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Abstract
We propose a framework to construct web-oriented user interfaces
in a high-level way by exploiting declarative programming tech-
niques. Such user interfaces are intended to manipulate complex
data in a type-safe way, i.e., it is ensured that only type-correct
data is accepted by the interface, where types can be specified by
standard types of a programming language as well as any com-
putable predicate on the data. The interfaces are web-based, i.e.,
the data can be manipulated with standard web browsers without
any specific requirements on the client side. However, if the client’s
browser has JavaScript enabled, one could also check the correct-
ness of the data on the client side providing immediate feedback
to the user. In order to release the application programmer from
the tedious details to interact with JavaScript, we propose an ap-
proach where the programmer must only provide a declarative de-
scription of the requirements of the user interface from which the
necessary JavaScript programs and HTML forms are automatically
generated. This approach leads to a very concise and maintainable
implementation of web-based user interfaces. We demonstrate an
implementation of this concept in the declarative multi-paradigm
language Curry where the integrated functional and logic features
are exploited to enable the high level of abstraction proposed in this
paper.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.2.2 [Software
Engineering]: Design Tools and Techniques—User interfaces;
D.3.2 [Programming Languages]: Language Classifications—
Multiparadigm languages; D.3.3 [Programming Languages]:
Language Constructs and Features—Polymorphism; D.3.4 [Pro-
gramming Techniques]: Processors—Compilers; H.5.2 [Informa-
tion Interfaces and Presentation]: User Interfaces
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1. Motivation

The implementation of software systems can be coarsely classified
into two parts: the implementation of the application logic and the
implementation of the user interface. If one uses declarative pro-
gramming languages, the first part can be implemented with rea-
sonable efforts (in particular, if one uses libraries with appropri-
ate interfaces, see, for instance, [10, 12, 18] for database program-
ming). In contrast, the construction of the user interface is usually
complex and tedious. In order to simplify the latter task, scripting
languages with toolkits and libraries, like Tcl/Tk, Perl, or PHP, are
one approach to support this goal. Since scripting languages of-
ten lack support for the development of complex and reliable soft-
ware systems (e.g., no static type and interface checking, limited
code reuse due to the lack of high-level abstractions), they are of-
ten used to implement the user interface whereas the application
logic is implemented in some other language. This approach cre-
ates new problems since it is well known that such combinations
could cause security leaks in web applications [25]. Therefore, an
alternative solution is the embedding of such domain-specific lan-
guages in high-level languages able to provide appropriate abstrac-
tions (e.g., see [9, 17, 29, 32, 34, 35] for functional and logic lan-
guages). This paper follows the latter alternative and considers an
approach to construct web user interfaces (WUIs) in a declarative
way. The core idea of the declarative construction of WUIs has
been presented in [21]. In this paper we combine this construction
with the existing features of scripting languages by compiling parts
of the declarative interface specifications into a scripting language
available in almost all web browsers: JavaScript.

In order to provide an example of the new approach presented in
this paper, we give a short summary of the framework to construct
WUIs presented in [21]. This approach to construct WUIs is useful
in situations where data of an application program should be ma-
nipulated via standard web browsers (i.e., by HTML forms). The
application program supplies the WUI with the current data of the
application and an operation to store the modified data. Further-
more (and most important), it provides a type-oriented specifica-
tion of the WUI structure that matches the type of the application
data. For this purpose, the WUI framework contains a set of ba-
sic WUIs to manipulate data of basic types, e.g., integers, truth
values, strings, finite sets, and a set of WUI combinators to con-
struct WUIs for complex data types from simpler types similarly
to type constructors in programming languages. For instance, there
are combinators for tuples, lists, union types etc. The framework
ensures that the user inputs only type-correct data, i.e., if the user
tries to input illegal data (e.g., incorrect integer constants, empty
strings, wrong dates or email addresses), the WUI does not accept
the data and asks the user to correct the input. Figure 1 shows an
example of a WUI for a list of persons containing various input er-
rors. Note that errors can occur not only in individual input fields
but also as illegal combinations of different fields, like the date in



Figure 1. A WUI for a list of persons containing various input errors

the second row. Thanks to this feature of the WUI framework, the
application program need not check the input data and perform ap-
propriate actions (e.g., providing error forms to correct the input
etc). This considerably simplifies the task of programming the user
interface.

We have already mentioned that type-correct inputs have to be un-
derstood in a much broader sense than types used in programming
languages. For instance, strings containing email addresses must
have a particular form, a date like “February 29, 2006” is illegal,
and two input fields containing a password and the repeated pass-
word must be always identical. Therefore, WUIs can be specified
together with any computable predicate so that input data is only
accepted if it satisfies the specified predicate. Furthermore, WUIs
can be customized in various ways, e.g., to provide application-
specific error messages in case of illegal inputs, to use a specific
rendering or embed them in web pages with a specific layout, and
can be easily adapted to user-defined types (see [21] for details).
In order to provide a compact and high-level interface for the WUI
construction, a concrete implementation has been performed with
the declarative multi-paradigm language Curry [16, 24]. Various
features of Curry, like the treatment of functions as first-order ob-
jects, logic variables, and strong typing are exploited in this imple-
mentation, although not all of them are required to be used by the
programmer constructing WUIs. In particular, logic variables are
used as internal references to input fields which are not visible to
the programmer.

In this paper we show how to exploit the existence of JavaScript
interpreters in web browsers in order to increase the functionality
of WUIs. By translating conditions in WUIs into JavaScript pro-
grams, one can check user inputs on the client side, i.e., forms with
illegal inputs are not sent to the web server. This feature reduces
the number of client/server interactions and provides instantaneous
feedback on incorrect inputs on the client side. However, Curry
is a powerful language with advanced programming features (e.g.,
higher-order functions, laziness, logic variables, constraint solving,
concurrency). Thus, it is not reasonable to translate into JavaScript
all possible conditions that can be implemented in Curry, since this
might finally require to communicate a complete Curry implemen-
tation to the web client. This is not only inefficient (since JavaScript
is usually interpreted) or impossible (due to space and time limita-
tions of the JavaScript interpreter) but also not necessary: the cor-
rectness of the user input is always checked on the server side (due

to the principle in web programming that one should never trust
user inputs from web browsers even if they are checked by scripts
on the client side, since one never knows whether the input comes
from a human using a web browser or another malicious program
[25]). Thus, one is free to select only particular conditions that are
easy to translate into JavaScript. This is the idea used in the follow-
ing in order to get a reasonable and practically applicable combina-
tion of two different worlds of programming.

