
Horn Clause Programs with Polymorphic Types:
Semantics and Resolution

Michael Hanus

Fachbereich Informatik, Universität Dortmund

D-4600 Dortmund 50, W. Germany

(uucp: michael@unidoi5)

In Proc. TAPSOFT’89, Barcelona, March 1989, Springer LNCS 352, pp. 225–240

This paper presents a Horn clause logic where functions and predicates are declared with
polymorphic types. Types are parameterized with type variables. This leads to an ML-like
polymorphic type system. A type declaration of a function or predicate restricts the possible
use of this function or predicate so that only certain terms are allowed to be arguments for this
function or predicate. The semantic models for polymorphic Horn clause programs are defined
and a resolution method for this kind of logic programs is given. It will be shown that several
optimizations in the resolution method are possible for specific kinds of programs. Moreover, it
is shown that higher-order programming techniques can be applied in our framework.

1 Introduction

The theoretical foundation of the logic programming language Prolog is Horn clause logic. In this logic the

basic objects (terms) are not classified: Each function and predicate may have any term as an argument

[Llo87]. This point of view is not justified for the logic programming language Prolog: Several predefined

predicates have restrictions on their arguments (e.g., is or name). Additionally, programs are frequently

constructed from data types. In application programs only certain terms are allowed to be arguments for a

function or predicate. It is impossible to express these restrictions in a natural way in Prolog. Types for logic

programming can help to close the gap between theory and programming practice. Moreover, programming

errors in Prolog are frequently type errors; in many typed languages such programming errors can be found

at compile time.

In addition, programs of typed logic programming languages may be more efficient than programs of

an untyped language. For instance, we want to define the predicate append that is satisfied iff the three

arguments are lists and the third list is the concatenation of the first and the second. The following classical

solution is wrong from a typing point of view:

append([],L,L) ←
append([E|R],L,[E|RL]) ← append(R,L,RL)

By this definition, the goal append([],3,3) is provable in contrast to our intuition. A correct definition is:

append([],[],[]) ←
append([],[E|R],[E|R]) ← append([],R,R)

append([E|R],L,[E|RL]) ← append(R,L,RL)

If the first and second argument of an append-literal are non-empty lists, a proof with the second definition

needs more steps than a proof with the first one. In a typed logic language the first definition could be

already correct.

Many authors have investigated types in logic programming languages. There are two principal starting

points in research:

The declarative approach: The programmer has to declare all types he wants to use and the types of all

functions and predicates in the program. These proposals have a formal semantics of the notion of type, e.g.,

types represent subsets of carrier sets of interpretations. Goguen, Meseguer [GM86] and Smolka [Smo86] have

proposed ordered sorted type systems for Horn clause logic (with equality). Each type represents a subset

of the carrier set in the interpretation, and the order of types implies a subset relation on the corresponding

sets. Aı̈t-Kaci and Nasr [AN86] have proposed a logic language with subtypes and inheritence based on a

similar semantics. From an operational point of view, these approaches require a unification procedure that

takes account of types, i.e., types are present at run-time.

The operational approach: The aim of these type systems is to ensure that predicates are only called

with appropriate arguments at run time. This should be achieved by a static analysis of the program. A lot

of these approaches do not require any type declarations but the types will be inferred by a type checker.

These approaches have only a syntactic notion of type. Mishra [Mis84] and Zobel [Zob87] have presented

type inference systems for detecting programming errors in a given Prolog program. Kanamori, Horiuchi

[KH85] and Kluźniak [Klu87] have developed algorithms for inferring types of variables in a Prolog program.

Yardeni and Shapiro [YS87] have presented a type-checking algorithm where types are regular sets of ground

atoms.

We are interested in a polymorphic type system where type declarations may contain type variables

that are universally quantified over all types [DM82]. Mycroft and O’Keefe [MO84] have investigated such

a type system for Prolog. In their proposal, the programmer has to declare the types of functions and

predicates, but it is not a declarative approach because they have no semantic notion of a type. They have

put restrictions on the use of polymorphic types in function declarations and clauses. Their programs can

be executed without dynamic type checking. Dietrich and Hagl [DH88] have extended this type system to

subtypes on the basis of mode declarations for the predicates. They have also only a syntactic notion of

a type. TEL [Smo88] is a logic language with functions and a polymorphic type system with subtypes.

Since subtypes are included, there are several restrictions on the use of polymorphic types which prevents

in particular the application of higher-order programming techniques.

This paper presents a declarative approach to a generalized polymorphic type system for Horn clause

logic. The topics of this paper are:

• We present a rather general polymorphic type system: We do not restrict the use of types. In contrast

to [MO84], any polymorphic type expression may be argument or result type of a function or predicate.

No difference will be made in the typing of the head and the body of a clause.

• Our approach is declarative: The semantics of types is defined in a model-theoretic way in contrast to

other type systems for Prolog where types are viewed as sets of ground terms.

• We present sound and complete deduction and resolution methods for our logic programs.

• Several optimizations of the resolution procedure are presented for specific subclasses of programs. We

show that it is possible to translate polymorphic logic programs in our sense into untyped Horn clause

programs. The type system and results of [MO84] will be a special case of our type system.

• Higher-order programming techniques can be applied in our framework. We present an interesting

class of logic programs that are ill-typed in the sense of other polymorphic type systems for logic

programming but are well-typed in our framework.

Let us start by looking at an example of a polymorphically typed Horn clause program in our sense.

First the programmer has to specify the types that he wants to use in the clauses. There are basic types

like int or bool, and type constructors that create new types from given types. E.g., the type constructor

list with arity 1 creates from the type int the type of integer lists list(int). Type expressions may contain

2

type variables which are universally quantified over all types. In the following we use α, β for type variables.

The type expression list(α) represents the types

list(int) list(bool) list(list(int)) . . .

or, in general, a list of any type. Two functions are defined on any list: The constant function [] that

represents the empty list, and the function • that concatenates an element with a list of the same type

(throughout this paper we use the Prolog notation for lists [CM87]). The type declarations for these two

functions are:

func []: → list(α)
func •: α, list(α) → list(α)

The predicate append has three arguments and is defined on lists of the same type. Therefore append has

the following type declaration:

pred append: list(α), list(α), list(α)

The following clauses define the semantics of append and are well-typed in our sense, if the variables L, R

and RL are of type list(α) and the variable E is of type α:

append([],L,L) ←
append([E|R],L,[E|RL]) ← append(R,L,RL)

In our type system it is also possible to add the specialized clause

append([1,2],[3,4],[1,2,3,4]) ←

to the program. Note that the arguments of the head of this clause have types int and list(int). Hence it is

not a well-typed clause in the sense of [MO84] since the head of the clause has not the most general type.

The application of this feature in order to use higher-order programming techniques and more examples are

given in the rest of this paper. Detailed definitions and proofs of results can be found in [Han88b] and the

author’s dissertation.

