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Abstract

We introduce a semantic characterization of narrowing, the computational engine of

many functional logic languages. We use a functional domain for giving a denotation

to the narrowing space associated to a given initial expression under an arbitrary nar-

rowing strategy. Such a semantic description highlights (and favours) the operational

notion of evaluation instead of the more usual model-theoretic notion of interpretation

as the basis for the semantic description. The motivation is to obtain an abstract

semantics which encodes information about the real operational framework used by a

given (narrowing-based) functional logic language. Our aim is to provide a general,

suitable, and accurate framework for the analysis of functional logic programs.

Keywords: domain theory, functional logic languages, narrowing, program analysis,

semantics.

1 Introduction

The ability of reasoning about program properties is essential in software design, imple-

mentations, and program manipulation. Program analysis is the task of producing (usually

approximated) information about a program. The analysis of functional logic programs is

one of the most challenging problems in declarative programming. Many works have already

addressed the analysis of certain run-time properties of programs, e.g., mode inferencing

[DW89, Han94b, HZ94, Lin88], demandedness patterns [MKMWH93, Zar97], equational un-

satisfiability [AFM95, AFRV93, AFV96, BEØ93], detection of parallelism [HKL92, SR92]

and a number of other properties which are also relevant for parallel execution [KMH92].

Nevertheless, most of these approaches have been done in a rather ad hoc setting, gearing
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the analysis towards the application on hand. Up to now, there is no general approach

for formulating and analyzing arbitrary properties of functional logic programs with respect

to an arbitrary operational framework. Moreover, no attempt to formally connect (or use)

properties from the pure logic or functional world in an integrated, functional logic setting

has been made. In this paper we address these problems.

The key of our approach is domain theory [Sco82, Sco81, Sco70] since it provides a junc-

tion between semantics (spaces of points = denotations of computational processes) and logics

(lattices of properties of processes) [Abr91, Rey75, Sco81, Vic89]. The computational pro-

cess we are interested in is evaluation. In a programming language, the notion of evaluation

emphasizes the idea that there exists a distinguished set of syntactic elements (the values)

which have a predefined mathematical interpretation [Gun92, Pit97]. The other syntactic

elements take meaning from the program definitions and the operational framework for the

program’s execution. In this way, the evaluation process (under a given operational frame-

work), maps general input expressions (having an a priori unknown meaning) to values.

This point of view favours the operational notion of evaluation instead of the more usual

model-theoretic notion of interpretation as the basis for the semantic description.

Since functional logic languages with a complete operational semantics are based on

narrowing, we center our attention on it. The idea of using narrowing as an evaluation

mechanism for integrated languages comes from Reddy [Red85]: narrowing is the opera-

tional principle which computes the non-ground value (ngv) of an input expression. Given

a domain D, a ngv is a mapping from valuations (on D) to values (in D). In moving

valuations from being parameters of semantic functions (as usual in many approaches, e.g.,

[GHLR99, MR92]) to be components of a semantic domain, we understand narrowing as

an evaluation mechanism which incorporates the instantiation of variables as a part of such

evaluation mechanism. Since ngv’s are functional values, we use the domain-theoretic notion

of approximable mapping [Sco82, Sco81] to give them a computable representation. We

argue that this is a good starting point for expressing and managing observable properties

of functional logic programs (along the lines of [Abr91, Smy83, Vic89]). Moreover, it reveals

that, within an integrated framework, there exist semantic connections between purely

functional and logic properties of programs. Termination and groundness are examples of

such related properties. On the other hand, thanks to including operational information

into the semantic description, we are able to derive interesting optimizations for program

execution.

Section 2 gives some preliminary definitions. Section 3 introduces the main guidelines of

our semantic approach with a simple application to the semantic description of rewriting

computations and rewriting strategies. Section 4 discusses the description of narrowing

as an evaluation mechanism and introduces approximable mappings. Section 5 formalizes

the description of narrowing computations and narrowing strategies by using approximable

mappings. Section 6 discusses how much operational information can be obtained back from

our semantic descriptions of narrowing and rewriting. Section 7 discusses a semantic-based
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analysis framework for functional logic languages. Section 8 contains our conclusions.

2 Preliminaries

In this section, we give some preliminary definitions. For further details, we refer the reader

to [GTWW77, Klo92, SLG94]. Given sets A, B, BA (or A → B) is the set of mappings from

A to B and P(A) denotes the set of all subsets of A. An order ⊑ on a set A is a reflexive,

transitive and anti-symmetric relation. Given an ordered set (A,⊑), a chain is a (possibly

infinite) sequence a1, . . . , an, . . . of elements ai ∈ A, i ≥ 1 such that, for all i ≥ 1, ai ⊑ ai+1.

An element ⊥ of an ordered set (A,⊑) is called a least element (or a minimum) if ⊥ ⊑ a for

all a ∈ A. If such an element exists, then (A,⊑,⊥) is called a pointed ordered set. Given

S ⊆ A, an element a ∈ A is an upper bound of S if x ⊑ a for all x ∈ S. In this case we also

say that S is a consistent set. An upper bound of S is a least upper bound (or lub, written
⊔

S) if, for all upper bounds b of S, we have
⊔

S ⊑ b. A set S ⊆ A is downward (upward)

closed if whenever a ∈ S and b ⊑ a (a ⊑ b), we have that b ∈ S. If S = {x, y}, we write

x⊔ y instead of
⊔

S. A non-empty set S ⊆ A is directed if, for all a, b ∈ S, there is an upper

bound c ∈ S of {a, b}. An ideal is a downward closed, directed set and Id(A) is the set of

ideals of an ordered set A. A pointed ordered set (A,⊑,⊥) is a complete partial order (cpo)

if every directed set S ⊆ A has a lub
⊔

S ∈ A. An element a ∈ A of a cpo is called compact

(or finite) if, whenever S ⊆ A is a directed set and a ⊑
⊔

S, then there is x ∈ S such that

a ⊑ x. The set of compact elements of a cpo A is denoted as K(A). A cpo A is algebraic

if for each a ∈ A, the set approx(a) = {x ∈ K(A) | x ⊑ a} is directed and a =
⊔

approx(a).

An algebraic cpo D is a domain if, whenever the set {x, y} ⊆ K(D) is consistent, then x⊔ y

exists in D. Given ordered sets (A,⊑A), (B,⊑B), a mapping f : A → B is monotone if

∀a, b ∈ A, a ⊑A b ⇒ f(a) ⊑B f(b); f : A → A is idempotent if ∀a ∈ A, f(f(a)) = f(a); it

is decreasing if ∀a ∈ A, f(a) ⊑A a. If (A,⊑A), (B,⊑B) are cpo’s, we say that f : A → B is

continuous if, for all directed set S, f(
⊔

S) =
⊔

f(S); the set of continuous (strict) mappings

from A to B is denoted by [A → B] (resp. [A →⊥ B]).

By V we denote a countable set of variables; Σ denotes a signature, i.e., a set of function

symbols {f, g, . . .}, each with a fixed arity given by a function ar : Σ → IN. We assume

Σ ∩ V = Ø. We denote by T (Σ, V ) the set of (finite) terms built from symbols in the

signature Σ and variables in V . A k-tuple t1, . . . , tk of terms is denoted as t, where k will

be clarified from the context. Given a term t, Var(t) is the set of variable symbols in t.

Sometimes, we consider a fresh constant ⊥ and Σ⊥ = Σ ∪ {⊥}. Terms from T (Σ⊥, V ) are

ordered by the usual approximation ordering which is the least ordering ⊑ satisfying ⊥ ⊑ t

for all t and f(t) ⊑ f(s) if t ⊑ s, i.e., ti ⊑ si for all 1 ≤ i ≤ ar(f).

Terms are viewed as labeled trees in the usual way. Positions p, q, . . . are represented

by chains of positive natural numbers used to address subterms of t. By Λ, we denote the

empty chain. The set of positions of a term t is denoted by Pos(t). A linear term is a

term having no multiple occurrences of the same variable. The subterm of t at position p is
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denoted by t|p. The set of positions of non-variable symbols in t is PosΣ(t), and PosV (t) is

the set of variable positions. We denote by t[s]p the term t with the subterm at the position

p replaced by s.

A substitution is a mapping σ : V → T (Σ, V ) which homomorphically extends to a

mapping σ : T (Σ, V ) → T (Σ, V ). We denote by ε the “identity” substitution: ε(x) = x

for all x ∈ V . The set Dom(σ) = {x ∈ V | σ(x) 6= x} is called the domain of σ and

Rng(σ) = ∪x∈Dom(σ)Var(σ(x)) its range. σ|U denotes the restriction of a substitution σ to a

subset of variables U ⊆ Dom(σ). We write σ ≤ σ′ if there is θ such that σ′ = θ◦σ. A unifier

of two terms t1, t2 is a substitution σ with σ(t1) = σ(t2). A most general unifier (mgu) of

t1, t2 is a unifier σ with σ ≤ σ′ for all other unifiers σ′ of t1, t2.

A rewrite rule (labeled α) is an ordered pair (l, r), written α : l → r (or just l → r),

with l, r ∈ T (Σ, V ), l 6∈ V and Var(r) ⊆ Var(l). l and r are called left-hand side (lhs)

and right-hand side (rhs) of the rule, respectively. A term rewriting system (TRS) is a pair

R = (Σ, R) where R is a set of rewrite rules. A TRS (Σ, R) is left-linear, if for all l → r ∈ R,

l is a linear term. Given R = (Σ, R), we consider Σ as the disjoint union Σ = C ⊎ F

of symbols c ∈ C, called constructors and symbols f ∈ F , called defined functions, where

F = {f | f(l) → r ∈ R} and C = Σ − F . A constructor-based TRS (CB-TRS) is a TRS

with l1, . . . , ln ∈ T (C, V ) for all rules f(l1, . . . , ln) → r.