In the next section, we review the concepts of Curry, HTML pro-
gramming, and JavaScript that are necessary to understand the con-
tents of this paper. Section 3 reviews the ideas of WUIs. The basic
ideas behind the combination of WUIs and JavaScript are described
in Section 4 before the translation of Curry into JavaScript is de-
fined in Section 5. Section 6 introduces some important optimiza-
tions. Section 7 describes the current implementation. Section 8
discusses related work before we conclude in Section 9.

2. Basics: Curry, HTML, JavaScript
2.1 Functional Logic Programming

Functional logic languages [15] integrate important features of
functional and logic languages in order to provide a variety of pro-
gramming concepts. Modern languages of this kind [16, 24, 28]
combine the concepts of demand-driven evaluation and higher-
order functions from functional programming with logic program-
ming features like computing with partial information (logic vari-
ables), unification, and nondeterministic search for solutions. This
combination, supported by optimal evaluation strategies [4] and
new design patterns [5], leads to better abstractions in application
programs, e.g., as shown for programming with databases [12, 18]
or dynamic web pages [17, 21]. The declarative multi-paradigm
Curry [16, 24] is a functional logic language extended by concur-
rent programming concepts and has been used in various applica-
tions. In the following, we review the elements of Curry relevant for
this paper but omit other features not used here (e.g., constraints,
search strategies, concurrency, I/O concept, modules). More details
about Curry’s computation model and a complete description of all
language features can be found in [16, 24].

From a syntactic point of view, a Curry program is a functional pro-
gram extended by the possible inclusion of free (logic) variables
in conditions and right-hand sides of defining rules. Curry has a
Haskell-like syntax [30], i.e., (type) variables and function names



usually start with lowercase letters and the names of type and data
constructors start with an uppercase letter. The application of f to
e is denoted by juxtaposition (“f e”). A Curry program consists
of the definition of functions and data types on which the func-
tions operate. Functions are first-order citizens as in Haskell and
are evaluated lazily. To provide the full power of logic program-
ming, functions can be called with partially instantiated arguments
and defined by conditional equations with constraints in the condi-
tions. Function calls with free variables are evaluated by a possibly
nondeterministic instantiation of demanded arguments (i.e., argu-
ments whose values are necessary to decide the applicability of a
rule) to the required values in order to apply a rule.

In general, functions are defined by (conditional) rules of the form
“f t1 . . . tn | c = e” with f being a function, t1, . . . , tn patterns
(i.e., expressions without defined functions) without multiple oc-
currences of a variable, the (optional) condition c is a constraint
(e.g., a conjunction of equations), and e is a well-formed expres-
sion which may also contain function calls, lambda abstractions
etc. A conditional rule can be applied if its left-hand side matches
the current call and its condition is satisfiable.

EXAMPLE 2.1. The following Curry program defines the data
types of Boolean values and polymorphic lists, and functions to
compute the concatenation of lists and the last element of a list:

infixr 5 ++

data Bool = True | False
data List a = [] | a : List a

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

last :: [a] -> a
last xs | ys ++ [x] =:= xs = x where x,ys free

[] (empty list) and : (non-empty list) are the constructors for poly-
morphic lists (a is a type variable ranging over all types and the
type “List a” is written as [a] for conformity with Haskell).
The infix operator declaration “infixr 5 ++” declares the sym-
bol “++” as a right-associative infix operator with precedence 5 so
that we can write function applications of this symbol with the con-
venient infix notation. The (optional) type declaration (“::”) of the
function “++” specifies that “++” takes two lists as input and pro-
duces an output list, where all list elements are of the same (unspec-
ified) type.1 Since the function “++” can be called with free vari-
ables in arguments, the equation “ys ++ [x] =:= xs” is solved
by instantiating the first argument ys to the list xs without the last
argument, i.e., the only solution to this equation satisfies that x is
the last element of xs. In order to support some consistency checks,
extra variables, i.e., variables of a rule not occurring in a pattern of
the left-hand side, must be declared by “where...free” (see the
rule defining last).

The operational semantics of Curry, described in detail in [16, 24],
is based on an optimal evaluation strategy [4] which is a conser-
vative extension of lazy functional programming and (concurrent)
logic programming. Due to its demand-driven behavior, it provides
optimal evaluation (e.g., shortest derivation sequences, minimal so-
lution sets) on well-defined classes of programs (see [4] for de-
tails). Curry also offers standard features of functional languages,
like higher-order functions or monadic I/O (which is identical to
Haskell’s I/O concept [36]).

1 Curry uses curried function types where α->β denotes the type of all
functions mapping elements of type α into elements of type β.

2.2 HTML Programming

Writing programs that generate HTML documents requires a deci-
sion about the representation of HTML documents. A textual rep-
resentation (as often used in CGI scripts written in Perl or with
the Unix shell) is very poor since it does not avoid certain syntac-
tical errors (e.g., unbalanced parenthesis) in the generated docu-
ment. Thus, it is better to introduce an abstraction layer and model
HTML documents as elements of a specific data type together with
a wrapper function that is responsible for the correct textual repre-
sentation of this data type. Since HTML documents have a tree-like
structure, they can be represented in functional or logic languages
in a straightforward way [9, 17, 29, 34]. For instance, the type of
HTML expressions is defined in Curry as follows:2

data HtmlExp =
HtmlText String

| HtmlStruct String [(String,String)] [HtmlExp]

Thus, an HTML expression is either a plain string or a struc-
ture consisting of a tag (e.g., b,em,h1,h2,. . . ), a list of attributes
(name/value pairs), and a list of HTML expressions contained in
this structure. Thus, the HTML code

<p>This is an <i>example</i></p>

is represented by the data term

HtmlStruct "p" []
[HtmlText "This is an ",
HtmlStruct "i" [] [HtmlText "example"]]

Since it is tedious to write HTML documents in this form, one
can provide various functions as useful abbreviations (htmlQuote
transforms characters with a special meaning in HTML into their
HTML quoted form):

htxt s = HtmlText (htmlQuote s)
par hexps = HtmlStruct "p" [] hexps
italic hexps = HtmlStruct "i" [] hexps
...

