
New Functional Logic Design Patterns

Sergio Antoy1 Michael Hanus2

1 Computer Science Dept., Portland State University, Oregon, U.S.A.
antoy@cs.pdx.edu

2 Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany.
mh@informatik.uni-kiel.de

Abstract. Patterns distill successful experience in solving common soft-
ware problems. We introduce a handful of new software design patterns
for functional logic languages. Some patterns are motivated by the evo-
lution of the paradigm in the last 10 years. Following usual approaches,
for each pattern we propose a name and we describe its intent, applica-
bility, structure, consequences, etc. Our patterns deal with fundamental
aspects of the design and implementation of functional logic programs
such as function invocation, data structure representation and manipu-
lation, specification-driven implementation, pattern matching, and non-
determinism. We present some problems and we show fragments of pro-
grams that solve these problems using our patterns. The programming
language of our examples is Curry. The complete programs are available
on-line.

1 Introduction

A design pattern is a proven solution to a recurring problem in software de-
sign and development. A pattern itself is not primarily code. Rather it is an
expression of design decisions affecting the architecture of a software system.
A pattern consists of both ideas and recipes for the implementations of these
ideas often in a particular language or paradigm. The ideas are reusable, whereas
their implementations may have to be customized for each problem. For exam-
ple, the Constrained Constructor pattern [3], expresses the idea of calling a data
constructor exclusively indirectly through an intermediate function to avoid un-
desirable instances of some type. The idea is applicable to a variety of problems,
but the code of the intermediate function is dependent on each problem.

Patterns originated from the development of object-oriented software [6] and
became both a popular practice and an engineering discipline after [11]. As the
landscape of programming languages evolves, patterns are “translated” from
one language into another [10, 12]. Some patterns are primarily language specific,
whereas others are fundamental enough to be largely independent of the language
or programming paradigm in which they are coded. For example, the Adapter
pattern [11], which solves the problem of adapting a service to a client coded
for different interface, is language independent. The Facade pattern [11], which
presents a set of separately coded services as a single unit, depends more on



the modularization features of a language than the language’s paradigm itself.
The Visitor pattern [11], which enables extending the functionality of a class
without modifying the class interface, is critically dependent on features of object
orientation, such as overloading and overriding.

Patterns are related to both idioms and pearls. Patterns are more articulated
than idioms, which never cross languages boundaries, and less specialized than
pearls, which often are language specific. The boundaries of these concepts are
somewhat arbitrary. Patterns address general structural problems and therefore
we use this name for our concepts.

Patterns for a declarative paradigm—in most cases specifically for a func-
tional logic one—were introduced in [3]. This paper is a follow up. Ten years
of active research in functional logic programming have brought new ideas and
deeper understanding, and in particular some new features and constructs, such
as functional patterns [4] and set functions [5]. Some patterns presented in this
paper originates from these developments.

High-level languages are better suited for the implementation of reusable code
than imperative languages, see, e.g., parser combinators [7]. Although whenever
possible we attempt to provide reusable code, the focus of our presentation is on
the reusability of design and architecture which are more general than the code
itself. Our primary emphasis is not on efficiency, but on clarity and simplicity
of design and ease of understanding and maintenance. Interestingly enough, one
of our patterns is concerned with moving from the primary emphasis to more
efficient code. Our presentation of a pattern follows the usual (metapattern) ap-
proaches that provide, e.g., name, intent, applicability, structure, consequences,
etc. Some typical elements, such as “known uses,” are sparse or missing be-
cause functional logic programming is a still relatively young paradigm. Work
on patterns for this paradigm is slowly emerging.

Section 2 briefly recalls some principles of functional logic programming and
the programming language Curry which we use to present the examples. Sec-
tion 3 presents a small catalog of functional logic patterns together with moti-
vating problems and implementation fragments. Section 4 concludes the paper.

2 Functional Logic Programming and Curry

A Curry program is a set of functions and data type definitions in Haskell-like
syntax [26]. Data type definitions have the same semantics as Haskell. A function
is defined by conditional rewrite rules of the form:

f t1 . . . tn | c = e where vs free (1)

Type variables and function names usually start with lowercase letters and the
names of type and data constructors start with an uppercase letter. The appli-
cation of f to e is denoted by juxtaposition (“f e”).

