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Abstract. In this paper we present our first steps towards a new system to com-
pile functional logic programs of the source language Curry into purely func-
tional Haskell programs. Our implementation is based on the idea to represent
non-deterministic results as values of the data types corresponding to the results.
This enables the application of various search strategies to extract values from
the search space. We show by several benchmarks that our implementation can
compete with or outperform other existing implementations of Curry.

1 Introduction

Functional logic languages integrate the most important features of functional and logic
languages (see [8,24] for recent surveys). In particular, they combine higher-order func-
tions and demand-driven evaluation from functional programming with logic program-
ming features like non-deterministic search and computing with partial information
(logic variables). The combination of these features has led to new design patterns [6]
and better abstractions for application programming, e.g., as shown for programming
with databases [14,18], GUI programming [21], web programming [22,23,26], or string
parsing [17].

The implementation of functional logic languages is challenging since a reasonable
implementation has to support the operational features mentioned above. One possible
approach is the design of new abstract machines appropriately supporting these oper-
ational features and implementing them in some (typically, imperative) language, like
C [32] or Java [9,27]. Another approach is the reuse of already existing implemen-
tations of some of these features by translating functional logic programs into either
logic or functional languages. For instance, if one compiles into Prolog, one can reuse
the existing backtracking implementation for non-deterministic search as well as logic
variables and unification for computing with partial information. However, one has to
implement demand-driven evaluation and higher-order functions [5]. A disadvantage of
this approach is the commitment to a fixed search strategy (backtracking).

If one compiles into a non-strict functional language like Haskell, one can reuse
the implementation of lazy evaluation and higher-order functions, but one has to imple-
ment non-deterministic evaluations [13,15]. Although Haskell offers list comprehen-
sions to model backtracking [36], this cannot be exploited due to the specific semantical
requirements of the combination of non-strict and non-deterministic operations [20].
Thus, additional implementation efforts are necessary like implementation of shared
non-deterministic computations [19].



Nevertheless, the translation of functional logic languages into other high-level lan-
guages is attractive: it limits the implementation efforts compared to an implementation
from scratch and one can exploit the existing implementation technologies, provided
that the efforts to implement the missing features are reasonable.

In this paper we describe an implementation that is based on the latter principle. We
present a method to compile programs written in the functional logic language Curry
[28] into Haskell programs based on the ideas shown in [12]. The difficulty of such
an implementation is the fact that non-deterministic results can occur in any place of a
computation. Thus, one cannot separate logic computations by the use of list compre-
hensions [36], as the outcome of any operation could be potentially non-deterministic,
i.e., it might have more than one result value. We solve this problem by an explicit
representation of non-deterministic values, i.e., we extend each data type by another
constructor to represent the choice between several values. This idea is also the basis of
the Curry implementation KiCS [15,16]. However, KiCS is based on unsafe features of
Haskell that inhibit the use of optimizations provided by Haskell compilers like GHC.1

In contrast, our implementation, called KiCS2, avoids such unsafe features. In addition,
we also support more flexible search strategies and new features to encapsulate non-
deterministic computations (which are not described in detail in this paper due to lack
of space).

The general objective of our approach is the support of flexible strategies to ex-
plore the search space resulting from non-deterministic computations. In contrast to
Prolog-based implementations that use backtracking and, therefore, are incomplete, we
also want to support complete strategies like breadth-first search, iterative deepening
or parallel search (in order to exploit multi-core architectures). We achieve this goal
by an explicit representation of the search space as data that can be traversed by vari-
ous operations. Moreover, purely deterministic computations are implemented as purely
functional programs so that they are executed with almost the same efficiency as their
purely functional counterparts.

In the next section, we sketch the source language Curry and introduce a normalized
form of Curry programs that is the basis of our translation scheme. Section 3 presents
the basic ideas of this translation scheme. Benchmarks of our initial implementation of
this scheme are presented in Section 4. Further features of our system are sketched in
Section 5 before we conclude in Section 6.

