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Abstract

Computing with failures is a typical programming technique in functional logic programs. However, there
are also situations where a program should not fail (e.g., in a deterministic top-level computation) but the
evaluation fails accidentally, e.g., due to missing pattern combinations in an operation defined by pattern
matching. In this case, the program developer is interested in the context of the failed program point in order
to analyze the reason of the failure. Therefore, this paper discusses techniques for reporting failures and
proposes a new one that has been integrated in a Prolog-based compiler for the declarative multi-paradigm
language Curry. Our new technique supports separate compilation of modules, i.e., the compilation of
modules has not taken into account whether failures should be reported or not. The failure reporting is
only considered in some linking code for modules. In contrast to previous approaches, the execution of
programs in the failure reporting mode causes only a small overhead so that it can be also used in larger
applications.
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1 Motivation

Functional logic languages (see [17] for a survey) integrate the most important
features of functional and logic languages to provide a variety of programming con-
cepts to the programmer. For instance, the concepts of demand-driven evaluation,
higher-order functions, and polymorphic typing from functional programming are
combined with logic programming features like computing with partial information
(logic variables), constraint solving, and nondeterministic search for solutions. This
combination, supported by optimal evaluation strategies [3] and new design pat-
terns [5], leads to better abstractions in application programs such as implementing
graphical user interfaces [20] or programming dynamic web pages [21,22].

Since functional logic languages, like Curry [19,27] or Toy [30], support both
functional and logic programming styles, functional logic programs often contain
parts that are evaluated in a purely deterministic manner and other parts where
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search for solutions is involved. These parts are sometimes combined by encapsu-
lating search [10,26] so that the search results are processed by a deterministic part
of the program. Thus, computing with failure is a typical programming technique
in nondeterministic computations whereas a failure in the deterministic parts is a
programming error in most cases. In the latter situation, the programmer is inter-
ested to see the failed function call as well as the context of the failure in order to
analyze its reason.

For instance, consider the Curry program defining functions to compute the
head, tail and the length of a list, and to select an element in a list at a particular
position (nth) or at the end (last):

head (x:_) = x

tail (_:xs) = xs

length [] = 0
length (_:xs) = 1 + length xs

nth xs n = if n==0 then head xs
else nth (tail xs) (n-1)

last xs = nth xs (length xs)

If we evaluate the expression “last [1,2]” w.r.t. these definitions, we do not get
a value: for instance, the PAKCS programming environment for Curry [23] prints
“No more solutions” instead of a value. Since this is a purely deterministic com-
putation without any logic variables or nondeterministic operations involved, the
result is not intended so that some function call accidentally fails. In a deterministic
computation, this must be the last function call in the sequence of reductions. In
this example, it is the function call “head []”. Although this is the only failing
function call in the evaluation of the initial expression, the partial definition of the
function head is obviously not the reason of this failure. Therefore, one is interested
to see the context of this failure in order to understand why head is applied to the
empty list. One possibility is to show the sequence of unevaluated calls from the
initial expression to the failed function call. This corresponds to the call stack and
is shown by the tool presented in this paper as follows:

5: last [1,2]
4: nth [1,2] (length [1,2])
3: nth (tail [1,2]) (2-1)
2: nth (tail (tail [1,2])) (1-1)
1: head (tail (tail [1,2]))
head: failed for argument: []

Now one can see that the reason of this failure is not the definition of head but
one superfluous application of tail which can be avoided by the following correct
definition of last:

last xs = nth xs (length xs - 1)

Note that the call stack contains only those function calls from the initial expression
to the failed call that are not yet evaluated at the moment when the failure occurs.

2



Hanus

In particular, intermediate calls, like “if length [1,2]==0 then...else...” or
“length [1,2]==0” are not shown since they have already been evaluated.

Although one can discuss whether the visualization of such a call sequence or
another representation of the context of the failure is better to spot the reason of
the failure, it is clear that information about the failed call and its context is quite
useful for debugging.

