
Type-Oriented Construction of Web User Interfaces ∗

Michael Hanus
Institut für Informatik, CAU Kiel, D-24098 Kiel, Germany

mh@informatik.uni-kiel.de

Abstract
This paper proposes a new technique for the high-level construction
of type-safe web-oriented user interfaces. Our approach is useful
to equip applications processing structured data with interfaces to
manipulate these data in an efficient and maintainable way. The in-
terfaces are web-based, i.e., the data can be manipulated with stan-
dard web browsers without any specific requirements on the client
side. In order to support type-safe user interfaces, i.e., interfaces
where users can only input type-correct data (types can be standard
types of a programming language as well as any computable predi-
cate on the data), we propose a set of type-oriented building blocks
from which interfaces for more complex types can be easily con-
structed. This technique leads to a very concise and maintainable
implementation of web-based user interfaces.

We show an implementation of this concept in the declarative
multi-paradigm language Curry. In particular, its integrated func-
tional and logic features are exploited to enable the high level of
abstraction proposed in this paper.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.1.6 [Pro-
gramming Techniques]: Logic Programming; D.2.2 [Software
Engineering]: Design Tools and Techniques—User interfaces;
D.3.2 [Programming Languages]: Language Classifications—
Multiparadigm languages; D.3.3 [Programming Languages]:
Language Constructs and Features—Polymorphism; H.5.2 [Infor-
mation Interfaces and Presentation]: User Interfaces

General Terms Languages

Keywords Functional Logic Programming, User Interfaces, Web
Programming

1. Motivation
The construction of user interfaces for applications manipulating
structured data is usually a complex and often tedious task. Our
experiences from various applications show that in many cases the
effort to implement a user interface is equal or even bigger than
the implementation of the application itself, in particular, if the ap-
plication is implemented in a declarative programming language

∗ This work was partially supported by the German Research Council
(DFG) grant Ha 2457/5-1.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPDP’06 July 10–12, 2006, Venice, Italy.
Copyright c© 2006 ACM 1-59593-388-3/06/0007. . . $5.00.

which offers a high level of abstraction for application program-
ming (e.g., see [14] or the collection of Curry applications1). Thus,
there is a demand to support the efficient construction of main-
tainable user interfaces. Scripting languages with toolkits and li-
braries, like Tcl/Tk, Perl, or PHP, are one approach to support this
goal. However, scripting languages often lack support for the de-
velopment of complex and reliable software systems (e.g., no static
type and interface checking, limited code reuse due to the lack of
higher-order functions) so that they are often used to implement
the user interface whereas the application logic is implemented in
some other language. It is well known that such combinations could
cause security leaks in web applications [16]. Therefore, we prefer
to implement the user interface with the programming language of
the application logic by providing specific libraries for this pur-
pose. In this paper we present such an approach for the case of
declarative programming and web user interfaces (WUIs) where
the client uses a standard web browser for communicating with the
application. We will see that the decrease in flexibility of low-level
approaches is negligible in comparison to the increase of program-
ming efficiency and reliability supported by an integration into a
higher-level language.

Our approach is useful in situations where a web-based editor
should be constructed for data of an application program, i.e.,
the user should be provided with an HTML form to manipulate
some data of the application. For this purpose we assume that the
application program supplies the WUI with the current data of the
application and an operation to store the modified data. It is obvious
that this is not a restriction since application programs usually have
such a functionality. Using our concept, nothing more is required to
construct WUIs in a high-level way by a few lines of program code.
Our programming model can be characterized by the following
features:

• The construction of a WUI is type-oriented, i.e., the definition
of a WUI follows the structure of the data types of the applica-
tion.

• There is a set of basic WUIs to manipulate data of basic types,
e.g., integers, truth values, strings, finite sets. This set can be
easily extended since there is a clear methodology to implement
such basic WUIs.

• There is a set of WUI combinators to construct WUIs for com-
plex data types from simpler types similarly to type constructors
in programming languages. For instance, there are combinators
for tuples, lists, union types etc.

• It is ensured that an update of the data is only performed with
type-correct inputs. If the user tries to input illegal data (e.g.,
incorrect integer constants), the WUI does not accept the data
and ask the user to correct the input. Thus, the application pro-

1 http://www.informatik.uni-kiel.de/~curry/applications.
html



gram need not check the data and perform appropriate actions
(e.g., providing error forms to correct the input etc).

• Type-correct inputs (in the sense of types used in programming
languages) are often not sufficient in real applications. For in-
stance, strings containing email addresses must have a particu-
lar form, a date like “February 29, 2006” is illegal, or two input
fields containing a password and the repeated password must be
always identical. For this purpose, WUIs can be restricted with
any computable predicate so that input data is only accepted if it
satisfies the specified predicate. Furthermore, WUIs can be cus-
tomized to provide application-specific error messages in case
of illegal inputs.

• WUIs can be adapted to other data types in order to provide a
simple method to define WUIs for user-defined data types. For
instance, there exist WUI combinators for tuples that can be
easily adapted to a user-defined record type by mapping tuples
to records. Although this method is often sufficient to construct
WUIs for user-defined types, there is also a methodology to ex-
tend the standard set of WUI combinators with new application
specific combinators.