2 Curry Programs

The syntax of the functional logic language Curry [28] is close to Haskell [35]. In addi-
tion, Curry allows free (logic) variables in conditions and right-hand sides of defining
rules. In contrast to functional programming and similarly to logic programming, oper-
ations can be defined by overlapping rules so that they might yield more than one re-
sult on the same input. Such operations are also called non-deterministic. For instance,
Curry offers a choice operation that is predefined by the following rules:

x ? _ = x
_ ? y = y

1 http://www.haskell.org/ghc/

http://www.haskell.org/ghc/


Thus, we can define a non-deterministic operation aBool by

aBool = True ? False

so that the expression “aBool” has two values: True and False.
If non-deterministic operations are used as arguments in other operations, a seman-

tical ambiguity might occur. Consider the operations

xor True False = True
xor True True = False
xor False x = x

xorSelf x = xor x x

and the expression “xorSelf aBool”. If we interpret this program as a term rewriting
system, we could have the reduction

xorSelf aBool → xor aBool aBool → xor True aBool
→ xor True False → True

leading to the unintended result True. Note that this result cannot be obtained if we
use a strict strategy where arguments are evaluated before the operation calls. In or-
der to avoid dependencies on the evaluation strategies and exclude such unintended
results, González-Moreno et al. [20] proposed the rewriting logic CRWL as a logi-
cal (execution- and strategy-independent) foundation for declarative programming with
non-strict and non-deterministic operations. This logic specifies the call-time choice
semantics [29] where values of the arguments of an operation are determined before
the operation is evaluated. Note that this does not necessarily require an eager evalua-
tion of arguments. Actually, [1,31] define lazy evaluation strategies for functional logic
programs with call-time choice semantics where actual arguments passed to operations
are shared. Hence, we can evaluate the expression above lazily, provided that all oc-
currences of aBool are shared so that all of them reduce either to True or to False.
The requirements of the call-time choice semantics are the reason why it is not simply
possible to use list comprehensions or non-determinism monads for a straightforward
implementation of functional logic programs in Haskell [19].

Due to these considerations, an implementation of Curry has to support lazy eval-
uation where operations can have multiple results and unevaluated arguments must be
shared. This is a complex task, especially if we try to implement it directly on the level
of source programs. Therefore, we perform some simplifications on programs before
the target code is generated.

First of all, we assume that our programs do not contain logic variables. This as-
sumption can be made since it has been shown [7] that logic variables can be replaced
by non-deterministic “generators”, i.e., operations that evaluate to all possible values of
the type of the logic variable. For instance, a Boolean logic variable can be replaced by
the generator aBool defined above.

Furthermore, we discuss our translation scheme only for first-order programs for
the sake of simplicity. However, our implementation also supports higher-order features
(see Section 4) by exploiting the corresponding features of Haskell.

Finally, we assume that the pattern matching strategy is explicitly encoded in in-
dividual matching functions. In contrast to [1], where the pattern matching strategy is



e ::= x x is a variable
| c(e1, . . . , en) c is an n-ary constructor symbol
| f(e1, . . . , en) f is an n-ary function symbol
| e1 ? e2 choice

D ::= f(x1, . . . , xn) = e n-ary function f with a single rule
| f(c(y1, . . . , ym), x2, . . . , xn) = e matching rule for n-ary function f

c is an m-ary constructor symbol
P ::= D1 . . . Dk

Fig. 1. Uniform programs (e: expressions, D: definitions, P : programs)

encoded in case expressions, we assume that each case expression is transformed into a
new operation in order to avoid complications arising from the translation of nested case
expressions. Thus, we assume that all programs are uniform according to the definition
in Fig. 1.2 There, the variables in the left-hand sides of each rule are pairwise different,
and the constructors in the left-hand sides of the matching rules of each function are
pairwise different. Uniform programs have a simple form of pattern matching: either a
function is defined by a single rule without pattern matching, or it is defined by rules
with only one constructor in the left-hand side of each rule, and in the same argument
for all rules.3 For instance, the operation xor defined above can be transformed into the
following uniform program:

xor True x = xor’ x
xor False x = x
xor’ False = True
xor’ True = False

In particular, there are no overlapping rules for functions (except for the choice oper-
ation “?” which is considered as predefined). Antoy [3] showed that each functional
logic program, i.e., each constructor-based conditional term rewriting system, can be
translated into an equivalent unconditional term rewriting system without overlapping
rules but containing choices in the right-hand sides, also called LOIS (limited overlap-
ping inductively sequential) system. Furthermore, Braßel [11] showed the semantical
equivalence of narrowing computations in LOIS systems and rewriting computations in
uniform programs. Due to these results, uniform programs are a reasonable intermediate
language for our translation into Haskell which will be presented in the following.

2 A variant of uniform programs has been considered in [33] to define lazy narrowing strategies
for functional logic programs. Although the motivations are similar, our notion of uniform
programs is more restrictive since we allow only a single non-variable argument in each left-
hand side of a rule. Uniform programs have also been applied in [37] to define a denotational
analysis of functional logic programs.