Unfortunately, most publications related to the implementation of functional
logic languages concentrate on the efficient implementation of successful implemen-
tations rather than reporting failures (see, for instance, the survey in [17] or more
recent works like [4,6,7,12,25,30,31]). Approaches to report failures can be found
in the context of debugging declarative languages. For instance, Gill [16] proposed
the debugger Hood for Haskell that is based on the idea that the user annotates ex-
pressions in the source program where the evaluation of those expressions is shown
after the entire execution of a program. This idea has been extended to Curry with
the COOSy tool [8]. Since these observation debuggers require the annotation of
“relevant” expressions by the programmer before the program’s execution, it is not
very helpful in order to spot failures at some unknown position in the program.

Alternative approaches are tracers that record complete information about the
evaluation steps during the execution and present them to the programmer with
browsing facilities after the execution (e.g., see [15] for Haskell or [11] for Curry).
Although these tools could be quite useful, since they present the evaluation in a
different and better comprehensible order, they have also a disadvantage from a
practical point of view. Since the complete trace, containing all reduction steps,
variable bindings etc., must be stored, the amount of data to be stored can be huge
so that these tracers have problems to deal with larger applications. Although there
are approaches to improve their efficiency (e.g., [9]), the current implementations
are not mature enough to be applied for larger applications. Therefore, we propose
in this paper a simpler approach that can be implemented in a much more efficient
way but still provides useful information to the programmer. Moreover, we show the
integration of this approach in a Prolog-based compiler for Curry that supports a
separate compilation of modules: no specific compilation is required when modules
are executed such that failures are reported (e.g., in contrast to [9,11,15]). The
latter property is important for the usability of this debugging method.

In the next section, we review the general structure of Curry programs in order
to understand the subsequent development. A standard scheme to compile Curry
programs into Prolog programs is reviewed in Section 3. Section 4 discusses existing
approaches to report failures and proposes our new approach that enables a more
efficient implementation. Finally, Section 5 contains our conclusions.

2 Curry Programs

We review in this section some aspects of Curry programs that are necessary to
understand the contents of this paper. More details about Curry’s computation
model and a complete description of all language features can be found in [1,19,27].

Curry is a declarative multi-paradigm language combining in a seamless
way features from functional, logic, and concurrent programming and supports

3



Hanus

programming-in-the-large with specific features (types, modules, encapsulated
search). From a syntactic point of view, a Curry program is a functional pro-
gram extended by the possible inclusion of free (logic) variables in conditions and
right-hand sides of defining rules. Curry has a Haskell-like syntax [32], i.e., (type)
variables and function names usually start with lowercase letters and the names of
type and data constructors start with an uppercase letter. The application of a
function f to an argument e is denoted by juxtaposition (“f e”).

A Curry program consists of the definition of functions and the data types on
which the functions operate. Functions are defined by conditional equations with
constraints in the conditions. They are evaluated lazily and can be called with par-
tially instantiated arguments. Function calls with free variables are evaluated by
a possibly nondeterministic instantiation of demanded arguments (i.e., arguments
whose values are necessary to decide the applicability of a rule) to the required
values in order to apply a rule (this evaluation mechanism is often called “narrow-
ing”). In order to support concurrent programming (in a style that is also known
as “residuation”), there is a primitive to define general “suspension” combinators
for concurrent programming: the predefined operation ensureNotFree returns its
argument evaluated to head normal form but suspends as long as the result is a free
variable.

Example 2.1 The following program defines the types of Boolean values and poly-
morphic lists and functions to concatenate lists and to compute the last element of
a list in a logic programming style:

data Bool = True | False
data List a = [] | a : List a

conc :: [a] -> [a] -> [a]
conc [] ys = ys
conc (x:xs) ys = x : conc xs ys

last :: [a] -> a
last xs | conc ys [x] =:= xs = x where x,ys free

The data type declarations define True and False as the Boolean constants and
[] (empty list) and : (non-empty list) as the constructors for polymorphic lists (a
is a type variable ranging over all types and the type “List a” is usually written
as [a] for conformity with Haskell). The (optional) type declaration (“::”) of the
function conc specifies that conc takes two lists as input and produces an output
list, where all list elements are of the same (unspecified) type. 3

In general, functions are defined by (conditional) rules of the form

f t1 . . . tn | c = e where vs free

with f being a function, t1, . . . , tn patterns (i.e., expressions without defined func-
tions) without multiple occurrences of a variable, the condition c is a constraint, e is
a well-formed expression which may also contain function calls, lambda abstractions

3 Curry uses curried function types where α->β denotes the type of all functions mapping elements of type
α into elements of type β.
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etc, and vs is the list of free variables that occur in c and e but not in t1, . . . , tn. 4

The condition and the where parts can be omitted if c and vs are empty, respec-
tively. The where part can also contain further local function definitions which
are only visible in this rule. A conditional rule can be applied if its left-hand side
matches the current call and its condition is satisfiable.