For a given TRS R = (Σ, R), a term t rewrites to a term s (at position p), written
[p,α]
→ R

(or just t
p
→R s, t →R s, or t → s) if t|p = σ(l) and s = t[σ(r)]p, for some rule α : l → r ∈ R,

position p ∈ Pos(t) and substitution σ. A term t is in normal form if there is no term s

with t →R s. A TRS R (or the rewrite relation →R) is called confluent if for all terms

t, t1, t2 with t →∗
R t1 and t →∗

R t2, there exists a term t3 with t1 →∗
R t3 and t2 →∗

R t3. A

term t narrows to a term s, written t ;[p,α,σ] s (or just t ;σ s), if there is p ∈ PosΣ(t)

and a variant (i.e., a renamed version) of a rule α : l → r such that t|p and l unify with

(idempotent) mgu σ, and s = σ(t[r]p). A narrowing derivation t ;∗
σ s is such that either

t = s and σ = ε or t ;σ0
t1 ;σ1

· · · tn−1 ;σn−1
s and σ = σn−1 ◦ · · · ◦ σ1 ◦ σ0. In order to

show the progress of a narrowing derivation w.r.t. the computed answer and the evaluated

goal, we also define the narrowing relation on substitution/term pairs by 〈σ, t〉 ; 〈σ′, s〉 if

t ;θ s and σ′ = θ|Var(t) ◦ σ (i.e., we consider only the substitution of goal variables).

3 The semantic approach

Following [Red85], a functional logic program is functional in syntax and logic in semantics.

A (first-order) program P = (R, t) consists of a TRS R (which establishes the distinction

between constructor and defined symbols of the program), and an initial expression t to

be fully evaluated. We make t explicit since the differences between the purely functional

and functional logic styles arise in the different status of the variables occurring in the

initial expression: in functional programming, those variables are not allowed (or they are

considered as constants and cannot be instantiated). Functional logic languages deal with
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expressions having logic variables and narrowing provides for the necessary instantiations.

We take the following perspective: from the programmer’s point of view, the observed

semantics of the program actually depends on the current operational framework. In this

setting, the notion of evaluation, rather than that of interpretation, becomes principal. Since

only constructors are completely free from either rewriting or narrowing computations, we

assume that only constructor symbols express completely defined information. Alternatively,

one could say that only constructor symbols are definitively observable during a computation.

We characterize the information which is currently couched by a term s (which is sup-

posed to be in an intermediate stage towards the full evaluation of the initial expression t)

by means of a monotone, idempotent and decreasing mapping (| |) from syntactic objects to

values (remind that values are expected to be especial syntactic objects). We call (| |) an ob-

servation mapping. Monotonicity of (| |) ensures that refinements (w.r.t. ⊑) of the syntactic

information correspond to refinements of the observed semantic information. Idempotency

ensures that each observation is definitive. Decreasingness ensures that the semantic in-

formation is part of the syntactic information1. The adequacy of a given mapping (| |) for

observing computations performed by a given operational mechanism should be ensured

by showing that (| |) is a homomorphism between the relation among syntactic objects in-

duced by the operational mechanism and the approximation ordering on values. This means

that the operational mechanism refines the meaning of an expression as the computation

continues.

3.1 Rewriting as an evaluation mechanism

The syntactic objects are terms t ∈ T (Σ⊥, V ) and the values are taken from (T ∞(C⊥),⊑,⊥),

the domain of infinite, ground constructor (partial) terms. Formally, (T ∞(C⊥),⊑,⊥) is

obtained from T (C⊥), which is not even a cpo, as (isomorphic to) its ideal completion

(Id(T (C⊥)),⊆, {⊥}) (see [DP90, SLG94]). In general, given a poset P , the mapping [ · ] :

P → Id(P ) that associates the principal ideal {p}↓ to each p ∈ P is an embedding of P into

the cpo Id(P ), i.e., for all p, q ∈ P , p ⊑ q if and only if [p] ⊆ [q]. Since [ · ] is injective, we

can understand Id(P ) as a completion of P which actually ‘includes’ P . (T ∞(C⊥, V ),⊑,⊥)

is the domain (T ∞(C⊥ ∪ V ),⊑,⊥), where ∀x ∈ V, ar(x) = 0.

For functional computations, we use (| |)F : T (Σ⊥, V ) → T (C⊥, V ) given by

(|x|)F = x (|⊥|)F = ⊥

(|c(t)|)F = c((|t|)F ) if c ∈ C (|f(t)|)F = ⊥ if f ∈ F

Clearly, (| |)F is an observation mapping. The adequacy of this mapping for observing re-

writing computations is stated in the following proposition which establishes that rewriting

increases the current information of terms as given by (| |)F .

Proposition 3.1 (Reduction increases information) Let R be a TRS and t, s ∈

T (Σ⊥, V ). If t →∗ s, then (|t|)F ⊑ (|s|)F .

1Strictness of (| |) is a consequence of decreasingness.
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Proof. By induction on the length n of the derivation t →∗ s. The case n = 0 is

immediate. Otherwise, let t → t′ →∗ s. To prove that t → t′ implies (|t|)F ⊑ (|t′|)F , we

proceed by induction on the length of the redex position p ∈ Pos(t) of the first rewrite step.

If p = Λ, then t = σ(l) = f(t) for some rule l → r and defined symbol f ∈ F (because

l = f(l)). Hence, (|t|)F = ⊥ ⊑ (|t′|)F . If p 6= Λ, we have p = i · p′. Then, t = f(t), ti → t′i,

and tj = t′j for all 1 ≤ j ≤ ar(f), i 6= j. If f ∈ F , then (|t|)F = ⊥ ⊑ (|t′|)F . If f ∈ C,

then (|t|)F = c((|t|)F ) and, since t ⊑ t′, t′ = c(t′). Therefore, by I.H., (|ti|)F ⊑ (|t′i|)F and

(|tj |)F = (|t′j|)F for all 1 ≤ j ≤ ar(f), i 6= j. Hence, by definition of ⊑, (|t|)F ⊑ (|t′|)F . By (the

first) I.H., (|t′|)F ⊑ (|s|)F . Thus, the conclusion follows. 2
The function Rew : T (Σ⊥, V ) → P(T (C⊥, V )) provides a representation Rew(t) =

{(|s|)F | t →∗ s} of the rewriting space of a given term t.

Proposition 3.2 Let R be a confluent TRS. For all t ∈ T (Σ⊥, V ), (Rew(t),⊑) is a directed

set.

Proof. Note that Rew(t) 6= Ø because (|t|)F ∈ Rew(t). If (|t′|)F , (|t′′|)F ∈ Rew(t), then

t →∗ t′ and t →∗ t′′. By confluence, there exists a term s such that t′ →∗ s and t′′ →∗ s.

Hence, t →∗ s, and (|s|)F ∈ Rew(t). By Proposition 3.1, (|t′|)F ⊑ (|s|)F and (|t′′|)F ⊑ (|s|)F ,

i.e., Rew(t) is directed. 2
The semantic function

CRew∞ : T (Σ⊥, V ) → T ∞(C⊥, V )

gives the meaning of a term under evaluation by rewriting (for confluent TRSs):

CRew∞(t) =
⊔

Rew(t)

or even

CRew∞(t) = Rew(t)↓

in an equivalent expression which takes advantage of the correspondence between ‘infinite

terms’ and ideals of finite terms (note that Rew(t)↓ is an ideal). Thus, CRew∞(t) is the

most defined (possibly infinite) value which can be obtained (or approximated) by issuing

rewritings from t. Note that we follow the convention of pursuing the total evaluation

(infinite normalization) of the term and that CRew∞ is well defined for confluent TRS’s;

otherwise, we cannot ensure that Rew(t) is a directed set and the lub may not exist. We

also note that the use of infinite terms in the codomain of CRew∞ is necessary for dealing

with non-terminating programs.
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3.2 Rewriting strategies

For a rewriting strategy IF (i.e., a mapping from terms to terms satisfying IF(t) = t whenever t

is a normal form and t → IF(t) otherwise [Klo92]), we define RewIF(t) = {(|IFn(t)|)F | n ≥ 0}.

Proposition 3.3 Let R be a TRS and IF be a rewriting strategy for R. For all t ∈ T (Σ⊥, V ),

RewIF(t) is a chain.2

Proof. By definition of IF, we have either s = s′ or s → s′ whenever IF(s) = s′.

Thus, by Proposition 3.1, (|s|)F ⊑ (|IF(s)|)F . By taking s = IFn(t), for n ≥ 0, we get

(|IFn(t)|)F ⊑ (|IFn+1(t)|)F and the conclusion follows. 2
Thus, we define

CRew∞
IF : T (Σ⊥, V ) → T ∞(C⊥, V )

by

CRew∞
IF (t) =

⊔

RewIF(t)

Clearly, for all strategies IF, CRew∞
IF ⊑ CRew∞ (i.e., ∀t, CRew∞

IF (t) ⊑ CRew∞(t)).

Thus, CRew∞ provides a semantic reference for rewriting strategies. Strategies that satisfy

CRew∞
IF = CRew∞ can be thought of as correct strategies. They correspond to infinitary

normalizing strategies –if we restrict our attention to computing (infinite) values rather than

arbitrary (infinite) normal forms. It is possible to provide an effective notion of infinitary

normalizing strategy by using Middeldorp’s theory of root-needed computations [Mid97] and

their decidable approximations [Luc98].

Remark 3.4 We obtain a ground semantics for the defined symbols f ∈ F as follows:

f(δ) = CRew∞(f(δ)) for all δ ∈ T (C⊥)ar(f). Similarly, it is possible to describe a ground

semantics under a given strategy IF by using CRew∞
IF .

4 Narrowing as an evaluation mechanism

Through its computed value CRew∞(t), a ground term t denotes a value [[t]]D in some domain

D by just giving an interpretation for each constructor symbol c as a continuous function cD ∈

[Dar(c) → D]: [[t]]D = [[CRew∞(t)]]D. However, our main interest are terms with variables.