3 For simplicity, we require in Fig. 1 that the matching argument is always the first one, but one
can also choose any other argument.



3 Compilation to Haskell: The Basics

3.1 Representing Non-deterministic Computations

As mentioned above, our implementation is based on the explicit representation of non-
deterministic results in a data structure. This can easily be achieved by adding a con-
structor to each data type to represent a choice between two values. For instance, one
can redefine the data type for Boolean values as follows:

data Bool = False | True | Choice Bool Bool

Thus, we can implement the non-deterministic operation aBool defined in Section 2
as:

aBool = Choice True False

If operations can deliver non-deterministic values, we have to extend the rules for opera-
tions defined by pattern matching so that they do not fail on non-deterministic argument
values. Instead, they move the non-deterministic choice one level above, i.e., a choice
in some argument leads to a choice in any result of this operation (this is also called
a “pull-tab” step in [2]). For instance, the rules of the uniform operation xor shown
above are extended as follows:

xor True x = xor’ x
xor False x = x
xor (Choice x1 x2) x = Choice (xor x1 x) (xor x2 x)

xor’ False = True
xor’ True = False
xor’ (Choice x1 x2) = Choice (xor’ x1) (xor’ x2)

The operation xorSelf is not defined by a pattern matching rule and, thus, need not be
changed. If we evaluate the expression “xorSelf aBool”, we get the result

Choice (Choice False True) (Choice True False)

How can we interpret this result? In principle, the choices represent different possible
values. Thus, if we want to show the different values of an expression (which is usually
the task of a top-level “read-eval-print” loop), we enumerate all values contained in the
choices. These are False, True, True, and False in the result above. Unfortunately,
this does not conform to the call-time choice semantics discussed in Section 2 which
excludes a value like True. The call-time choice semantics requires that the choice of a
value made for the initial expression aBool should be consistent in the entire computa-
tion. For instance, if we select the value False for the expression aBool, this selection
should be made at all other places where this expression might have been copied dur-
ing the computation. However, our initial implementation duplicates the initially single
Choice into finally three occurrences of Choice.

We can correct this unintended behavior of our implementation by identifying dif-
ferent Choice occurrences that are duplicates of some single Choice. This can be
easily done by attaching a unique identifier, e.g., a number, to each choice:

type ID = Integer
data Bool = False | True | Choice ID Bool Bool



Furthermore, we modify the Choice pattern rules so that the identifiers will be kept,
e.g.,

xor (Choice i x1 x2) x = Choice i (xor x1 x) (xor x2 x)

If we evaluate the expression “xorSelf aBool” and assign the number 1 to the choice
of aBool, we obtain the result

Choice 1 (Choice 1 False True) (Choice 1 True False)

When we show the values contained in this result, we have to make consistent selec-
tions in choices with same identifiers. Thus, if we select the left branch as the value of
the outermost Choice, we also have to select the left branch in the selected argument
(Choice 1 False True) so that only the value False is possible here. Similarly, if
we select the right branch as the value of the outermost Choice, we also have to select
the right branch in its selected argument (Choice 1 True False) which yields the
sole value False.

Note that each Choice occurring for the first time in a computation has
to get its own unique identifier. For instance, if we evaluate the expression
“xor aBool aBool”, the two occurrences of aBool assign different identifiers to their
Choice constructor (e.g., 1 for the left and 2 for the right aBool argument) so that this
evaluates to

Choice 1 (Choice 2 False True) (Choice 2 True False)

Here we can make different selections for the outer and inner Choice constructors so
that this non-deterministic result represents four values.

To summarize, our implementation is based on the following principles:

1. Each non-deterministic choice is represented by a Choice constructor with a
unique identifier.

2. When matching a Choice constructor, the choice is moved to the result of this
operation with the same identifier, i.e., a non-deterministic argument yields non-
deterministic results for each of the argument’s values.