A constraint is any expression of the built-in type Success. For instance, the
trivial constraint success is an expression of type Success that denotes the always
satisfiable constraint. “c1 & c2” denotes the concurrent conjunction of the constraints
c1 and c2, i.e., this expression is evaluated by proving both argument constraints
concurrently. Each Curry system provides at least equational constraints of the
form e1 =:= e2 which are satisfiable if both sides e1 and e2 are reducible to unifiable
patterns. However, specific Curry systems also support more powerful constraint
structures, like arithmetic constraints on real numbers, Boolean constraints, or finite
domain constraints, as in the PAKCS implementation [24].

The operational semantics of Curry [1,19] is based on an optimal evaluation
strategy [3] for functional logic evaluations. It is a conservative extension of lazy
functional programming (if no free variables occur in the program or the initial
goal) and (concurrent) logic programming. Due to its demand-driven behavior, it
provides optimal evaluation (e.g., shortest derivation sequences, minimal solution
sets) on well-defined classes of programs (see [3] for details). Curry also offers the
standard features of functional languages, like higher-order functions or monadic
I/O [34].

3 Compilation into Prolog

In this section we discuss standard high-level implementation techniques of func-
tional logic languages by compilation into Prolog. This is the basis of our proposal
to integrate failure reporting presented in the subsequent section.

The main extensions of functional logic languages compared to purely functional
languages are the coverage of logic variables and nondeterministic search. Since
these features are directly supported in Prolog [33], it is a natural idea to translate
functional logic programs into Prolog programs in order to exploit the implemen-
tation technology available for Prolog. Actually, there are various approaches to
implement functional logic languages with demand-driven evaluation strategies in
Prolog (e.g., [2,4,14,18,28,29]). Since modern functional logic languages are based
on the non-strict lazy evaluation of functions [1], the main challenge of Prolog-
based implementations are efficient techniques to obtain this behavior. Since the
computation to a head normal form (i.e., a constructor-rooted term or a variable)
is the central task of lazy evaluation, a common idea of such implementations is the
translation of source operations into predicates that compute only the head normal
form of a call to this operation. Thus, an n-ary operation could be translated into
a predicate with n + 1 arguments where the last argument contains the head nor-
mal form of the evaluated call. For instance, the list concatenation conc defined in

4 The explicit declaration of free variables is sometimes redundant (it is not redundant in case of nested
scopes introduced by lambda abstractions or local definitions) but still useful to provide some consistency
checks by the compiler.
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Example 2.1 and the function head defined in Section 1 can be translated into the
following Prolog predicates:

conc(Xs,Ys,H) :- hnf(Xs,HXs), conc_1(HXs,Ys,H).

conc_1([],Ys,H) :- hnf(Ys,H).
conc_1([X|Xs],Ys,[X|conc(Xs,Ys)]).

head(Xs,H) :- hnf(Xs,HXs), head_1(HXs,H).
head_1([X|Xs],H) :- hnf(X,H).

Since conc is defined by a case distinction on the first argument, the value is needed
and, hence, computed by the predicate hnf before it is passed to conc_1 implement-
ing the pattern matching on the first argument. Since the right-hand side of the
second rule of conc is already in head normal form, no further evaluation is neces-
sary. In the first rule of conc_1, it is unknown at compile time whether the second
argument Ys is already in head normal form. Therefore, the evaluation to head
normal form is enforced by the predicate hnf. The goal hnf(t,h) evaluates any
term t to its head normal form h. Some of the clauses defining hnf are:

hnf(V,V) :- var(V), !.
hnf([],[]).
hnf([X|Xs],[X|Xs]).
...
hnf(conc(Xs,Ys),H) :- conc(Xs,Ys,H).
hnf(head(Xs),H) :- head(Xs,H).
...

