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Abstract
In this paper we present CurryBrowser, a generic analysis envi-
ronment for the declarative multi-paradigm language Curry. Curry-
Browser supports browsing through the implementation of an ap-
plication written in Curry, i.e., the main module and all directly or
indirectly imported modules. Each module can be shown in differ-
ent formats (e.g., source code, interface, intermediate code) and,
inside each module, various properties of functions defined in this
module can be analyzed. In order to support the integration of var-
ious program analyses, CurryBrowser has a generic interface to
connect local and global analyses implemented in Curry. Curry-
Browser is completely implemented in Curry using libraries for
GUI programming and meta-programming.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.1.6 [Program-
ming Techniques]: Logic Programming; D.2.6 [Software Engi-
neering]: Programming Environments; F.3.2 [Logics and Mean-
ings of Programs]: Semantics of Programming Languages

General Terms Languages

Keywords Functional Logic Programming, Programming Envi-
ronments, Program Analysis

1. Overview
CurryBrowser is intended as a tool to support the analysis of declar-
ative programs. It can be used to browse through an implementation
written in the declarative multi-paradigm language Curry [6, 12],
analyze properties of individual or all functions defined in a mod-
ule, or visualize dependencies between modules or functions. It can
be also used as a testbed for program analyses (the analyses of func-
tional logic programs is still ongoing research) since it supports the
easy integration of new program analyses by a generic interface.
The implementation of CurryBrowser is based on an intermediate
language to which functional, logic, and also integrated functional
logic programs can be compiled (e.g., see [2, 4, 13]). Thus, it is also
adaptable to other declarative languages.

To get an impression of the use of CurryBrowser, Figure 1
shows a snapshot of its use on a particular application (here: the
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implementation of CurryBrowser). The upper list box in the left
column shows the modules and their imports in order to browse
through the modules of an application. Similarly to directory
browsers, the list of imported modules of a module can be opened
or closed by clicking. After selecting a module in the list of mod-
ules, its source code, interface, or various other formats of the mod-
ule can be shown in the main (right) text area. For instance, one
can show pretty-printed versions of the intermediate flat programs
(see below) in order to see how local function definitions are trans-
lated by lambda lifting [14] or pattern matching is translated into
case expressions [6, 16]. Since Curry is a language with paramet-
ric polymorphism and type inference, programmers often omit the
type signatures when defining functions. Therefore, one can also
view (and store) the selected module as source code where missing
type signatures are added.

The lower list box of the left column shows the list of exported
or all functions defined in the selected module. This list box is
central for the analysis of functions, i.e., showing their properties.
For this purpose, the lower list box of the middle column offers a
list of available program analyses that can be applied to individ-
ual functions. Their results are either shown in the text box be-
low the main text area or visualized by separate tools, e.g., by a
graph drawing tool for visualizing call graphs. Some analyses are
local, i.e., they need only to consider the local definition of this
function (e.g., “Calls directly,” “Overlapping rules,” “Pattern com-
pleteness”), where other analyses are global, i.e., they consider the
definitions of all functions directly or indirectly called by this func-
tion (e.g., “Depends on,” “Solution complete,” “Set-valued”). The
middle list box of the middle column allows to analyze all func-
tions of the current module at once (in order to see some “critical”
functions, like impure or incompletely defined ones). Finally, the
upper list box is useful to focus on a function in the source code
of some module. For this purpose, one can put there the list of all
functions of the current module or all imported modules, or the list
of all functions directly or indirectly called from the currently se-
lected function. Selecting a function in this list shows its source
code in the main text area. Furthermore, there are a few additional
tools integrated into CurryBrowser, for instance, to visualize the
import relation between all modules as a dependency graph.

In the next section, we review some features of Curry in order
to show a few details of the implementation of CurryBrowser in
Section 3. The currently available analyses and tools are sketched
in Section 4 before we conclude in Section 5.