In this case, the most reasonable choice is to interpret a term as denoting a function. This

definition is the natural one: a term with variables t denotes a continuous function tD ∈

[DV → D] which yields the value of t under each possible valuation φ ∈ DV of its variables

on a domain D. This is called a non-ground value (ngv) in [Red85] and a derived operator

2Formally, RewIF(t) is defined as a set but for the purpose of this proposition we identify it with a

sequence.
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in [GTW78, GTWW77]. It is also essentially the same as in other algebraic approaches to

semantics of TRS’s and recursive program schemes such as [Bou85, Cou90, Gue81, Niv75].

Given domains D and E, the set [D → E] ([D →⊥ E]) of (strict) continuous functions

from D to E (pointwise) ordered by f ⊑ g iff ∀x ∈ V, f(x) ⊑ g(x), is a domain [Gun92,

SLG94]. For proving that [DV → D] is a domain whenever D is, assume that V contains

a distinguished (unused) variable ⊥. Thus, V supplied by the least ordering ⊑ such that

⊥ ⊑ x and x ⊑ x for all x ∈ V is a domain. The set DV −{⊥} of arbitrary valuations from

V − {⊥} to D is isomorphic to the domain [V →⊥ D] of continuous, strict valuations. We

assume this fact from now on by removing ⊥ from V and considering that DV is a domain.

In particular, if we take T ∞(C⊥) as the domain of values, the mapping λx.⊥ ∈ T (C⊥)V ,

denoted ⊥Valuat , is the least element of the domain. By abuse, we say that the domain of a

valuation φ ∈ DV is

Dom(φ) = {x ∈ V | φ(x) 6= ⊥} .

Therefore, if D is a domain, [DV → D] also is and, in particular, [T ∞(C⊥)V → T ∞(C⊥)] is

a domain.

4.1 Observation of narrowing computations

Our syntactic objects, now, are substitution/term pairs 〈σ, t〉. We could näıvely extend (| |)F

to deal with those pairs: (|〈σ, s〉|)F = 〈(|σ|)F , (|s|)F 〉 where (|σ|)F is a substitution given by

(|σ|)F (x) = (|σ(x)|)F for all x ∈ V . Unfortunately, the semantic progress of a narrowing

evaluation might not be captured by the computational ordering ⊑ (extended by (φ, δ) ⊑

(φ′, δ′) iff ∀x ∈ V.φ(x) ⊑ φ′(x) and δ ⊑ δ′) and such an extension of (| |)F .

Example 4.1 Consider the TRS:

0+x → x 0 ≤ x → true

s(x)+y → s(x+y) s(x) ≤ s(y) → x ≤ y

and the narrowing step 〈ε, [x,x+y]〉; 〈{x7→0}, [0,y]〉 ([·,·] denotes a 2-element list). We

have (|〈ε, [x,x+y]〉|)F = 〈ε, [x,⊥]〉 and (|〈{x7→0}, [0,y]〉|)F = 〈{x7→0}, [0,y]〉. Therefore,

we do not get the desired increasing computation, because ε 6⊑ {x7→0} and [x,⊥] 6⊑ [0,y].

The problem is that narrowing introduces a new computational mechanism for increasing the

information associated to a given term, i.e., instantiation of logic variables. Thus, we intro-

duce the observation mapping (| |)FL : T (Σ⊥, V ) → T (C⊥) which interprets uninstantiated

variables as least defined elements:

(|x|)FL = ⊥ (|⊥|)FL = ⊥

(|c(t)|)FL = c((|t|)FL) if c ∈ C (|f(t)|)FL = ⊥ if f ∈ F

Note that (|t|)FL = ⊥Valuat((|t|)F ) and (|σ|)FL = ⊥Valuat ◦ (|σ|)F .
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Example 4.2 (Continuing Example 4.1) Now,

(|〈ε, [x,x+y]〉|)FL = 〈⊥Valuat , [⊥,⊥]〉

⊑ 〈{x7→0}, [0,⊥]〉

= (|〈{x7→0}, [0,y]〉|)FL

i.e., (| |)FL satisfies the desired property.

After introducing some results, we prove that narrowing computations are compatible with

the new observation mapping.

Lemma 4.3 Let t, s ∈ T (Σ⊥, V ). If (|t|)F ⊑ (|s|)F , then (|t|)FL ⊑ (|s|)FL.

Proof. Since (|t|)FL = ⊥Valuat((|t|)F ) and (|s|)FL = ⊥Valuat ((|s|)F ), the conclusion follows by

monotonicity of ⊥Valuat . 2
Lemma 4.4 Let t be a finite term and σ be a substitution. Then (|t|)FL ⊑ (|σ(t)|)FL.

Proof. By structural induction. If t is a variable, then (|t|)FL = ⊥ ⊑ (|σ(t)|)FL. If t is a

constant, t = σ(t) and the conclusion follows. Let t = f(t). If f ∈ F , then (|t|)FL = ⊥ and

the conclusion follows. If f = c ∈ C, then σ(c(t)) = c(σ(t)). By I.H., (|ti|)FL ⊑ (|σ(ti)|)FL

for all i, 1 ≤ i ≤ ar(c). Therefore, by definition of ⊑, (|c(t)|)FL = c((|t|)FL) ⊑ c((|σ(t)|)FL) =

(|c(σ(t))|)FL = (|σ(c(t))|)FL. 2
Lemma 4.5 Let σ, σ′ be substitutions. If σ ≤ σ′, then (|σ|)FL ⊑ (|σ′|)FL.

Proof. If σ ≤ σ′, there is θ such that σ′ = θ ◦σ. Thus, for all x ∈ V , σ′(x) = θ(σ(x)). By

Lemma 4.4, for all terms t, (|σ(t)|)FL ⊑ (|θ(σ(t))|)FL = (|σ′(t)|)FL, i.e., (|σ|)FL ⊑ (|σ′|)FL. 2
The following proposition establishes that narrowing increases the current information of

substitution/term pairs as given by (| |)FL.

Proposition 4.6 Let R be a TRS. If 〈σ, t〉;∗ 〈σ′, s〉, then (|〈σ, t〉|)FL ⊑ (|〈σ′, s〉|)FL.

Proof. We proceed by induction on the length n of the narrowing derivation. If n = 0,

it is immediate. If n > 0, let 〈σ, t〉 ; 〈σ′, t′〉 ;∗ 〈ς, s〉. By the induction hypothesis,

(|〈σ′, t′〉|)FL ⊑ (|〈ς, s〉|)FL. Since σ ≤ σ′, by Lemma 4.5, we always have (|σ|)FL ⊑ (|σ′|)FL.

To prove (|t|)FL ⊑ (|t′|)FL, we proceed by induction on the length of the position p where

the first narrowing step is applied. If p = Λ, then t = f(t), and (|t|)FL = ⊥ ⊑ (|t′|)FL. If

p = i · q, then 〈σ, ti〉 ; 〈σ′, t′i〉 and, by I.H., (|ti|)FL ⊑ (|si|)FL. Since t′ = t[t′i]i, we get

(|t|)FL = (|t[ti]i|)FL ⊑ (|t[t′i]i|)FL = (|t′|)FL and the conclusion follows (similar to the proof of

Proposition 3.1). 2
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4.2 Approximable mappings

In the following, we are concerned with the representation of functional values. In this

setting, we use the corresponding standard Scott’s construction of approximable mappings

[Sco81, SLG94].

A precusl is a structure P = (P,⊑,⊔,⊥) where ⊑ is a preorder, ⊥ is a distinguished

minimal element, and ⊔ is a partial binary operation on P such that, for all p, q ∈ P ,

p ⊔ q is defined if and only if {p, q} is consistent in P and then p ⊔ q is a (distinguished)

lub of p and q [SLG94]. Approximable mappings allow us to represent arbitrary continuous

mappings between domains on the representations of those domains (their compact elements)

as relations between approximations of a given argument and approximations of its value at

that argument [SLG94].

Definition 4.7 [SLG94] Let P = (P,⊑,⊔,⊥), P ′ = (P ′,⊑′,⊔′,⊥′) be precusl’s. A relation

f ⊆ P × P ′ is an approximable mapping from P to P ′ if

1. ⊥ f ⊥′.

2. p f p′ and p f q′ imply p f (p′ ⊔ q′).

3. p f p′, p ⊑ q, and q′ ⊑′ p′ imply q f q′.

The ideal completion (Id(P ),⊆, {⊥}) of a precusl P is a domain (see [SLG94]). If P = (P,⊑

,⊔,⊥) is a cusl3 (i.e., ⊑ is actually an ordering), then the mapping [ · ] : P → Id(P ) that

associates the principal ideal {p}↓ to each p ∈ P is injective.

An approximable mapping f defines a continuous function f : Id(P ) → Id(P ′) given by

[SLG94]

f(I) = {p′ ∈ P ′ | ∃p ∈ I.p f p′}

=
⋃

p∈I{p
′ ∈ P ′ | p f p′}

Note that, for all p ∈ I, {p′ ∈ P ′ | p f p′} is an ideal (it is not empty because we always have

⊥ f ⊥′, and thus p f ⊥′ by following the third condition of Definition 4.7; it is directed due

to the second condition of Definition 4.7; finally, it is downward closed because of, whenever

we have p f p′ and q′ ⊑′ p′, we also have p f q′, third condition again).

Proposition 4.8 Let P = (P,⊑,⊔,⊥), P ′ = (P ′,⊑′,⊔′,⊥′) be precusl’s, and f, f ′ ⊆ P ×P ′

be approximable mappings from P to P ′. If f ⊆ f ′, then f ⊑ f ′.

Proof. Immediate. 2
In the following, we are mainly involved with elements of Id(P ) which correspond to elements

p ∈ P via [ · ]: in our context, P is either T (C⊥) or T (C⊥)V and elements in P correspond

to finite objects (finite values, or valuations mapping variables to finite values, respectively)

of Id(P ). Thus, we can roughly consider elements of P as the finite or compact elements of

Id(P ) (via [ · ]).