3. Each choice introduced in a computation is supplied with its own unique identifier.

The latter principle requires the creation of fresh identifiers during a computation—
a non-trivial problem in functional languages. One possibility is the use of a global
counter that is accessed by unsafe features whenever a new identifier is required. Unfor-
tunately, unsafe features inhibit the use of optimization techniques developed for purely
functional programs and make the application of advanced evaluation and search strate-
gies (e.g., parallel strategies) more complex. Therefore, we avoid unsafe features in our
implementation. Instead, we thread some global information through our program in
order to supply fresh references at any point of a computation. For this purpose, we
assume a type IDSupply with operations

initSupply :: IO IDSupply
thisID :: IDSupply → ID
leftSupply :: IDSupply → IDSupply
rightSupply :: IDSupply → IDSupply

and add a new argument of type IDSupply to each operation of the source program,
i.e., a Curry operation of type



f :: τ1 → · · · → τn → τ

is translated into a Haskell function of type

f :: τ1 → · · · → τn → IDSupply → τ

Conceptually, one can consider IDSupply as an infinite set of identifiers that is created
at the beginning of an evaluation by the operation initSupply. The operation thisID
takes some identifier from this set, and leftSupply and rightSupply split this set
into two disjoint subsets without the identifier obtained by thisID. The split oper-
ations leftSupply and rightSupply are used when an operation calls two4 other
operations in the right-hand side of a rule. In this case, the called operations must be
supplied with their individual disjoint identifier supplies. For instance, the operation
main defined by

main :: Bool
main = xorSelf aBool

is translated into

main :: IDSupply → Bool
main s = xorSelf (aBool (leftSupply s)) (rightSupply s)

Any choice in the right-hand side of a rule gets its own identifier by the operation
thisID, as in

aBool s = Choice (thisID s) True False

The type IDSupply can be implemented in various ways. The simplest implementation
uses unbounded integers:

type IDSupply = Integer
initSupply = return 1
thisID n = n
leftSupply n = 2*n
rightSupply n = 2*n+1

There are other more sophisticated implementations available [10]. Actually, our com-
pilation system is parameterized over different implementations of IDSupply in or-
der to perform some experiments and choose the most appropiate for a given appli-
cation. Each implementation must ensure that, if s is a value of type IDSupply, then
thisID(o1(. . .(on s). . .)) and thisID(o′

1(. . .(o
′
m s). . .)) are different identifiers

provided that oi, o
′
j ∈ {leftSupply, rightSupply} and o1 · · · on 6= o′

1 · · · o′
m.

3.2 The Basic Translation Scheme

Functional logic computations can also fail, e.g., due to partially defined operations.
Computing with failures is a typical programming technique and provides for specific
programming patterns [6]. Hence, in contrast to functional programming, a failing com-
putation should not abort the complete evaluation but it should be considered as some
part of a computation that does not produce a meaningful result. In order to implement
this behavior, we extend each data type by a further constructor Fail and complete

4 The extension to more than two is straightforward.



each operation containing matching rules by a final rule that matches everything and
returns the value Fail. For instance, consider the definition of lists

data List a = Nil | Cons a (List a)

and an operation to extract the first element of a non-empty list:

head :: List a → a
head (Cons x xs) = x

The type definition is extended as follows:5

data List a = Nil | Cons a (List a) | Choice (List a) (List a) | Fail

The operation head is extended by an identifier supply and further matching rules:

head :: List a → IDSupply → a
head (Cons x xs) s = x
head (Choice i x1 x2) s = Choice i (head x1 s) (head x2 s)
head _ s = Fail

Note that the final rule returns Fail if head is applied to the empty list as well as if the
matching argument is already a failed computation, i.e., it also propagates failures.

As already discussed above, an occurrence of “?” in the right-hand side is translated
into a Choice supplied with a fresh identifier by the operation thisID. In order to
ensure that each occurrence of “?” in the source program get its own identifier, all
choices and all operations in the right-hand side of a rule get their own identifier supplies
via appropriate applications of leftSupply and rightSupply to the supply of the
defined operation. For instance, a rule like

main2 = xor aBool (False ? True)

is translated into

main2 s = let s1 = leftSupply s
s2 = rightSupply s
s3 = leftSupply s2
s4 = rightSupply s2

in xor (aBool s3) (Choice (thisID s4) False True) s1

An obvious optimization, performed by our compiler, is a determinism analysis. If an
operation does not call, neither directly nor indirectly through other operations, the
choice operation “?”, then it is not necessary to pass a supply for identifiers. In this case,
the IDSupply argument can be omitted so that the generated code is nearly identical
to a corresponding functional program (apart from the additional rules to match the
constructors Choice and Fail).

As mentioned in Section 2, our compiler translates occurrences of logic variables
into generators. Since these generators are standard non-deterministic operations, they
are translated like any other operation. For instance, the operation aBool is a generator
for Boolean values and its translation into Haskell has been presented above.