2 Polymorphic logic programs

We use notions from algebraic specifications [GTW78] for the specification of types. A signature Σ is a pair

(S,O), where S is a set of sorts and O is a family of operator sets of the form O = (Ow,s|w ∈ S∗, s ∈ S).

We write o: s1, . . . , sn → s ∈ O instead of o ∈ O(s1,...,sn),s. An operator of the form o:→ s is also called a

constant of sort s. A signature Σ = (S,O) is interpreted by a Σ-algebra A = (SA, OA) which consists

of an S-sorted domain SA = (SA,s|s ∈ S) and an operation oA:SA,s1 , . . . , SA,sn → SA,s ∈ OA for any

o: s1, . . . , sn → s ∈ O. A set of Σ-variables is an S-sorted set V = (Vs|s ∈ S). The set of Σ-terms of sort

s with variables from V , denoted TΣ,s(V), is inductively defined by x ∈ TΣ,s(V) for all x ∈ Vs, c ∈ TΣ,s(V)

for all c:→ s ∈ O, and o(t1, . . . , tn) ∈ TΣ,s(V) for all o: s1, . . . , sn → s ∈ O (n > 0) and all ti ∈ TΣ,si(V). We

write TΣ(V) for all Σ-terms with variables from V and TΣ for the set of ground terms TΣ(∅). By TΣ(V)

we also denote the term algebra.

A variable assignment is a mapping a:V → SA with a(x) ∈ SA,s for all variables x ∈ Vs (more precisely,

it is a family of mappings (as:Vs → SA,s|s ∈ S)). A Σ-homomorphism from a Σ-algebra A = (SA, OA) into

a Σ-algebra B = (SB, OB) is a mapping (family of mappings) h:SA → SB with the properties hs(cA) = cB

for all c:→ s ∈ O and hs(oA(a1, . . . , an)) = oB(hs1(a1), . . . , hsn(an)) for all o: s1, . . . , sn → s ∈ O (n > 0)

and all ai ∈ SA,si .

Polymorphic types are represented by single-sorted signatures: H = (Ty,Ht) is a signature of types if

H is a signature with one sort Ty = {type}. Operators of the form h:→ type are called basic types (with

arity 0), whereas operators of the form h: typen → type are called type constructors with arity n > 0. By

X we denote a set of type variables. A type expression or (polymorphic) type is a term from TH(X),

3

a monomorphic type is a term from TH . Since we have only one sort in the signature of types, we will

also use H to denote the set of type constructors Ht.

A type substitution σ is an H-homomorphism σ:TH(X) → TH(X). TS(H,X) denotes the class

of all type substitutions. Two types τ, τ ′ ∈ TH(X) are called equivalent if there exists a bijective type

substitution σ with σ(τ) = τ ′.

A polymorphic signature Σ for logic programs is a triple (H,Func, Pred) with:

• H is a signature of types with TH 6= ∅

• Func is a set of function declarations of the form f :τ1, . . . , τn → τ with τi, τ ∈ TH(X), n ≥ 0,

where, in addition, τf = τ ′f whenever f :τf , f :τ
′

f ∈ Func.

• Pred is a set of predicate declarations of the form p:τ1, . . . , τn with τi ∈ TH(X) (n ≥ 0), where, in

addition, τp = τ ′p whenever p:τp, p:τ
′

p ∈ Pred.

The additional restrictions exclude overloading. With these restrictions it is possible to compute the most

general type of a term. Therefore the user need not annotate terms in a clause with type expressions.

Note that there are no restrictions on the use of type variables in function declarations in contrast to other

polymorphic type systems for logic programming, e.g., [MO84], [Smo88].

The following specification of a polymorphic signature will be used in later examples. Declarations of

basic types and type constructors, functions, and predicates are preceded by the keywords “type”, “func”

and “pred”, respectively.

type nat/0, list/1, pred2/2
func z: → nat

func s: nat → nat

func []: → list(α)
func • : α, list(α) → list(α)
func pred inc: → pred2(nat, nat)
pred inc : nat, nat

pred map : pred2(α, β), list(α), list(β)
pred apply2: pred2(α, β), α, β

The predicate apply2 will be interpreted like call in Prolog: If the first argument has type pred2(α, β)

and the next arguments have types α and β, then it is equivalent to the application of the first argu-

ment to the other two arguments. pred inc is a constant of type pred2(nat, nat). The equivalence of

apply2(pred inc,. . .) and inc(. . .) will be stated in a specific clause (see below).

In the rest of this paper we will assume that Σ = (H,Func, Pred) is a polymorphic signature. The

variables in a polymorphic logic program are not quantified over all objects, but vary only over objects

of a particular type. Thus each variable is annotated with a type expression: If V ar is an infinite set of

variable names that are distinguishable from symbols in polymorphic signatures and type variables, the set

of typed variables V arΣ,X is defined as V arΣ,X := {x:τ | x ∈ V ar, τ ∈ TH(X)}. V is a set of typed

variables with unique types, written V⊆UV arΣ,X , if V ⊆ V arΣ,X and τ = τ ′ whenever x:τ, x:τ ′ ∈ V .

The notion of “typed variables with unique types” is not necessary for the definition of the semantics

and the resolution procedure, but it is useful for optimization and detection of type errors at compile time.

Hence we define the semantics for arbitrary sets of typed variables, whereas in polymorphic logic programs

the clauses must have variables with unique types so that optimizations and type-checking are possible.

According to [Chu40], we embed types in terms, i.e., each symbol in a term is annotated with a type

expression: Let V ⊆ V arΣ,X . A (Σ, X, V)-term of type τ∈ TH(X) is either a variable x:τ ∈ V , a

constant c:τ with c:→ τc ∈ Func so that there exists a σ ∈ TS(H,X) with σ(τc) = τ , or a composite

term of the form f(t1:τ1, . . . , tn:τn):τ (n > 0) with f :τf ∈ Func so that there exists a type substitution σ ∈

4

TS(H,X) with σ(τf) = τ1, . . . , τn → τ and ti:τi is a (Σ, X, V)-term of type τi (i = 1, . . . , n). TermΣ(X,V)

denotes the TH(X)-sorted set of all (Σ, X, V)-terms. A ground term is a term from the set TermΣ(X, ∅).

Each occurrence of a variable in a term has the same type, whereas different occurrences of a function

may have different types (polymorphism). We call terms from TermΣ(X,V) well-typed terms, whereas

terms that have the same structure as well-typed terms but violate the type conditions are called ill-typed

terms.

Examples: If we have the declarations

func f: int, bool→ bool

var x:α

then the term f(x:α,x:α):bool is ill-typed. If we have the additional declaration

func id: α→ α

then the term f(id(2:int):int, id(true:bool):bool):bool ∈ TermΣ,bool(∅, ∅) is a well-typed ground term.