In addition to Haskell, Curry offers two main features for logic programming:
logical (free) variables and non-deterministic functions. Logical variables are
declared by a “free” clause as shown above, can occur in conditions and/or



right-hand sides of defining rules, and are instantiated by narrowing [1, 2], a
computation similar to resolution, but applicable to functions of any type rather
than predicates only. Similarly to Haskell, the “where” clause is optional and
can also contain other local function and/or pattern definitions.

Non-deterministic functions are defined by overlapping rules such as:

(?) :: a -> a -> a

x ? y = x

x ? y = y

In contrast to Haskell, in which the first matching rule is applied, in Curry all
matching (to be more precise, unifiable) rules are applied—non-deterministically.
For example, 0 ? 1 has two values, 0 and 1. The programmer has no control over
which value is selected during an execution, but will typically constrain this value
according to the intent of the program. In particular, Curry defines equational
constraints of the form e1 =:= e2 which are satisfiable if both sides e1 and e2 are
reducible to unifiable data terms. Furthermore, “c1 & c2” denotes the concurrent
conjunction of the constraints c1 and c2 which is evaluated by solving both c1
and c2 concurrently. By contrast, the operator “&&” denotes the usual Boolean
conjunction which evaluates to either True or False.

An example of the features discussed above can be seen in the definition of
a function that computes the last element of a non-empty list. The symbol “++”
denotes the usual list concatenation function:

last l | p++[e]=:=l = e where p,e free

As in Haskell, the rules defining most functions are constructor-based [25], in (1)
t1 . . . tn are made of variables and/or data constructor symbols only. However,
in Curry we can also use a functional pattern [4]. With this feature, which relies
on narrowing, we can define the function last also as:

last (_++[e]) = e

The operational semantics of Curry, precisely described in [14, 22], is a conser-
vative extension of both lazy functional programming (if no free variables occur
in the program or the initial goal) and (concurrent) logic programming. Since
Curry is based on an optimal evaluation strategy [2], it can be considered a
generalization of concurrent constraint programming [27] with a lazy strategy.

Furthermore, Curry also offers features for application programming like
modules, monadic I/O, encapsulated search [21], ports for distributed program-
ming [15], libraries for GUI [16] and HTML programming [17], etc. We do not
present these aspects of the language, since they are not necessary for under-
standing our contribution. There exist several implementations of Curry. The
examples presented in this paper were all compiled and executed by Pakcs [20],
a compiler/interpreter for a large subset of Curry.

There exist also other functional logic languages, most notably T OY [9, 24],
with data types, possibly non-deterministic functions, and logic variables instan-
tiated by narrowing similar to Curry. Many patterns and exemplary programs



discussed in this paper are adaptable to these languages with minor, often purely
syntactic, changes.

3 Patterns

In this section we present a small catalog of patterns that address non-trivial
solutions of some general and challenging problems.

3.1 Call-by-reference

Name Call-by-reference
Intent return multiple values from a function without defining a con-

taining structure

Applicability a function must return more than one value
Structure an argument passed to a function is an unbound variable
Consequences avoid constructing a structure to hold multiple values
Known uses Parser combinators
See also Monads, Extensions

The pattern name should not mislead the reader. There is no call-by-reference
in functional logic languages. The name stems from a similarity with the passing
mode in that a value is returned by a function through an argument of the call.

When a function must return multiple values, a standard technique is to
return a structure that holds all the values to be returned. For example, if
function f must return both a value of type A and a value of type B, the return
type could be (A,B), a pair with components of type A and B, respectively. The
client of f extracts the components of the returned structure and uses them as
appropriate. Although straightforward, this approach quickly becomes tedious
and produces longer and less readable code. This pattern, instead, suggests to
pass unbound variables to the function which both returns a value and binds
other values to the unbound variables.