5 Actually, our compiler performs some renamings to avoid conflicts with predefined Haskell
entities and introduces type classes to resolve overloaded symbols like Choice and Fail.



A more detailed discussion of this translation scheme can be found in the original
proposal [12]. The correctness of this transformation from non-deterministic source
programs into deterministic target programs is formally shown in [11].

3.3 Extracting Values

So far, our generated operations compute all the non-deterministic values of an ex-
pression represented by a structure containing Choice constructors. In order to extract
the various values from this structure, we have to define operations that compute all
possible choices in some order where the choice identifiers are taken into account. To
provide a common interface for such operations, we introduce a data type to represent
the general outcome of a computation,

data Try a = Val a | Choice ID a a | Fail

together with an auxiliary operation:6

try :: a → Try a
try (Choice i x y) = Choice i x y
try Fail = Fail
try x = Val x

In order to take the identity of choices into account when extracting values, one has to
remember which choice (e.g., left or right branch) has been made for some particular
choice. Therefore, we introduce the type

data Choice = NoChoice | ChooseLeft | ChooseRight

where NoChoice represents the fact that a choice has not yet been made. Furthermore,
we need operations to lookup the current choice for a given identifier or change its
choice:

lookupChoice :: ID → IO Choice
setChoice :: ID → Choice → IO ()

In Haskell, there are different possibilities to implement a mapping from choice iden-
tifiers to some value of type Choice. Our implementation supports various options
together with different implementations of IDSupply. For instance, a simple but effi-
cient implementation can be obtained by using updatable values, i.e., the Haskell type
IORef. In this case, choice identifiers are memory cells instead of integers:

newtype ID = ID (IORef Choice)

Consequently, the implementation of IDSupply requires an infinite set of memory cells
which can represented as a tree structure:

data IDSupply = IDSupply ID IDSupply IDSupply
thisID (IDSupply r _ _) = r
leftSupply (IDSupply _ s _) = s
rightSupply (IDSupply _ _ s) = s

6 Note that the operation try is not really polymorphic but overloaded for each data type and,
therefore, defined in instances of some type class.



The infinite tree of memory cells (with initial value NoChoice) can be constructed as
follows, where unsafeInterleaveIO is used to construct the tree on demand:

initSupply = getIDTree

getIDTree = do s1 <- unsafeInterleaveIO getIDTree
s2 <- unsafeInterleaveIO getIDTree
r <- unsafeInterleaveIO (newIORef NoChoice)
return (IDSupply (ID r) s1 s2)

Using memory cells, the implementation of the lookup and set operations is straightfor-
ward:

lookupChoice (ID ref) = readIORef ref
setChoice (ID ref) c = writeIORef ref c

Now we can print all values contained in a choice structure in a depth-first manner by
the following operation:

printValsDFS :: Try a → IO ()
printValsDFS (Val v) = print v
printValsDFS Fail = return ()
printValsDFS (Choice i x1 x2) = lookupChoice i >>= choose
where
choose ChooseLeft = printValsDFS (try x1)
choose ChooseRight = printValsDFS (try x2)
choose NoChoice = do newChoice ChooseLeft x1

newChoice ChooseRight x2

newChoice ch x = do setChoice i ch
printValsDFS (try x)
setChoice i NoChoice

This operation prints a computed value and ignores failures. If there is some choice, it
checks whether a choice for this identifier has already been made (note that the initial
value for all identifiers is NoChoice). If a choice has been made, it follows this choice.
Otherwise, the left choice is made and stored. After printing all the values w.r.t. this
choice, the choice is undone (like in backtracking) and the right choice is made and
stored.

For instance, to print all values of the expression main defined in Section 3.1, we
evaluate the Haskell expression

initSupply >>= \s → printValsDFS (try (main s))

Thus, we obtain the output

False
False

In general, one has to propagate all choices and failures to the top level of a computa-
tion before printing the results. Otherwise, the operation try applied to an expression
like “Just aBool” would return a Val-structure instead of a Choice so that the main
operation printValsDFS would miss the non-determinism of the result value. There-
fore, we have to compute the normal form of the main expression before passing it to
the operation try. Hence, the result values of main are printed by evaluating



initSupply >>= \s → printValsDFS (try (id $!! main s))

where “f $!! x” denotes the application of the operation f to the normal form of
its argument x. This has the effect that a choice or failure occurring somewhere in a
computation will be moved (by the operation “$!!”) to the root of the main expression
so that the corresponding search strategy can process it. This ensures that, after the
computation to a normal form, an expression without a Choice or Fail at the root is a
value, i.e., it does not contain a Choice or Fail.