Then we can write the example as

par [htxt "This is an ", italic [htxt "example"]]

A dynamic web page is an HTML document (with header infor-
mation) that is computed by a program at the time when the page
is requested by a client (usually, a web browser). For this purpose,
there is a data type

data HtmlForm =
HtmlForm String [FormParam] [HtmlExp]

to represent complete HTML documents, where the first argument
to HtmlForm is the document’s title, the second argument contains
optional parameters (e.g., cookies, style sheets), and the third argu-
ment is the document’s content. Since a dynamic web page should
represent information that often depends on the environment of the
web server (e.g., stored in databases), a dynamic web page has al-
ways the type “IO HtmlForm”, i.e., it is an I/O action [36] that
retrieves some information from the environment and produces a
web document.

Dynamic web pages usually process user inputs, placed in various
input elements (e.g., text fields, text areas, check boxes) of an
HTML form, in order to generate a user-specific result. For this

2 This definition covers only the tree-like structure of HTML documents
but does not enforce further restrictions. Hence, documents not conforming
with the HTML standard can be created. This can be avoided with refined
definitions and more sophisticated type structures [34].



purpose, the HTML library of Curry [17] provides an abstract
programming model that can be characterized as programming
with call-back functions. A web page with user input and buttons
for submitting the input to a web server is modeled by attaching
an event handler to each submit button that is responsible for
computing the answer document. In order to access the user input,
the event handler has access to an environment containing the
actual user input. We omit further details here (they can be found
in [17]) since we consider a more abstract layer to construct web-
based user interfaces that will be described in Section 3. We only
want to remark that the functional as well as logic features of
Curry are exploited to implement this programming model: event
handlers and environments are functions attached to data structures
representing HTML documents, and input elements in a document
have logic variables as references to support consistency checks by
the compiler (in contrast to the use of strings in traditional web
scripting, e.g., raw CGI, Perl, PHP).

2.3 JavaScript

JavaScript [13] is an imperative scripting language that can be em-
bedded in HTML documents. JavaScript programs are executed
by the client’s web browser and have access, via a document ob-
ject model, to the resources of the browser, in particular, to the
HTML document shown in the browser. For this purpose, the doc-
ument is represented as a hierarchical object structure where the
attributes of each object can be accessed or manipulated by the
standard “dot notation”. For instance, the class identifier (whose
meaning is usually defined in a style sheet) of an object elem in an
HTML document can be changed to myStyle by the assignment
elem.className = "myStyle".

JavaScript programs are usually executed by the web browser when
some event occurs. For instance, if a text input field in an HTML
form has an attribute onblur="f(3)", the function call f(3) is
evaluated whenever the user leaves this input field. In this paper,
we exploit this functionality of JavaScript to check the user input
on the client side before the complete web form is submitted to the
server.

3. Type-Oriented Web User Interfaces
In this section we review the type-oriented construction of WUIs,
as proposed in [21], from a programmer’s point of view, before we
discuss its extension to include JavaScript in the next section.

The basic idea of our WUI framework is to provide an easily ap-
plicable method to implement an interface for the manipulation of
data of an application domain. Thus, we assume that the applica-
tion program supplies a WUI with the current state of the data and
an operation to store the data modified by the user and acknowl-
edge it to the user. Thus, the main operation to construct a WUI has
the type signature (remember that dynamic web pages are of type
IO HtmlForm)

mainWUI :: WuiSpec a -> a -> (a -> IO HtmlForm)
-> IO HtmlForm

so that an expression (mainWUI wspec d store) evaluates to a
web page containing an editor that shows the current data d and
executes (store d′) when the user submits the modified data d′.
The operation store (also called update form) usually stores the
modified data in a file or database, returns a web page that informs
the user about the successful (or failed) modification, and proceeds
with a further interaction.

The first argument of type WuiSpec a, also called WUI specifica-
tion, specifies the kind of interface used to manipulate data of type
a. This is necessary since there are usually various alternative in-

teraction forms for identical data types. For instance, integer values
can be manipulated in text fields (see last column in the table of
Fig. 1) or, if the set of possible values is small, via selection boxes
(see the two columns before the last one in Fig. 1). Therefore, the
WUI framework provides a couple of predefined interaction forms
for various data types. For instance, there are predefined entities

wString :: WuiSpec String
wInt :: WuiSpec Int

to manipulate strings and integer values in simple text input fields,
respectively. Similarly, there is an entity

wSelectInt :: [Int] -> WuiSpec Int

to select a value from a list of integers by a selection box.

In order to construct WUIs for complex data types, there are WUI
combinators that are mappings from simpler WUIs to WUIs for
structured types. For instance, there is a family of WUI combinators
for tuple types:

wPair :: WuiSpec a -> WuiSpec b -> WuiSpec (a,b)
wTriple :: WuiSpec a -> WuiSpec b -> WuiSpec c

-> WuiSpec (a,b,c)
w4Tuple :: WuiSpec a -> WuiSpec b -> WuiSpec c ->

WuiSpec d -> WuiSpec (a,b,c,d)
...

Thus,

wDate = wTriple (wSelectInt [1..31])
(wSelectInt [1..12]) wInt

wPerson = w4Tuple wString wString wString wDate

define WUI specifications for dates and persons consisting of first
name, surname, email address, and date of birth. To manipulate lists
of data objects, there is a WUI combinator for list types:

wList :: WuiSpec a -> WuiSpec [a]

Thus, to manipulate lists of persons as shown in Fig.1, we apply
the main construction operation mainWUI to the WUI specification
(wList wPerson), which is of type

WuiSpec [(String,String,String,(Int,Int,Int))] ,

and appropriate data values and update forms.