Example: A symbol table is a sequence of records. A record is a pair in which
the first component is intended as a key mapped to the second component.

type Record = (String,Int)

type Table = [Record]

The function insert attempts to insert a record (k, v) into a table t which
is expected to contain no record with key k. This function computes both a
Boolean value, False if a record with key k is already in t, True otherwise,
and the updated table, if no record with key k is in t. Attempting to insert a
record whose key is in the table is an error, hence the returned table in this
case is uninteresting. The Boolean value is returned by the function whereas
the updated table is bound to the third argument of the call. Alternatively, the
function could return the updated table and bind the Boolean value to the third
argument, but as we will discuss shortly this option is not as appealing.



insert :: Record -> Table -> Table -> Bool

insert (k,v) [] x = x =:= [(k,v)] &> True

insert (k,v) ((h,w):t) x

| k == h = x =:= (h,w):t &> False

| otherwise = let b = insert (k,v) t t’

in x =:= (h,w):t’ &> b where t’ free

The operator “&>”, called constrained expression, takes a constraint as its first
argument. It solves this constraint and, if successful, returns its second argument.

The function remove attempts to remove a record with key k from a table
t which is expected to contain one and only one such record. This function
computes both a Boolean value, True if a record with key k is in t, False

otherwise, and the updated table if a record with key k is in t. Attempting to
remove a record whose key is not in the table is an error, hence the returned
table in this case is uninteresting.

remove :: String -> Table -> Table -> Bool

remove [] [] = False

remove k ((h,w):t) x

| k == h = x =:= t &> True

| otherwise = let b = remove k t t’

in x =:= (h,w):t’ &> b where t’ free

An example of use of the above functions follow, where the key is a string and
the value is an integer.

emptyTable = []

test = if insert ("x",1) emptyTable t1 &&

insert ("y",2) t1 t2 &&

remove "z" t2 t3 then t3

else error "Oops"

where t1, t2, t3 free

Of the two values returned by functions insert and remove, the table is subordi-
nate to the Boolean in that when the Boolean is false, the table is not interesting.
This suggest returning the Boolean from the functions and to bind the table to
an argument. A client typically will test the Boolean before using the table,
hence the test will trigger the binding. However, variables are bound only to
fully evaluated expressions. This consideration must be taken into account to
select which value to return in a variable when laziness is crucial.

For a client, it is easier to use the functions when they are coded according
to the pattern rather than when they return a structure. A state monad [23]
would be a valid alternative to this pattern for the example presented above and
in other situations. Not surprisingly, this pattern can be used instead of a Maybe
type.

This pattern is found, e.g., in the parser combinators of [7]. A parser with
representation takes a sequence of tokens and typically a free variable, which is
bound to the representation of the parsed tokens, whereas the parser returns the



sequence of tokens that remain to be parsed. The Extensions of [8] are a form of
this pattern. The reference contains a comparison with the monadic approach.

This pattern is not available in functional languages since they lack free vari-
ables. Logic languages typically return information by instantiating free variables
passed as arguments to predicates, but predicates do not return information, ex-
cept for succeeding.

3.2 Many-to-many

Name Many-to-many
Intent encode a many-to-many relation with a single simple function

Applicability a relation is computed in both directions
Structure a non-deterministic function defines a one-to-many relation;

a functional pattern defines the inverse relation

Consequences avoid structures to define a relation
Known uses
See also

We consider a many-to-many relationR between two sets A and B. Some element
of A is related to distinct elements of B and, vice versa, distinct elements of A
are related to some element of B. In a declarative program, such a relation is
typically abstracted by a function f from A to subsets of B, such that b ∈ f(a)
iff aR b. We will call this function the core function of the relation. Relations
are dual to graphs and, accordingly, the core function can be defined, e.g., by an
adjacency list. The relation R implicitly defines an inverse relation which, when
appropriate, is encoded in the program by a function from B to subsets of A,
the core function of the inverse relation.

In this pattern, the core function is encoded as a non-deterministic function
that maps every a ∈ A to every b ∈ B such that aR b. The rest of the abstraction
is obtained nearly automatically using standard functional logic features and
libraries. In particular, the core function of the inverse relation, when needed,
is automatically obtained through a functional pattern. The sets of elements
related to a given element are automatically obtained using the set functions of
the core function.

Example: Consider an abstraction about blood transfusions. We define the
blood types and the function giveTo. The identifiers Ap, An, etc. stand for the
types A positive (A+), A negative (A−), etc. The application giveTo x returns
a blood type y such that x can be given to a person with type y. E.g., A+ can
be given to both A+ and AB+.

data BloodType = Ap | An | ABp | ABn | Op | On | Bp | Bn

giveTo :: BloodType -> BloodType

giveTo Ap = Ap ? ABp

giveTo Op = Op ? Ap ? Bp ? ABp

giveTo Bp = Bp ? ABp



...

