
Lazy and Enforceable Assertions for
Functional Logic Programs

Michael Hanus

Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany
mh@informatik.uni-kiel.de

Abstract. Assertions or contracts are an important technique to im-
prove the quality of software. Thus, assertions are also desirable for func-
tional logic programming. Unfortunately, there is no established mean-
ing of assertions in languages with a demand-driven evaluation strategy.
Strict assertions are immediately checked but may influence the behav-
ior of programs. Lazy assertions do not modify the behavior but may
not be faithful since some assertions might not be checked at all. In or-
der to avoid the disadvantages of strict and lazy assertions, we propose
enforceable assertions that are delayed as lazy assertions but can be ex-
plicitly enforced at some point where faith is required, e.g., at the end of
the program execution or before irrevocable I/O actions. We describe a
prototypical implementation of this idea in the functional logic language
Curry where the programmer can choose between lazy and enforceable
assertions.

1 Motivation

The use of assertions or contracts is an important technique to improve the
quality of software [21]. Assertions make certain assumptions in the code ex-
plicit, e.g., requirements on argument values to ensure the correct execution of
a function’s code. In principle, assertions can be implemented in the program’s
code by including code to check them. For instance, one can raise an exception
if the factorial function is called with a negative argument or the head function
is applied to an empty list. In order to keep the application code comprehensible
and maintainable, it is preferable to have a clear distinction between application
code and assertions so that one can later decide how to treat assertions. For
instance, they can be always checked, checked only during the development and
test of the application program, or removed after proving that they hold in the
application program.

Design by contract has been introduced in the context of object-oriented pro-
gramming [21]. It is also reasonable to use it in other programming paradigms. In
this paper we consider the inclusion of assertions1 in functional logic programs.

1 We use the term “assertions” for properties of values, whereas “contracts” are used
for properties of operations consisting of assertions for arguments as well as assertions
for result values.

Thus, we assume familiarity with basic concepts of functional logic programming
(details can be found in recent surveys [4,15]). For our examples and implementa-
tion, we use the declarative multi-paradigm language Curry [12,17] that combines
functional programming features (demand-driven evaluation, higher-order func-
tions) with logic programming features (computing with partial information,
unification, non-deterministic search for solutions) and concurrent evaluation.
The syntax of Curry is almost identical to Haskell [22]. In addition to Haskell,
Curry allows the declaration of free (logic) variables by the keyword “free”.

The intuitive meaning of assertions is as follows. If we decorate an expres-
sion in a program with an assertion, e.g., a predicate, then an assertion violation
should be reported whenever, during the program’s execution, the expression
has some value that does not satisfy the assertion. Unfortunately, a precise def-
inition and implementation of assertions is not straightforward in the context
of functional logic programming due to the demand-driven evaluation strategy.
This problem is already present in non-strict functional languages where various
proposals have been made to tackle it (e.g., [6,7,8]). In order to discuss the dif-
ficulties in more detail, consider a simple approach to introduce assertions in a
functional (logic) language by defining a combinator that attaches an assertion
to an expression:

assert :: (a → Bool) → a → a
assert p x = if p x then x

else error "Assertion failed"

Here, the assertion is a predicate on the values of the expression. If the predicate
applied to the expression evaluates to True, the expression is returned, otherwise
an exception is raised. Since this definition has the effect that the assertion is
immediately checked, we call such an assertion also strict assertion.

A disadvantage of strict assertions is the fact that they are not meaning
preserving, i.e., they might influence the behavior of application code, even if all
assertions are satisfied. For instance, consider an assertion that states that a list
is ordered:

ordered [] = True
ordered [_] = True
ordered (x:y:ys) = x<=y && ordered (y:ys)

Then the evaluation of “head (assert ordered [1,2..])” does not terminate
due to the evaluation of the infinite list argument caused by the assertion.

To avoid this influence of assertions to the application program, Chitil et al.
[8] proposed lazy assertions that do not enforce argument evaluation but are
checked when the argument expression has been evaluated by the application
program so far that the assertion can be evaluated without further evaluation
of its argument. Thus, as long as all assertions are satisfied, program executions
with or without lazy assertion checking deliver the same results. A disadvantage
of lazy assertions is the fact that some obviously violated assertions are not re-
ported when the arguments are not sufficiently evaluated. For instance, “head

2

(assert ordered [2,1])” returns 2 without any assertion violation if the as-
sertion is lazily checked, although the programmer assumes, due to the intuitive
meaning of assertions, that the result is the minimal element of the list.