3conditional upper semilattice with least element, abbreviated cusl [SLG94].
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Proposition 4.9 Let P = (P,⊑,⊔,⊥), P ′ = (P ′,⊑′,⊔′,⊥′) be precusl’s, and f ⊆ P ×P ′ be

an approximable mapping from P to P ′. If p ∈ P , then f([p]) = {p′ ∈ P ′ | p f p′}.

Proof. We note that
⋃

q∈[p]{p
′ ∈ P ′ | q f p′} ⊆ {p′ ∈ P ′ | p f p′}: indeed, since for all

q ∈ [p], we have that q ⊑ p, and by using Definition 4.7 (third point), whenever q f p′, we

also have p f p′. Thus, since it is obvious that {p′ ∈ P ′ | p f p′} ⊆
⋃

q∈[p]{p
′ ∈ P ′ | q f p′},

we write

f([p]) =
⋃

q∈[p]{p
′ ∈ P ′ | q f p′}

= {p′ ∈ P ′ | p f p′} 2
Proposition 4.10 Let P = (P,⊑,⊔,⊥), P ′ = (P ′,⊑′,⊔′,⊥′) be precusl’s, p ∈ P and f ⊆

P ×P ′ be an approximable mapping from P to P ′. If [p′] = f([p]) for some p′ ∈ P ′, then for

all q ∈ [p], whenever q f q′ for some q′ ∈ P ′, we have that q′ ⊑′ p′.

Proof. Immediate. 2
The following proposition establishes that, if f sets a connection between finite elements of

domains Id(P ) and Id(P ′), then f itself already connects those elements.

Proposition 4.11 Let P = (P,⊑,⊔,⊥), P ′ = (P ′,⊑′,⊔′,⊥′) be precusl’s, p ∈ P and f ⊆

P × P ′ be an approximable mapping from P to P ′. If [p′] = f([p]) for some p′ ∈ P ′, then

p f p′.

Proof. By definition of f , [p′] = {q′ ∈ P ′ | ∃q ∈ [p].q f q′}. In particular, since p′ ∈ [p′],

there must be q ∈ [p] such that q f p′. Since q ⊑ p, by Definition 4.7 (third condition), the

conclusion follows. 2
Proposition 4.12 Let P = (P,⊑,⊔,⊥), P ′ = (P ′,⊑′,⊔′,⊥′) be precusl’s and I be a set of

indices. Let fα ⊆ P × P ′ be approximable mappings for all α ∈ I. If f = ∪α∈Ifα is an

approximable mapping, then f =
⊔

α∈I fα.

Proof. For all I ∈ Id(P ), we have:

(
⊔

α∈I fα)(I) =
⋃

α∈I fα(I)

=
⋃

α∈I{p
′ ∈ P ′ | ∃p ∈ I. p fα p′}

= {p′ ∈ P ′ | ∃p ∈ P. p f p′}

= f(I) 2
Proposition 4.13 Let P = (P,⊑,⊔,⊥), P ′ = (P ′,⊑′,⊔′,⊥′) be precusl’s and I be a set of

indices. Let fα ⊆ P × P ′ be approximable mappings for all α ∈ I such that {fα | α ∈ I}

is bounded. Let f =
⊔

α∈I fα and p ∈ P . If [p′] = f([p]) for some p′ ∈ P ′, then there exists

α ∈ I such that [p′] = fα([p]).
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Proof. Note that f([p]) = (
⊔

α∈I fα)([p]) =
⋃

α∈I fα([p]). Since [p′] =
⋃

α∈I fα([p]),

it follows that p′ ∈
⋃

α∈I{q
′ ∈ P ′ | ∃q ∈ [p].q fα q′}, i.e., there exists α ∈ I such that

p′ ∈ {q′ ∈ P ′ | ∃q ∈ [p].q fα q′} = fα([p]). If q′ ⊑ p′, then, by Definition 4.7, we have that,

being q ∈ [p] such that q fα p′, we also have q fα q′. Thus, q′ ∈ fα([p]), i.e., [p′] ⊆ fα([p]). On

the other hand, if [p′] 6⊇ fα([p]), it is not possible that [p′] = f([p]). Hence, the conclusion

follows. 2
5 The narrowing space as an approximable mapping

Analogously to the construction Rew(t), we can build a semantic description Narr(t) of the

narrowing evaluation of t. Nevertheless, since Narr(t) is intended to be a representation of

a ngv, i.e., a functional value, we are going to use the approximable mappings introduced in

the previous section.

It is easy to see that (T (C⊥),⊑,⊔,⊥), where ⊑ is the usual approximation ordering,

is a precusl (in fact a cusl). Similarly, (T (C⊥)V
,⊑,⊔,⊥Valuat ), where ⊑ is the pointwise

extension of the ordering ⊑ on T (C⊥) to valuations φ ∈ T (C⊥)V is also a cusl. Given a

term t, NDeriv(t) is the set of narrowing derivations issued from t. We associate a relation

NarrA(t) ⊆ T (C⊥)V × T (C⊥) to a given narrowing derivation A ∈ NDeriv(t).

Definition 5.1 Given a term t ∈ T (Σ⊥, V ) and a narrowing derivation

A : 〈ε, t〉 = 〈σ0, t0〉; 〈σ1, t1〉; · · ·; 〈σn−1, tn−1〉; 〈σn, tn〉

we define NarrA(t) = ∪0≤i≤nNarrA
i (t) where:

NarrA
i (t) = {〈ς, δ〉 ∈ T (C⊥)V × T (C⊥) |

∃φ ∈ T (C⊥)V
.(|φ ◦ σi|)FL ⊑ ς ∧ δ ⊑ (|φ(ti)|)FL}

where we assume that Dom(φ) ∩ Dom(σi) = Ø for 0 ≤ i ≤ n.

Remark 5.2 Note that the condition Dom(φ) ∩ Dom(σi) = Ø is natural and does not

actually restrict anything: since σi is idempotent and σi(ti) = ti, variables in Dom(σi) are

not useful for either instantiating ti or variables in Rng(σi).

We can prove that NarrA(t) is an approximable mapping for every narrowing derivation

A ∈ NDeriv(t). In order to achieve this, we need some lemmata.

Lemma 5.3 Let φ ∈ T (C⊥)V and σ be a substitution. Then, (|φ ◦ σ|)FL = φ ◦ (|σ|)F .

Proof. (|φ ◦ σ|)FL = ⊥Valuat◦(|φ ◦ σ|)F = ⊥Valuat◦(|φ|)F◦(|σ|)F = ⊥Valuat◦φ◦(|σ|)F = φ◦(|σ|)F .2
Lemma 5.4 Let t ∈ T (Σ⊥, V ). If φ ∈ T (C⊥)V , then (|φ(t)|)FL = φ((|t|)F ).
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Proof. By using Lemma 5.3, we have (|φ(t)|)FL = (|φ|)FL(t) = (|φ ◦ ε|)FL(t) = φ◦(|ε|)F (t) =

φ((|t|)F ). 2
Proposition 5.5 Let φ, φ′, ς ∈ T (C⊥)V and σ be a substitution such that Dom(σ) ∩

Dom(φ) = Ø. If {φ ◦ σ, φ′ ◦ σ} is bounded by ς, then {φ, φ′} is bounded and (φ⊔ φ′) ◦ σ ⊑ ς.

Proof. First we prove that {φ, φ′} is bounded, i.e., that for all x ∈ V , {φ(x), φ′(x)} is

bounded. For each x ∈ V , we consider two cases:

1. x 6∈ Dom(σ), i.e., σ(x) = x: By hypothesis, we have φ(σ(x)) = φ(x) ⊑ ς(x) and

φ′(σ(x)) = φ′(x) ⊑ ς(x).

2. x ∈ Dom(σ): Then, by hypothesis, x 6∈ Dom(φ), i.e., φ(x) = ⊥. Thus, φ(x) ⊑ φ′(x).

Thus, since T (C⊥)V is a cusl, φ⊔φ′ does exist. Now we have (φ⊔φ′)◦σ = (φ◦σ)⊔(φ′◦σ) ⊑ ς.2
Example 5.6 Without imposing that Dom(σ)∩Dom(φ) = Ø, Proposition 5.5 could be false.

For instance, let σ(x) = a, ς(x) = a, φ(x) = a, and φ′(x) = b for a given variable x and

arbitrary constants a and b. Then, φ(σ(x)) = φ′(σ(x)) = ς(x) = a, i.e., {φ ◦ σ, φ′ ◦ σ} is

bounded by ς, but {φ(x), φ′(x)} = {a, b} is not bounded.

Lemma 5.7 Let t be a finite term and σ, σ′ be substitutions such that σ ⊑ σ′. Then,

(|σ(t)|)FL ⊑ (|σ′(t)|)FL.

Proof. Since σ ⊑ σ′, σ(t) ⊑ σ′(t) for all terms t. The conclusion follows by monotonicity

of (| |)FL. 2
Proposition 5.8 Let R be a TRS, t be a term, and A be a narrowing derivation starting

from t. Then, NarrA(t) is an approximable mapping.

Proof. Let

A : 〈ε, t〉 = 〈σ0, t0〉; 〈σ1, t1〉; · · ·; 〈σn−1, tn−1〉; 〈σn, tn〉

We abbreviate NarrA(t) by m. Then, we check the conditions of Definition 4.7. We silently

use Lemma 5.3 to simplify the expressions.

1. Note that, for all derivations A starting from t,

NarrA
0 (t) = {〈ς, δ〉 | ∃φ ∈ T (C⊥)V

.(|φ ◦ ε|)FL ⊑ ς ∧ δ ⊑ (|φ(t)|)FL} ⊆ m.