The inverse relation is trivially obtained with a function defined using a func-
tional pattern [4]. The application receiveFrom x returns a blood type y such
that a person with type x can receive type y. E.g., AB+ can receive A+, AB+
and O+ among others.

receiveFrom :: BloodType -> BloodType

receiveFrom (giveTo x) = x

To continue the example, let us assume a database defining the blood type of a
set of people, such as:

has :: String -> BloodType

has "John" = ABp

has "Doug" = ABn

has "Lisa" = An

The following function computes a donor for a patient, where the condition x 6= y
avoids self-donation, which obviously is not intended.

donorTo :: String -> String

donorTo x

| giveTo (has y) =:= has x & x =/= y

= y

where y free

E.g., the application donorTo "John" returns both "Doug" and "Lisa", whereas
donorTo "Lisa" correctly fails for our very small database.

To continue the example further, we may need a particular set of donors,
e.g., all the donors that live within a certain radius of a patient and we may
want to rank these donors by the date of their last blood donation. For these
computations, we use the set function [5] automatically defined for any function.
The function donorTo’set produces the set of all the donors for a patient. The
SetFunctions library module offers functions for filtering and sorting this set.

Many-to-many relations are ubiquitous, e.g., students taking courses from
teachers, financial institutions owning securities, parts used to build products,
etc. Often, it won’t be either possible or convenient to hard-wire the relation
in the program as we did in our example. In some cases, the core function of
a relation will access a database or some data structure, such as a search tree,
obtained from a database. An interesting application of this pattern concerns
the relation among the functions of a program in which a function is related to
any function that it calls. In this case, we expect that the compiler will produce
a structure, e.g., a simple set of pairs, which the core function will access for its
computations. Beside a small difference in the structure of the core function, the
rest of the pattern is unchanged.

This pattern is not available in functional languages since they lack non-
deterministic functions. Logic languages support key aspects of this pattern,



in particular, the non-determinism of the core function and the possibility of
computing a relation and its inverse relation with the same predicate.

3.3 Quantification

Name Quantification
Intent encode first-order logic formula in programs

Applicability problems specified in a first-order logic language
Structure apply “there exists” and “for all” library functions

Consequences programs are encoded specifications
Known uses
See also

First-order logic is a common and powerful language for the specification of prob-
lems. The ability to execute even some approximation of this language enables
us to directly translate many specifications into programs. A consequence of this
approach is that the logic of the resulting program is correct by definition and
the code is obtained with very little effort. The main hurdle is existential quan-
tification, since specifications of this kind are often not constructive. However,
narrowing, which is the most characterizing feature of functional logic languages,
supports this approach.

Narrowing evaluates expressions, such as a constraint, containing free vari-
ables. The evaluation computes some instantiations of the variables that lead
to the value of the expression, e.g., the satisfaction of the constraint. Hence, it
solves the problem of existential quantification.

Universal quantification is more straightforward. Mapping and/or folding
operations on sets are sufficient to verify whether all the elements of the set
satisfy some condition. In particular, set functions can be a convenient means to
compute the sets required by an abstraction.

We define the following two functions for existential and universal quantifica-
tion, where Values is a library-defined polymorphic type abstracting a set and
mapValues and foldValues are standard mapping and folding functions on sets.
The function exists is a simple idiom defined only to improve the readability
of the code.

exists :: a -> (a -> Success) -> Success

exists x f = f x

forall :: Values a -> (a -> Bool) -> Success

forall s f = foldValues (&&) True (mapValues f s) =:= True

Example: Map coloring is stated as “given any separation of a plane into con-
tiguous regions, producing a figure called a map, ... color the regions of the
map so that no two adjacent regions have the same color” [28]. A map coloring
problem has a solution M iff there exists a colored map M such that for all x
and y regions of M and x adjacent to y the colors of x and y differ. The above



statement is a specification of the problem stated semi-formally in a first-order
logic language.