Of course, printing all values via depth-first search is only one option which is not
sufficient in case of infinite search spaces. For instance, one can easily define an oper-
ation that prints only the first solution. Due to the lazy evaluation strategy of Haskell,
such an operation can also be applied to infinite choice structures. In order to abstract
from these different printing options, our implementation contains a more general ap-
proach by translating choice structures into monadic structures w.r.t. various strategies
(depth-first search, breadth-first search, iterative deepening, parallel search). This al-
lows for an independent processing of the resulting monadic structures, e.g., by an
interactive loop where the user can request the individual values.

4 Benchmarks

In this section we evaluate our compiler by comparing the efficiency of the gener-
ated Haskell programs to various other systems, in particular, other implementations
of Curry. For our comparison with other Curry implementations, we consider PAKCS
[25] (Version 1.9.2) which compiles Curry into Prolog [5] (based on SICStus-Prolog
4.1.2, a SWI-Prolog 5.10 back end is also available but much slower). PAKCS has
been used for a number of practical applications of Curry. Another mature implemen-
tation we consider is MCC [32] (Version 0.9.10) which compiles Curry into C. MonC
[13] is a compiler from Curry into Haskell. It is based on a monadic representation of
non-deterministic computations where sharing is explicitly managed by the technique
proposed in [19]. Since this compiler is in an experimental state, we could not execute
all benchmarks with MonC (these are marked by “n/a”).

The functional logic language TOY [30] has many similarities to Curry and the
TOY system compiles TOY programs into Prolog programs. However, we have not
included a comparison in this paper since [5] contains benchmarks showing that the
implementation of sharing used in PAKCS produces more efficient programs.

Our compiler has been executed with the Glasgow Haskell Compiler (GHC 6.12.3,
option -O2). All benchmarks were executed on a Linux machine running Debian 5.0.7
with an Intel Core 2 Duo (3.0GHz) processor. The timings were performed with the
time command measuring the execution time (in seconds) of a compiled executable
for each benchmark as a mean of three runs. “oom” denotes a memory overflow in a
computation.

The first collection of benchmarks7 (Fig. 2) are purely first-order functional pro-
grams. The Prolog (SICStus, SWI) and Haskell (GHC) programs have been rewritten

7 All benchmarks are available at http://www-ps.informatik.uni-kiel.de/
kics2/benchmarks/.

http://www-ps.informatik.uni-kiel.de/kics2/benchmarks/
http://www-ps.informatik.uni-kiel.de/kics2/benchmarks/


System ReverseUser Reverse Tak TakPeano
KiCS2 0.12 0.12 0.21 0.79
PAKCS 2.05 1.88 39.80 62.43
MCC 0.43 0.47 1.21 5.49
MonC 23.39 22.00 20.37 oom
GHC 0.12 0.12 0.04 0.49
SICStus 0.39 0.29 0.49 5.20
SWI 1.63 1.39 1.84 11.66

Fig. 2. Benchmarks: first-order functional programs

according to the Curry formulation. “ReverseUser” is the naive reverse program applied
to a list of 4096 elements, where all data (lists, numbers) are user-defined. “Reverse” is
the same but with built-in lists. “Tak” is a highly recursive function on naturals [34] ap-
plied to arguments (27,16,8) and “TakPeano” is the same but with user-defined natural
numbers in Peano representation. Note that the Prolog programs use a strict evaluation
strategy in contrast to all others. Thus, the difference between PAKCS and SICStus
shows the overhead to implement lazy evaluation in Prolog.

One can deduce from these results that one of the initial goals for this compiler is
satisfied, since functional Curry programs are executed almost with the same speed as
their Haskell equivalents. An overhead is visible if one uses built-in numbers (due to the
potential non-deterministic values, KiCS2 cannot directly map operations on numbers
into the Haskell primitives) where GHC can apply specific optimizations.