2. Curry Programs
Since CurryBrowser is implemented in Curry and intended to be
applied to Curry programs, we review in this section some aspects
of Curry programs that are necessary to understand the function-
ality and implementation of our programming environment. More
details about Curry’s computation model and a complete descrip-
tion of all language features can be found in [6, 12].



Figure 1. The main window of CurryBrowser

Curry is a declarative multi-paradigm language combining in
a seamless way features from functional, logic, and concurrent
programming and supports programming-in-the-large with specific
features (types, modules, encapsulated search). From a syntactic
point of view, a Curry program is a functional program extended
by the possible inclusion of free (logical) variables in conditions
and right-hand sides of defining rules. Curry has a Haskell-like
syntax [15], i.e., (type) variables and function names usually start
with lowercase letters and the names of type and data constructors
start with an uppercase letter. The application of a function f to an
argument e is denoted by juxtaposition (“f e”).

A Curry program consists of the definition of functions and the
data types on which the functions operate. Functions are defined
by conditional equations with constraints in the conditions. They
are evaluated lazily and can be called with partially instantiated
arguments.

EXAMPLE 1. The following program defines the types of Boolean
values and polymorphic lists and functions to concatenate lists and
to compute the last element of a list:

data Bool = True | False
data List a = [] | a : List a

conc :: [a] -> [a] -> [a]
conc [] ys = ys
conc (x:xs) ys = x : conc xs ys

last xs | conc ys [x] =:= xs = x where x,ys free

The data type declarations define True and False as the Boolean
constants and [] (empty list) and : (non-empty list) as the con-
structors for polymorphic lists (a is a type variable ranging over

all types and the type “List a” is usually written as [a] for con-
formity with Haskell). The (optional) type declaration (“::”) of
the function conc specifies that conc takes two lists as input and
produces an output list, where all list elements are of the same (un-
specified) type.1

The operational semantics of Curry [1, 6] is a conservative ex-
tension of lazy functional programming (if no free variables occur
in the program or the initial goal) and (concurrent) logic program-
ming. To describe this semantics, compile programs, or implement
analyzers and similar tools, an intermediate representation of Curry
programs has been shown to be useful. Programs of this interme-
diate language, also called flat programs, contain a single rule for
each function where the pattern matching strategy is represented by
case/or expressions. The basic structure of flat programs is defined
as follows:2

P ::= D1 . . . Dm e ::= v
D ::= f v1 . . . vn = e | c e1 . . . en

| f e1 . . . en

p ::= c v1 . . . vn | case e0 of {pk → ek}
| fcase e0 of {pk → ek}
| e1 or e2

A program P consists of a sequence of function definitions D with
pairwise different variables in the left-hand sides. The right-hand
sides are expressions e composed by variables, constructor and

1 Curry uses curried function types where α->β denotes the type of all
functions mapping elements of type α into elements of type β.
2 ok denotes a sequence of objects o1, . . . , ok .



function calls, case expressions, and disjunctions. A case expres-
sion has the form (f )case e of {c1 xn1

→ e1, . . . , ck xnk
→ ek},

where e is an expression, c1, . . . , ck are different constructors of
the type of e, and e1, . . . , ek are expressions. The pattern vari-
ables xni

are local variables which occur only in the corresponding
subexpression ei. The difference between case and fcase shows up
when the argument e is a free variable: case suspends (which cor-
responds to residuation) whereas fcase nondeterministically binds
this variable to the pattern in a branch of the case expression (which
corresponds to narrowing).

The PAKCS implementation of Curry [9] provides a library for
meta-programming which contains the data types for representing
flat programs (i.e., the data types and functions defined in a module)
and an I/O action for reading a module and translating its contents
into the corresponding data term. For instance, a module of a Curry
program is represented as an expression of the type

data Prog = Prog String
[String]
[TypeDecl]
[FuncDecl]
[OpDecl]

where the arguments of the data constructor Prog are the module
name, the names of all imported modules, the list of all type,
function, and infix operator declarations. Furthermore, a function
declaration is represented as

data FuncDecl = Func QName Int Visibility
TypeExpr Rule

where the arguments are the qualified name (i.e., a pair of module
and function name), arity, visibility (Public or Private), type,
and rule (of the form “Rule arguments expr”) of the function.
The remaining data type declarations for representing Curry pro-
grams are similar but we omit them due to lack of space.