Variables and constructor-rooted terms are already in head normal form (first three
clauses). For each call to a defined function, there is a clause that calls the corre-
sponding predicate implementing the evaluation of this function. Using this scheme,
there is a straightforward transformation of Curry programs into Prolog. Further-
more, the predefined equational constraint “=:=” can be implemented by a predicate
constrEq which computes the head normal form of its arguments and performs a
variable binding if one of the arguments is a variable (following the scheme presented
in [29]):

constrEq(A,B,H) :- hnf(A,HA), hnf(B,HB), constrEqHnf(HA,HB,H).

constrEqHnf(A,B,H) :- var(A), !, bind(A,B,H).
constrEqHnf(A,B,H) :- var(B), !, bind(B,A,H).
constrEqHnf(A,B,success) :- number(A), !, A=B.
constrEqHnf(c(X1,...,Xn),c(Y1,...,Yn),H) :- !,

hnf((X1=:=Y1)&...&(Xn=:=Yn),H). % ∀n-ary constructors c

bind(X,Y,success) :- var(Y), !, X=Y.
bind(X,Y,success) :- number(Y), !, X=Y.
bind(X,c(Y1,...,Yn),H) :- !, % ∀n-ary constructors c

occursNot(X,Y1),..., occursNot(X,Yn), X=c(X1,...,Xn),
hnf(Y1,HY1), bind(X1,HY1,H),
...
hnf(Yn,HYn), bind(Xn,HYn,H).
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Due to the lazy semantics of the language, the binding is performed incrementally.
We use an auxiliary predicate, bind, which performs an occur check (implemented
by occursNot) followed by an incremental binding of the goal variable and the
binding of the arguments.

Note that the scheme presented so far does not implement sharing (where it is
required that each function call should be evaluated at most once) or residuation
(i.e., the suspension of operations where arguments are required to be bound to a
non-variable value). Both features can be covered by extending this scheme: shar-
ing can be supported by introducing “share structures” for arguments with multiple
occurrences in the right-hand side of rules, and residuation can be supported by ad-
ditional arguments in each predicate to control the potential suspension of function
calls and exploiting coroutining facilities of Prolog implementations (see [4] for de-
tails). Since these extensions complicates the presentation and are independent of
the design of our approach to report failures, we omit the implementation of sharing
and residuation in the following.

4 Prolog-based Failure Reporting

Before we present our new proposal to report failures, we discuss existing approaches
with a similar objective.

4.1 Report Failures by Backtracking

A failure occurring in a Curry program compiled into Prolog with the approach
sketched in the previous section causes a failure of the corresponding Prolog pro-
gram. Thus, standard Prolog implementations just report “no” which is clearly not
very helpful to locate a bug. Therefore, Prolog implementations usually support
source-level tracing of the Prolog program under execution following Byrd’s box
model [13]. However, tracing the compiled Curry program on the level of Prolog
is also not helpful since basic reduction steps are implemented by a sequence of
predicate calls and the Curry programmer should not know the compilation model
in order to find a bug in his program. Thus, it is better to hide the implementation
level of Prolog to the programmer but add features that report the failures on the
level of the source language Curry.

It is a well known technique in logic programming to enhance meta-interpreters
with features for tracing or debugging [33]. Similar techniques can also be used
when compiling other languages into Prolog. For instance, to report a failure in a
function call, one can modify the generation of clauses for the predicate hnf so that
each evaluation of the corresponding predicate has an alternative goal that reports
the failure:

...
hnf(conc(Xs,Ys),H) :- conc(Xs,Ys,H) ; failprint(cons(Xs,Ys)).
hnf(head(Xs),H) :- head(Xs,H) ; failprint(head(Xs)).
...

For instance, in case of a call to head, the goal failprint(head(Xs)) is executed
only if the evaluation of the goal head(Xs,H) failed. In this case, failprint just
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prints its argument (in the Curry syntax format) and also fails:

failprint(Exp) :-
write(’Failure due to irreducible expression: ’),
writeCurry(Exp), nl,
!, fail.

Since failures are printed for each failed function call, this implementation reports
all failures up to the main expression. Due to its striking simplicity, this technique
has been integrated for a long time in the PAKCS programming environment [23].