Chitil and Huch [6,7] improved the situation by introducing a specific asser-
tion language that supports assertions where some violations can be earlier re-
ported in comparison to lazy assertions. Nevertheless, the basic problem remains:
it is possible that the violation of assertions might be undetected or detected
too late if all assertions are lazily checked. One can argue that this behavior is
fine since the possibly unchecked parts of an expression are not necessary for
computing the result. However, this view changes when I/O actions are taken
into account. For instance, if we pass a data structure through a sequence of I/O
actions where a first action needs only some part of the structure (similarly to
the call to head above) and the other parts are needed by subsequent actions,
then a violation of an assertion for the data structure might be detected too
late, e.g., after some rocket has been launched. Thus, there are situations where
one wants to ensure that the assertions hold. Degen et al. [9] put this into the
slogan “faithfulness is better than laziness.”

Altogether, there is no silver bullet for assertions in non-strict languages since
lazy assertions might not be faithful, and strict assertions cannot be applied to
algorithms exploiting infinite data structures. Thus, we propose an intermediate
approach where the user can choose between lazy and faithful assertions. In con-
trast to strict assertions, we propose to evaluate even faithful assertions in a lazy
manner but enforce their evaluation at particular program points, e.g., before
I/O actions where faith is important or at the end of the program execution.
Therefore, we call this kind of assertions “enforceable.”

One might wonder why it is useful to evaluate faithful assertions not simply
as strict assertions but treat them in a lazy manner. The reason is that this
strategy can reduce the possibility to report false violations of assertions, i.e.,
violations that do not occur during the execution of the application program.
Note that lazy evaluation in functional logic programs is not only desirable
to obtain optimal evaluation [2] but also to reduce the search space, i.e., lazy
evaluation on non-deterministic programs yields a demand-driven exploration
of the search space (see [1,15]). As a consequence, it is reasonable to evaluate
expressions lazily even if we know that we want to evaluate them completely.
For instance, consider the following program:

f 0 = 0
f 1 = 1

g x = [f x]

h False 1 = 2
h True 0 = 3

null [] = True
null (_:_) = False

3

The main expression to be evaluated is

let x free in h (null (g x)) x

Functional logic languages with a lazy evaluation strategy, like Curry [12,17] and
T OY [19], evaluate this expression to 2 by instantiating x to 1 (after evaluating
(null (g x)) to False). Now consider that we put a post-condition on g en-
suring that all values in the result list are positive whenever we apply g to some
argument during the program execution, i.e., we modify the definition of g to

g x = assert (all (>0)) [f x]

Remember that the evaluation of the main expression requires the evaluation
of (g x) to an empty or non-empty list. Thus, if the assertion on the result of
g is eagerly evaluated, the element f x in the result list is evaluated to 0 by
instantiating x to 0. Hence, an exception is raised due to the violated assertion.
However, if we delay the assertion checking until the end of the regular pro-
gram execution (which instantiates x to 1), no exception will be raised since the
assertion is satisfied.

Thus, we propose in this paper an assertion framework for functional logic
programs with the following characteristics:

– The programmer can put lazy or enforceable assertions on expressions in the
application program.

– Lazy assertions are checked when the arguments of the assertions are evalu-
ated by the application program so that the assertions can be reduced to a
Boolean value without any further evaluation of the arguments. Thus, lazy
assertions do not initiate any argument evaluation by themselves.

– Enforceable assertions are also lazily checked, i.e., when the values of their
arguments are available, they are reduced to a Boolean value. In addition, the
programmer can specify execution points (I/O actions) where all enforceable
assertions are eagerly checked if they have not already been checked.

– We describe a prototypical implementation of the framework in Curry. The
implementation is defined as a library implemented in Curry based on a few
extensions available in the Curry implementation PAKCS [16].

The next section defines the kind of assertions which we propose in this pa-
per. Section 3 describes an implementation of our assertion concept in Curry.
Section 4 discusses some related work before we conclude in Section 5.