We begin by defining the regions of the map and the adjacency relation. For
the curious, the map is the Pacific North West.

data State = WA | OR | ID | BC

states = [WA,OR,ID,BC]

adjacent = [(WA,OR),(WA,ID),(WA,BC),(OR,ID),(ID,BC)]

To continue the example, we define the colors to use for coloring the map, only
3, and the function that colors a state. Coloring a state is a non-deterministic
assignment, represented as a pair, of a color to a state.

data Color = Red | Green | Blue

color :: a -> (a,Color)

color x = (x, Red ? Green ? Blue)

The rest of the program follows:

solve :: [(State,Color)]

solve | exists cMap (\map ->

forall someAdj’set (\(st1,st2) ->

lookup st1 map /= lookup st2 map))

= cMap

where cMap = map color states

someAdj = foldr1 (?) adjacent

The identifier cMap is bound to some colored map. The identifier someAdj is
bound to some pair of adjacent states. The identifier someAdj’set is bound to
the implicitly defined set function of someAdj, hence it is the set of all the pairs
of adjacent states. The function lookup is defined in the standard Prelude. It
retrieves the color assigned to a state in the colored map.

The condition of the function solve is an encoded, but verbatim, translation
of the specification. The condition could be minimally shortened by eliminating
the exists idiom, but the presented form is more readable and shows the pattern
in all its generality.

Since ∀x P is equivalent to ¬∃x ¬P , we also define:

notExists :: Values a -> (a -> Bool) -> Success

notExists s f = foldValues (||) False (mapValues f s) =:= False

This pattern is very general and applicable to problems, whether or not deter-
ministic, which have non-constructive specifications. For example, the minimum
element of a collection can be specified as m is the minimum of C iff there exists
some m in C such that there not exists some x in C such that x < m, i.e.,
∃m (m ∈ C ∧ ¬∃x (x ∈ C ∧ x < m)) or, equivalently, for all x in C, x ≥ m

This pattern is not available in functional languages since they lack nar-
rowing. Logic languages have some forms of existential quantification, but their



lack of functional nesting prevents the readable and elegant notion available in
functional logic languages.

3.4 Deep selection

Name Deep selection
Intent pattern matching at arbitrary depth in recursive types

Applicability select an element with given properties in a structure
Structure combine a type generator with a functional pattern

Consequences separate structure traversal from pattern matching
Known uses HTML and XML applications coded in Curry
See also Curry’s HTML library

Pattern matching is undoubtedly a convenient feature of modern declarative
languages because it allows to easily retrieve the components of a data structure
such as a tuple. Recursively defined types, such as lists and trees, have compo-
nents at arbitrary depths that cannot be selected by pattern matching because
pattern matching selects components only at predetermined positions. For re-
cursively defined types, the selection of some element with a given property in a
data structure typically requires code for the traversal of the structure which is
intertwined with the code for using the element. The combination of functional
patterns with type generators allows us to select elements arbitrarily nested in
a structure in a pattern matching-like fashion without explicit traversal of the
structure and mingling of different functionalities of a problem.

A list is a recursively defined type that can be used to represent a mapping
by storing key-value pairs. One such structure, bound to the variable cMap,
was used in the example of the Quantification pattern. The library function
lookup retrieves from the mapping the value v associated to a key k. In that
example, there is one and only one such pair in the list. The function lookup

must both traverse the list to find the key and through pattern matching return
the associated value. The two computations are intermixed and pattern matching
some element with different characteristic in a list would require duplication of
the code to traverse the list. Functional patterns offer a new option.

The key idea of the deep selection pattern is to define a “generator” function
that generates all the instances of a type with a given element. This function is
interesting for recursively defined types. For a list, this generator is:

withElem :: a -> [a]

withElem e = e:unknown ? unknown:withElem e

The function unknown is defined in the Prelude and simply returns a free vari-
able. This generator supports the following definition of lookup in which the
(functional) pattern is as simple as it can be.

lookup :: :: [(a,b)] -> b

lookup (withElem (_,v)) = v



The counterpart of withElem is elemOf, an “extractor” as opposed to a gener-
ator, which returns non-deterministically a component of a structure:

elemOf :: [a] -> a

elemOf (withElem e) = e

We will use both these functions including specialized variations of them.

