: parsers have result �� � � � �� � �� � �

➜ Logic programming: parsers have� � � argument � simpler definitions

Parser with representation 	 �� � � � �� � � � � � � � �� � � � � �

Representation argument:

➜ usually free variable

➜ will be instantiated during parsing

PARSERS WITH REPRESENTATIONS 90

PARSER COMBINATORS WITH REPRESENTATIONS

Alternative of two parsers � and � : combinator � � � � � �

� � � � � � � �� � � � �� � � � � � �� �

(reuse combinator for parsers without representation)

Attach representation�
 � to a parser � : combinator � � � � �
 �

� � � � � �
 � �� � � � �� � � � � �� � � � � � � � � � �
 � � � � �� � � � � � � �

�� � �� � � � � � � �� �

Repetition of a parser with representation: (representation is list)

� � � � � � � � � � � �� � � � � �� � � � � � � ��

� � � � � � � � 	 � � � � � �� � �� � � �� � �� �

At least one repetition of a parser:

� � � � � � � � � � � � � � � � �� � � � � � � �� �� � �� � � �� � �� �

PARSER COMBINATORS WITH REPRESENTATIONS 91

EXAMPLE: PARSER FOR ARITHMETIC EXPRESSIONS
�
 � � � � � � � � � � � � � � � � � �� � � � � � � � �
 � � � � � � �� � � �

� � � � � � � �

� � � � � �� �� �� � � �

� � � � �� �� � �

�� �� � � � � � � � �� � � � ��� � � � �
 � � � � � � � � � � �� � � � � � � � �

� � � � � � �

� � � � � � �� � � � � � � � �� � � � � � � � � � �

� � � � � � � � �� � � � � � � � � ��

� � � � � � � � � � � � � �� � � � � � � � � ��

� � � � � � � � �� � � � � � � � � � � �

� � � � � � � � � � � �� � � � � � � � � � � � � � � � �� �
Example: �
 � � � � � � � � $ � �� �
 � � � � � � �

�
� � � � � �

EXAMPLE: PARSER FOR ARITHMETIC EXPRESSIONS 92

FUNCTIONAL LOGIC PARSING: SUMMARY

Higher-order features useful for

➜ combining parsers (parsers are functions)

➜ computing representations

Logic programming features useful for

➜ dealing with alternatives (non-deterministic functions)

➜ managing representations (free variables in arguments)

➜ parsing with constraints

Domain-specific language for parsing, but:

no extension to base language necessary

FUNCTIONAL LOGIC PARSING: SUMMARY 93

APPLICATION: HTML/CGI PROGRAMMING

Early days of the World Wide Web: web pages with static contents

Common Gateway Interface (CGI): web pages with dynamic contents

Retrieval of a dynamic page:

➜ server executes a program

➜ program computes an HTML string, writes it to stdout

➜ server sends result back to client

HTML with input elements (forms):

➜ client fills out input elements

➜ input values are sent to server

➜ server program decodes input values for computing its answer

APPLICATION: HTML/CGI PROGRAMMING 94

TRADITIONAL CGI PROGRAMMING

CGI programs on the server can be written in any programming language

➜ access to environment variables (for input values)

➜ writes a string to stdout

Scripting languages: (Perl, Tk,. . .)

➜ simple programming of single pages

➜ error-prone: correctness of HTML result not ensured

➜ difficult programming of interaction sequences

Specialized languages: (MAWL, DynDoc,. . .)

➜ HTML support (structure checking)

➜ interaction support (partially)

➜ restricted or connection to existing languages

TRADITIONAL CGI PROGRAMMING 95

CGI PROGRAMMING IN A MULTI-PARADIGM LANGUAGE

Library in multi-paradigm language

Exploit functional and logic features for

➜ HTML support (data type for HTML structures)

➜ simple access to input values (free variables and environments)

➜ simple programming of interactions (event handlers)

➜ wrapper for hiding details

Exploit imperative features for

➜ environment access (files, data bases,. . .)

Domain-specific language for HTML/CGI programming

CGI PROGRAMMING IN A MULTI-PARADIGM LANGUAGE 96

MODELING HTML

Data type for representing HTML expressions:

!