Although this approach is easy to implement and reports the complete context of
a failure, it has also a serious drawback that makes it impractical for larger programs.
For each function call, a choice point is created in order to report the potential failure
by failprint. Thus, as long as the computation proceeds without a failure, a huge
number of choice points is created without ever discarding them. Since the creation
of choice points is one of the most expensive operation in Prolog implementations
and requires a considerable amount of memory [35], larger computations are often
terminated due to insufficient memory before reaching the failure point which we
want to analyze. This demands for another implementation technique that causes
execution costs only in the case of a failed computation. Our solution to this problem
will be described next.

4.2 Report Failures without Backtracking

The main idea of our approach is to treat a failing computation not as a failed
computation in the Prolog program but as a computation that returns a specific
value containing some information about the source of the failure. For this pur-
pose, we assume a predefined function failure that wraps its argument into the
distinguished constructor FAIL that is not accessible to standard Curry programs.
Although this function is predefined (since it is not typable w.r.t. the standard type
system of Curry), for the moment we assume the following definition of failure:

failure x = FAIL [x]

Thus, failure puts its argument into a list which will later be stepwise extended to
the list of all failed function calls from the main expression to the innermost failed
call. The function failure is explicitly used whenever some function call might
fail due to missing pattern combinations. 5 For instance, the operation head is not
defined on empty lists. Therefore, we complete the definition of head with a call
to failure in case of an empty list as argument so that we obtain the following
extended definition of the predicate head_1:

head_1([X|Xs],H) :- hnf(X,H).
head_1([],H) :- hnf(failure(head([])),H).

Note that all predicates implementing pattern matching in source programs can be
automatically completed in this way due to the typed nature of the source language
Curry. 6 However, this code contains a slight problem. Since Curry is a functional

5 failure is also used whenever a call to the equational constraint “=:=” fails, see Section 4.3.
6 The completion of functions with many missing patterns could be optimized if the implementation sup-
ports some sort of “default cases.” In our case, the definition of predicates with a complete set of patterns
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logic language, head can be also called with a logic variable as argument. In the
new implementation, the logic variable can be bound to [X|Xs] as well as to []. In
the latter case, failure is called to report a failure although this was not present
in the original program.

In order to avoid such unintended instantiations of logic variables, we introduce
in front of the new failure clauses a single clause which tries to bind the argument
to a new constructor (here: varcut) that does not occur in regular computations.
If this binding is successful, we know that the argument must be a free variable so
that we can safely ignore the remaining clauses by a cut/fail combination:

head_1([X|Xs],H) :- hnf(X,H).
head_1(varcut,H) :- !, fail. % ignore further clauses
head_1([],H) :- hnf(failure(head([])),H).

Note that we could have also implemented the second varcut clause by a call to
the Prolog meta-predicate var in order to check the freeness of the argument:

head_1(X,H) :- var(X), !, fail. % ignore further clauses

However, this would destroy the standard Prolog indexing scheme on the first ar-
gument and creates additional choice points. Our proposed translation scheme has
(almost) no influence on the execution time but only extends the program size a
little bit (around 10% in our larger examples).

As mentioned above, FAIL is a new constructor to pass the information about
failing computations. Therefore, it is a new value that must be considered in all
pattern matchings, i.e., if the actual argument is a FAIL value, it is directly returned
to the caller. Thus, we obtain the following final code that implements the pattern
matching of head:

head_1([X|Xs],H) :- hnf(X,H).
head_1(varcut,H) :- !, fail. % ignore further clauses
head_1([],H) :- hnf(failure(head([])),H).
head_1(’FAIL’(A),’FAIL’(A)).

Note that all pattern matching predicates must be extended by a FAIL clause. How-
ever, the varcut clause needs only be inserted in case of partially defined functions.
Our extended translation of pattern matching for failure reporting causes only a
slight increase in the code size but has no negative influence on the execution of
these predicates. Thus, we can compile all Curry modules in this extended way
independent of the fact whether we want to report failures or not. This property
is important to support separate compilation, e.g., usually system libraries cannot
be recompiled by individual users of an installed Curry system. All the logic about
the treatment of FAIL values is contained in the implementation of the predefined
operation failure and hnf clauses which we discuss next.