We have that (|φ ◦ ε|)FL = φ ◦ (|ε|)F = φ ◦ ε = φ. In particular, by choosing φ = ς =

⊥Valuat (note that Dom(⊥Valuat ) = Ø) and δ = ⊥, we obtain φ = ⊥Valuat ⊑ ⊥Valuat ,

and δ = ⊥ ⊑ (|⊥Valuat(t)|)FL, i.e., ⊥Valuat m ⊥.
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2. Let ς m δ and ς m δ′. By definition of m, there are φi, φj ∈ T (C⊥)V such that

φi ◦ (|σi|)F ⊑ ς and φj ◦ (|σj |)F ⊑ ς for some 0 ≤ i ≤ j ≤ n. Since i ≤ j, there

exists an idempotent substitution θ : Var(ti) → T (Σ, V ) such that σj = θ ◦ σi (here

the assumption about the usual variable renaming of rules of the TRS when applying

narrowing steps is important, see [Pal90]). Therefore, we have that φi ◦ (|σi|)F ⊑ ς

and φj ◦ (|σj |)F = φj ◦ (|θ ◦ σi|)F ⊑ ς. Let us show that φi ◦ (|σj |)F ⊑ ς. Consider

x 6∈ Dom((|σj |)F ). Since Dom((|σi|)F ) ⊆ Dom((|σj|)F ), it follows that x 6∈ Dom((|σi|)F );

thus, φi((|σj(x)|)F ) = φi(x) = φi((|σi(x)|)F ) ⊑ ς(x). If x ∈ Dom((|σj |)F ), then, by using

the fact that σj = θ ◦ σi and Rng(θ) ∩ Dom(φi) = Ø, we distinguish two cases:

(a) If x is such that Var((|σi(x)|)F )∩Dom(θ) = Ø, then (|σi(x)|)F = (|σj(x)|)F ; hence,

φi(σj(x)) ⊑ ς(x).

(b) If x is such that Var((|σi(x)|)F ) ∩ Dom(θ) 6= Ø, then (|σj(x)|)F = θ((|σi(x)|)F )

can contain variables which are already present in (|σi(x)|)F (i.e., variables y with

y 6∈ Dom(θ)) for which condition φi ◦ (|σi|)F ⊑ ς ensures the desired result. For

the other variables, φi does not modify anything. Thus, the condition (|σj |)F ⊑ ς

(an easy consequence of φj ◦ (|σj |)F ⊑ ς) ensures the desired result.

Thus, since φi ◦ (|σj |)F ⊑ ς and φj ◦ (|σj |)F ⊑ ς, by Proposition 5.5 (note that

Dom((|σj |)F ) ∩ Dom(φj) = Ø), {φi, φj} is bounded by φ = φi ⊔ φj and φ ◦ (|σj |)F ⊑ ς.

By definition of m, we also have δ ⊑ (|φi(ti)|)FL and δ′ ⊑ (|φj(tj)|)FL. By Proposition

4.6, (|ti|)FL ⊑ (|tj |)FL. Since no pure renamings occur during the narrowing process (for

variables in the goal expression), we get (|φi(ti)|)FL ⊑ (|φi(tj)|)FL. By Lemma 5.7, we

obtain

δ ⊑ (|φi(ti)|)FL ⊑ (|φi(tj)|)FL ⊑ (|φ(tj)|)FL

By Lemma 5.7 again,

δ′ ⊑ (|φj(tj)|)FL ⊑ (|φ(tj)|)FL

Thus, {δ, δ′} is bounded, and δ ⊔ δ′ ⊑ (|φ(tj)|)FL. Since φ ◦ (|σj |)F ⊑ ς, by definition of

m, we have ς m (δ ⊔ δ′).

3. Let ς m δ, ς ⊑ ς ′, and δ′ ⊑ δ. Thus, there is φ ∈ T (C⊥)V and σi, 0 ≤ i ≤ n such that

φ ◦ (|σi|)F ⊑ ς and δ ⊑ (|φ(ti)|)FL. Since φ ◦ (|σi|)F ⊑ ς ⊑ ς ′ and δ′ ⊑ δ ⊑ (|φ(ti)|)FL,

ς ′ m δ′ holds by definition of m. 2
Definition 5.9 Given a term t ∈ T (Σ⊥, V ), we define the relation Narr(t) ⊆ T (C⊥)V ×

T (C⊥) to be Narr(t) =
⋃

A∈NDeriv(t) NarrA(t).

Unfortunately, these semantic definitions are not consistent w.r.t. rewriting.
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Example 5.10 Consider the TRS:

f(f(x)) → a

c → b

and A : 〈ε, t〉 = 〈ε, f(x)〉 ; 〈{x 7→ f(x’)}, a〉. If m = NarrA(t), then {x 7→ a} m a (we

take φ = ⊥Valuat , σ = {x 7→ f(x’)} in Definition 5.1; hence, (|φ ◦ σ|)FL = ⊥Valuat ⊑ {x 7→

a} = ς). Thus, NarrA(t)({x 7→ a}) = a. However, {x 7→ a}(t) = f(a) 6→∗ a.

The problem here is that (| |)FL identifies (as ⊥) parts of the bindings σ(x) of a computed

substitution σ which can be semantically refined by instantiation (of the variables in σ(x))

and other which cannot be further refined by instantiation (the operation-rooted subterms in

σ(x)). If we deal with left-linear CB-TRS’s and choose (idempotent) mgu’s as unifiers for the

narrowing process, the substitutions which we deal with are linear constructor substitutions,

i.e., for all narrowing derivations 〈ε, t〉 ;∗ 〈σ, s〉 and all x ∈ V , σ(x) is a constructor term

and {σ(x) | x ∈ Dom(σ)} is a linear set of terms (i.e., no variable appears twice within

them). Hence, the substitutions computed by narrowing have no partial information apart

from the variable occurrences. In this case, (|σ|)F = σ, (|σ|)FL = ⊥Valuat ◦ (|σ|)F = ⊥Valuat ◦ σ,

and we have the following result.

Proposition 5.11 Let σ be a linear constructor substitution and φ, ς ∈ T (C⊥)V . If φ◦σ ⊑ ς,

then there exists φ′ ∈ T (C⊥)V such that φ ⊑ φ′ and φ′ ◦ σ = ς.

Note that linearity of σ is necessary for ensuring this result.

Example 5.12 Let σ = {u 7→ f(x,y), v 7→ f(x,z)}, φ = ⊥Valuat , and ς = {u 7→

f(⊥,⊥), v 7→ f(c,⊥)}. Clearly, φ ◦ σ = {u 7→ f(⊥,⊥), v 7→ f(⊥,⊥)} ⊑ ς. How-

ever, there is no φ′ such that φ′ ◦ σ = ς because it would be necessary that, simultaneously,

φ′(x) = ⊥ and φ′(x) = c.

Thus, we obtain a simpler, more readable expression for the approximable mapping which

is associated to a given left-linear, CB-TRS by noting that

NarrA
i (t) = {〈ς, δ〉 | ∃φ ∈ T (C⊥)V

.(|φ ◦ σi|)FL ⊑ ς ∧ δ ⊑ (|φ(ti)|)FL}

= {〈ς, δ〉 | ∃φ ∈ T (C⊥)V
.φ ◦ σi = ς ∧ δ ⊑ (|φ(ti)|)FL}

The union of approximable mappings (considered as binary relations) need not to be an

approximable mapping. Nevertheless, we have the following result.

Proposition 5.13 Let R be a left-linear, confluent CB-TRS and t be a term. Then, Narr(t)

is an approximable mapping.

Proof. We abbreviate Narr(t) by m. Then, we check the conditions of Definition 4.7.

Again, we use Lemma 5.3 to simplify the expressions.
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1. Since 〈ε, t〉 ;∗ 〈ε, t〉, we have that ⊥Valuat ◦ ε = ⊥Valuat ⊑ ⊥Valuat , and ⊥ ⊑

(|⊥Valuat(t)|)FL, i.e., ⊥Valuat m ⊥.

2. Let ς m δ and ς m δ′. By definition of m, there are narrowing derivations 〈ε, t〉 ;∗

〈σ1, s1〉, 〈ε, t〉;∗ 〈σ2, s2〉 and φ1, φ2 ∈ T (C⊥)V such that φ1◦(|σ1|)F ⊑ ς and φ2◦(|σ2|)F ⊑

ς. By Proposition 5.11, there exist θ1, θ2 ∈ T (C⊥)V such that φ1 ⊑ θ1, φ2 ⊑ θ2, and

ς = θ1 ◦ (|σ1|)F , ς = θ2 ◦ (|σ2|)F . We also have δ ⊑ (|φ1(s1)|)FL and δ′ ⊑ (|φ2(s2)|)FL.

By Hullot’s Theorem [Hul80], σ1(t) →∗ s1 and σ2(t) →∗ s2. By stability, we have that

θ1(σ1(t)) →∗ θ1(s1) and θ2(σ2(t)) →∗ θ2(s2). Since R is left-linear and constructor-

based, σ1 and σ2 are constructor substitutions. Therefore, (|σ1|)F = σ1, and (|σ2|)F = σ2,

and hence ς = θ1 ◦ σ1 and ς = θ2 ◦ σ2. Thus, ς(t) →∗ θ1(s1) and ς(t) →∗ θ2(s2). By

confluence, there is a term s such that θ1(s1) →∗ s and θ2(s2) →∗ s, hence ς(t) →∗ s.

By Proposition 3.1 and Lemma 4.3, (|θ1(s1)|)FL, (|θ2(s2)|)FL ⊑ (|s|)FL. By Hullot’s

Theorem [Hul80], there is σ ≤ ς such that 〈ε, t〉 ;∗ 〈σ, s′〉 and s′ ≤ s, i.e., there

exists a substitution φ such that ς = φ ◦ σ and s = φ(s′). By hypothesis and by

Lemma 5.7, δ ⊑ (|φ1(s1)|)FL ⊑ (|θ1(s1)|)FL and δ′ ⊑ (|φ2(s2)|)FL ⊑ (|θ2(s2)|)FL. Since

(|θ1(s1)|)FL, (|θ2(s2)|)FL ⊑ (|s|)FL, it follows that {δ, δ′} is bounded by (|s|)FL, i.e., {δ, δ′}

is consistent. Since T (C⊥) is a cusl, δ⊔δ′ is the lub of δ and δ′. Hence, since (|φ ◦ σ|)FL =

(|ς|)FL = ς ⊑ ς, and δ ⊔ δ′ ⊑ (|s|)FL = (|φ(s′)|)FL, by Definition 5.9, ς m (δ ⊔ δ′).