The definition of the other syntactic constructs of polymorphic logic programs is straightforward: A

(Σ, X, V)-atom has the form p(t1:τ1, . . . , tn:τn), where p:τp ∈ Pred and there exists a type substitution

σ ∈ TS(H,X) with σ(τp) = τ1, . . . , τn and ti:τi ∈ TermΣ(X,V) (i = 1, . . . , n). A (Σ, X, V)-goal is a

finite set of (Σ, X, V)-atoms. A (Σ, X, V)-clause is a pair (P,G), where P is a (Σ, X, V)-atom and G is a

(Σ, X, V)-goal. If G = {A1, . . . , An}, we also write

P ← A1, . . . , An.

P is called head and G body of the clause. Note that again there are no restrictions on the use of types in

clauses. A Σ-term (atom, goal, clause) is a (Σ, X, V)-term (atom, goal, clause) for some V ⊆ V arΣ,X . In

the following, if s is a syntactic construction (type, term, atom, . . .), tvar(s) and var(s) will denote the set of

type variables and typed variables that occur in s, respectively. Furthermore, we define uvar(s) := {x | ∃τ ∈

TH(X): x:τ ∈ var(s)} as the set of variable names that occur in s.

A polymorphic logic program or polymorphic Horn clause program P = (Σ, C) consists of a

polymorphic signature Σ and a set C of Σ-clauses, where var(c) ⊆U V arΣ,X for all c ∈ C. We require

var(c) ⊆U V arΣ,X rather than var(c) ⊆ V arΣ,X because the user may omit the type annotations in the

clauses of a polymophic logic program and the most general type of a term can be automatically computed

under this assumption. Therefore we will omit the type annotations in the clauses of subsequent examples.

We assume that the above polymorphic signature with predicate map is given. Then the following clauses

define the semantics of the predicate map:

map(P,[],[]) ←
map(P,[E1|L1],[E2|L2]) ← apply2(P,E1,E2), map(P,L1,L2)

inc(N,s(N)) ←
apply2(pred inc,N1,N2) ← inc(N1,N2)

Note that the last clause is not well-typed in the sense of [MO84] since apply2 has the declared type

“pred2(α, β), α, β” but is used in the clause head with the specialized type “pred2(nat, nat), nat, nat”. This

example illustrates the possibility of higher-order programming in our framework. That will be further

investigated in section 8.

The next example is a program for the evaluation of Boolean terms. A Boolean term contains the

constants true or false, the Boolean functions and and or, and the function equal to compare arbitrary

terms of the same type. The evaluator is a predicate isTrue which is satisfied if such a term can be simplified

to true by the common interpretation:

type bool/0

func true : → bool

func false: → bool

func and: bool, bool → bool

5

func or: bool, bool → bool

func equal: α, α → bool

pred isTrue: bool

clauses:
isTrue(true) ←
isTrue(and(B1,B2)) ← isTrue(B1), isTrue(B2)

isTrue(or(B1,B2)) ← isTrue(B1)

isTrue(or(B1,B2)) ← isTrue(B2)

isTrue(equal(T,T)) ←

Note that this program is well-typed in our sense but not a well-typed program in the sense of [MO84]

because of the type of the function equal.

3 Semantics of polymorphic logic programs

We use algebraic structures for the interpretation of polymorphic logic programs [Poi86]. Variables in

untyped logic vary over the carrier set of the interpretation. Consequently, type variables in polymorphic

specifications vary over all types of the interpretation and typed variables vary over appropriate carrier sets.

Hence an interpretation of a polymorphic logic program consists of an algebra for the signature of types

and a structure for the derived polymorphic signature. A structure is an interpretation of types (elements

of sort type) as sets, function symbols as operations on these sets and predicate symbols as predicates on

these sets. We give an outline of the necessary notions.

If H = (Ty,Ht) is a signature of types, an H-algebra A = (TyA, HtA) is also called H-type algebra.

The polymorphic signature Σ(A) = (TyA, FuncA, P redA) derived from Σ and A is defined by

FuncA := {f :σ(τf) | f :τf ∈ Func, σ:X → TyA is a type variable assignment}

PredA := {p:σ(τp) | p:τp ∈ Pred, σ:X → TyA is a type variable assignment}

An interpretation of a polymorphic signature Σ is an H-type algebra A = (TyA, HtA) together with

a Σ(A)-structure(S, δ), which consists of a TyA-sorted set S (the carrier of the interpretation) and a

denotation δ with:

1. If f :τ1, . . . , τn → τ ∈ FuncA, then δf :τ1,...,τn→τ : Sτ1 × · · · × Sτn → Sτ is a function.

2. If p:τ1, . . . , τn ∈ PredA, then δp:τ1,...,τn ⊆ Sτ1 × · · · × Sτn is a relation.

If A and A′ are H-type algebras, then every H-homomorphism σ:A→ A′ induces a signature morphism

σ: Σ(A) → Σ(A′) and a forgetful functor Uσ:CatΣ(A′) → CatΣ(A) from the category of Σ(A′)-structures

into the category of Σ(A)-structures (for details, see [EM85]). Therefore we can define a Σ-homomorphism

from a Σ-interpretation (A,S, δ) into another Σ-interpretation (A′, S′, δ′) as a pair (σ, h), where σ:A →

A′ is an H-homomorphism and h: (S, δ) → Uσ((S
′, δ′)) is a Σ(A)-homomorphism. The class of all Σ-

interpretations with the composition (σ′, h′) ◦ (σ, h) := (σ′ ◦ σ, Uσ(h
′) ◦ h) of two Σ-homomorphisms is a

category. Thus we call a Σ-interpretation (A,S, δ) initial iff for all Σ-interpretations (A′, S′, δ′) there exists

a unique Σ-homomorphism from (A,S, δ) into (A′, S′, δ′).

The notion of “term interpretation” can be defined as usual (in the following, we assume that V ⊆ V arΣ,X

is a set of typed variables). By TΣ(X,V) we denote the free term interpretation over X and V where the

carrier is the TH(X)-sorted set TermΣ(X,V). A homomorphism in the polymorphic framework consists of

a mapping between type algebras and a mapping between appropriate structures. Consequently, a variable

assignment in the polymorphic framework maps type variables into types and typed variables into objects of

appropriate types: If I = ((TyA, HtA), S, δ) is a Σ-interpretation, then a variable assignment for (X,V)

in I is a pair of mappings (µ, val) with µ:X → TyA and val:V → S′, where (S′, δ′) := Uµ ((S, δ)) and

6

val(x:τ) ∈ S′

τ (= Sµ(τ)) for all x:τ ∈ V . It can be shown that any variable assignment can be uniquely

extended to a Σ-homomorphism. In the following we denote this Σ-homomorphism again by (µ, val).

We are not interested in all interpretations of a polymorphic signature but only in those interpretations

that satisfies the clauses of a given polymorphic logic program. In order to formalize that we define the

validity of atoms, goals and clauses relative to a given Σ-interpretation I = (A,S, δ):

• Let v = (µ, val) be an assignment for (X,V) in I.