System ReverseHO Primes PrimesPeano Queens QueensUser
KiCS2 oom 1.22 0.30 10.02 13.08
KiCS2HO 0.24 0.09 0.27 0.65 0.73
PAKCS 7.97 14.52 23.08 81.72 81.98
MCC 0.27 0.32 1.77 3.25 3.62
MonC oom 16.74 oom oom oom
GHC 0.24 0.06 0.22 0.06 0.11

Fig. 3. Benchmarks: higher-order functional programs

The next collection of benchmarks (Fig. 3) considers higher-order functional pro-
grams so that we drop the comparison to first-order Prolog systems. “ReverseHO” re-
verses a list with one million elements in linear time using higher-order functions like
foldl and flip. “Primes” computes the 2000th prime number via the sieve of Er-
atosthenes using higher-order functions, and “PrimesPeano” computes the 256th prime
number but with Peano numbers and user-defined lists. Finally, “Queens” (and “Queen-
sUser” with user-defined lists) computes the number of safe positions of 11 queens on
a 11× 11 chess board.

As discussed above, our compiler performs an optimization when all operations are
deterministic. However, in the case of higher-order functions, this determinism opti-
mization cannot be performed since any operation, i.e., also a non-deterministic opera-



tion, can be passed as an argument. As shown in the first line of this table, this consider-
ably reduces the overall performance. To improve this situation, our compiler generates
two versions of a higher-order function: a general version applicable to any argument
and a specialized version where all higher-order arguments are assumed to be determin-
istic operations. Moreover, we implemented a program analysis to approximate those
operations that call higher-order functions with deterministic operations so that their
specialized versions are used. The result of this improvement is shown as “KiCS2HO”
and demonstrates its usefulness. Therefore, it is always used in the subsequent bench-
marks.

System PermSort PermSortPeano Last RegExp
KiCS2HO 2.83 3.68 0.14 0.49
PAKCS 26.96 67.11 2.61 12.70
MCC 1.46 5.74 0.09 0.57
MonC 48.15 916.61 n/a n/a

Fig. 4. Benchmarks: non-deterministic functional logic programs

To evaluate the efficiency of non-deterministic computations (Fig. 4), we sort a list
containing 15 elements by enumerating all permutations and selecting the sorted ones
(“PermSort” and “PermSortPeano” for Peano numbers), compute the last element x of
a list xs containing 100,000 elements by solving the equation “ys++[x] =:= xs” (the
implementation of unification and variable bindings require some additional machinery
that is sketched in Section 5.3), and match a regular expression in a string of length
200,000 following the non-deterministic specification of grep shown in [8]. The results
show that our high-level implementation is not far from the efficiency of MCC, and it
is superior to PAKCS which exploits Prolog features like backtracking, logic variables
and unification for these benchmarks.

Since our implementation represents non-deterministic values as Haskell data struc-
tures, we get, in contrast to most other implementations of Curry, one interesting im-
provement for free: deterministic subcomputations are shared even if they occur in dif-
ferent non-deterministic computations. To show this effect of our implementation, con-
sider the non-deterministic sort operation psort (permutation sort) and the infinite list
of all prime numbers primes, as used in the previous benchmarks, and the following
definitions:

goal1 = [primes!!1003, primes!!1002, primes!!1001, primes!!1000]
goal2 = psort [7949,7937,7933,7927]
goal3 = psort [primes!!1003, primes!!1002, primes!!1001, primes!!1000]

In principle, one would expect that the sum of the execution times of goal1 and goal2
is equal to the time to execute goal3. However, implementations based on backtracking
evaluate the primes occurring in goal3 multiple times, as can be seen by the run times
for PAKCS and MCC shown in Fig 5.



System goal1 goal2 goal3
KiCS2HO 0.34 0.00 0.34
PAKCS 14.90 0.02 153.65
MCC 0.33 0.00 3.46

Fig. 5. Benchmarks: sharing over non-determinism

5 Further Features

In this section we sketch some additional features of our implementation. Due to lack
of space, we cannot discuss them in detail.

5.1 Search Strategies

Due to the fact that we represent non-deterministic results in a data structure rather than
as a computation as in implementations based on backtracking, we can provide different
methods to explore the search space containing the different result values. We have
already seen in Section 3.3 how this search space can be explored to print all values in
depth-first order. Apart from this simple approach, our implementation contains various
strategies (depth-first, breadth-first, iterative deepening, parallel search) to transform
a choice structure into a list of results that can be printed in different ways (e.g., all
solutions, only the first solution, or one after another by user requests). Actually, the
user can set options to select the search strategy and the printing method.