As discussed above, our type-oriented construction of WUIs leads
to type-safe user interfaces, i.e., the user can only enter type-correct
data so that the application does not need to perform any checks
for this purpose. Up to now, type-correctness is interpreted w.r.t.
the types of the underlying programming language. However, many
applications require a more fine-grained definition of types. For in-
stance, not every triple of natural numbers that can be entered with
the WUI wDate above is acceptable, e.g., the triple (29,2,1982)
is illegal from an application point of view. In order to support
also correctness checks for such application-dependent type con-
straints, our framework allows to attach a computable predicate to
any WUI: there is an operation (also defined as an infix operator)

withCondition :: WuiSpec a -> (a->Bool) -> WuiSpec a

that combines a WUI specification with a predicate on values of
the same type so that the result specifies a WUI that accepts only
values satisfying the given predicate. For instance,

wEmail :: WuiSpec String
wEmail = wString ‘withCondition‘ isEmail



defines a WUI that accepts only syntactically correct email ad-
dresses provided that isEmail is a predicate on strings that is sat-
isfied if its argument is a syntactically valid email address.

If application-specific conditions on input values are added, appro-
priate error messages should be provided. For this purpose, there is
an operation (infix operator)

withError :: WuiSpec a -> String -> WuiSpec a

that combines a WUI specification with a specific message which
is shown in case of inputs that do not satisfy the input constraints.
For instance, we can improve the definition of wEmail with an
appropriate error message as follows:

wEmail = wString
‘withCondition‘ isEmail
‘withError‘ "Invalid email address:"

Similarly, if correctDate is a predicate on triples of inte-
gers that checks whether this triple represents a legal date (e.g.,
correctDate (29,2,1982) evaluates to False), then the WUI
specification wDate above should be better defined by

wDate = wTriple (wSelectInt [1..31])
(wSelectInt [1..12]) wInt

‘withCondition‘ correctDate
‘withError‘ "Illegal date:"

Redefining the WUI for persons by

wPerson = w4Tuple wString wString wEmail wDate

the expression (wList wPerson) denotes a WUI specification for
lists of persons that checks for valid inputs and provides the error
messages shown in Fig. 1.

Furthermore, the framework to construct WUIs also supports the
adaptation of WUIs for standard types to WUIs for application-
specific types, the use of application-specific renderings to produce
layouts different from the default layout, and the embedding of
WUIs into web pages with a fixed design (headers, menu bars, etc)
or the embedding of severals WUIs with separate submit buttons at
arbitrary places into a single web page (avoiding any conflicts in
the naming of references for input fields). The details about these
features are not relevant for the contents of this paper and can be
found in [21].

4. Combining WUIs and JavaScript
As mentioned in Section 1, we intend to exploit the existence of
JavaScript interpreters in current web browsers to increase the func-
tionality of WUIs. In particular, we want to transmit a JavaScript
program, together with the HTML form implementing a WUI, that
implements the validation of user inputs in the HTML form. With
this approach, invalid inputs are detected by the web browser on the
client side which provides instantaneous feedback to the user and
reduces the number of client/server interactions. Note that it is not
our intention to shift computations from the server side to the client
side in order to reduce the load of the web server: since a web ap-
plication should never trust user inputs received from a client (see
Section 1), the validation of inputs by the web application is manda-
tory. This design decision has a number of advantages:

• It is not necessary to check all input conditions in a WUI on the
client side.

• If the JavaScript program running on the client cannot compute
a definite result, e.g., due to resource limitations, it causes
no problem for the web application since the input is always
validated on the server side.

• The same is true if JavaScript is disabled in the client’s browser
(e.g., due to security reasons). In this case, the web forms can
still be used (in contrast to approaches that rely on JavaScript
like PowerForms [7]). The only difference is that input errors
are shown after the form has been submitted to the web server
which sends back a new form with error-annotated input fields
(identical to the example in Fig. 1).

In order to develop our new approach to exploit JavaScript for
client-side input validation, we sketch the current WUI implemen-
tation (see [21] for more details).

The execution of a WUI by a call to mainWUI (see Section 3) with
some WUI specification, data value, and update form is performed
by the following steps:

1. The initial HTML form containing input elements to modify the
given data value is generated according to the WUI specifica-
tion and sent to the client’s browser.

2. If the user submits the form with the modified value, the new
value is extracted and the validity conditions on the various lev-
els (since the value can be complex, there might be conditions
on atomic parts as well as on constructed parts) are checked.
If one of these conditions is not satisfied, a new “error an-
swer” form with error-annotated input fields is generated and
sent back to the client (see Fig. 1). Then, step 2 is repeated.

3. If all conditions on the submitted value are satisfied, the update
form is applied to the new value.

Using JavaScript, we can improve step 2: If we add JavaScript code
to the form sent to the client, various conditions can be checked
before the modified form is sent to the web server. If one of the
conditions is not satisfied, the form is not submitted but an error
message is displayed by the web browser. For this case, one can
distinguish two kinds of conditions:

1. Conditions on individual fields, e.g., text fields for integers,
email addresses: They can be immediately checked whenever
the user leaves such an input field (i.e., in case of an onblur
event of the browser).

2. Conditions on combination of several input fields, e.g., dates
represented by several select buttons: They are checked when
the user clicks the submit button since it is difficult to determine
a fixed point of time to check the condition before submitting
the entire form.

In both cases, an error message is immediately displayed near the
invalid input. In case of individual fields, the error message is
shown before or above the fields, and in case of combined fields,
the error message is displayed together with a frame enclosing all
fields belonging to the invalid value.

In order to display the error message immediately, it must be
already contained in the HTML form at the right position. This
can be done by the use of style sheets that makes the error message
initially invisible. For instance, the HTML form sent to the client
contains the following style definitions:3

<style type="text/css">
.hide { display: none; }
.nohide { display: inline; color: red;

font-weight: bold; background-color: yellow; }
</style>

Then the error message has initially the style class hide that is
changed to nohide when the input is invalid. For instance, the

3 The code presented here is simpler than the actual code in order to ease
the understanding.



HTML code for a text field containing an email address could be as
follows:

<span class="hide" id="MSG1">
Invalid email address:

</span>
<input type="text" name="F1" value="smith.org"

onblur=’setErrorClassName("MSG1",
isEmail(stringValueOf("F1")))’ />

The function isEmail is the translation of the Curry function used
in the WUI specification into JavaScript that will be shown below.
The simple JavaScript function setErrorClassName sets the style
class of the element identified by the first argument according to the
Boolean value of the second argument (which is also returned and
used in case of nested structures):

function setErrorClassName(m,b) {
var errmsg = document.getElementById(m);
if (b) { errmsg.className = "hide"; }
else { errmsg.className = "nohide"; }

return b;
}

After the introduction of the principles of combining WUIs and
JavaScript, we consider the translation of Curry programs into
JavaScript in the next section.