Translated Curry programs can be executed in a standard mode or a “failure
reporting” mode. The mode can be selected in the PAKCS environment which stores
it in the predicate reportFailure. The Prolog implementation of the primitive
failure is as follows:

is more efficient due to Prolog’s specific support for argument indexing.
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failure(_,_) :- reportFailure(no), !, fail. % no reporting required
failure(FailedCall,’FAIL’([FailedCall]). % return FAIL value

Hence, if the user do not want to see the failed calls, failure just fails (first clause)
so that the behavior is identical to the standard execution. Otherwise, the FAIL
value containing the failed call is returned (second clause).

In order to extend FAIL values with outermost function calls up to the main
expression, we modify the definition of the predicate hnf. Note that, due to separate
compilation implemented in PAKCS, the definition of the predicate hnf is generated
for each program loaded into PAKCS: since hnf transfers the evaluation of each
function call to the predicate implementing this function, it can be considered as the
“linking code” that glues the separately compiled modules. Therefore, generating
a new definition of hnf is a minor task compared to the compilation of a module
(usually performed in a few milliseconds) so that this is usually not recognized by
the PAKCS user when he switches to the failure reporting mode.

The definition of hnf for failure reporting adds a goal to check for FAIL values
after each predicate call so that it has the following structure:

hnf(V,V) :- var(V), !.
hnf([],[]).
hnf([X|Xs],[X|Xs]).
...
hnf(conc(Xs,Ys),H) :- conc(Xs,Ys,HF),

checkFailValue(conc(Xs,Ys),HF,H).
hnf(head(Xs),H) :- head(Xs,HF), checkFailValue(head(Xs),HF,H).
...

Note that this change causes only a small overhead due to the call to
checkFailValue but does not introduce new choice points. Hence, this scheme is
compatible with the execution of large applications. The predicate checkFailValue
checks whether its second argument is a FAIL value. If this is the case, it extends
the argument by the current function call which is passed as the first argument,
otherwise it just returns the second argument:

checkFailValue(Call,Value,Result) :-
(nonvar(Value), Value=’FAIL’(FailStack))
-> Result=’FAIL’([Call|FailStack])
; Result=Value.

Due to this implementation scheme, a failed computation returns the complete
call stack from the outermost main function call to the innermost failed call in a
list structure. This list structure can be processed in the PAKCS environment in
different ways according to the current settings:

• Show only the innermost failed function call or the list of all failed calls (as shown
in Section 1).

• Enter an interactive mode for failure tracing. This mode is useful if the complete
trace is too large to show it on a screen. In this mode the programmer can
explore different regions of the complete trace, show calls with arguments up to
some depth (useful for large argument terms) etc.
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• Write the list of all failed calls into some file. This is useful to explore failures
occurring in non-interactive applications like dynamic web pages executed by an
HTTP server [21,22].

Our implementation scheme causes only a small overhead in case of non-failing
computations and has a behavior substantially different from the standard execution
only if a failure occurs. Although the returned structure can be large if considered as
a term, it fits well into main memory even for larger applications since most parts of
the structure (in particular, the arguments of the function calls) are already created
in the heap when the failure occurs. Thus, our implementation is a viable and
more generally applicable alternative than failure reporting based on backtracking
(Section 4.2) or tracing the complete execution [9,11,15].

4.3 Failures in Equational Constraints

In functional logic languages, failures cannot only occur in user-defined operations
but also in equational constraints due to non-unifiable terms. For instance, the
constraints “True =:= False” and “x =:= 1:x” are not solvable (the former due to
incompatible constructors and the latter due to the occur check) and, thus, fail.
Since equational constraints are predefined with a specific implementation (see Sec-
tion 3), one cannot use the implementation scheme to report failures in user-defined
functions as presented in the previous section. Thus, in order to report failures in
equational constraints, we extend the definition of constrEqHnf and bind in the
implementation scheme for “=:=” presented in Section 3 as follows:

constrEqHnf(A,B,H) :- var(A), !, bind(A,B,H).
constrEqHnf(A,B,H) :- var(B), !, bind(B,A,H).
constrEqHnf(’FAIL’(A),B,’FAIL’(A)) :- !.
constrEqHnf(A,’FAIL’(B),’FAIL’(B)) :- !.
constrEqHnf(A,B,H) :- number(A), !,