I, v |= L if L = p(t1:τ1, . . . , tn:τn) is a (Σ, X, V)-atom with (valτ1(t1:τ1), . . . , valτn(tn:τn)) ∈ δ′p:τ1,...,τn
where Uµ((S, δ)) = (S′, δ′)

I, v |= G if G is a (Σ, X, V)-goal with I, v |= L for all L ∈ G

I, v |= L← G if L← G is a (Σ, X, V)-clause where I, v |= G implies I, v |= L

• I, V |= L if L is a (Σ, X, V)-atom with I, v |= L for all variable assignments v for (X,V) in I

I, V |= G if G is a (Σ, X, V)-goal with I, v |= G for all variable assignments v for (X,V) in I

I, V |= L ← G if L ← G is a (Σ, X, V)-clause with I, v |= L ← G for all variable assignments v for

(X,V) in I

We say “L is valid in I” if I is a Σ-interpretation with I, var(L) |= L (analogously for goals and clauses).

A Σ-interpretation I is called model for a polymorphic logic program (Σ, C) if I, var(L ← G) |= L ← G

for all clauses L← G ∈ C. A (Σ, X, V)-goal G is called valid in (Σ, C) relative to V if I, V |= G for every

model I of (Σ, C). We shall write: (Σ,C, V) |= G.

This notion of validity is the extension of validity in untyped Horn clause logic to the polymorphic case:

In untyped Horn clause logic an atom, goal or clause is said to be true iff it is true for all variable assignments.

In the polymorphic case an atom, goal or clause is said to be true iff it is true for all assignments of type

variables and typed variables. The reason for the definition of validity relative to a set of variables is that

carrier sets in our interpretations may be empty in contrast to untyped Horn logic. This is also the case in

many-sorted logic [GM84]. Validity relative to variables is different from validity in the sense of untyped

logic. The following example shows such a difference.

Example: Let TH = {void, zero}, Func = {0:→ zero}, Pred = {p:void, q:zero} and x ∈ V ar. If C consists

of the clauses

p(x:void) ←
q(0:zero) ← p(x:void)

then M := (({void, zero}, Ht), S, δ) with Htvoid = void, Htzero = zero, Svoid = ∅, Szero = {0}, δ0:→zero = 0

and δp = δq = ∅ is a model for (Σ, C). It can be shown that

(Σ, C, {x:void}) |= q(0:zero)

Hence q(0:zero) is valid in M relative to {x:void}, but q(0:zero) is not valid in M .

Validity in our sense is equivalent to validity in the sense of untyped logic if the types of the variables

denotes non-empty sets in all interpretations. But a requirement for non-empty carrier sets is not reasonable.

For a more detailed discussion of this subject compare [GM84].

“Typed substitutions” are a combination of type substitutions and substitutions on well-typed terms: If

V, V ′ ⊆ V arΣ,X be sets of typed variables, then a typed substitution σ is a Σ-homomorphism σ = (σX , σV)

from TΣ(X,V) into TΣ(X,V ′). Since σX and σV are only applied to type expressions and typed terms,

respectively, we omit the indices X and V and write σ for both σX and σV . We extend typed substitutions

on Σ-atoms by: σ(p(t1, . . . , tn)) = p(σ(t1), . . . , σ(tn)). Sub(Σ,X, V, V ′) denotes the class of all typed

substitution from TΣ(X,V) into TΣ(X,V ′). A term t′ ∈ TermΣ(X,V ′) is called an instance of a term

7

t ∈ TermΣ(X,V) if a typed substitution σ ∈ Sub(Σ, X, V, V ′) exists with t′ = σ(t). The definition of

instances can be extended on atoms, goals and clauses. We omit the simple definitions here. The next

lemma shows the relationship between the validity of a clause and the validity of all its instances:

Lemma 1 Let I = (A,S, δ) be a Σ-interpretation and L← G be a (Σ, X, V)-clause. Then:

I, V |= L← G ⇐⇒ I, V ′ |= σ(L)← σ(G) for all σ ∈ Sub(Σ, X, V, V ′)

A Herbrand model for a polymorphic logic program (Σ, C) is a model where the carrier sets are ground

terms with monomorphic types. Similarly to the untyped case it can be shown that the intersection of all

Herbrand models is an initial model.

4 Deduction

This section presents an inference system for proving validity in polymorphic logic programs. In contrast to

the untyped Horn clause calculus it is necessary to collect all variables used in a derivation of the inference

system since validity depends on the types of variables. Let C be a set of Σ-clauses. The polymorphic

Horn clause calculus contains the following inference rules:

1. Axioms: If V ⊆ V arΣ,X is a set of typed variables and L ← G ∈ C is a (Σ, X, V)-clause, then

(Σ, C, V) ⊢ L← G.

2. Substitution rule: If (Σ, C, V) ⊢ L← G and σ ∈ Sub(Σ, X, V, V ′),

then (Σ, C, V ′) ⊢ σ(L)← σ(G).

3. Cut rule: If (Σ, C, V) ⊢ L← G ∪ {L′} and (Σ, C, V) ⊢ L′ ← G′,

then (Σ, C, V) ⊢ L← G ∪G′.

If the example program in section 3 on the previous page is given, then the following sequence is a deduction

for (Σ, C, {x:void}) ⊢ q(0:zero) ←:

(Σ, C, {x:void}) ⊢ p(x:void) ←
(Σ, C, {x:void}) ⊢ q(0:zero) ← p(x:void)

(Σ, C, {x:void}) ⊢ q(0:zero) ←

This example shows the need for the explicit mentioning of the variables in the deduction since (Σ, C, ∅) |=

q(0:zero) is not true.

The following theorem states soundness and completeness of the polymorphic Horn clause calculus:

Theorem 2 Let C be a set of Σ-clauses, V ⊆ V arΣ,X and L be a (Σ, X, V)-atom. Then:

(Σ, C, V) ⊢ L← ⇐⇒ (Σ, C, V) |= L

5 Unification

We are interested in a systematic method for proving validity of goals. The Horn clause calculus is one

possibility, but in general it is far from being efficient. In untyped Horn clause logic the resolution principle

[Rob65] with SLD-refutation [AvE82] is the basic proof method. The basic operation in a resolution step

is the computation of a most general unifier of two terms. We need a similar operation for the resolution

method in the polymorphic case. This section defines the unification in the polymorphic case and presents

an algorithm for computing the most general unifier that is based on the method in [Lau86].

Example: The polymorphic signature contains the declarations p:α ∈ Pred, q:int ∈ Pred and r:α ∈ Pred

(α is a type variable). X,Y,Z ∈ V ar are variable names and assume the following two clauses to be given:

8

p(X:int) ← q(X:int)
p(Y:α) ← r(Y:α)

The first clause is not allowed for proving the goal p(Z:bool). We can use the second clause and have to

prove in the next step the goal r(Z:bool).