Method PermSort PermSortPeano NDNums
printValsDFS 2.82 3.66 ∞
depth-first search 5.33 6.09 ∞
breadth-first search 26.16 29.25 34.00
iterative deepening 9.16 10.91 0.16

Fig. 6. Benchmarks: comparing different search strategies

In order to compare the various search strategies, Fig. 6 contains some correspond-
ing benchmarks. “PermSort” and “PermSortPeano” are the programs discussed in Fig. 4
and “NDNums” is the program

f n = f (n+1) ? n

where we look for the first solution of “f 0 == 25000” (obviously, depth-first search
strategies do not terminate on this equation). All strategies except for the “direct print”
method printValsDFS translate choice structures into monadic list structures in order
to print them according to the user options. The benchmarks show that the overhead of
this transformation is acceptable so that this more flexible approach is the default one.

We also made initial benchmarks with a parallel strategy where non-deterministic
choices are explored via GHC’s par construct. For the permutation sort we obtained a
speedup of 1.7 when executing the same program on two processors, but no essential



speedup is obtained for more than two processors. Better results require a careful analy-
sis of the synchronization caused by the global structure to manage the state of choices.
This is a topic for future work.

5.2 Encapsulated Search

In addition to the different search strategies to evaluate top-level expressions, our system
also contains a primitive operation

searchTree :: a → IO (SearchTree a)

to translate the search space caused by the evaluation of its argument into a tree structure
of the form

data SearchTree a = Value a | Fail | Or (SearchTree a) (SearchTree a)

With this primitive, the programmer can define its own search strategy or collect all
non-deterministic values into a list structure for further processing [15].

5.3 Logic Variables and Unification

Although our implementation is based on eliminating all logic variables from the source
program by introducing generators, many functional logic programs contain equational
constraints (e.g., compare the example “Last” of Fig. 4) to put conditions on computed
results. Solving such conditions by generating all values is not always a reasonable ap-
proach. For instance, if xs and ys are free variables of type [Bool], the equational
constraint “xs=:=ys” has an infinite number of solutions. Instead of enumerating all
these solutions, it is preferable to delay this enumeration but remember the condition
that both xs and ys must always be evaluated to the same value. This demands for
extending the representation of non-deterministic values by the possibility to add equa-
tional constraints between different choice identifiers. Due to lack of space, we have
to omit the detailed description of this extension. However, it should be noted that the
examples “Last” and “RegExp” of Fig. 4 show that unification can be supported with a
reasonable efficiency.

6 Conclusions and Related Work

We have presented a new system to compile functional logic programs into purely
functional programs. In order to be consistent with the call-time choice semantics of
functional logic languages like Curry or TOY, we represent non-deterministic values
in choice structures where each choice has an identification. Values for such choice
identifiers are passed through non-deterministic operations so that fresh identifiers are
available when a new choice needs to be created. The theoretical justification of this
implementation technique is provided in [11]. Apart from the parser, where we reused
an existing one implemented in Haskell, the compiler is completely written in Curry.

Due to the representation of non-deterministic values as data, our system easily
supports various search strategies in constrast to Prolog-based implementations. Since
we compile Curry programs into Haskell, we can exploit the implementation efforts



done for functional programming. Hence, purely functional parts of functional logic
programs can be executed with almost the same efficiency as Haskell programs. Our
benchmarks show that even the execution of the non-deterministic parts can compete
with other implementations of Curry.

In the introduction we already discussed the various efforts to implement functional
logic languages, like the construction of abstract machines [9,27,32] and the compi-
lation into Prolog [5] or Haskell [13,15,16]. Our benchmarks show that an efficient
implementation by compiling into a functional language depends on carefully handling
the sharing of non-deterministic choices. For instance, our previous implementation
[13], where sharing is explicitly managed by the monadic techniques proposed in [19],
has not satisfied the expectations that came from the benchmarks reported in [19]. Due
to these experiences, in our new compiler we use the compilation scheme initially pro-
posed in [12] which produces much faster code, as shown in our benchmarks.

If non-deterministic results are collected in data structures, one has more fine-
grained control over non-deterministic steps. For instance, [2] proposes pull-tab steps
to move non-determinism from arguments to the result position of a function. Antoy
[4] shows that single pull-tab steps are semantics-preserving. Thus, it is not necessary
to move each choice to the root of an expression, as done in our implementation, but
one could also perform further local computations in the arguments of a choice before
moving it up. This might be a reasonable strategy if all non-deterministic values are
required but many computations fail. However, the general effects of such refinements
need further investigations.

Our implementation has many opportunities for optimization, like better program
analyses to approximate purely deterministic computations. We can also exploit ad-
vanced developments in the implementation of Haskell, like the parallel evaluation of
expressions. These are interesting topics for future work.
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