2 Assertions

As discussed in Section 1, assertions can be considered as predicates on expres-
sions, i.e., they are of type “a -> Bool” where a is the type of the considered
expression. Of course, one can deal with richer and more specialized assertion
languages, like [6,7,18], but this is outside the scope of this paper. Therefore,
we simply consider assertions as standard predicates. As shown in the previous
section, one could attach an assertion to an expression by a combinator

4

assert :: (a → Bool) → a → a

However, this is not sufficient for an implementation of lazy assertions since
they need to inspect the data on which they operate. Therefore, they are not
parametrically polymorphic but their behavior depends on the structure of the
concrete type. Hence, we adopt a technique used in observation debugging tools
for functional (logic) languages [5,11] and put some information about the con-
sidered types as an additional argument of type “Assert a”.2 Furthermore, we
also add a string argument that is used to identify the violated assertion when
an exception is raised.3 Altogether, the assertion combinator has the following
type:

assert :: Assert a → String → (a → Bool) → a → a

In order to attach concrete assertions to a program, our assertion library defines
constants and functions returning assertion information for particular types, like

aInt :: Assert Int
aFloat :: Assert Float
aChar :: Assert Char
...
aList :: Assert a → Assert [a]
aPair :: Assert a → Assert b → Assert (a,b)
...

A concrete assertion is defined by combining these operations in a type correct
way. For instance, the post-condition on the operation g as shown in Section 1
can now be defined by

g x = assert (aList aInt) "AllPositive" (all (>0)) [f x] (1)

These assertions are enforceable, i.e., they are lazily evaluated with the same
demand as the application program but they can also be eagerly checked at
particular program points. For the latter purpose, the library defines an I/O
action

enforceAssertions :: IO ()

that forces the evaluating of all pending assertions. Thus, one can check all
assertions at the end of the user program (main) by executing

main >> enforceAssertions

2 In Haskell one could add the Assert information via type classes, but type classes
are not yet included in Curry.

3 Of course, it would be better to show the position of the violated assertion in the
exception. Since this information cannot be obtained by a library but requires specific
compiler support, we omit it here. In a future version, the compiler might introduce
the position information in the string argument.

5

Of course, enforceAssertions can also be used any number of times during
the regular program execution, e.g., before “important” I/O actions of the user
program.4

If the programmer wants to define assertions that should be only lazily eval-
uated (i.e., they might not be faithful but could be desirable for assertions on
infinite data structures), our library also provides an operator to attach such
lazy assertions to expressions:

assertLazy :: Assert a → String → (a → Bool) → a → a

In order to test and compare the various assertion methods, our library also
defines a strict assertion, which is immediately checked, by

assertStrict :: Assert a → String → (a → Bool) → a → a
assertStrict _ id p x =

if p x then x
else error ("Strict assertion ’"++id++"’ failed!")

Consider again the example given in Section 1 where the function g is defined
with a post-condition as shown in program rule (1) above. Our implementation,
described in detail below, evaluates the expression “h (null (g x)) x” without
reporting an assertion violation, as intended. However, if we replace in rule (1)
“assert” by “assertStrict”, the evaluation of the same expression yields an
exception reporting that the assertion AllPositive is violated, which is not true
in the program executed without assertions. This example shows the usefulness
to evaluate enforceable assertions in a lazy manner. The next section shows an
implementation of this concept in Curry.

3 Implementation

In this section, we first describe an implementation of purely lazy assertions in
Curry. Based on this, we develop an implementation of enforceable assertions.

3.1 Lazy Assertions

A possible implementation of lazy assertions in Haskell has been proposed in
[8]. Our implementation5 uses similar ideas but is based on functional logic
programming features. Lazy assertions should only be checked when the appli-
cation program demands and evaluates the arguments of the assertions. In order

4 In principle, one could also enforce assertion checking at any program point by
wrapping enforceAssertions using unsafePerformIO. However, it would be unclear
when and whether these assertions will be checked due to the overall lazy evalua-
tion strategy. Therefore, we prefer to support only I/O actions to enforce assertion
checking.

5 This implementation is partially based on code developed with Bernd Braßel and
Olaf Chitil.

6

to avoid the evaluation of arguments by assertion checking, we wrap these ar-
guments with a function wait that is evaluable only if the original argument
has been evaluated by the application program. In [8] this is implemented via
concurrent threads which synchronize on IORefs. Since Curry subsumes the con-
cept of concurrent logic programming, we use these features to implement the
concurrent evaluation of lazy assertions.

To implement lazy assertions, we require for each concrete type τ two oper-
ations:

wait :: τ → τ
ddunify :: τ → τ → τ

wait is the identity function on values of type τ but suspends as long as the
value is not provided, i.e., an unbound variable.6 For instance, consider the type
Nat of natural numbers in Peano’s notation defined by

data Nat = Z | S Nat

The corresponding operation waitNat can be defined as follows:

waitNat :: Nat → Nat
waitNat x = case x of Z → Z

S y → S (waitNat y)

Clearly, waitNat is the identity on Nat values but suspends when it is applied
to a free variable (due to the case construct which suspends on free variables,
see [17]).