For proving the goal p(Z:int) the first clause can be used. In this case we are left with the goal q(Z:int)

for the next resolution step.

As we see, unification of two atoms has to consider the types of the terms. Untyped unification cannot

be applied in our case.

In section 3 typed substitutions were defined. The composition of two typed substitutions is again a

typed substitution. Therefore we define the usual relations on typed substitutions:

• Let V1, V2 ⊆ V arΣ,X and σ ∈ Sub(Σ, X, V, V1) and σ′ ∈ Sub(Σ, X, V, V2) be typed substitutions. σ is

more general than σ′, denoted σ ≤ σ′, iff there exists φ ∈ Sub(Σ, X, V1, V2) with φ ◦ σ = σ′.

• Let t and t′ be (Σ, X, V)-terms. t and t′ are unifiable if there exists a typed substitution σ ∈

Sub(Σ, X, V, V ′) with σ(t) = σ(t′) for a set V ′ ⊆ V arΣ,X . In this case σ is called a unifier for t and

t′. σ is a most general unifier (mgu) for t and t′ if σ ≤ σ′ for all unifiers σ′ for t and t′.

The well-known algorithms for the unification of two terms in a term algebra (without equality) can be

applied for the unification in the polymorphic case if we use a particular term algebra: The untyped

signature corresponding to Σ, denoted Σu = (Term,Op), is defined as follows:

• Term = {term}

• h: term, . . . , term
︸ ︷︷ ︸

n

→ term ∈ Op for all h ∈ H with arity n (n ≥ 0)

• f : term, . . . , term
︸ ︷︷ ︸

n

→ term ∈ Op for all f :τ1, . . . , τn → τ ∈ Func (n ≥ 0)

• ‘:’: term, term→ term ∈ Op

The signature Σu has only one sort term. If V ⊆ V ar is a set of variable names and X is a set of type

variables, we interpret V and X also as variables of sort term and denote by TΣu(X ∪ V) the algebra of

Σu-terms with variables from X ∪ V .

TΣu(X ∪ V) is a single-sorted free term algebra over X ∪ V , where the operation symbols are type

constructors from H, function symbols from Func and the symbol ‘:’ with arity 2. It is TermΣ(X,V ′) ⊆

TΣu(X ∪ V) if V = uvar(V ′), i.e., we can treat typed terms as terms over the signature Σu. For instance,

the typed term []:list(α) is also a term over Σu (actually, ‘:’([],list(α)) is a term over Σu, but we use

the infix notation for the operator ‘:’). The converse is not true, because equal(1:int,true:bool):bool is a

Σu-term, but not a Σ-term if equal:α, α→ bool ∈ Func.

The notions of “substitution” and “unifier” for the algebra TΣu(X∪V) are defined as usual (e.g., [Llo87])

and we omit the details here. [Rob65] has found an algorithm for computing a most general unifier in a single-

sorted free term algebra. For instance, a most general unifier in TΣu(X ∪ {v}) for the Σ-terms []:list(α)

and v:list(int) is σ(α) = int, σ(v) =[]. It is an interesting fact that σ′ ∈ Sub(Σ, X, {v:list(int)}, ∅)

with σ′(α) = int and σ′(v:list(int)) =[]:list(int) is a most general unifier for []:list(α) and v:list(int) in

TermΣ(X, {v:list(int)}). Generally, we can compute a most general unifier from a most general unifier in

TΣu(X ∪ V). The following theorem shows that the polymorphic unification problem can be reduced to the

unification problem in TΣu(X ∪ V).

Theorem 3 (Unification) Let V ⊆U V arΣ,X and V0 := uvar(V).

Two (Σ, X, V)-terms are unifiable iff they are unifiable in TΣu(X ∪ V0). A most general unifier can be

computed from a most general unifier in TΣu(X ∪ V0).

9

Proof: If σ is a most general unifier in TΣu(X∪V0), then we define a typed substitution σ′ ∈ Sub(Σ, X, V, V ′)

by σ′(α) = α for all α ∈ X and σ′(x:τ) = σ(x):σ(τ) for all x:τ ∈ V . It can be proved by induction on the

computation steps of the mgu-algorithm in [Rob65] that σ(x):σ(τ) ∈ TermΣ(X,V).

The unification problem in the polymorphic case is solved by this theorem. There exist more efficient

unification algorithms [MM82] [BC83] [PW78] that can also be used instead of the algorithm from [Rob65].

6 Resolution

The SLD-resolution in untyped Horn logic (see [Llo87]) can be used for polymorphic Horn clause programs

if we replace the untyped unification by the polymorphic unification with typed substitutions as defined in

the last section. “(Σ, C, V) ⊢Rσ G” denotes a successful resolution ((Σ, C, V)-refutation) of the start goal

G with the typed substitution σ as the computed answer, where (Σ, C) is the polymorphic logic program

and V is the set of all typed variables used in the derivation. The soundness of resolution can be shown by

simulating a resolution sequence by a derivation in the polymorphic Horn clause calculus:

Theorem 4 (Soundness of resolution) Let (Σ, C) be a polymorphic logic program, V ⊆U V arΣ,X and

G be a (Σ, X, V)-goal. If there exists a successful resolution (Σ, C, V)⊢Rσ G with computed answer σ ∈

Sub(Σ, X, V, V ′), then (Σ, C, V ′) |= σ(G).

Conversely, the completeness of resolution for polymorphic Horn clause logic can be shown by simulating

each deduction in the polymorphic Horn clause calculus by resolution.

Theorem 5 (Completeness of resolution) Let (Σ, C) be a polymorphic logic program, V ⊆U V arΣ,X

be finite and G be a (Σ, X, V)-goal. If σ ∈ Sub(Σ, X, V, V ′) is a typed substitution with (Σ, C, V ′) |= σ(G),

then there exist a set V0 ⊆U V arΣ,X and a typed substitution σ0 ∈ Sub(Σ, X, V0, V1) with (Σ, C, V0)⊢Rσ0 G

and there is a typed substitution φ ∈ Sub(Σ, X, V1, V
′) with φ(σ0(G)) = σ(G).

The last two theorems are the justification for implementing the (Σ, C, V)-resolution as a proof method

for polymorphic logic programs. For a complete resolution method, all possible derivations must be computed

in parallel. If we use a backtracking method like Prolog, the resolution method becomes incomplete because

of infinite derivations. If we accept this drawback, we can implement the resolution like Prolog with the

difference that the unification includes the unification of type expressions.

7 Optimization

In the last two sections we have seen that the unification process in a resolution step has to unify the type

expressions in every subterm. Thus the resolution is in any case more complex than the resolution in the

untyped case. Mycroft and O’Keefe [MO84] have defined a specific class of polymorphic logic programs for

which type checking is unnecessary at run-time. Therefore it is possible to disregard the type annotations

in subterms at run-time if the polymorphic logic program has specific restrictions.