(A=B -> H=success ; hnf(failure(A=:=B),H)).
constrEqHnf(c(X1,...,Xn),c(Y1,...,Yn),H) :- !,

hnf((X1=:=Y1)&...&(Xn=:=Yn),H). % ∀n-ary constructors c

constrEqHnf(A,B,H) :- hnf(failure(A=:=B),H).

bind(X,Y,success) :- var(Y), !, X=Y.
bind(X,Y,success) :- number(Y), !, X=Y.
bind(X,’FAIL’(Y),’FAIL’(Y)) :- !.
bind(X,c(Y1,...,Yn),H) :- % ∀n-ary constructors c

occursNot(X,Y1),..., occursNot(X,Yn), !, X=c(X1,...,Xn),
hnf(Y1,HY1), bind(X1,HY1,H1),
((nonvar(H1), H1=’FAIL’(S)) -> H=H1 ;

...
hnf(Yn,HYn), bind(Xn,HYn,H)...).

bind(X,Y,H) :- hnf(failure(X=:=Y),H).

The additional third and fourth clause of constrEqHnf and the additional third
clause of bind passes a FAIL value of an argument evaluation. The new final clauses
of constrEqHnf and bind report failures due to incompatible constructors and occur
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check, respectively. Similarly, the constrEqHnf clause for numbers must be slightly
modified to report failures in case of incompatible numbers.

4.4 Failures in Encapsulated Search

As mentioned at the beginning, computing with failures is a typical programming
technique in functional logic programs. However, in practical applications one has
to restrict the search for solutions in order to avoid a nondeterministic behavior of
the entire program in I/O operations (such a behavior is considered as a run-time
error in Curry). Thus, the programmer usually encapsulate nondeterministic search
by specific search operators that return the solutions to some constraint [10,26].
Since reporting failures is usually not intended in these parts of the programs,
failure reporting is disabled during encapsulated search (which is controlled by a
simple flag in the run-time system), i.e., the predicate failure always fails inside
an encapsulated search. If the programmer is still interested to see failures in these
parts of the program, he can just execute these parts at the top-level of PAKCS
without the search operators.

5 Conclusions

We have presented a new scheme to compile functional logic programs into Prolog
that supports the report of failed computations. The scheme is based on the idea to
represent failed computations by a specific failure value containing the sequence of
failed function calls at the end of a failed computation. For this purpose, the missing
patterns of each partially defined function are completed with calls to a distinguished
failure function that returns a failure value. Furthermore, all functions need to be
extended in order to pass failure values as arguments. We have designed this scheme
such that the additional clauses for the predicates implementing each function do
not cause an execution overhead for standard executions. Thus, the new scheme can
be used to compile Curry programs. A specific compilation to report failures is only
necessary for the definition of the global predicates to compute the head normal form
of any expression and to prove equational constraints. These predicates establish
the linking code between the different modules so that their definition is generated
before loading each program. Altogether, the proposed scheme can be efficiently
implemented and does not cause a substantial execution overhead in contrast to
other approaches based on backtracking or storing the complete execution trace.
Thus, our scheme can also be used to get information about the context of a failure
in larger application programs.

Although we have implemented our approach in a Prolog-based implementation
of Curry and carefully designed it in order to exploit the efficiency of current Pro-
log implementations, it can be also applied to implementations of functional logic
languages based on other target languages than Prolog. However, our implementa-
tion technique might not be relevant for lower level languages where one has direct
access to the call stack and other run-time structures.

For future work, it might be interesting to explore whether it is possible to
generate more structural information in case of errors. Since the structure of the
call stack is oriented towards the lazy evaluation of expressions, the order of calls
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might not be the best one for presentation to the programmer. Further practical
experience is necessary to develop appropriate presentation structures.

The implementation described in this paper is freely available with the latest
distribution of PAKCS [23].
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[28] J.A. Jiménez-Martin, J. Marino-Carballo, and J.J. Moreno-Navarro. Efficient Compilation of Lazy
Narrowing into Prolog. In Proc. Int. Workshop on Logic Program Synthesis and Transformation
(LOPSTR’92), pp. 253–270. Springer Workshops in Computing Series, 1992.
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