The second important operation, ddunify, implements a demand-driven
unification of its arguments. Conceptually, a call “ddunify x e” evaluates e
(demand-driven, i.e., to head-normal form), returns the result, and unifies x
(which is usually a free variable) with the result’s top-level constructor and re-
curs on the arguments. For instance, the corresponding operation for the type
Nat is defined as follows:

ddunifyNat :: Nat → Nat → Nat
ddunifyNat x e =
if isVar e then (x=:=e) &> e

else case e of
Z → (x =:= Z) &> Z
S y → let z free

in (x =:= S z) &> S (ddunifyNat z y)

The test function isVar checks whether the current argument evaluates to a free
variable (note that free variables are also head-normal forms in functional logic
programs). Although this test function is non-declarative (it has been introduced
in [5] for a similar purpose), it is necessary to check the state of the argument in
order to avoid its unintended instantiation. If the argument e evaluates to a free

6 The suspension is important to ensure the principle that lazy assertions should not
change the evaluation behavior of the application program.

7

variable, it is unified (by the equational constraint “=:=”) with the argument x
and returned.7 Otherwise, the possible constructor-rooted values are examined.
In case of the constructor Z, this constructor is unified with argument x and
returned. If the argument’s value is rooted by the constructor S, x is instanti-
ated to the constructor S with a fresh variable argument and the corresponding
arguments are further unified by ddunifyNat.

As we will see below, the operations wait and ddunify are sufficient to
implement lazy assertions. Thus, the type Assert to encapsulate type-specific
assertion information is defined as

data Assert a = Assert (a → a) (a → a → a)

where the first and second component are the type-specific wait and ddunify
operations, respectively. Thus, an instance of Assert for the concrete type Nat
can be defined by

aNat :: Assert Nat
aNat = Assert waitNat ddunifyNat

Based on this structure of the type Assert, we can implement the combinator
assertLazy by applying the operations passed with the Assert argument:

assertLazy :: Assert a → String → (a → Bool) → a → a
assertLazy (Assert wait ddunify) label p e =
spawnConstraint (check label (p (wait x))) (ddunify x e)
where x free

The operation spawnConstraint (first introduced in [5]) is identical to the
guarded expression operator “&>” from a declarative point of view. In contrast
to “&>”, spawnConstraint proceeds with the evaluation of the second argument
even if the evaluation of the guard (first argument) suspends (i.e., the guard is
concurrently evaluated). Thus, assertLazy evaluates its expression argument e
and unifies its value with the free variable x in a demand-driven manner (by
“ddunify x e”). Concurrently, the assertion p is applied to x wrapped by the
operation wait in order to delay the evaluation until the required argument
value is available. The operation check simply examines the result of assertion
checking and raises an exception, if necessary:

check :: String → Bool → Success
check label result =
case result of
True → success
False → error ("Lazy assertion ’"++label++"’ violated!")

Due to the use of the operations wait and ddunify, the behavior of the com-
putation of the application program is not changed by attaching lazy assertions
to expressions. Since spawned constraints are evaluated with a high priority, a

7 “c &> e” denotes a guarded expression where the infix operator is predefined by the
conditional rule “c &> e | c = e”.

8

violated assertion is reported as soon as it can be decided by the availability of
the argument values.

Before we discuss the implementation of enforceable assertions, we show fur-
ther instances of Assert for some concrete types. First we note that the initial
test for the free variable case in ddunify is necessary for any concrete type.
Therefore, we define a generic combinator which adds this test to an arbitrary
demand-driven unification:

withVarCheck :: (a → a → a) → a → a → a
withVarCheck ddunif x e = if isVar e then (x=:=e) &> e

else ddunif x e

To avoid the application of this combinator to each new Assert instance, we
make the type Assert abstract, i.e., we do not export its data constructor but
define an operation that constructs an Assert instance from a given wait and
ddunify operation:

makeAssert :: (a → a) → (a → a → a) → Assert a
makeAssert wait ddunif = Assert wait (withVarCheck ddunif)