3. We need to prove that, if ς m δ, ς ⊑ ς ′, and δ′ ⊑ δ, then then ς ′ m δ′. Since ς m δ,

there is a narrowing derivation 〈ε, t〉 ;∗ 〈σ, s〉 and a substitution φ ∈ T (C⊥)V such

that φ ◦ (|σ|)F ⊑ ς and δ ⊑ (|φ(s)|)FL. If ς ⊑ ς ′, then φ ◦ (|σ|)F ⊑ ς ′. On the other hand,

δ′ ⊑ δ ⊑ (|φ(s)|)FL. Hence, by definition of m, ς ′ m δ′. 2
We have the following compositionality result: the semantics of the whole narowing process

can be thought of as the lub of the semantics of each narrowing derivation.

Proposition 5.14 Let R be a left-linear, confluent CB-TRS and t be a term. Then

Narr(t) =
⊔

A∈NDeriv(t) NarrA(t).

Proof. Proposition 5.13, Proposition 5.8, and Proposition 4.12. 2
Thus, we define the semantic function

CNarr∞ : T (Σ⊥, V ) → [T ∞(C⊥)V → T ∞(C⊥)]

as follows:

CNarr∞(t) = Narr(t)

i.e., CNarr∞(t) is the continuous mapping associated to the approximable mapping Narr(t)

which represents the narrowing derivations starting from t. This semantics is consistent w.r.t.

rewriting.
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Theorem 5.15 Let R be a left-linear, confluent CB-TRS. For all t ∈ T (Σ⊥, V ), ς ∈

T (C⊥)V , CNarr∞(t) ς = CRew∞(ς(t)).

Proof. By using Proposition 4.9 (and according to Proposition 5.13), we can write:

CNarr∞(t) [ς] = {δ | ς Narr(t) δ}

=
⋃

A∈NDeriv(t){δ | ς NarrA(t) δ}

For each narrowing derivation

A : 〈ε, t〉 = 〈σ0, t0〉; 〈σ1, t1〉; · · ·; 〈σn−1, tn−1〉; 〈σn, tn〉

such that ς = φ ◦ σi for some 1 ≤ i ≤ n and δ ⊑ (|φ(ti)|)FL, by Hullot’s Theorem, we have

σi(t) →∗ ti. By stability ς(t) →∗ φ(ti). Thus, since φ ∈ T (C⊥)V , (|φ(ti)|)FL = (|φ(ti)|)F ∈

Rew(ς(t)) and, in fact, CNarr∞(t) [ς] ⊆ Rew(ς(t))↓. In order to prove that Rew(ς(t))↓ ⊆

CNarr∞(t) [ς], let us consider δ ∈ Rew(ς(t))↓. Then there exists (|s|)F ∈ Rew(ς(t)) such

that δ ⊑ (|s|)F . Hence, ς(t) →∗ s and there is a narrowing derivation 〈ε, t〉 ;∗ 〈σ, s′〉 with

ς = φ ◦ σ for some φ ∈ T (C⊥)V and s = φ(s′). Therefore, since ς(t), s ∈ T (Σ⊥), we have

that (|s|)F = (|s|)FL = (|φ(s′)|)FL = φ(s′). Thus, ς Narr(t) φ(s′) and, since Narr(t) is an

approximable mapping and δ ⊑ (|s|)FL = φ(s′), we have ς Narr(t) δ, i.e., Rew(ς(t))↓ ⊆

CNarr∞(t) [ς]. 2
5.1 Narrowing strategies

A narrowing strategy N is a restriction on the set of possible narrowing steps. Given a nar-

rowing strategy N and a term t, we can consider the set NDerivN (t) ⊆ NDeriv(t) of deriva-

tions which start from t and conform to N . By Proposition 5.8, each A ∈ NDerivN (t) defines

an approximable mapping NarrA(t) which is obviously contained in Narr(t). By Proposition

4.8 (when we consider left-linear, CB-TRSs), NarrA(t) ⊑ Narr(t) = CNarr∞(t). There-

fore, {NarrA(t) | A ∈ NDerivN (t)} is bounded by CNarr∞(t). Since [T ∞(C⊥)V → T ∞(C⊥)]

is a domain, it is consistently complete, i.e., the lub of every bounded subset actually exists

(Theorem 3.1.10 in [SLG94]). Thus, for left-linear, CB-TRSs, we fix

CNarr∞N (t) =
⊔

{NarrA(t) | A ∈ NDerivN (t)}

to be the meaning of t when it is evaluated under the narrowing strategy N . Clearly, for all

narrowing strategies N , CNarr∞N ⊑ CNarr∞. Thus, CNarr∞ provides a semantic reference

for narrowing strategies. Strategies that satisfy CNarr∞N = CNarr∞ can be thought of as

correct strategies. Note that, being a continuous mapping, CNarr∞N (t) also has an associated

approximable mapping (see [SLG94]).

Remark 5.16 Narrowing is able to yield the graph of a function f by computing

CNarr∞(f(x)), where x1, . . . , xar(f) are different variables. This gives an interesting per-

spective of narrowing as an operational mechanism which computes denotations of functions

as a whole, rather than only values of particular function calls. A similar observation can be

made for narrowing strategies.
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In order to highlight similarities in the semantic description of narrowing and rewriting, let

us compare the mathematical treatment of Rew(t) and Narr(t):

Rewriting Narrowing

• Rew(t) is a set of partial constructor

terms δ ∈ T (C⊥, V ).

• Narr(t) is a set of pairs 〈ς, δ〉, where ς is

a valuation on T (C⊥) and δ ∈ T (C⊥).

• Rew(t) is a directed set. • Narr(t) is an approximable mapping.

• The limit CRew∞(t) of Rew(t) within the

domain T ∞(C⊥, V ) is a (possibly infinite)

value.

• The ‘limit’ of Narr(t) is a continu-

ous mapping CNarr∞(t) from valuations

to (infinite) constructor terms, i.e, a non-

ground value.

6 Computational interpretation of the semantic de-

scriptions

The aim of our semantic descriptions is to provide a clear computational interpretation of

the semantic information. After the abstraction process that every semantic description

involves (in our case, by using observation mappings), we ask ourselves: what kind of op-

erational information can be obtained from the semantic description? This is essential for

defining accurate analyses by using the semantic description. In this section we specially

investigate the correspondence between the semantic description of the computational pro-

cesses of rewriting and narrowing when they succeed in founding values.

Proposition 6.1 Let R be a confluent TRS, t ∈ T (Σ⊥, V ), and δ ∈ T (C, V ). Then, δ =

CRew∞(t) if and only if t →∗ δ.

Proof. If t →∗ δ, then (|δ|)F = δ ∈ Rew(t). Since δ is maximal and, by Proposition 3.2,

Rew(t) is directed, it follows that δ = CRew∞(t). The opposite statement follows a similar

reasoning. 2
Proposition 6.2 Let R be a TRS, t ∈ T (Σ⊥, V ), IF be a rewriting strategy, and δ ∈

T (C, V ). Then, δ = CRew∞
IF (t) if and only if t →∗

IF δ.

Proof. Similar to Proposition 6.1. 2
Concerning narrowing computations, we have the following result.

Proposition 6.3 Let R be a left-linear, confluent CB-TRS. Let t be a term, ς ∈ T (C⊥)V ,

m = CNarr∞(t), and δ = m(ς).

1. For every narrowing derivation 〈ε, t〉;∗ 〈σ, s〉 such that φ◦σ = ς, we have (|φ(s)|)FL ⊑

δ.

18



2. If δ ∈ T (C⊥), there exists a narrowing derivation 〈ε, t〉;∗ 〈σ, s〉 and φ ∈ T (C⊥)V such

that φ ◦ σ = ς and δ = (|φ(s)|)FL.

3. If δ ∈ T (C), then there exists a narrowing derivation 〈ε, t〉 ;∗ 〈σ, s〉 such that s ∈

T (C, V ), φ ◦ σ = ς, and δ = φ(s).

Proof.

1. If A : 〈ε, t〉 ;∗ 〈σ, s〉 is such that φ ◦ σ = ς, by definition of NarrA(t) we have

ς NarrA(t) (|φ(s)|)FL, i.e., ς Narr(t) (|φ(s)|)FL. By Proposition 4.10, the conclusion

follows.

2. By Proposition 4.11, we have that ς Narr(t) δ. Thus, by definition of Narr(t), there

is a narrowing derivation A : 〈ε, t〉 ;∗ 〈σ, s〉 such that ς NarrA(t) δ. Hence, there

exists φ ∈ T (C⊥)V such that φ ◦ σ = ς and δ ⊑ (|φ(s)|)FL. Using (1), we conclude

δ = (|φ(s)|)FL.

3. By using (2), we conclude that there exists a narrowing derivation 〈ε, t〉 ;∗ 〈σ, s〉

and φ ∈ T (C⊥)V such that φ ◦ σ = ς and δ = (|φ(s)|)FL. Assume that s 6∈ T (C, V ).

Then, there exists a defined symbol f ∈ F in s. Then, ⊥ occurs in δ = (|φ(s)|)FL thus

contradicting the fact that δ ∈ T (C). 2
We are able to refine the computational information couched by the narrowing semantics by

introducing a small modification on it.