5. Translating Curry into JavaScript
An advantage of our design discussed in the previous section is
the fact that it is not necessary to translate any Curry program
into JavaScript. This is also not reasonable since the advanced
features of a declarative multi-paradigm language like Curry (e.g.,
higher-order functions, laziness, logic variables, constraint solving,
concurrency) requires a complex run-time system that must be
transmitted to the client with the HTML form.4

Thus, we define a class of Curry programs that are “easy to trans-
late” into JavaScript by omitting the more complex features of
Curry.

DEFINITION 5.1. A function f depends on function g if an evalua-
tion (according to the operational semantics of Curry [1, 16]) of a
call to f might evaluate a call to g. We denote by f∗ = {f} ∪ {g |
f depends on g} the set of all functions on which f depends.

Since this definition of dependency is undecidable in general, we
assume in the following a decidable approximation of this prop-
erty, e.g., by considering the call structure of the program rules as
computed by existing analysis tools [19].

DEFINITION 5.2. A function f is totally defined if it is reducible
on all ground data terms (i.e., expressions without defined functions
and logic variables).

The main restrictions that we impose on functions which are trans-
lated into JavaScript are totally definedness and the exclusion of
non-determinism as well as infinite data structures, i.e., we consider
the functional part of Curry evaluable by an eager strategy. To char-
acterize this class, we use some results about functional logic pro-
grams. ISX [6] (“inductively sequential programs with extra vari-
ables”) denotes the class of functional logic programs where each
function is defined such that its left-hand sides can be organized
in a definitional tree [2] (i.e., it is inductively defined on the input
types) possibly containing extra variables (variables in a rule that

4 A good alternative is the static integration of the Curry run-time system
into the web browser, but this does not seem a viable solution.

do not occur in its left-hand side). It is well known [3, 6] that any
functional logic program (i.e., conditional constructor-based term
rewriting system) can be automatically transformed into an ISX
program. Therefore, we consider only ISX programs in the follow-
ing.

DEFINITION 5.3. A function f of an ISX program is eager exe-
cutable if all functions of f∗ are totally defined and their rules do
not contain extra variables, and the rewrite relation generated by
all rules defining f∗ is terminating.

The main motivation for this definition is the fact that eager-
executable functions can be executed by an innermost rewriting
strategy without changing the computed results:

PROPOSITION 5.4. If f is an eager-executable function, then any
call to f without free variables that is evaluated by innermost term
rewriting produces the same result as in Curry.

PROOF: Since we have not fully formalized all notions necessary
for a detailed proof, we give only an informal sketch (the complete
proof is not difficult but tedious in all its details). The requirement
for ISX programs without free variables in the rules and the ini-
tial expressions implies that the evaluation strategy of Curry [1, 16]
applied to such programs reduces to pure term rewriting, i.e., non-
deterministic or concurrent computations do not occur. Further-
more, any innermost term rewriting strategy computes a value (i.e.,
a term without defined function symbols) due to totally definedness
and termination (note that both requirements are necessary). Since
ISX programs without extra variables are confluent, this value is
unique and, thus, the same as computed by Curry. 2

Note that the class of eager-executable functions is sufficient in
practice. Most of the functions used as conditions in practical
WUIs are either eager executable (e.g., all predicates used in the
examples of this paper) or exploit advanced features that are not
reasonable to translate into JavaScript (e.g., constraint solving over
finite domains, see the SuDoku solver shown in [21]). If functions
are not totally defined, they can be easily “totalized” by introducing
particular failure values [20] so that this requirement is not a serious
restriction. The requirement for the absence of extra variables is
easy to check. The termination requirement is more serious due to
its undecidability. However, there are many tools to check sufficient
termination criteria that can be applied (e.g., AProVE [14]).5

The previous proposition shows that eager-executable functions
can be executed by an innermost rewrite strategy, i.e., basically a
call-by-value strategy that is also used in JavaScript. Thus, these
functions can be more or less directly mapped into JavaScript
functions. In the remaining section, we define a translation scheme
for eager-executable Curry functions into JavaScript based on these
considerations. Since this scheme produces a lot of code and the
code size is a limiting factor of such mobile code, we discuss in the
subsequent section a number of useful optimizations.

Since functions are defined in the source language Curry by pattern
matching, local definitions etc, it is much more convenient to base
a compiler on an intermediate language where the detailed pattern
matching strategy has been already resolved, local definitions have
been globalized by lambda lifting [26], and further syntactic sugar
of the source language has been eliminated. This intermediate lan-
guage has been also used to define the semantics of Curry [1] and
various language-processing tools.

5 A more pragmatic approach is to ignore this requirement since web
browsers usually controls the space and time requirements of executed
JavaScript programs and terminate them if necessary. However, such an
approach does not lead to web interfaces that might be well accepted by
users.



[[r← l]] = r = l̄ (literal)

[[r← x]] = r = x (variable)

[[r ← c(e1, . . . , en)]] = var x1; [[x1 ← e1]]; . . . ; var xn; [[xn ← en]]; (constructor call)
r = new Array(c, x1, . . . , xn)

[[r← ifThenElse(e1, e2, e3)]] = var x; [[x← e1]]; if (x) { [[r← e2]] } else { [[r← e3]] } (conditional)

[[r← apply(e1, e2)]] = var x1; [[x1 ← e1]]; var x2; [[x2 ← e2]]; r = x1(x2) (higher-order application)

[[r← f(e1, . . . , en)]] = var x1; [[x1 ← e1]]; . . . ; var xn; [[xn ← en]]; r = f̄ (x1, . . . , xn) (function call)

[[r← f(e1, . . . , en−1)]] = var x1; [[x1 ← e1]]; . . . ; var xn−1; [[xn−1 ← en−1]]; (partial application)
r = function(x) { return f̄(x1, . . . , xn−1, x); }