Using these auxiliary operations, the definition of an Assert instance for a con-
crete type amounts to a simple case distinction on the data constructors of this
type. For instance, the instance aNat already shown above can also be defined
as follows:

aNat = makeAssert waitNat ddunifyNat
where waitNat x = case x of Z → Z

S y → S (waitNat y)

ddunifyNat x e = case e of
Z → (x =:= Z) &> Z
S y → let z free

in (x =:= S z) &> S (ddunifyNat z y)

Instances of Assert for polymorphic type constructors are functions parameter-
ized with assertion information related to their type parameters. For instance,
the combinator aList can be defined as follows:

aList :: Assert a → Assert [a]
aList (Assert waita ddunifya) = makeAssert waitList ddunifyList
where
waitList l = case l of

[] → []
(x:xs) → waita x : waitList xs

ddunifyList x e = case e of
[] → (x=:=[]) &> []
y:ys → let z,zs free

in (x=:=z:zs) &> (ddunifya z y : ddunifyList zs ys)

9

One can use this combinator to define Assert instances for specific list types.
For instance, the Assert instance for strings can be defined as:

aString :: Assert String
aString = aList aChar

Here we use the Assert instance, aChar, for characters. To define it and similar
instances for primitive types (i.e., unstructured types that have only simple
constants as values), we define a generic instance for primitive types:

aPrimType :: Assert a
aPrimType = Assert waitPrimType ddunifyPrimType
where waitPrimType = ensureNotFree

ddunifyPrimType x i | x =:= i = i

The predefined operation ensureNotFree returns its argument evaluated to
head-normal form but suspends as long as the result is a free variable. Hence,
the application of ensureNotFree avoids an unintended instantiation of free
variable arguments during the evaluation of an assertion. Now, we can define
Assert instances for various primitive types:

aInt :: Assert Int
aInt = aPrimType

aChar :: Assert Char
aChar = aPrimType
...

We have shown the implementation of Assert instances for a few types. Note,
however, that the code structure of these instances follows a scheme which de-
pends on the structure of the type definitions. Thus, it is easy to provide a tool
to mechanically generate these instances for any user-defined data type.

3.2 Enforceable Assertions

As mentioned above, enforceable assertions are evaluated like lazy assertions
during the standard execution of the application program. In addition, they are
eagerly evaluated when it is requested by the I/O action enforceAssertions.
This demands for two execution modes of enforceable assertions:

1. demand-driven evaluation like lazy assertions, and
2. eager evaluation like strict assertions.

The implementation of lazy assertion wraps the arguments via wait operations
as shown above, i.e., their values are not available to the assertion as long as they
are not demanded by the application program. Thus, there seems to be no way to
enforce the evaluation of a lazy assertion outside the application program. Due
to this consideration, we implement the eager evaluation mode of an enforce-
able assertion by creating a further application of the assertion to its original

10

arguments. The evaluation of this application is delayed until it is requested by
enforceAssertions. Obviously, this scheme could cause some re-evaluation of
the assertion when the evaluation of the lazy assertion has already been started
before enforceAssertions occurs. However, this is not a serious problem since
the evaluation of the arguments are shared (due to the lazy strategy of the
host language) and under the assumption that assertion evaluation has not a
high complexity (which should be satisfied in order to execute programs with
assertion checking in a reasonable amount of time).

At least, we can avoid the re-evaluation of an already evaluated assertion
by passing a free variable as an “evaluation flag.” Thus, we extend the imple-
mentation of lazy assertions shown in Section 3.1 to enforceable assertions as
follows:

assert :: Assert a → String → (a → Bool) → a → a
assert (Assert wait ddunify) label p e
| registerAssertion eflag label (p e)
= spawnConstraint (check label eflag (p (wait x)))

(ddunify x e)
where eflag,x free

The operation registerAssertion suspends the evaluation of its last argument
until it is requested by enforceAssertions. The free variable eflag is the flag to
avoid a complete re-evaluation of the assertion. For this purpose, we redefine the
function check presented above so that the variable eflag is instantiated when
the assertion is fully evaluated (the instantiation in the False case is reasonable
if the exception is caught):

check label eflag result =
case result of
True → eflag=:=()
False → eflag=:=() &>

error ("Lazy assertion ’"++label++"’ violated!")