Example: Below, we show a simple type for representing arithmetic expressions
and a generator of all the expressions with a given subexpression:

data Exp = Lit Int

| Var [Char]

| Add Exp Exp

| Mul Exp Exp

withSub :: Exp -> Exp

withSub exp = exp

? op (withSub exp) unknown

? op unknown (withSub exp)

where op = Add ? Mul

Suppose that we want to find all the variables of an expression. The function
varOf, a specialization of elemOf shown earlier, for the type Exp, takes an ex-
pression exp and returns the identifier of some variable of exp.

varOf :: Exp -> String

varOf (withSub (Var v)) = v

The set of identifiers of all the variables of exp is simply obtained with the set
function of varOf, i.e., varOf’set exp.

In some situations, a bit more machinery is needed. For example, suppose
that we want to find common subexpressions of an expression, such as 42 and y

in the following:

Add (Mul (Lit 42) (Add (Lit 42) (Var "y")))

(Add (Var "x") (Var "y"))

One option is a more specialized generator that generates all and only the ex-
pressions with a given common subexpression:

withCommonSub :: Exp -> Exp

withCommonSub exp = op (withCommonSub exp) unknown

? op unknown (withCommonSub exp)

? op (withSub exp) (withSub exp)

where op = Add ? Mul

Another option is a different more specialized generator that generates all the
expressions with a given subexpression at a given position. The position is a
string of 1’s and 2’s defining a path from the root of the expression to the
subexpression.



withSubAt :: [Int] -> Exp -> Exp

withSubAt [] exp = exp

withSubAt (1:ps) exp = (Add ? Mul) (withSubAt ps exp) unknown

withSubAt (2:ps) exp = (Add ? Mul) unknown (withSubAt ps exp)

This generator is useful to pattern match a subexpression and its position:

subAt :: Exp -> ([Int],Exp)

subAt (withSubAt p exp) = (p,exp)

In the new version of the function that computes a common subexpression, not
only we return the common subexpression, but also the two positions at which
subexpression occurs, since they are available. The ordering operator “<:” is
predefined for all types. Its use in our code ensures that the same subexpression
is not matched twice.

commonSub :: Exp -> (Exp,[Int],[Int])

commonSub exp | p1 <: p2 & e1=:=e2 = (e1,p1,p2)

where (p1,e1) = subAt exp

(p2,e2) = subAt exp

This pattern is applied in HTML processing. Curry provides a library for the
high-level construction of type-safe HTML documents and web-oriented user
interfaces [18]. HTML documents are instances of a type HtmlExp, shown below,
consisting of sequences of text and tag elements with both attributes and possibly
nested elements.

data HtmlExp = HtmlText String

| HtmlStruct String [(String,String)] [HtmlExp]

The problem, sought-after by spammers, of finding all the e-mail addresses in
a HTML page is trivialized by this pattern. The following function finds some
e-mail address in a document:

eAddress :: HtmlExp -> String

eAddress (withHtmlElem

(HtmlStruct _

(withElem ("href","mailto:"++name)) _)) = name

where withElem, defined above, is applied to match a href tag with value mailto
in a list of attributes and the type generator withHtmlElem, defined below, is
applied to match an HtmlStruct structure with the desired attribute in a tree
of HTML structures.

withElem :: HtmlExp -> HtmlExp

withElem helem = helem

? HtmlStruct unknown

unknown

(withElem (withHtmlElem helem))

All the addresses in a page are produced by the set function of eAddress.



In a similar way, one can also define generators for deep matching in XML
structures. A library to support the declarative processing of XML data based
on the deep selection pattern is described in [19].

This pattern is not available in both functional and logic languages since
they lack functional patterns.

3.5 Non-determinism introduction and elimination

Name Non-determinism introduction and elimination
Intent use different algorithms for the same problem

Applicability some algorithm is too slow or it may be incorrect
Structure either replace non-deterministic code with deterministic one or

vice versa

Consequences improve speed or verify correctness of algorithms
Known uses prototyping
See also

Specifications of problems are often non-deterministic because in many cases
non-determinism defines the desired results of a computation more easily than
by other means. We have seen this practice in several previous examples. Func-
tional logic programming, more than any other paradigm, allows a programmer
to translate a specification, whether or not non-deterministic, with little or no
change into a program [1]. Thus, it is not unusual for programmers to initially
code non-deterministic programs even for deterministic problems because this
approach produces correct programs quickly. We call a prototypical implemen-
tation this direct encoding of a specification.