3. Implementation
CurryBrowser is implemented in Curry using libraries for GUI
programming [8] and meta-programming sketched above. In order
to ensure a fast startup time, only the interface files of all modules
(they have the same structure as flat programs but contain only
the type signature of exported functions and data types) are read
at the beginning. This information is sufficient to show the import
structure of all modules in the initial main window. Complete flat
programs are only read as demanded by the analyses.

As discussed in Section 1, CurryBrowser offers a generic in-
terface to integrate various analysis tools for declarative programs.
Since flat programs are an appropriate abstraction level for imple-
menting such tools [10, 11], this interface is based on them. To
be more concrete, CurryBrowser provides the following type def-
inition to connect program analyzers (where a is the type of the
analysis result):

data FunctionAnalysis a =
LocalAnalysis (FuncDecl -> a)

| LocalDataAnalysis ([TypeDecl] -> FuncDecl -> a)
| GlobalAnalysis ([FuncDecl] -> [(QName,a)])
| GlobalDataAnalysis ([TypeDecl] -> [FuncDecl]

-> [(QName,a)])

A local analysis associates results to single function definitions
(e.g., “Calls directly”), a local data analysis requires in addition
the type declarations (e.g., “Pattern completeness”), and global
analyses require all defined functions and yield lists containing
for each function name (QName) an associated result. Thanks to
laziness, the results for all functions are not computed at once but
only as demanded by the user.

As a simple example, consider the “Overlapping rules” analysis.
This analysis is intended to indicate whether a function is defined
by rules with overlapping left-hand sides. This can be easily spotted
in the flat representation of Curry programs as an occurrence of
a disjunction (or ) in the right-hand side of the rule defining this
function. Thus, this analysis is a local one that can be implemented
as follows:

isOverlappingFunction :: FuncDecl -> Bool
isOverlappingFunction (Func _ _ _ _ (Rule _ e))

= orInExpr e

where the operation orInExpr checks for occurrences of disjunc-
tions in an expression.

For the simple addition of new analyzers, the implementation
of CurryBrowser has a configuration module containing definitions
of the currently available tools. For instance, it contains a constant
functionAnalyses of type

[(String, FunctionAnalysis AnalysisResult)]

where each element in this list consists of the name and the function
implementing the analysis. The result type of the concrete function
analyses, defined as

data AnalysisResult =
MsgResult String | ActionResult (IO ())

indicates whether the analysis result is a string or an I/O action to
visualize the result via an external tool (e.g., a graph drawing tool).
Thus, to test a new analysis by integrating it into CurryBrowser, one
has to connect its implementation by adding a new element to the
list functionAnalyses and recompile the system. Then, the Cur-
ryBrowser environment provides the analysis with the appropriate
data whenever the user selects the analysis.

Note that the possible result types of analyses to be integrated
into CurryBrowser are fixed since the implementation needs to
know what to do with the analysis result. Therefore, the current
implementation supports

• string results that are shown inside the main window, or
• I/O actions that calls some external tool for visualization.

For instance, to show the dependency graph of a function, the
corresponding global analysis computes a graph structure and calls
an external program, the DOT graph drawing tool3, to visualize this
graph structure (see Figure 2 for an example). Since the main GUI
of CurryBrowser is executed in the I/O monad, the event handlers
that implement reactions to user events are I/O actions [8]. Thus,
analyses with a result type IO () can be executed by the event
handlers responsible for analyzing programs. In order to avoid the
crash of the CurryBrowser environment if some analyses fails with
run-time errors, the execution of an analyses is wrapped into an
exception handler.