Next we discuss the implementation of registerAssertion. Suspended com-
putations can be easily obtained in Curry by waiting on the instantiation
of a free variable. Since all enforceable assertions should be evaluated if
enforceAssertions occurs, these suspended computations must share the same
free variable. Therefore, we use the Curry library GlobalVariable8 that sup-
ports the definition of typed “global variables.” A global variable is a top-level
entity that has an associated term. Furthermore, the association can be changed
by I/O actions. A global variable g having associated terms of type τ is defined
in a Curry program by

g :: GVar τ
g = gvar t

8 http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/GlobalVariable.html

11

http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/GlobalVariable.html

where t is the initially associated term (of type τ). Furthermore, there are two
operations

readGVar :: GVar a → IO a
writeGVar :: GVar a → a → IO ()

to get and set the term associated with a global variable. Note that the associated
term can also contain free variables.

In our implementation of enforceable assertions, we define a global variable
that is associated with a free variable used to synchronize all enforceable asser-
tions:9

assertionControl :: GVar ()
assertionControl = gvar unknown

Using this global variable, we can define the operation to register an enforceable
assertion for later evaluation as follows:

registerAssertion eflag label asrt =
spawnConstraint (delayedAssertion eflag label asrt =:= ())

success

delayedAssertion eflag label asrt = unsafePerformIO $ do
v <- readGVar assertionControl
ensureNotFree v =:= () &> done -- suspend on control variable
if isVar eflag && not asrt
then error ("Enforceable assertion ’"++label++"’ violated!")
else done

Since global variables are handled by I/O actions, we have to use the operation
unsafePerformIO to put the execution of an I/O action into a non-I/O value.
Hence, registerAssertion spawns a constraint which waits on the instantiation
of the variable that controls enforceable assertions. If this variable is instanti-
ated, it is checked whether the evaluation flag is instantiated, i.e., whether the
corresponding lazy assertion was already evaluated. If this is not the case, the
assertion asrt is evaluated and an exception is raised in case of a violation.

Now it is easy to request the evaluation of enforceable assertions by instan-
tiating the global control variable:

enforceAssertions = do
v <- readGVar assertionControl
v=:=() &> done -- instantiate control variable
writeGVar assertionControl unknown

After the instantiation, a new free variable is associated with the global con-
trol variable in order to have it ready for subsequent occurrences of enforceable
assertions.
9 The operation unknown is defined by “unknown = x where x free” in the Curry

prelude, i.e., it returns a free variable.

12

Note that we used a few non-declarative features to implement lazy and
enforceable assertions. This is not a problem for the application programmer
since their use is completely hidden in the library implementing this assertion
framework. The use of the non-declarative constructs is quite helpful to obtain a
maintainable high-level implementation without extending the run-time system
of the underlying Curry implementation.

3.3 More Assertions

We can use the assertion implementation to provide some other useful asser-
tions. For instance, an assertion for a function could check whether all pairs of
argument/result values satisfy a given predicate:

assertFun :: Assert a → Assert b → String → (a → b → Bool)
→ (a → b) → a → b

assertFun (Assert waita ddunifya) (Assert waitb ddunifyb)
label p f x

| registerAssertion eflag label (p x (f x))
= spawnConstraint (check label eflag (p (waita wx) (waitb wfx)))

(ddunifyb wfx (f (ddunifya wx x)))
where eflag,wx,wfx free

As an example for the use of this assertion, consider that we want to check
whether a function f of type Int → Int behaves monotonically for all calls.
Thus, we wrap it with the assertion

assertFun aInt aInt "monotonic" (<) f

Contracts [21] are requirements on the argument and result values when oper-
ations are invoked. Thus, a contract contains a precondition (on the argument)
and a postcondition (relating the argument and the result) for an operation. In
order to model such kinds of contracts, we can define a contract as an assertion
on the argument and an assertion between argument and result values as follows:

contract :: Assert a → Assert b → String
→ (a → Bool) → (a → b → Bool)
→ (a → b) → a → b

contract asrta asrtb label argp funp f x =
assertFun asrta asrtb ("Result of "++label) funp f

(assert asrta ("Argument of "++label) argp x)

For instance, if we want to turn a function fac into a function cfac containing
the contract ensuring that fac is always called with a non-negative argument
and returns a positive argument, we define it as follows:

cfac = contract aInt aInt "fac" (>=0) (_ r → r>0) fac

Sometimes one is interested to ensure that specific arguments are free variables
when they occur for the first time. For instance, there are high-level libraries for

13

GUI or HTML programming that use free variables as logical references between
widgets and event handlers [13,14]. Although these libraries use abstract data
types in order to ensure this property, it might be also useful to check this
property by an assertion, in particular, during the development of such libraries.
This can be done by an assertion that raises an exception when the argument
is not a free variable. The implementation is quite easy (note that enforceable
assertions are not necessary here since this assertion is immediately checked
when it occurs):

assertLogVar :: String → a → a
assertLogVar label x = (check label () (isVar x)) &> x

4 Related Work

Assertions or contracts have been introduced in the context of imperative object-
oriented programming languages [21], but assertions are also useful for declara-
tive programming when larger software systems are developed. Although pow-
erful type systems can express assertions on operations that can be checked
at compile time, more complex properties, like orderings on lists or trees, non-
negative values etc, cannot be expressed by standard type systems. If application
programs become more complex, it is important to state and check such prop-
erties, e.g., to improve reliability or to locate the source of program bugs more
easily.