For some problems, prototypical implementations are not as efficient as an
application requires. This is typical, e.g., for sorting and searching problems,
which have been the subject of long investigations, because non-deterministic
solutions ignore domain knowledge that speeds up computations. In these cases,
the prototypical implementation, often non-deterministic, should be replaced by
a more efficient implementation, often deterministic, that produces the same re-
sult. We call the latter production implementation. The investment that went into
the prototypical implementation is not wasted, as several benefits derive from
that effort. First of all, the specification of the problem is better understood
and it has been tested through the input/output behavior of the prototypical
implementation and possibly debugged and corrected. Second, the prototypical
implementation can be used as a testing oracle of the production implementa-
tion. Testing can be largely automated, which both reduces effort and improves
reliability.

PAKCS [20] is distributed with a unit testing tool [13] called CurryTest which
is useful in the situation we describe. A unit testing of a program is another pro-
gram defining, among others, some zero-arity functions containing assertions,
e.g., specific conditions stating the equality between a function call and its re-
sult. The CurryTest tool applied to the program invokes, using reflections, all
the functions defining an assertion. The tool checks the validity of each assertion



and reports any violation. Thus, a test of a function f of the production imple-
mentation will apply both f and the corresponding function of the prototypical
implementation to test arguments, and assert that the results are the same.

Example: Assume an informal specification of sorting: “find the minimum of
a list, sort the rest, and place the minimum at the front.” The most compli-
cated aspect of an implementation of this specification is the computation of the
minimum. A fairly precise specification of the minimum was given in the Quan-
tification pattern. A prototypical implementation of this specification follows:

getMinSpec :: [a] -> a

getMinSpec l | exists m (\m -> m =:= elemOf l &>

notExists (elemOf’set l) (\x -> x < m))

= m where m free

The prototypical implementation is assumed to be correct, since it is a direct
encoding of the specification, and it is non-deterministic due to elemOf. Sorting
with the prototypical implementation is too slow for long lists, hence we code a
deterministic and more efficient production implementation:

getMin :: [a] -> a

getMin (x:xs) = aux x xs

where aux x [] = x

aux x (y:ys) | x <= y = aux x ys

| otherwise = getMin (y:ys)

To test the production implementation, we define the following function that
compares the output of the production implementation with that of the proto-
typical implementation. We process this function with CurryTest.

testGetMin :: Assertion Int

testGetMin = AssertEqual "getMin" outSpec out

where input = [3,1,2,4,9,5] -- some test data

outSpec = getMinSpec input

out = getMin input

This pattern is typically used to replace non-deterministic code with more de-
terministic code to improve the efficiency of a program. However, the opposite
replacement is occasionally useful to attempt to “improve the correctness” of a
program. Suppose that the input/output behavior of a program is incorrect and
that we suspect that the culprit is some function f . We can replace the code of
f with code directly obtained from the specification of f . This code is likely to
be more non-deterministic. If the replacement fixes the input/output behavior
of the program, we have the proof that the code that we replaced was indeed
incorrect.

Both unit testing and replacing an algorithm with another for various pur-
poses, such as improving performance or verifying behavior, are widespread
and language independent techniques. The customization of these techniques
to functional logic programming emphasizes the possibility of executing non-



deterministic code, in particular code obtained from a direct encoding of a spec-
ification.

4 Conclusion and Related Work

Design patterns help structuring code for general problems frequently arising
in software development. They produce solutions that are more readable, main-
tainable and elegant than improvised alternatives. Efficiency may be partially
sacrificed for these very desirable attributes. We have also shown that employ-
ing a pattern has various benefits even in situations in which the pattern-driven
solution is inefficient and it is eventually replaced by more efficient code.

We presented five new design patterns for the functional logic programming
paradigm. These patterns are a follow up on our initial work [3] in this area. Pat-
terns distill successful programming experience similar in scope to programming
pearls. Some of our patterns were motivated, in part, by features introduced in
the Curry language in the last 10 years, in particular functional patterns [4] and
set functions [5].

The programs discussed in this paper are available at URL:

http://www.cs.pdx.edu/~antoy/flp/patterns/

References

1. S. Antoy. Programming with narrowing. Journal of Symbolic Computation,
45(5):501–522, May 2010.

2. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of
the ACM, 47(4):776–822, 2000.