A first optimization for the resolution of polymorphic logic programs can be applied to a large class of

functions: We call a function symbol f type preserving if f :τ1, . . . , τn → τ ∈ Func and tvar(τi) ⊆ tvar(τ)

for i = 1, . . . , n. In the declaration of a type preserving function all type variables occurring in the argument

types also occur in the result type. For instance,

func []: → list(α)
func •: α, list(α) → list(α)

are type preserving functions, whereas

func equal: α, α → bool

10

is not a type preserving function. We shall see that in the case of type preserving functions the type

annotations in the arguments are unnecessary. If t ∈ TermΣ(X,V), we denote by Φ(t) the term obtained

from t by deleting the type annotations in the arguments of type preserving functions. For instance,

Φ(•(1:int, []:list(int)):list(int)) = •(1, []):list(int) and Φ(equal(1:int, 2:int):bool) = equal(1:int, 2:int):bool.

Formally, Φ can be defined as a mapping Φ:TΣu(X ∪ V0)→ TΣu(X ∪ V0).

The mapping Φ is injective on TermΣ(X,V), i.e., for each t′ ∈ Φ(TermΣ(X,V)) there exists a unique

t ∈ TermΣ(X,V) with Φ(t) = t′. Therefore it is sufficient to compute a unifier for Φ(t0) and Φ(t1) in

TΣu(X ∪ V0) instead of computing a unifier for t0 and t1:

Theorem 6 (Optimized unification for type preserving functions)

Let V ⊆U V arΣ,X , V0 := uvar(V) and t0, t1 ∈ TermΣ(X,V).

t0 and t1 are unifiable iff Φ(t0) and Φ(t1) are unifiable in TΣu(X ∪ V0). A most general unifier for t0 and t1

can be computed from a most general unifier in TΣu(X ∪ V0).

The optimized unification can be extended on atoms if we interpret each predicate p:τ1, . . . , τn ∈ Pred

as a function symbol with declaration p:τ1, . . . , τn → bool and delete the result type bool in the unifica-

tion. Therefore the optimized unification can be integrated in the resolution method defined in section 6.

The theorem shows that type annotations are unnecessary for the unification of atoms if the signature is

monomorphic, i.e., if all function and predicate declarations do not contain any type variables.

There is another possibility for optimization if a predicate is defined with most general types. For

instance, if there is a declaration g:α, β → bool, then g(X:α, Y :β):bool is a term with most general type,

but neither g(X:α, I:int):bool nor g(X:α,Z:α):bool is a term with most general type. We omit the precise

definitions here but call a predicate type-generally defined if in each clause for the predicate the head

has a most general type and the predicates in the body are also type-generally defined. In a resolution of

a type-generally defined predicate only other type-generally defined predicates occur. It can be shown that

the unification of an atom with most general type and another atom with arbitrary types does not depend

on the types (for details, see [Han88b]). Thus we obtain the following theorem:

Theorem 7 (Optimized unification for type-generally defined predicates) Let (Σ, C) be a poly-

morphic logic program and the predicate p be type-generally defined in (Σ, C). Then type annotations are

unnecessary during the resolution of a Σ-atom p(t1, . . . , tn).

Wemay use the following algorithm to decide the property “most general type”. The ‘function’ skolemize

replaces all type variables in a type expression by ‘new’ type constants. With the use of skolemize equiv-

alence of type expressions can be decided by unification of type expressions. In the algorithm, each type

substitution σ is extended to a typed substitution by σ(x:τ) := x:σ(τ). The algorithm must be called by

type general(t:τ, τ).

Algorithm type general

Input: Term t, type ρ

Output: A type substition, if t is a term with most general type, and fail, otherwise.

1. ρ′ := skolemize(ρ)

2. If t = x:τ ∈ V arΣ,X then stop with mgu(τ, ρ′)

3. If t = c:τ with c:→ τc ∈ Func then stop with mgu(τ, ρ′)

4. If t = f(t1:τ1, . . . , tn:τn):τ and f :φ1, . . . , φn → φ ∈ Func and σ = mgu(φ, ρ′) 6= fail then:

φ′

1, . . . , φ
′

n → φ′ := skolemize(σ(φ1, . . . , φn → φ))

If mgu(φ′, τ) = σ0 6= fail and

type general(σ0(t1:τ1), φ
′

1) = σ1 6= fail and

11

· · ·

type general(σn−1(. . . (σ0(tn:τn)) . . .), φ
′

n) = σn 6= fail

then stop with σn ◦ · · · ◦ σ1 ◦ σ0

else stop with fail

5. stop with fail

The next proposition shows that the polymorphic logic programs in the paper of [MO84] can be executed

without dynamic type checking since their result holds only if each function is type preserving [Myc87].

Proposition 8 (Mycroft/O’Keefe-polymorphism) Let (Σ, C) be a polymorphic logic program and

V ⊆U V arΣ,X , where Σ contains only type preserving functions.

If L = p(t1:τ1, . . . , tn:τn) is a (Σ, X, V)-atom with p:τp ∈ Pred and τp and τ1, ..., τn are equivalent, then

L is an atom with most general type.

By this proposition, all predicates in a polymorphic logic program with the restrictions of [MO84] are

type-generally defined, i.e., type annotations are unnecessary during the resolution of a Σ-goal by theorem 7.

Therefore the type system of Mycroft/O’Keefe is a special case of our work because:

1. Every well-typed logic program in the sense of Mycroft/O’Keefe is a polymorphic logic program in our

sense.

2. If we use the optimization techniques developed in this section, polymorphic logic programs in the

sense of Mycroft/O’Keefe can be executed with the same efficiency as untyped Prolog programs.

On the other hand, our work is a proper extension of Mycroft/O’Keefe’s type system because we have no

restrictions on the use of polymorphic predicates in the heads of clauses, and we have no restrictions on the

use of type variables in function types (compare examples in section 2). For instance, the predicate isTrue

in the evaluator of Boolean terms is type-generally defined and therefore resolution can be done with the

same efficiency as in an untyped program, but it is not a well-typed program in the sense of [MO84].

Mycroft and O’Keefe have proposed to extend polymorphic Horn clause programs by a family of prede-

fined apply predicates to permit higher-order programming. But this extension is only necessary because of

the restrictions in their type system. In our framework it is possible to simulate higher-order programming

techniques without any conceptual extensions. This will be shown in the next section.

8 Higher-order programming

Many logic programming languages permit higher-order programming techniques, i.e., it is possible to treat

predicates as first-class objects. For example, in Prolog the predicate call interprets the input term as a

predicate call. Mycroft and O’Keefe [MO84] argue that for most practical purposes it is sufficient to have a

predicate apply that takes something like a predicate name and a list of argument terms as input and that

is satisfied if the corresponding predicate applied to the argument terms is provable. Hence they introduce

a family of predefined predicates apply (one predicate for each arity) and a lambda notation for terms of

predicate type, but they give only an informal definition of the meaning of apply.