The restriction to a fixed set of analysis result types requires
the transformation of arbitrary program analyses when they are in-
tegrated into CurryBrowser. For instance, the “Overlapping rules”
analysis sketched above delivers Boolean results that must be con-
verted into appropriate strings shown to the user. For this purpose,
one can define a simple conversion operation to show the result of
the overlapping analysis:

showOverlap :: Bool -> String
showOverlap True = "Overlapping"
showOverlap False = "Not Overlapping"

In order to support a simple conversion of arbitrary analyses into
the analyses with string results as required by the interface of

3 http://www.graphviz.org/



Figure 2. Visualization of the dependency graph of the prelude function elem

CurryBrowser, the implementation of CurryBrowser contains the
following conversion operation:

showWithMsg :: FunctionAnalysis a
-> (a->String)
-> FunctionAnalysis AnalysisResult

showWithMsg (LocalAnalysis ana) showresult =
LocalAnalysis
(\f -> MsgResult (showresult (ana f)))

showWithMsg (LocalDataAnalysis ana) showresult =
LocalDataAnalysis
(\tds f -> MsgResult (showresult (ana tds f)))

showWithMsg (GlobalAnalysis ana) ...
showWithMsg (GlobalDataAnalysis ana) ...

Based on this conversion operation (which is also defined as
an infix operator), it is easy to integrate an analysis like
isOverlappingFunction into CurryBrowser by adding an ele-
ment to the configuration list functionAnalyses as follows:

functionAnalyses =
[...,
("Overlapping rules",
LocalAnalysis isOverlappingFunction

‘showWithMsg‘ showOverlap),
...]

Similarly to the list constant functionAnalyses, the configura-
tion module of CurryBrowser contains two further list constants
that specify the available analyses:

• a list constant allFunctionAnalyses that contains analyses
that are applied to all functions of the selected module (e.g.,
applying the analysis “Pattern completeness” to all functions
of a module is useful to spot those functions with incomplete
pattern definitions): the results of these analyses are shown as
prefixes in the column showing the list of all functions of the
currently selected module;

• a list constant moduleAnalyses that contains analyses that are
applied to complete modules (e.g., to generate the interface, the
flat representation of a module, or a source code representation
where missing type signatures are added); similarly to a func-
tion analysis, the result of a module analysis is either a (pro-
gram) text to be shown in the main window or an I/O action
that visualizes the result by an external tool.

Thus, it is easy to integrate existing tools (implemented in Curry)
into CurryBrowser.

4. Available Analyses and Tools
This section shortly surveys the analyses and tools that are currently
available in CurryBrowser. Due to the simple integration of further
analyses and tools, this set is likely to be extended in future releases
of CurryBrowser.

In the flat representation of Curry, pattern matching is made ex-
plicit by case expressions and disjunctions, and local definitions
are “globalized” by lambda lifting [14]. Thus, it is sometimes in-
teresting to show these transformations performed by the front end
of a Curry implementation. For this purpose, CurryBrowser can
show the flat representation of each function or module as well as a
source-like representation where case expressions and disjunctions
are translated back into pattern-based definitions but local defini-
tions are globalized. Furthermore, the following analyses are avail-
able for individual functions:

Calls directly (local analysis): Shows all functions that are di-
rectly called by this function.

Depends on (global analysis): Shows all functions that might be
directly or indirectly called in the rules defining this function.

Dependency graph (global analysis): Shows the dependency
graph of the selected function. This is a combination as
well as a graphical visualization of Calls directly and
Depends on, i.e., an arc is drawn from each function symbol
to all functions directly called in the rules defining this function



and all reachable function nodes are included in the graph (see
Figure 2 for an example).

Local dependency graph (global analysis): Shows the depen-
dency graph of the selected function restricted to all rules occur-
ring in the current module. This is useful for complex functions,
e.g., depending on other non-trivial library functions, where the
complete dependency graph becomes unreadable due to its size.

Called by (global analysis): Shows the list of all functions in the
current module that call this function in their defining rules.