[[r← case e of {pn → en}]] = var x; [[x← e]]; (case, where
swith (x[0]) { pi = ci(xi1, . . . , xini

))
. . .
case ci : var xi1 =x[1]; . . . ; var xini

= x[ni]; [[r← ei]]; break ;
. . .
}

Figure 2. Translation of expressions into JavaScript statements

Programs of this intermediate language, also called flat programs,
can be defined as follows, where we write on for the sequence of
objects o1, . . . , on:6

Program
P ::= D1 . . . Dm

Definition
D ::= f(x1, . . . , xn) = e

Expression
e ::= l (literal)

| x (variable)
| c(e1, . . . , en) (constructor call)
| f(e1, . . . , en) (function call)
| case e of {pn → en} (case)

Pattern
p ::= c(x1, . . . , xn)

A literal l is a number, character, or Boolean constant. Higher-
order applications are not explicitly represented since we assume
that they are represented by the predefined binary function apply.
Similarly, a conditional like if-then-else is represented by a function
ifThenElse that takes three arguments and has the following
definition as a flat program:

ifThenElse(b,t,f) = case b of { True → t,
False → f }

Since eager-executable functions can be automatically transformed
into such flat programs [23], we define the compilation process only
for such flat programs.

Due to the fact that the target JavaScript program should implement
an innermost rewriting strategy, we can map each eager-executable
Curry function into a definition of a JavaScript function. However,
expressions in the right-hand side of function definitions cannot
be mapped into JavaScript expressions since case expressions are
translated into a switch construct which is a statement rather than
an expression in JavaScript. Therefore, we map expressions into
JavaScript statements that store the result value in a given variable.
Hence, we define a translation function [[r ← e]] that translates an
expression e into a statement that stores the result in variable r.

6 We have simplified the flat language due to our requirement for eager-
executable functions.

A function definition f(x1, . . . , xn) = e is translated into the
following JavaScript function declaration:

function f(x1,...,xn) {
var r;
[[r← e]];
return r;

}

The translation of expressions is defined by a case distinction on the
different kinds of expressions as shown in Fig. 2. In the translation
rules, every variable xi introduced by a var declaration denotes a
fresh variable. In the literal translation rule, l̄ denotes the JavaScript
constant corresponding to the Curry literal l. In the function trans-
lation rule, f̄ is f for a defined function f or the name of the corre-
sponding JavaScript function in case of a primitive function f (e.g.,
arithmetic function, comparison, character conversion). Construc-
tor applications are represented as arrays where the first element
contains the constructor (e.g., in string representation or as an inte-
ger if we associate a unique index to every constructor). In the rules
for constructor and function calls, we assume that c and f are fully
applied (i.e., they have arity n), respectively. In a partial applica-
tion, some argument in a call to an n-ary function (or constructor)
f is missing (for the sake of simplicity, we define the translation
scheme only for a single missing argument). In this case we ex-
ploit the higher-order features of JavaScript by generating a new
function that could be later applied to the missing argument (com-
pare translation rule for apply). In the case translation rule, a case
distinction is performed on the current constructor (compare the
translation of constructor calls) before the pattern variables xij are
extracted from the data structure. An obvious optimization of this
translation scheme, performed by our compiler, is the replacement
of each access to a pattern variable xij in the translation of ei by
x[j].

EXAMPLE 5.5. Consider the following WUI specification describ-
ing an interface for a pair of integers where their sum must be pos-
itive:

let posSum (x,y) = x+y > 0
in wPair wInt wInt ‘withCondition‘ posSum

Using our translation scheme, the predicate posSum is translated
into the following JavaScript code:



function posSum(x1) {
var x2;
var x3; x3 = x1;
switch (x3[0]) {

case "(,)" : // pair constructor?
var x4;
var x5; x5 = x3[1];
var x6; x6 = x3[2];
x4 = (x5 + x6);
var x7; x7 = 0;
x2 = (x4 > x7); break;

}
return x2;

}

Obviously, this schematically generated code has the potential for
many optimizations that should be applied in order to reduce the
code size. This will be discussed in the next section.

6. Optimizations
Due to the translation of expressions into statements, nested expres-
sions are flattened by introducing auxiliary variables. In general,
this is necessary to exploit switch statements to implement pattern
matching. As example 5.5 shows, this schematic translation often
introduces variables that are only assigned and used once. There-
fore, we introduce a code optimization that removes such variables:

Removal of single variables If there is a code sequence (i.e., with
a sequential control flow between the shown points) of the form

... var x; ... x = e; ... x ...

without any other occurrences of x, remove the declaration and
assignment for x and replace the remaining single occurrence of
x by e.

This specific combination of constant propagation and liveness
analysis is very effective in our example:

EXAMPLE 6.1. If we apply the removal of single variables to the
generated code of Example 5.5, we obtain:

function posSum(x1) {
var x2;
var x3; x3 = x1;
switch (x3[0]) {

case "(,)" : x2 = (x3[1] + x3[2] > 0); break;
}
return x2;

}

The motivation to remove only variables with a single occurrence
is to avoid additional computational work that could be introduced
by duplicating code. Since all variables in an eager language are
already evaluated, we can also remove variables with multiple
occurrences that have values identical to other variables:

Removal of aliasing variables If there is a code sequence (i.e.,
with a sequential control flow between the declaration and assign-
ment) of the form

... var x; ... x = y; ...

without any other assignment to x, remove the declaration and
assignment for x and replace all remaining occurrences of x by
y.

EXAMPLE 6.2. If we apply the removal of aliasing variables to the
code of Example 6.1, we obtain:

function posSum(x1) {
var x2;
switch (x1[0]) {
case "(,)" : x2 = (x1[1] + x1[2] > 0); break;

}
return x2;

}

The latter code can be further improved by exploiting the fact that
it is the translation of a strongly typed source language. Due to this
property, it is not necessary to check the constructor in the switch
statement, since the argument expression of the switch is always a
value that belongs to a data type with a single constructor:

Removal of record constructors Let T be a type constructor with
a single data constructor, i.e., defined by

data T a1 . . . an = C τ1 . . . τm

Then replace “switch (x[0]) {case C: s; break;}” by s.