Since the demand-driven evaluation model of functional languages causes ad-
ditional difficulties when considering assertions, there are a number of different
proposals in this area. Chitil et al. [8] proposed lazy assertions for non-strict
functional languages. They suggested that assertions should not influence the
normal behavior of programs (apart from space and time needed for assertion
checking). For this purpose, they discussed different implementations. To ensure
early detection of assertion violations, they implemented assertions by concur-
rent threads. Although we used the concurrent logic programming features of
Curry to implement assertions, both implementations of lazy assertions have
many similarities, in particular, both are based on some non-declarative con-
structs like unsafePerformIO.

Since lazy assertions might not detect assertion violations if parts of the con-
sidered data structures are not demanded by the application program, Chitil
and Huch [7] improved the situation by introducing a specific pattern logic to
express assertions that allow an earlier detection of violated assertions. In partic-
ular, they proposed to replace sequential Boolean operators, like “&&” or “||”,
by corresponding operators that evaluate their arguments in parallel. Although
such an extension could also be interesting for our framework, this does not
make our proposal for enforceable assertions superfluous: even in the extended
assertion language of Chitil and Huch, it might be the case that some violated
assertions remain undetected in a program execution.

14

Degen et al. [9] discussed the various requirements and possibilities of as-
sertion checking in lazy languages and came to the conclusion that there is no
method satisfying all desirable requirements. Thus, one has to choose between
meaning preserving (i.e., lazy) or faithful (i.e., strict) assertions. We have shown
that in functional logic programming, there is a further interesting approach:
enforceable assertions that are not immediately checked but delayed to a point
where faith is strictly required.

Hinze et al. [18] introduced a domain-specific language for defining contracts
in Haskell. Contracts are mainly evaluated in an eager manner. Nevertheless,
it would be interesting to use their ideas to develop a set of more expressive
contract combinators for our framework.

Findler and Felleisen [10] defined a contract system for higher-order func-
tions. In particular, they tackled the problem of correct blame assignment, i.e.,
to provide precise information about the source position of violated contracts.
Although this is orthogonal to the problems addressed in this paper, a correct
blame assignment is also relevant in our context and an interesting topic for
future work.

Assertions have been also considered in (constraint) logic programming. For
instance, [23] proposes a rich assertion language which also includes type and
mode information for predicates. [20] combines assertion checking with compile-
time verification so that only assertions which cannot be statically verified are
dynamically checked. Due to the eager evaluation strategy of Prolog, the difficul-
ties which we address in this paper do not occur there. Nevertheless, it would be
interesting to combine our framework with compile-time verification methods.

The demand-driven unification of arguments in our implementation of lazy
assertions seems similar to function patterns introduced to obtain more expres-
sive patterns in functional logic programs [3]. In contrast to function patterns,
which are completely evaluated to data terms for successful pattern matching,
the demand-driven unification introduced in this paper does not evaluate the
expressions completely but is driven by the demand of the evaluation context.

5 Conclusions

We have presented a framework to add lazy and enforceable assertions to func-
tional logic programs. Since it is not obvious for any program which properties
assertions should satisfy, i.e., whether they should be meaning preserving or
faithful, we propose to have both possibilities available in a non-strict language.
However, in a functional logic language with a demand-driven evaluation strat-
egy, it is reasonable to delay even enforceable assertions as long as possible in
order to avoid an unintended exploration of useless branches of the computation
space. We have shown an implementation of this framework in the functional
logic language Curry, where we used a few non-declarative constructs to imple-
ment the assertion framework as a library without modifying the compiler or
the run-time system. It should be noted that assertions cause some overhead
only if they occur in a program. Since we have not modified the run-time system

15

to implement assertions, programs without assertions do not have any overhead
due to the availability of assertion checking.