Overlapping rules (local analysis): Shows whether the func-
tion is defined by overlapping rules (which might cause non-
deterministic evaluations even for ground expressions). This is
interesting for logic programming but might be also useful for
purely functional programs.

Right-linear rules (local analysis): Shows whether the func-
tion is defined by right-linear rules, i.e., rules where each vari-
able has at most one occurrence in the right-hand side.

Right-linearity (global analysis): Shows whether the function
is defined by right-linear rules and depends only on functions
defined by right-linear rules. This information is useful for
some program optimizations (e.g., [3]).

Pattern completeness (local data analysis): Shows whether
the pattern matching is exhaustive, i.e., if the function is re-
ducible on any combination of (well-typed) ground constructor
argument terms.

Solution completeness (global analysis): Shows whether the
function is operationally complete, i.e., if it is ensured that the
execution of the function does not suspend for any arguments.

Nondeterministic (global analysis): Shows whether the func-
tion is possibly nondeterministic, i.e., if it directly or indirectly
depends on an operation defined by overlapping rules so that
it might deliver (nondeterministically) two values for the same
ground constructor arguments.

Set-valued (global analysis): Shows whether the function is pos-
sibly set-valued, i.e., if it directly or indirectly depends on an
operation defined by overlapping rules or rules containing extra
variables (variables occurring in the right-hand side but not in
the left-hand side) so that an application to some ground con-
structor arguments is equal to a set of more than one value.

Purity (global analysis): Shows whether the function is pure (ref-
erentially transparent), i.e., if it is ensured that it delivers always
the same values for the same ground constructor arguments at
each time and all schedulings of the evaluation. This might not
be the case if committed choice or sending via ports is executed
during its evaluation [7].

Finally, there are also useful tools to process complete modules or
collections of modules. For instance, beyond showing the source
code, interface, and flat representation of a module, one can also
show a version of the source code where type signatures are added
to functions where the programmer has omitted them.

To get more information about the import structure between
modules, one can show all modules directly imported by the cur-
rent one together with their exported functions that are accessed in
the current module. This is useful to spot superfluously imported
modules. Finally, one can also visualize the entire import relation
between all modules of the currently loaded application as a mod-
ule dependency graph (see Figure 3 for an example).

5. Conclusions
We have presented CurryBrowser, a generic analysis environment
for Curry programs. CurryBrowser supports browsing through the
modules of an application and offers a wide range of analysis tools

in an integrated manner. The currently available set of analyses and
tools can be easily extended due to the generic interface offered by
the CurryBrowser implementation.

The mostly related system (and, in some sense, its predecessor)
is CIDER [10], an environment to analyze single Curry modules.
In contrast to CIDER, CurryBrowser can be applied to complete
applications consisting of several modules and supports the brows-
ing through the module structure. Furthermore, CurryBrowser pro-
vides a better structure to integrate analyzers: CIDER assumes that
every analysis takes the complete program as input, whereas Cur-
ryBrowser distinguishes between different kinds of analyses (local,
global, data-dependent) and provides them with the appropriate in-
formation from the modules and functions selected by the user.

Another related system is IDE [5], a graphical development
environment for the functional logic languages Toy and Curry.
IDE supports the writing of programs in a standard text editor
window and the compilation and execution of programs. However,
IDE does not offer further tools, e.g., for program analysis.

CurryBrowser is completely implemented in Curry. The ad-
vanced programming techniques offered by Curry (e.g., higher-
order functions, demand-driven evaluation, meta-programming,
high-level abstractions with logic variables for GUI programming
[8]) has supported the fast and maintainable implementation of this
environment. The size of the complete implementation of Curry-
Browser is approximately 1400 lines of Curry code. This includes
the implementation of the graphical user interface and all currently
available analyses and tools. In addition, the total size of all im-
ported system libraries is approximately 2500 lines of Curry code.
These numbers provides an indication of the advantages obtained
by the use of declarative high-level programming languages for the
implementation of complex systems.

The implementation of CurryBrowser is freely available with
the latest distribution of PAKCS [9] where it has been integrated
for easy use.
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