Definition 6.4 Given a term t ∈ T (Σ⊥, V ), and a narrowing derivation

A : 〈ε, t〉 = 〈σ0, t0〉; 〈σ1, t1〉; · · ·; 〈σn−1, tn−1〉; 〈σn, tn〉

we let BNarrA(t) = ∪0≤i≤nBNarrA
i (t) where:

BNarrA
i (t) = {〈ς, δ〉 ∈ T (C⊥)V × T (C⊥) | (|σi|)FL ⊑ ς ∧ δ ⊑ (|ti|)FL}

Proposition 6.5 Let R be a TRS, t be a term and A be a narrowing derivation starting

from t. Then BNarrA(t) is an approximable mapping.

Proof. Let

A : 〈ε, t〉 = 〈σ0, t0〉; 〈σ1, t1〉; · · ·; 〈σn−1, tn−1〉; 〈σn, tn〉

We abbreviate BNarrA(t) by m. Then, we check the conditions of Definition 4.7.
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1. Note that, for all derivations A starting from t,

BNarrA
0 = {〈ς, δ〉 | (|ε|)FL ⊑ ς ∧ δ ⊑ (|t|)FL} ⊆ m.

We have that (|ε|)FL = ⊥Valuat and we obtain ⊥Valuat ⊑ ⊥Valuat = ς, and δ = ⊥ ⊑ (|t|)FL,

i.e., ⊥Valuat m ⊥.

2. Let ς m δ and ς m δ′. By definition of m, there are σi, σj , such that (|σi|)FL ⊑ ς,

δ ⊑ (|ti|)FL, (|σj |)FL ⊑ ς, and δ′ ⊑ (|tj |)FL for some 0 ≤ i ≤ j ≤ n. By Proposition

4.6 (|ti|)FL ⊑ (|tj |)FL, i.e., {δ, δ′} is bounded by (|tj |)FL. Thus, δ ⊔ δ′ ⊑ (|tj |)FL and, by

definition of m, ς m (δ ⊔ δ′).

3. Let ς m δ, ς ⊑ ς ′, and δ′ ⊑ δ. Thus, there is σi, 0 ≤ i ≤ n such that (|σi|)FL ⊑ ς and

δ ⊑ (|ti|)FL. Since (|σi|)FL ⊑ ς ⊑ ς ′ and δ′ ⊑ δ ⊑ (|ti|)FL, by definition of m, we also

have that ς ′ m δ′. 2
Since each BNarrA

i (t) is a special case of NarrA
i (t), in which only φ = ⊥Valuat is allowed,

we have that BNarrA(t) ⊆ NarrA(t). Therefore, by Propositions 5.8 and 6.5, and using

Proposition 4.8, we have that, for all terms t, BNarrA(t) ⊑ NarrA(t). Whenever we

consider left-linear, confluent CB-TRSs, Proposition 5.13 and Proposition 4.8 ensure that

{BNarrA(t) | A ∈ NDeriv(t)} is bounded by CNarr∞(t). Thus, for left-linear, confluent

CB-TRSs, we fix

BNarr∞(t) =
⊔

{BNarrA(t) | A ∈ NDeriv(t)}

as the basic description of narrowing computations. Clearly, BNarr∞(t) ⊑ CNarr∞(t).

The basic description BNarr∞(t) is closer to the computational mechanism of narrowing.

The following propositions formalize this claim.

Proposition 6.6 Let R be a left-linear, confluent CB-TRS, t be a term, ς ∈ T (C⊥)V ,

m = BNarr∞(t), and δ = m(ς).

1. For every narrowing derivation 〈ε, t〉;∗ 〈σ, s〉 such that (|σ|)FL ⊑ ς, it is (|s|)FL ⊑ δ.

2. If δ ∈ T (C⊥), there exists a narrowing derivation 〈ε, t〉 ;∗ 〈σ, s〉 such that φ ◦ σ = ς

and δ = (|s|)FL.

Proof.

1. If A : 〈ε, t〉 ;∗ 〈σ, s〉 is such that (|σ|)FL ⊑ ς, then, by definition of BNarrA(t), we

have that ς BNarrA(t) (|s|)FL. Therefore, (|s|)FL ⊑ BNarrA(t) ς ⊑ m(ς) = δ.
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2. By Proposition 4.13, there is a narrowing derivation A : 〈ε, t〉 ;∗ 〈σ, s〉 such that

δ = BNarrA(t) ς. By Proposition 4.11, ς BNarrA(t) δ. Since (|σ|)FL ⊑ ς, by using

(1), we conclude (|s|)FL ⊑ δ. By definition of BNarrA(t), δ ⊑ (|s|)FL and the conclusion

follows. 2
Proposition 6.7 Let R be a left-linear, confluent CB-TRS, t be a term, and m =

BNarr∞(t). If 〈ε, t〉;∗ 〈σ, δ〉 and δ ∈ T (C), then m((|σ|)FL) = δ.

Proof. Let δ′ = m((|σ|)FL). By Proposition 6.6(1), (|δ|)FL ⊑ δ′. Since δ ∈ T (C), (|δ|)FL = δ;

moreover, since δ is maximal, δ 6< δ′. Hence, δ = δ′ = m((|σ|)FL). 2
7 A semantics-based analysis framework

Domain theory provides a framework for formulating properties of programs and discussing

about them [Abr91, Sco81]: A property π of a program P whose denotation [[P]] is taken

from a domain D (i.e., [[P]] ∈ D) can be identified with a predicate π : D → 2, where 2 is the

two point domain 2 = {⊥,⊤} ordered by ⊥ ⊑ ⊤ (where ⊥ can be thought of as false and ⊤

as true). A program P satisfies π if π([[P]]) = ⊤ (alternatively, if [[P]] ∈ π−1(⊤)). As usual in

domain theory, we require continuity of π for achieving computability (or observability, see

[Smy83, Vic89]). The set [D → 2] of observable properties is (isomorphic to) the family of

open sets of the Scott’s topology associated to D [Abr91]. A topology is a pair (X, τ) where

X is a set and τ ⊆ P(X) is a family of subsets of X (called the open sets) such that [SLG94]:

X, Ø ∈ τ ; if U, V ∈ τ , then U ∩ V ∈ τ ; and if Ui ∈ τ for i ∈ I, then
⋃

i∈I Ui ∈ τ . The Scott’s

topology associated to a domain D is given by the set of upward closed subsets U ⊆ D such

that, whenever A ⊆ D is directed and
⊔

A ∈ U , then ∃x ∈ A.x ∈ U [SLG94].

Note that, when considering the Scott’s topology (D, τD) of a domain D, the open set D

denotes a trivial property which every program satisfies; Ø, the least element of lattice τD,

denotes the ‘impossible’ property, which no program satisfies.

7.1 Analysis of functional logic programs

A program analysis consists in the definition of a continuous function α : D → A between

topologic spaces (D, τD) and (A, τA) which expresses concrete and abstract properties, re-

spectively. By the topological definition of continuity, each open set V ∈ τA maps to an open

set U ∈ τD via α−1, i.e., α−1 : τA → τD is a mapping from abstract properties (open sets of

τA) to concrete properties (open sets of τD). It is easy to see that (D, {α−1(V ) | V ∈ τA}) is

a subtopology of D (i.e., {α−1(V ) | V ∈ τA} ⊆ τD). Therefore, each analysis distinguishes a

subset of properties of D which is itself a topology. Note that τA plays the role of an abstract

domain in the usual, lattice-based, abstract interpretation approaches. For instance, the
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Scott’s topology of 2 is given by τ2 = {Ø, {⊤}, 2}. Such a topology permits to express only

one non-trivial property, namely, the one which corresponds to the open set {⊤}.

In functional logic languages, the semantic domain under observation is [DV → D] where

D = T ∞(C⊥). Observable properties of functional logic programs are open sets of its Scott’s

topology. Approximations to such properties can be obtained by abstracting [DV → D] into

a suitable abstract domain (see below).

Every continuous function f : D → E maps observable properties of the codomain E

into observable properties of D (by f−1 : τE → τD). In particular, elements of [DV → D],

i.e., denotations of functional logic programs, map properties of D (we call them ‘functional’

properties) into properties of DV (‘logic’ properties). This provides an additional, interesting

analytic perspective: By rephrasing Dybjer [Dyb91], we can computationally interpret this

correspondence as establishing the extent that a ‘logic property’ (concerning valuations)

needs to be ensured to guarantee a property of its functional part (computed value). There

is a simple way to obtain an abstraction of the logic part DV of [DV → D] from an abstraction

of its functional part D.

Definition 7.1 Let D, V, A be sets. Let αF : D → A be a mapping. Then, αL : DV → AV

given by αL(φ) = αF ◦ φ, for all φ ∈ DV , is called the logic abstraction induced by αF .

If αF : D → A is strict (surjective, continuous), then αL is strict (surjective, continuous).

Whenever αF is a continuous mapping from a domain D to 2, αF expresses, in fact, a single

observable property α−1({⊤}) of D. We can thought of αF as a functional property. Thus,

Definition 7.1 associates an abstraction αL of DV to a given property identified by αF . Thus,

each functional property induces a related set of logic properties which is a subtopology of

τDV . In Section 7.3 we show that groundness (a logic property), is induced by the functional

property of termination.

7.2 Approximation of functions

Abstractions αD : D → A and αE : E → B (A and B being algebraic lattices), induce safety

and liveness abstractions αS
D→E, αL

D→E : (D → E) → (A → B), of continuous mappings by

[Abr90]

αS
D→E(f)(d) = ⊔{(αE ◦ f)(d′) | αD(d′) ⊑ d}, and

αL
D→E(f)(d) = ⊓{(αE ◦ f)(d′) | αD(d′) ⊒ d}

where the following correctness result holds:

Theorem 7.2 (The semi-homomorphism property [Abr90]) Let f : D → E, fS =

αS
D→E(f), and fL = αL

D→E(f). Then, fL ◦ αD ⊑ αE ◦ f ⊑ fS ◦ αD.