EXAMPLE 6.3. Applying the removal of record constructors to the
code of Example 6.2 combined with a further removal of single
variables yields the final code:

function posSum(x1) { return (x1[1] + x1[2] > 0); }

This code is much smaller and more efficient than the originally
generated code of Example 5.5 and also similar to a hand-written
code.

Apart from these code optimizations, one should also consider the
representation of data types in the generated JavaScript code. Prim-
itive types like numbers or truth values have a direct correspon-
dence between Curry and JavaScript. Constructed types are repre-
sented as array structures (see Fig. 2). An alternative representation
could be objects in JavaScript, but there does not seem to be clear
advantages for one these options. However, the situation is different
for strings. Many input fields contain strings that should be checked
according to various conditions. For instance, our small run-time
system to execute JavaScript programs for WUIs contains the func-
tion stringValueOf that extracts a string from an input field and
passes it to the corresponding check function (see the example in
Section 4). Since the type of strings is [Char] in Curry, i.e., identi-
cal to a list of characters in order to reuse all existing polymorphic
list functions also for strings, the function stringValueOf must
convert the input string into a list of characters. However, it is well
known that this representation is inefficient compared to a primi-
tive string representation [11]. The same drawback is present here
since each character in this list is represented by an (array) ob-
ject whereas strings are primitive in JavaScript with a much better
representation. For instance, a condition which checks whether an
input field contains a non-empty string can be defined in Curry by

notEmpty [] = False
notEmpty (_:_) = True

which is translated by our techniques into

function notEmpty(x1) {
var x2;
switch (x1[0]) {
case "[]" : x2 = false; break;
case ":" : x2 = true; break;

}
return x2;

}

Since the transformation of a string into a character list where only
the first element is checked could be expensive (we detected per-
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Figure 3. Structure of the WUI/JavaScript implementation

ceivable computation costs with strings containing several thou-
sands characters), we have implemented another solution inspired
by Curry’s lazy evaluation strategy: the function stringValueOf
directly returns the JavaScript string without any transformation.
In order to comply with the standard list functions for processing
strings in Curry, we lazily convert a string into a list if it is de-
manded, i.e., in front of a switch statement on lists. Thus, the code
for the function notEmpty is modified as

function notEmpty(x1) {
var x2;
if ((typeof(x1) == "string")) {
x1 = string2charlist(x1);

}
switch (x1[0]) {
case "[]" : x2 = false; break;
case ":" : x2 = true; break;

}
return x2;

}

where the function string2charlist converts an empty string
into the empty list [] and a non-empty string into a non-empty list
consisting of the first character and the remaining string (in place
of the tail list).

7. Implementation
This section sketches the implementation of our framework that is
visualized in Fig. 3. The complete implementation is available with
the current distribution of PAKCS [22].

As discussed in detail in Section 5, it is not intended to translate all
possible conditions in WUIs into corresponding JavaScript code.
Therefore, one has to select the conditions satisfying the criteria
presented in Section 5 before the translation starts. Thus, the com-
pilation of a web page containing WUIs is performed by the fol-
lowing steps:

1. The source program is analyzed and eager-executable condi-
tions in WUIs are marked.

2. The eager-executable conditions are collected together with the
functions on which they depend (which might be distributed in
various imported modules) into a single Curry program.

3. This Curry program is translated into a JavaScript program
following the methods described in Sections 5 and 6.

4. The original Curry program is compiled with a standard Curry
compiler and installed on the web server.

5. If a client demands a web page containing the WUI, the Curry
program computes the corresponding HTML form and sends it
to the client together with the generated JavaScript program, as
described in Section 4.

Program Curry JS JSO
lines bytes lines bytes lines bytes

posSum 1 21 19 278 3 63
isEmail 27 654 183 3050 77 1598
person 71 1624 404 6546 126 2777
exam 102 2333 629 10072 211 4613

Table 1. Code size of some programs

Note that the implementation of WUIs, as described in [21], must
also consider the integration of JavaScript code in the HTML form.
For this purpose, the individual functions to generate HTML code
from WUI specifications (they are implicitly contained in the WUI
specifications but not directly accessible) generate also the calls
to the JavaScript code for eager-executable conditions. These calls
are attached to input fields if possible (in case of text fields with
onblur events) and also collected for the complete WUI and at-
tached to the submit button. The check of the complete WUI fol-
lows an innermost strategy in case of hierarchical data structures
(like list of persons containing dates): first, the basic inputs parts
are checked and, if they do not contain an error, the parts con-
structed from these parts are checked. This strategy is reasonable
since it avoids superfluous error messages related to global proper-
ties if the individual parts contain input errors.

Our current implementation that comes with PAKCS does not inte-
grate an analyzer for eager-executable conditions, i.e., the first step
of the implementation must currently be done by the programmer
(the connection of a termination analysis tool for Curry is part of
future work). For this purpose, the WUI programmer can mark a
condition to be translated into JavaScript by using the WUI func-
tion withConditionJS instead of withCondition.7 All the re-
maining steps of the implementation are fully automatic and do not
require any help by the programmer.

In order to provide an impression of the size of the generated
JavaScript code, Table 1 contains the results of compiling some
example programs from Curry into JavaScript. The columns con-
tain the sizes of the source Curry program (including all dependent
functions but without comments), the generated JavaScript code
without optimization (JS), and the generated JavaScript code in-
cluding the optimization presented in Section 6 (JSO). For each
class of programs, the number of code lines and the code size in
bytes is shown. The first three programs are WUI conditions men-
tioned in this paper, and program exam consists of the conditions
of a web-based examination management tool. The difference be-

7 The explicit marking of conditions that should be translated into
JavaScript is also useful in the presence of an analyzer for eager-executable
functions, since there could be situations where eager-executable conditions
should not be transferred to the client, e.g., if they contain confidential al-
gorithms.



tween the entries in the columns JS and JSO clearly shows that the
optimizations of Section 6 are important and effective.

8. Related Work
Web-based user interfaces are important for many modern appli-
cations. In principle, a dynamic web page can be implemented in
any programming language since the requirements on CGI pro-
grams that generate dynamic web pages are very low due to the
text-based CGI protocol. Although scripting languages like Perl or
PHP are quite common for this purpose, they lack support for re-
liable programming (e.g., types, static checking of declarations) so
that various approaches to implement web interfaces with higher-
level programming languages have been developed. Some of them
are discussed in the following.