3. S. Antoy and M. Hanus. Functional logic design patterns. In 6th Int’l Symp, on
Functional and Logic Programming (FLOPS’02), pages 67–87, Aizu, Japan, 9 2002.
Springer LNCS 2441.

4. S. Antoy and M. Hanus. Declarative programming with function patterns. In
15th Int’nl Symp. on Logic-based Program Synthesis and Transformation (LOPSTR
2005), pages 6–22, London, UK, Sept. 2005. Springer LNCS 3901.

5. S. Antoy and M. Hanus. Set functions for functional logic programming. In Pro-
ceedings of the 11th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP 2009), pages 73–82, Lisbon, Portugal,
September 2009.

6. K. Beck and W. Cunningham. Using pattern languages for object-oriented pro-
grams. In Specification and Design for Object-Oriented Programming (OOPSLA-
87), 1987.

7. R. Caballero and F. López-Fraguas. A functional-logic perspective of parsing. In
Proc. of the 4th Fuji Int’l Symposium on Functional and Logic Programming, pages
85–99, Tsukuba, Japan, 1999. Springer LNCS 1722.

8. R. Caballero and F.J. López-Fraguas. Extensions: A technique for structuring
functional-logic programs. In Proceedings of the Third International Andrei Ershov
Memorial Conference on Perspectives of System Informatics, PSI ’99, pages 297–
310, London, UK, 2000. Springer-Verlag.



9. R. Caballero and J. Sánchez, editors. TOY: A Multiparadigm Declarative Language
(version 2.3.1), 2007. Available at http://toy.sourceforge.net.

10. J. W. Cooper. Java Design Patterns. Addison Wesley, 2000.
11. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison Wesley, 1994.
12. M. Grand. Patterns in Java. J. Wiley, 1998.
13. M. Hanus. CurryTest: A tool for testing Curry programs. Available at http://

www-ps.informatik.uni-kiel.de/currywiki/tools/currytest. Accessed April
13, 2011.

14. M. Hanus. A unified computation model for functional and logic programming.
In Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pages 80–93, 1997.

15. M. Hanus. Distributed programming in a multi-paradigm declarative language.
In Proc. of the International Conference on Principles and Practice of Declarative
Programming (PPDP’99), pages 376–395. Springer LNCS 1702, 1999.

16. M. Hanus. A functional logic programming approach to graphical user interfaces. In
International Workshop on Practical Aspects of Declarative Languages (PADL’00),
pages 47–62. Springer LNCS 1753, 2000.

17. M. Hanus. High-level server side web scripting in Curry. In Proc. of the Third In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’01),
pages 76–92. Springer LNCS 1990, 2001.

18. M. Hanus. Type-oriented construction of web user interfaces. In Proceedings of
the 8th ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP’06), pages 27–38. ACM Press, 2006.

19. M. Hanus. Declarative processing of semistructured web data. Technical report
1103, Christian-Albrechts-Universität Kiel, 2011.

20. M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau,
R. Sadre, and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System.
Available at http://www.informatik.uni-kiel.de/~pakcs/, 2011.

21. M. Hanus and F. Steiner. Controlling search in declarative programs. In
Principles of Declarative Programming (Proc. Joint International Symposium
PLILP/ALP’98), pages 374–390. Springer LNCS 1490, 1998.

22. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.8.2). Avail-
able at http://www.informatik.uni-kiel.de/~curry, March 28, 2006.

23. P. Hudak, J. Peterson, and J. Fasel. A gentle introduction to Haskell 98. Available
at http://www.haskell.org/tutorial/monads.html, 1999.

24. F. J. López-Fraguas and J. Sánchez-Hernández. TOY: A multiparadigm declar-
ative system. In Proceedings of the Tenth International Conference on Rewriting
Techniques and Applications (RTA’99), pages 244–247. Springer LNCS 1631, 1999.

25. M. J. O’Donnell. Equational Logic as a Programming Language. MIT Press, 1985.
26. S.L. Peyton Jones and J. Hughes. Haskell 98: A non-strict, purely functional

language. http://www.haskell.org, 1999.
27. V.A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.
28. Wikipedia, the free encyclopedia. Four color theorem. Available at http://en.

wikipedia.org/wiki/Four_color_theorem. Accessed April 8, 2011.