Generally, a semantically clean amalgamation of higher-order predicates with logic programming tech-

niques like unification is not trivial because the unification of higher-order terms is undecidable in general

[Gol81]. Miller and Nadathur [MN86] have defined an extension of first-order Horn clause logic to include

predicate and function variables based on the typed lambda calculus. For the operational semantics it

is necessary to unify typed lambda expressions, which yields in a complex and semi-decidable unification

[Hue75]. Hence they have a system with a clearly defined underlying logic, their proof procedure is sound

and complete for goals without type variables, but the proof procedure is costly because of the unification

12

of typed lambda expressions. Warren [War82] argues that no extension to Prolog or to the underlying

first-order logic is necessary because the usual higher-order programming techniques can be simulated in

first-order logic. Since he is concerned with Prolog and its untyped logic, he does not have a clear distinction

between first-order and higher-order objects.

We suggest a ‘middle road’ approach to higher-order programming: To have an efficient operational

semantics, we keep first-order logic as our theoretical framework. But we want to deal with higher-order

objects in the sense of computing and distinguish between higher-order and first-order objects. Since we

have an unrestricted mechanism of polymorphic types, we may integrate these higher-order programming

techniques without any extensions to our concept of polymorphic logic programs (in contrast to [MO84]).

This is demonstrated by the example of the map predicate in section 2. The predicate map takes a predicate

of arity 2 and two lists as arguments and applies the argument predicate to corresponding elements of the

lists. In order to specify the type of map it is necessary to introduce a type constructor pred2 of arity 2 that

denotes the types of predicate expressions with two arguments. Hence the type of map is

pred map: pred2(α, β), list(α), list(β)

For each binary predicate p of type τ1, τ2 we introduce a corresponding constant pred p of type pred2(τ1, τ2).

The relation between each predicate p and the constant pred p is defined by clauses for the predicate apply2.

Hence we get the example program of section 2. If we prove the goal

map(pred inc,[z,s(s(z))],L)

by resolution, we get the answer substitution

L = [s(z),s(s(s(z)))]

(we omit the type annotations). The polymorphic logic program does not ensure that the constant pred inc

is interpreted as a relation in every model since we require only first-order structures as interpretations for

polymorphic logic programs. But the clause for apply2 with pred inc as first argument ensures that in any

model the constant pred inc and the predicate inc are related together.

The map example has shown the possibility to deal with higher-order objects in our framework. It is

also possible to permit lambda expressions, which can be translated into new identifiers and apply clauses

for these identifiers (see [War82] for more discussion). If the underlying system implements indexing on the

first arguments of predicates (as done in most compilers for Prolog, cf. [War83] and [Han88a]), then there is

no essential loss of efficiency in our translation scheme for higher-order objects in comparison to a specific

implementation of higher-order objects [War82].

The compilation of higher-order functions into first-order logic was also proposed by Bosco and Giovan-

netti [BG86], but they perform type-checking only for the source program and not for the target program.

Clearly, the target program is not well-typed in the sense of [MO84] because of the clauses for the apply

predicate (see above). Since we have translated higher-order objects into polymorphic logic programs, the

use of higher-order objects is type secure in our framework. We have similar typing rules as in functional

languages [DM82], and therefore functions and predicates have always appropriate arguments at run-time.

9 Implementation

The SLD-resolution in untyped Horn logic can be applied to polymorphic Horn clause programs if we use

polymorphic unification to compute the most general unifier in a resolution step. Polymorphic unification

can be reduced to untyped unification if we treat type expressions as terms and annotate each subterm with

the corresponding type by the functor ‘:’. Hence we have implemented the resolution of polymorphic logic

programs as a precompiler to a Prolog system: It takes a polymorphic logic program as input and produces

a Prolog program as output. The clauses of the input program need not be annotated with types, because

the precompiler computes the most general type of each clause by the type inference algorithm of [DM82].

13

Furthermore, the precompiler omits type annotations in the output program whenever it is possible by the

techniques of section 7. For example, the precompiler translates the polymorphic logic program

type list/1, pred2/2
func []: → list(α)
func •: α, list(α) → list(α)
pred append: list(α), list(α), list(α)

clauses:
append([1,2], [3,4], [1,2,3,4]) ←
append([], L, L) ←
append([E|R], L, [E|RL]) ← append(R, L, RL)

(the type int of integer numbers is predefined) into the Prolog program

append(’:’([1,2],list(int)), ’:’([3,4],list(int)), ’:’([1,2,3,4],list(int))).

append(’:’([],list(A)), ’:’(L,list(A)), ’:’(L,list(A))).

append(’:’([E|R],list(A)), ’:’(L,list(A)), ’:’([E|RL],list(A))) :-

append(’:’(R,list(A)), ’:’(L,list(A)), ’:’(RL,list(A)))

The program for the evaluation of Boolean terms (section 2) would be translated into a Prolog program

where all type annotations are omitted. If there are type-generally defined predicates as well as other

predicates in a polymorphic logic program, then type annotations must be deleted in argument terms before

calling a type-generally defined predicate. After the predicate call type annotations must be added to the

argument terms. Hence it may be more efficient not to omit type annotations in type-generally defined

predicates in the presence of other predicates.

10 Conclusions

We have presented a polymorphic type system for Horn clause programs. Since we have a semantic notion

of a type, this can help to close the gap between programming practice with Prolog and the underlying

theory. The typing rules are quite simple: Each variable has a fixed type and each type instantiation of a

polymorphic function or predicate can be used inside a clause if the result types of the argument terms are

equal to the argument types. The semantics of polymorphic types is defined as a universal quantification

over all possible types. We have shown that this semantics leads to similar results as in the untyped case:

The Horn clause calculus can be extended to polymorphic logic programs, and the well-known resolution

method for untyped Horn logic can also be used in the polymorphic case if the unification considers the

types of terms. Hence our polymorphic logic programs are also related to “constraint logic programming”

[JL87], where the consideration of types corresponds to constraints. We have also shown that the unification

can disregard types if declarations and clauses have a particular form. In this case the proof method has

the same efficiency as in the untyped case and we have shown that our type system is a proper extension

of the type system in [MO84]. On the other hand, type information is useful to reduce the search space in

the resolution process [SS85] [HV87]. Thus there are examples where the unification with types leads to a

more efficient resolution than in the untyped case (see [Han88b]). In our type system it is allowed to have

clauses where the left-hand side is not of the most general type. We have shown that this feature permits

the use of higher-order programming techniques without breaking our type system.