One of the early domain-specific languages for web programming
is MAWL [27]. It supports the checking of well-formedness of
HTML documents by writing HTML documents with some gaps
that are filled by the server before sending the document to the
client. Since these gaps are filled only with simple values, the gen-
eration of documents whose structure depend on complex data is
largely restricted. More complex tree structures are supported in
DynDoc [33] (part of the <bigwig> project [8]) which supports
higher-order document templates, i.e., the gaps in a document can
be filled with other documents that can also contain gaps. In order
to validate user inputs in HTML forms, the <bigwig> project pro-
poses PowerForms [7], an extension of HTML with a declarative
specification language to annotate acceptable form inputs. Since
the specification language is based on regular expressions, it is less
powerful than our approach which supports any computable pred-
icate on inputs. Similarly to our approach, PowerForms are trans-
lated into JavaScript so that input checking is done on the client
side. As a drawback, the implementation of PowerForms com-
pletely relies on JavaScript so that they cannot be used if JavaScript
is disabled. Finally, the <bigwig> project is based on a domain-
specific language for writing dynamic web services while we ex-
ploit the features of the existing high-level language Curry.

Similar to the basic HTML programming library of Curry [17],
there are also libraries to support HTML programming in other
functional and logic languages. For instance, the PiLLoW library
[9] is an HTML/CGI library for Prolog. Since Prolog is not strongly
typed, static checks on the form of HTML documents are not di-
rectly supported. Furthermore, there is no higher-level support for
complex interaction sequences as required in typical user inter-
faces.

Meijer [29] developed a CGI library for Haskell that defines a data
type for HTML expressions together with a wrapper function that
translates such expressions into a textual HTML representation.
However, it does not offer any abstraction for programming se-
quences of interactions (e.g., by event handlers). These must be
implemented in the traditional way by choosing strings for identify-
ing input fields, passing states as hidden input fields etc. Thiemann
[34] proposed a representation of HTML documents in Haskell that
ensures the well-formedness of documents by exploiting Haskell’s
type class system. In [35] he extended this approach by combining
it with the ideas of [17] to implement interaction sequences by an
event handler model. Although his approach also supports typed
input fields similarly to our WUIs, it is more restricted. It does not
support arbitrary conditions on input data or type-based combina-
tors for input fields, and the layout of the generated web pages is
more restrictive (due to the monadic implementation in the func-
tional base language).

The iData toolkit [31, 32] is a framework, implemented with
generic programming techniques in the functional language Clean,

to construct type-safe web interfaces. Similarly to WUIs, editors
for typed values are created in a type-oriented way. However, in
contrast to our framework, the editable data elements are identi-
fied by strings that might cause consistency problems similarly to
scripting languages like Perl or PHP. Furthermore, apart from well-
typedness, validity conditions on input data as in our approach are
not supported.

The Google Web Toolkit (GWT8) is a framework to implement dy-
namic web pages in Java. GWT contains a compiler to translate the
developed Java programs into a set of JavaScript and HTML files.
Similarly to our approach, GWT proposes the use of a statically
typed language to catch many programming errors at compile time
instead of programming in JavaScript. In contrast to our proposal,
GWT has no specific support to construct type-safe web forms in a
high-level manner.

Ruby on Rails9 is a framework to generate web interfaces to ma-
nipulate data stored in databases from the corresponding database
schema. Similarly to our WUIs, Rails reduces the code that must
be explicitly written by generating most of it from the database
schema. Rails is based on the dynamically-typed, object-oriented
language Ruby, whereas we have exploited the strong typing disci-
pline of Curry.

9. Conclusion
We have proposed a new framework to construct web-based user
interfaces in a declarative way that is combined with features of
JavaScript in order to exploit existing technologies without efforts
for the application programmer. The construction of WUIs is type-
oriented, i.e., the programmer selects basic WUI components and
combine them with specific combinators in order to obtain a WUI
that can be applied to manipulate the data of the application do-
main. An important feature of WUIs is the possibility to include
computable conditions on input data. Since these conditions are
checked before the data is transferred to the application program,
the application must only specify such conditions but need not
check their validity or implement the necessary interactions with
the user to correct wrong inputs.

In this paper we have shown how to exploit the existing technol-
ogy for client-side input checking within this framework but with-
out additional efforts for the application programmer. For this pur-
pose, we have characterized a class of functions that can be eas-
ily translated into a language like JavaScript with a call-by-value
semantics. Conditions in WUIs that are implemented by functions
belonging to this class are automatically translated into correspond-
ing JavaScript code. This code is used on the client side when the
user manipulates or submits the application data in a web form gen-
erated by the WUI description.

The advantages of programming with WUIs has been already
shown in a previous paper [21] and various applications based on
this concept. The advantage of the current work is the reuse of the
technology available in almost every web browser without efforts
for the programmer. Instead of programming in different languages,
e.g., writing scripts in a dynamically typed, interpreted language
like JavaScript, which often leads to unreliable programs and must
be kept in conformance with the application (remember that server-
side input checking is always necessary to avoid security risks),
we propose to generate the necessary code from the existing WUI
specification. In principle, this concept can be also applied to other
programming languages than Curry. However, it has been demon-
strated that the combined features of a multi-paradigm language

8 http://code.google.com/webtoolkit/
9 http://www.rubyonrails.com



like Curry can be exploited to provide better APIs for such libraries
[17, 21].

For future work it would be interesting to provide useful tools for
the automatic termination or complexity analysis. They can be used
for a better characterization of programs that should be translated
into JavaScript. For instance, functions with a high computational
complexity should not be executed on the client’s browser, even if
they are terminating. Furthermore, the compilation into JavaScript
could be improved. Although the current translation into recursive
JavaScript functions is sufficient in our practical applications, fu-
ture applications might demand for better compilation schemes,
e.g., tail recursion optimization. Finally, one could exploit the more
recent Ajax framework to increase the interaction, e.g., by execut-
ing complex conditions on the web browser before submitting the
form, or by extending the framework to allow conditions of type
“IO Bool”, i.e., which depend on the server’s state and must be
executed on the web server during the user interaction with his web
browser.
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