"
#

�� � � � � � � �
 � � � ��
 � � � � �� �

� � � � � � �� � � � �� � � � � � � �� � � � � � �� � � � � � � � �
 � �

Some useful abbreviations:

� �
 � � � � ��
 � �� � � � � � � � � � � � � � � �� � � � �� �

� � � � � �
 � � � � � � � � �� � � � � � � �
 � � � � � � � � � � � �

�� � � � � � �
 � � � � � � � � �� � � � � � � �
 � � � � �� � � � � � � � �

� � � �
 � � � � � � � � �� � � � � � � � �
 � � � � � � �� � � � �� �

� � �

Example: �� � �� �
 � � � � �� � � � � � � � � � � �

�� � � � � �� �
 � � �� � � � � � � � � � � �� �
 � � � � � � � �

� � �

� 1. Hello World
Hello world!

MODELING HTML 97

Advantages:

➜ static checking of HTML structure (well-balanced parentheses)

➜ flexible dynamic documents

➜ functions for computing HTML documents

Converting tree structure (leaves contain strings) into nested HTML lists:

�� � � � �� � � � �� � � � � � � �� � � �� � � �

� � � � � �� � � � � �� � � � � �� � � � � � � � � �
 � �

� � � � � �� � � �� � � � � �� �
 � � �

� � � � � �� � � � � �� � �� � � � � � � �� � � � � � � � � � � �� � � �� � � �

� � �� � � � � � � � � � �
 � � � � � � � � � �
 �

� � �� � �� � � � � � � � � � �� �
� � � � � � � � � � �� � � �� � � �

� �� � � � �
 � � � � � � � � �� � � � � � � � �
 � �

MODELING HTML 98

HTML INPUT FORMS

Specific HTML elements for dealing with user input
� � � � � � � � � � � �

� �� �
�

� � � � � �
� � � � �� �

�
� � � � � � � � �� � � � � �

� �

Form is submitted �

clients sends the current value of this field (identified by �
� � � � �� �

�)

Expressible as HTML term:

� � � � � �� � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �

� �
� � � � � � � � � �� � � � � �

� � � �

Problems:

➜ server program must decode input values

➜ server program must know right names of field identifiers (� �� �� �� � �)

➜ error-prone

HTML INPUT FORMS 99

ABSTRACT INPUT FORMS

Solution:

➜ use free variables as references to input fields (CGI references)

➜ collect input values in CGI environments:
mapping from CGI references to strings

➜ associate event handlers to submit buttons

➜ event handlers take a CGI environment and produces an HTML form

Implementation:

straightforward in a functional logic language!

ABSTRACT INPUT FORMS 100

ABSTRACT INPUT FORMS: IMPLEMENTATION

CGI references:
�� � � � � � �� � � � � � �� � � � � �� � � � �� � � � � � � � � � �� � � � � � �
 � � � � � �

➜ no construction of wrong references

➜ only free variables of type � 	�� � � �

➜ global wrapper function instantiates with the right strings

HTML elements with CGI references:

�� � � � � � � �
 � � � � � � � � � � � �� � � � � � �
 � � � � �� �

Example: Text fields with a CGI reference and initial contents

� �
 � � �� � � � � � � � �� � � � � � � �� � � � � � � � �
 �

� �
 � � �� � � � � � � �� � �� � � � � � � � � � �

� � � � � �� � � � � � � � �� � � � � � � � � � � � � � � � � � � �� � � �

� � � � � � � � �� � � � �
� � � � � � � � � � � � � � � �

� � � � �� � �� �

ABSTRACT INPUT FORMS: IMPLEMENTATION 101

HTML form: title + list of HTML expressions
�� � � � � � � � � � � � � � � � � � � �� � � � � � � �
 � �

Example: simple form with a single input element (a text field)

� � � � �
� � � � � �� � �� �
 � � � � � � � � � � � � � � � �

� �
 � � �� � � � � � � � �� � � � � � �
 � � �� � � � �� � � � �

CGI environments: map CGI references to strings

� 	 �� � � � �� � � � � � �� � � � � � � �� �
Event handlers have type � � � �� � � � � � � � � �

Event handlers are associated to submit buttons:
user presses a submit button

� execute associated event handler with current environment

ABSTRACT INPUT FORMS: IMPLEMENTATION 102

EXAMPLE: FORM TO REVERSE/DUPLICATE A STRING

� � � � �
� �� � � �� � � �� �
 � � �� � � � � � � � �� � � � � � �
 � � �� � � � �� � � � � � � �

� � � � � � � �� �� �� � � � � �� � � �� �� � � � � � � �

� � � � � � �
� � � � � �� � � � � � �� � � � � �� � � � � � � �

�� � �� � �� � � �� �

�� �� � � � � � � � � � � �� � � �� � � � � � � �� � �� � �

�� � �� �
 � � � �� �� �� � � �� � � � � � � � �� � �� � � � �� � � �

� � �� � � � � � � � � � � �� � � �� � � � � � � �� � �� � �

�� � �� �
 � � �
� � � � � �� � � � �� � � � � � � � � � � � �� � � � � � � � �� � � �

EXAMPLE: FORM TO REVERSE/DUPLICATE A STRING 103

ACCESSING THE WEB SERVER ENVIRONMENT

Form to show the contents of an arbitrary file stored at the server:

� � � � � �� � � �� � � �� �
 � � �� � � � � � �� � � �� � � � � � � � �

� �
 � � �� � � � �� � �� � � � �

� � � � � � � �� � � �� � �

� � � � � � � � �

�� � �� � �� � �� � � �� �

� � � � � � � � � � �

� � � � � � � � � � � � �� � � � �� � �� � � � �� � �� �

�� � � �� � � � � � � �� � �� � �

�� � �� �
 � � �
� � � � � � � � � � � �� � � � � � � � � �� � �� � � �

�� � � � � � � � � � � � � � � �

ACCESSING THE WEB SERVER ENVIRONMENT 104

HTML/CGI PROGRAMMING

The main form is executed by a wrapper function
� �� � � � � � � � � �� � � � � � � � � � � � � � � � � � �

➜ takes a title string and a form and transforms it into HTML text

➜ replaces all CGI references by unique strings

➜ decodes input values and invokes associated event handler

Event handlers return forms rather than HTML expressions

➜ sequences of interactions

➜ use control abstractions (branching, recursion) of underlying language

➜ state between interactions handled by CGI environments

Note: no language extension necessary (CGI library)

multi-paradigm languages as scripting languages

HTML/CGI PROGRAMMING 105

A FEW FURTHER MULTI-PARADIGM LANGUAGES

Erlang (Ericsson)

➜ developed by Ericsson for telecommunication applications

➜ concurrent functional language with features to support the development of
robust distributed systems

➜ reduced development time and maintainance

Escher (University of Bristol)

➜ extension of Haskell by features for logic programming

➜ functions are evaluated by residuation

➜ explicit disjunctions for logic programming

➜ simplification rules for logic formulas

A FEW FURTHER MULTI-PARADIGM LANGUAGES 106

Mercury (University of Melbourne)

➜ logic/functional language with highly optimized execution algorithm

➜ origin: logic programming (syntax) with type/mode/determinism annotations

➜ adapted concepts from functional programming, strict semantics

Oz (DFKI Saarbrücken)

➜ concurrent constraint language with features for higher-order functional,
object-oriented, and distributed programming

➜ operational behavior: residuation

➜ search via explicit disjunctions and search operators

A FEW FURTHER MULTI-PARADIGM LANGUAGES 107

Toy (Univ. Complutense de Madrid)

➜ prototype for a functional logic language

➜ based on lazy narrowing, supports non-deterministic functions

➜ contraints, in particular, disequality constraints

. . . and, of course, there are many, many more. . .

A FEW FURTHER MULTI-PARADIGM LANGUAGES 108

IMPLEMENTATIONS OF CURRY

Several implementations available:
� Interpreter in Prolog: TasteCurry-System

� Compiler Curry � Java [Hanus/Sadre ILPS’97/JFLP’99]
(Java threads for concurrency and non-determinism)
➜ portable
➜ simplified implementation (garbage collection, threads)
➜ slow but (hopefully!) better Java implementations in the future

� [Antoy/Hanus FroCoS’00]: Efficient implementation by transformation
into Sicstus-Prolog (reuse of various constraint solvers)
(also Sloth-System [Mariño/Rey WFLP’98])

� PACS (Portland Aachen Curry System)

 � � � � � �� � � �� � �� � �� �� �� � � � � �
 � �
 � � � � � �

	
 � � � � � � �

� abstract Curry machine [Lux FLOPS’99]

IMPLEMENTATIONS OF CURRY 109

CONCLUSIONS

Appropriate abstractions are important for software development and
maintainance

Multi-paradigm languages have the potential to express these abstractions

High-level languages support domain-specific languages

Multi-paradigm programming

➜ possible and advantageous

➜ constraint functional logic programming: many improvements in recent years

➜ imperative/concurrent/distributed + declarative programming:
possible but many different approaches

More infos on Curry:

� � � � � � � � � � � � � �� � � � � � � �� � � � � � � � � �� � � � �� ��
� � � � � � � � � � � 	

CONCLUSIONS 110