For future work, it would be interesting to consider a more expressive as-
sertion language, like the contract language of [18] or the pattern logic of [7].
Furthermore, more work has to be done in order to get a practical tool that
automatically provides the source code positions of violated assertions.

Acknowledgements. The author is grateful to the participants of WFLP 2010
and the anonymous referees for helpful comments and suggestions to improve
this paper.

References

1. S. Antoy. Optimal Non-Deterministic Functional Logic Computations. In Proc.
International Conference on Algebraic and Logic Programming (ALP’97), pp. 16–
30. Springer LNCS 1298, 1997.

2. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of
the ACM, Vol. 47, No. 4, pp. 776–822, 2000.

3. S. Antoy and M. Hanus. Declarative Programming with Function Patterns. In
Proceedings of the International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’05), pp. 6–22. Springer LNCS 3901, 2005.

4. S. Antoy and M. Hanus. Functional Logic Programming. Communications of the
ACM, Vol. 53, No. 4, pp. 74–85, 2010.

5. B. Braßel, O. Chitil, M. Hanus, and F. Huch. Observing Functional Logic Com-
putations. In Proc. of the Sixth International Symposium on Practical Aspects of
Declarative Languages (PADL’04), pp. 193–208. Springer LNCS 3057, 2004.

6. O. Chitil and F. Huch. Monadic, Prompt Lazy Assertions in Haskell. In Proc.
APLAS 2007, pp. 38–53. Springer LNCS 4807, 2007.

7. O. Chitil and F. Huch. A Pattern Logic for Prompt Lazy Assertions in Haskell. In
Proc. of the 18th International Symposium on Application and Implementation of
Functional Languages (IFL 2006), pp. 126–144. Springer LNCS 4449, 2007.

8. O. Chitil, D. McNeill, and C. Runciman. Lazy Assertions. In Proceedings of the
15th International Workshop on Implementation of Functional Languages (IFL
2003), pp. 1–19. Springer LNCS 3145, 2004.

9. M. Degen, P. Thiemann, and S. Wehr. True Lies: Lazy Contracts for Lazy Lan-
guages (Faithfulness is Better than Laziness). In 4. Arbeitstagung Programmier-
sprachen (ATPS’09), pp. 370; 2946–59. Springer LNI 154, 2009.

10. R.B. Findler and M. Felleisen. Contracts for Higher-Order Functions. In Proceed-
ings of the 7th ACM SIGPLAN international conference on Functional program-
ming (ICFP’02), pp. 48–59. ACM Press, 2002.

11. A. Gill. Debugging Haskell by Observing Intermediate Data Structures. Electr.
Notes Theor. Comput. Sci., Vol. 41, No. 1, 2000.

12. M. Hanus. A Unified Computation Model for Functional and Logic Programming.
In Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pp. 80–93, 1997.

13. M. Hanus. A Functional Logic Programming Approach to Graphical User Inter-
faces. In International Workshop on Practical Aspects of Declarative Languages
(PADL’00), pp. 47–62. Springer LNCS 1753, 2000.

16

14. M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the Third In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’01),
pp. 76–92. Springer LNCS 1990, 2001.

15. M. Hanus. Multi-paradigm Declarative Languages. In Proceedings of the Interna-
tional Conference on Logic Programming (ICLP 2007), pp. 45–75. Springer LNCS
4670, 2007.

16. M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj, P. Niederau,
R. Sadre, and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System.
Available at http://www.informatik.uni-kiel.de/~pakcs/, 2010.

17. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.8.2).
Available at http://www.curry-language.org, 2006.

18. R. Hinze, J. Jeuring, and A. Löh. Typed Contracts for Functional Programming.
In Proc. Eight International Symposium on Functional and Logic Programming
(FLOPS 2006), pp. 208–225. Springer LNCS 3945, 2006.

19. F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative
System. In Proc. of RTA’99, pp. 244–247. Springer LNCS 1631, 1999.

20. E. Mera, P. López-Garćıa, and M. Hermenegildo. Integrating Software Testing and
Run-Time Checking in an Assertion Verification Framework. In 25th International
Conference on Logic Programming (ICLP 2009), pp. 281–295. Springer LNCS 5649,
2009.

21. B. Meyer. Object-oriented Software Construction. Prentice Hall, second edition,
1997.

22. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, 2003.

23. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint
Logic Programs. In Analysis and Visualization Tools for Constraint Programming,
pp. 23–62. Springer LNCS 1870, 2000.

17

	Lazy and Enforceable Assertions for Functional Logic Programs