Consider an abstraction αE : E → 2 which can be thought of as a property of elements of the

codomain E of f : D → E. For analytic purposes, the correctness condition fS ◦αD ⊒ αE ◦f
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ensures that, for all x ∈ D, whenever the abstract computation fS(αD(x)) yields ⊥, the

concrete computation f(x) does not satisfy the property αE , i.e., αE(f(x)) = ⊥. On the

other hand, the correctness condition fL ◦ αD ⊑ αE ◦ f ensures that, whenever fL(αD(x))

yields ⊤, the concrete computation f(x) actually satisfies αE , i.e., αE(f(x)) = ⊤. We use

this computational interpretation later.

7.3 Termination analysis and groundness analysis

The functional structure of the semantic domain of ngv’s reveals connections between ap-

parently disconnected analyses. Consider ht : T ∞(C⊥) → 2 defined by

ht(δ) =

{

⊤ if δ ∈ T (C)

⊥ otherwise

and let hg : T ∞(C⊥)V → 2V be the logic abstraction induced by ht. Note that both ht and

hg are strict and continuous. Abstractions ht and hg express the observable properties of

(successful) termination and groundness, respectively: Recall that the only nontrivial open

set of the the Scott’s topology of 2 is {⊤}. By continuity of ht, h−1
t ({⊤}) is the (open) set of

finite, totally defined values which actually corresponds to terminating successful evaluations.

Remark 7.3 ht and Mycroft’s abstraction:

halt(d) =

{

⊤ if d 6= ⊥

⊥ if d = ⊥

for termination analysis [Myc80] are similar. However, halt expresses termination only if C

contains only constant symbols. It is easy to see that, in this case, ht = halt.

On the other hand, each open set of 2V is (isomorphic to) an upward closed collection of

sets of variables ordered by inclusion. In this case, h−1
g (U) for a given open set U is a set

of substitutions whose bindings for variables belonging to X ∈ U are ground. This formally

relates groundness and termination: groundness is the ‘logic’ property which corresponds to

the ‘functional’ property of termination. In fact, 2V is a well-known abstract domain for

groundness analysis in logic programming [JS87].

If C has constructors with positive arity, then h−1
t ({⊤}) is the set of constructor-rooted

values (they correspond to terms having a constructor-rooted head-normal form). In this

case, h−1
g (U) for a given open set U is a set of substitutions whose bindings for variables

belonging to X ∈ U has been instantiated with some constructor-rooted term.

7.4 Using semantic information for improving the evaluation

Groundness information can be used to improve the narrowing evaluation of a term t =

C[t1, . . . , tn]: if we know that every successful evaluation of ti grounds the variables of tj , for
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some 1 ≤ i, j ≤ n, i 6= j, then it is sensible to evaluate t by first narrowing ti (up to a value)

and next evaluating t′j (i.e., tj after instantiating its variables using the bindings created by

the evaluation of ti) by rewriting because, after evaluating ti, we know that t′j is ground and

we do not need to provide code for unification, instantiation of other variables, etc.

Example 7.4 Consider the following TRS:

0+x → x if(true,x,y) → x

s(x)+y → s(x+y) if(false,x,y) → y

even(0) → true even(s(s(x))) → even(x)

even(s(0)) → false

For an initial (conditional) expression “if even(x) then x+x else s(x+x)” (we use the

more familiar notation if then else for if expressions), it is clear that x becomes ground

after every successful narrowing evaluation of the condition even(x). Thus, we can evaluate

x+x by rewriting instead of narrowing.

Additionally, we need to ensure that the evaluation of ti is safe under the context C (i.e., that

failing evaluations of ti do not prevent the evaluation of t). Eventually, we should also ensure

that the complete evaluation of t′j is safe. Strictness information can be helpful here: if the

(normalizing) narrowing strategy is not able to obtain any value, this means that the whole

expression does not have a value. However, we should only use non-contextual strictness

analyses (like Mycroft’s [Myc80] is). In this way, we ensure that the strict character of an

argument is not altered after a possible instantiation of its surrounding context.

In order to ensure that every successful narrowing derivation grounds a given variable

x ∈ Var(t), we use the safety abstraction mS ∈ 2V → 2 of m = BNarr∞(t) (based on ht

and hg).

Example 7.5 (Continuing Example 7.4) For t = even(x), we have:

BNarr∞(t) = { {x 7→ ⊥} 7→ ⊥, {x 7→ 0} 7→ true,

{x 7→ s(⊥)} 7→ ⊥, {x 7→ s(0)} 7→ false,

{x 7→ s(s(⊥))} 7→ ⊥, {x 7→ s(s(0))} 7→ true,

. . . }

In general, if we can prove that, for all abstract substitutions φ# ∈ 2V with φ#(x) = ⊥, it

is mS(φ#) = ⊥, then we can ensure that x is grounded in every successful derivation from

t. To see this point, consider a successful derivation 〈ε, t〉;∗ 〈σ, δ〉 such that δ ∈ T (C) and

σ(x) 6∈ T (C), i.e., x is not grounded. By Proposition 6.7, m((|σ|)FL) = δ. By definition of mS ,

mS(hg((|σ|)FL)) = ⊤. Since (|σ(x)|)FL 6∈ T (C), we have hg((|σ|)FL)(x) = ht((|σ(x)|)FL) = ⊥,

thus contradicting (a particularization of) our initial assumption, mS(hg((|σ|)FL)) = ⊥.

Example 7.6 (Continuing Example 7.5) For t = even(x), we have mS = {{x 7→ ⊥} 7→

⊥, {x 7→ ⊤} 7→ ⊤}. Thus, x is grounded in every successful derivation of even(x).
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The previous considerations make clear that the semantic dependency expressed by the ngv’s

has the corresponding translation for the analysis questions.

8 Related work and concluding remarks

The idea of giving denotational descriptions of different operational frameworks is not new.

For instance, [Bak76] assigns different fixpoint semantics for a program under either call-by-

name or call-by-value strategies. This shows that, in some sense, the semantic descriptions

also (silently) assume some underlying operational approach (usually, call-by-name like).

In [Red85], the notion of ngv as the semantic object that a narrowing computation

should compute was already introduced. It was also noted that narrowing only computes a

representation of the object, not the object itself. However, it was not clearly explained how

this connection can be done.

In [MR92], domains are used to give semantics to the functional logic language BABEL.

However, the style of the presentation is model theoretic: all symbols take meaning from a

given interpretation and the connection between the declarative and operational semantics

(lazy narrowing) are given by means of the usual completeness/correctness results. The

semantic domain is different from ours because of valuations are just a parameter of the

semantic functions rather than as a component of the domain. Thus, the Herbrand domain

T ∞(C⊥) is the semantic domain in [MR92]. A similar remark can be made for [JPP91].

The semantic approach in [GHLR99] is much more general than [MR92] (covering non-

deterministic computations), but the style of the presentation is model theoretic, too. The

basic semantic domain is also different from ours: no functional domain for denotations is

used and, in fact, bounded completeness, which is essential in our setting to deal with the

functional construction and with narrowing strategies, is not required in [GHLR99].

In [Zar97], a denotational description of a particular narrowing strategy (the needed

narrowing strategy [AEH94]) is given. The semantics is nicely applied to demandedness

analysis but nothing has been said about how to use such a semantic description for more

general analysis problems. This question is important since the notion of demandedness

pattern is essential for the definition of the semantics itself.

We have presented a domain-theoretic approach for describing the semantics of integrated

functional logic languages based on narrowing. Our semantics is parameterized by the nar-

rowing strategy which is used by the language. The semantics is not ‘model-theoretic’ in the

sense that we let within the operational mechanism (the narrowing strategy) to establish

the ‘real’ meaning of the functions defined by the program rules. In this way, we are able

to include more operational information into the semantic description. As far as we know,

previous works have not explicitly considered arbitrary strategies for parameterizing the se-

mantics of either functional or functional logic languages, that is, the operational-oriented

denotational description formalized in this work is novel in the literature of the area.
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Another interesting point of our work is its applicability to the analysis of functional

logic programs. Since we use a functional domain (the domain of non-ground-values), we

are able to associate a denotation to a term with variables. Thus, narrowing is reformulated

as an evaluation mechanism which computes the denotation of the input expression. This

was already suggested by Reddy [Red85] but it is only formally established in this paper by

using approximable mappings. Thanks to this perspective, we can easily use the standard

frameworks for program analysis based on the denotational description of programs. In other

words, the approximation of the domain of non-ground values provides the basis for the

analysis of functional logic programs. Our description also reveals unexplored connections

between purely functional and logic properties. These connections suggest that, within the

functional logic setting, we have ascertained a kind of ‘duality’ between purely functional

and purely logic properties. As far as we know, this had not been established before.

Future work includes a more detailed study about how to use this semantics to develop

practical methods for the analysis of functional logic programs. For instance, we can use an

abstract narrowing calculus (see, for example, [AFRV93, AFM95, Vid96]) to directly build

(correct) abstract versions of the semantic functions via abstract approximable mappings.

We can also adapt the Dybjer’s calculus of inverse images [Dyb91] for relating functional

and logic properties. Another interesting task is to extend this semantics to more general

computation models for declarative languages [Han97].

We have presented an algebraic framework to express analysis of functional logic pro-

grams. Our intention is to use the existing (abstract interpretation based) analyses for

pure functional and logic programming in our integrated framework. The explicit semantic

connections between the basic paradigms allow us to combine those analyses by using the

existing tools to combine abstract domains [GR95]. Particularly interesting, as a subject of

future work, is the possibility of giving a logic interpretation to these domain combinations

[GS97, GS98].
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[MR92] J.J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic programming with functions

and predicates: the language BABEL. Journal of Logic Programming, 12:191-223,

1992.

[Myc80] A. Mycroft. The theory and practice of transforming call-by-need into call-by-value.

In Proc. International Symposium on Programming, pages 269-281, Springer LNCS

83, 1975.

[Niv75] M. Nivat. On the Interpretation of Recursive Program Schemes. Symposia Math-

ematica, vol. 15, pages 255-281, Academic Press, 1975.
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