Further work remains to be done. If the resolution process uses the standard Prolog left-to-right strategy,

then further optimizations could be done to reduce the cases where type information is required for correct

unification. If the modes of predicates are known, then there are further possibilities to omit type annotations

[DH88]. The extension of our polymorphic type system to subtyping and inheritance would be useful. For

practical applications the type system has to be extended to the meta-logical facilities of Prolog.

14

Acknowledgements

The author is grateful to Harald Ganzinger for his comments on a previous version of this paper.

References

[AN86] H. Aı̈t-Kaci and R. Nasr. LOGIN: A Logic Programming Language with Built-In Inheritance.
Journal of Logic Programming (3), pp. 185–215, 1986.

[AvE82] K.R. Apt and M.H. van Emden. Contributions to the Theory of Logic Programming. Journal of
the ACM, Vol. 29, No. 3, pp. 841–862, 1982.

[BC83] M. Bidoit and J. Corbin. A Rehabilitation of Robinson’s Unification Algorithm. In Proc. IFIP ’83,
pp. 909–914. North-Holland, 1983.

[BG86] W. Bosco and E. Giovannetti. IDEAL: An Ideal Deductive Applicative Language. In Proc. IEEE
Internat. Symposium on Logic Programming, pp. 89–94, Salt Lake City, 1986.

[Chu40] A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic, Vol. 5, pp.
56–68, 1940.

[CM87] W.F. Clocksin and C.S. Mellish. Programming in Prolog. Springer, third rev. and ext. edition, 1987.

[DH88] R. Dietrich and F. Hagl. A polymorphic type system with subtypes for Prolog. In Proc. ESOP 88,
Nancy, pp. 79–93. Springer LNCS 300, 1988.

[DM82] L. Damas and R. Milner. Principal type-schemes for functional programs. In Proc. 9th POPL, pp.
207–212, 1982.

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and Initial Semantics,
volume 6 of EATCS Monographs on Theoretical Computer Science. Springer, 1985.

[GM84] J.A. Goguen and J. Meseguer. Completeness of Many-Sorted Equational Logic. Report No. CSLI-
84-15, Stanford University, 1984.

[GM86] J.A. Goguen and J. Meseguer. Eqlog: Equality, Types, and Generic Modules for Logic Program-
ming. In D. DeGroot and G. Lindstrom, editors, Logic Programming, Functions, Relations, and
Equations, pp. 295–363. Prentice Hall, 1986.

[Gol81] W. Goldfarb. The Undecidability of the Second-Order Unification Problem. Theoretical Computer
Science 13, pp. 225–230, 1981.

[GTW78] J.A. Goguen, J.W. Thatcher, and E.G. Wagner. An Initial Algebra Approach to the Specification,
Correctness, and Implementation of Abstract Data Types. In R. Yeh, editor, Current Trends in
Programming Methodology, volume 4, pp. 80–149. Prentice Hall, Englewood Cliffs NJ, 1978.

[Han88a] M. Hanus. Formal Specification of a Prolog Compiler. In Proc. of the Workshop on Programming
Language Implementation and Logic Programming, Orléans, 1988. To appear in Springer LNCS.

[Han88b] M. Hanus. Horn Clause Programs with Polymorphic Types. Technical Report 248, FB Informatik,
Univ. Dortmund, 1988.

[Hue75] G.P. Huet. A Unification Algorithm for Typed λ-Calculus. Theoretical Computer Science, Vol. 1,
pp. 27–57, 1975.

[HV87] M. Huber and I. Varsek. Extended Prolog with Order-Sorted Resolution. In Proc. 4th IEEE
Internat. Symposium on Logic Programming, pp. 34–43, San Francisco, 1987.

[JL87] J. Jaffar and J.-L. Lassez. Constraint Logic Programming. In Proc. of the 14th ACM Symposium
on Principles of Programming Languages, pp. 111–119, Munich, 1987.

15

[KH85] T. Kanamori and K. Horiuchi. Type Inference in Prolog and Its Application. In Proc. 9th IJCAI,
pp. 704–707. W. Kaufmann, 1985.

[Klu87] F. Kluźniak. Type Synthesis for Ground Prolog. In Proc. Fourth International Conference on Logic
Programming (Melbourne), pp. 788–816. MIT Press, 1987.

[Lau86] S. Launay. Complétion de systèmes de réécriture types dont les fonctions sont polymorphes (Thèse
de 3ème cycle). Technical Report 86-5, C.N.R.S Université Paris VII, 1986.

[Llo87] J.W. Lloyd. Foundations of Logic Programming. Springer, second, extended edition, 1987.

[Mis84] P. Mishra. Towards a theory of types in Prolog. In Proc. IEEE Internat. Symposium on Logic
Programming, pp. 289–298, Atlantic City, 1984.

[MM82] A. Martelli and U. Montanari. An Efficient Unification Algorithm. ACM Transactions on Pro-
gramming Languages and Systems, Vol. 4, No. 2, pp. 258–282, 1982.

[MN86] D.A. Miller and G. Nadathur. Higher-Order Logic Programming. In Proc. Third International
Conference on Logic Programming (London), pp. 448–462. Springer LNCS 225, 1986.

[MO84] A. Mycroft and R.A. O’Keefe. A Polymorphic Type System for Prolog. Artificial Intelligence,
Vol. 23, pp. 295–307, 1984.

[Myc87] A. Mycroft. Private Communication, 1987.

[Poi86] A. Poigné. On Specifications, Theories, and Models with Higher Types. Information and Control,
Vol. 68, No. 1-3, 1986.

[PW78] M.S. Paterson and M.N. Wegman. Linear Unification. Journal of Computer and System Sciences,
Vol. 17, pp. 348–375, 1978.

[Rob65] J.A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. Journal of the ACM,
Vol. 12, No. 1, pp. 23–41, 1965.

[Smo86] G. Smolka. Order-Sorted Horn Logic: Semantics and Deduction. SEKI Report SR-86-17, FB
Informatik, Univ. Kaiserslautern, 1986.

[Smo88] G. Smolka. TEL (Version 0.9) Report and User Manual. SEKI Report SR-87-11, FB Informatik,
Univ. Kaiserslautern, 1988.

[SS85] M. Schmidt-Schauss. A Many Sorted Calculus with Polymorphic Functions Based on Resolution
and Paramodulation. In Proc. 9th IJCAI. W. Kaufmann, 1985.

[War82] D.H.D. Warren. Higher-order extensions to PROLOG: are they needed? In Machine Intelligence
10, pp. 441–454, 1982.

[War83] D.H.D. Warren. An Abstract Prolog Instruction Set. Technical Note 309, SRI International,
Stanford, 1983.

[YS87] E. Yardeni and E. Shapiro. A Type System for Logic Programs. Technical Report CS87-05, The
Weizmann Institute of Science, 1987.

[Zob87] J. Zobel. Derivation of Polymorphic Types for Prolog Programs. In Proc. Fourth International
Conference on Logic Programming (Melbourne), pp. 817–838. MIT Press, 1987.

16