In principle, our ideas can be implemented in various programming
languages. However, in order to support a compact, high-level,
and type-safe implementation, some requirements to the underly-
ing programming language are necessary. Therefore, we provide a
concrete implementation of our concept in the declarative multi-
paradigm language Curry [10, 15]. As we will see, the integration
of functions as first-order objects, logic variables, and strong typing
is exploited in our implementation.

In the next section, we review some concepts of Curry and func-
tional logic programming in order to understand the rest of the pa-
per. HTML programming in Curry is reviewed in Section 3. Sec-
tion 4 introduces the ideas of WUIs and their type-oriented con-
struction. Section 5 sketches the implementation of our approach.
Section 6 discusses related work before we conclude in Section 7.

2. Functional Logic Languages and Curry
Modern functional logic languages [9] integrate important features
of functional and logic languages in order to provide a variety
of programming concepts. For instance, the concepts of demand-
driven evaluation and higher-order functions from functional pro-
gramming are combined with logic programming features like
computing with partial information (logic variables), unification,
and nondeterministic search for solutions. This combination, sup-
ported by optimal evaluation strategies [1] and new design patterns
[2], leads to better abstractions in application programs, e.g., as
shown for programming dynamic web pages [11]. The declarative
multi-paradigm Curry [10, 15] is a functional logic language ex-
tended by concurrent programming concepts and has been used in
various applications. In the following, we review those elements of
Curry that are necessary to understand the subsequent paper. More
details about Curry’s computation model and a complete descrip-
tion of all language features can be found in [10, 15].

Curry is a multi-paradigm declarative language that combines in
a seamless way features from functional, logic, and concurrent
programming and supports programming-in-the-large with specific
features (types, modules, encapsulated search). From a syntactic
point of view, a Curry program is a functional program extended
by the possible inclusion of free (logic) variables in conditions and
right-hand sides of defining rules. Curry has a Haskell-like syntax
[20], i.e., (type) variables and function names usually start with
lowercase letters and the names of type and data constructors start

with an uppercase letter. The application of f to e is denoted by
juxtaposition (“f e”).

A Curry program consists of the definition of functions and data
types on which the functions operate. Functions are evaluated
lazily. To provide the full power of logic programming, functions
can be called with partially instantiated arguments and defined by
conditional equations with constraints in the conditions. Function
calls with free variables are evaluated by a possibly nondetermin-
istic instantiation of demanded arguments (i.e., arguments whose
values are necessary to decide the applicability of a rule) to the
required values in order to apply a rule. Concurrent programming
is supported by primitives to suspend computations and evaluate
constraints concurrently.

EXAMPLE 1. The following Curry program defines the data types
of Boolean values, possible values (Maybe), union types (Either),
polymorphic lists, and functions to compute the concatenation of
lists and the last element of a list:

infixr 5 ++

data Bool = True | False
data Maybe a = Nothing | Just a
data Either a b = Left a | Right b
data List a = [] | a : List a

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

last :: [a] -> a
last xs | ys ++ [x] =:= xs = x where x,ys free

For instance, [] (empty list) and : (non-empty list) are the con-
structors for polymorphic lists (a is a type variable ranging over
all types and the type “List a” is written as [a] for conformity
with Haskell). The infix operator declaration “infixr 5 ++” de-
clares the symbol “++” as a right-associative infix operator with
precedence 5 so that we can write function applications of this
symbol with the convenient infix notation. The (optional) type dec-
laration (“::”) of the function “++” specifies that “++” takes
two lists as input and produces an output list, where all list el-
ements are of the same (unspecified) type.2 Since the function
“++” can be called with free variables in arguments, the equation
“ys ++ [x] =:= xs” is solved by instantiating the first argument
ys to the list xs without the last argument, i.e., the only solution to
this equation satisfies that x is the last element of xs.

In general, functions are defined by (conditional) rules of the form

f t1 . . . tn | c = e where vs free

with f being a function, t1, . . . , tn patterns (i.e., expressions with-
out defined functions) without multiple occurrences of a variable,
the condition c is a constraint, e is a well-formed expression which
may also contain function calls, lambda abstractions etc, and vs is
the list of free variables that occur in c and e but not in t1, . . . , tn.
The condition and the where parts can be omitted if c and vs are
empty, respectively. The where part can also contain further local
function definitions which are only visible in this rule. A condi-
tional rule can be applied if its left-hand side matches the current
call and its condition is satisfiable.

A constraint is any expression of the built-in type Success. For
instance, the trivial constraint success is an expression of type
Success that denotes the always satisfiable constraint. “c1 & c2”
denotes the concurrent conjunction of the constraints c1 and c2,

2 Curry uses curried function types where α->β denotes the type of all
functions mapping elements of type α into elements of type β.



i.e., this expression is evaluated by proving both argument con-
straints concurrently. Each Curry system provides at least equa-
tional constraints of the form e1 =:= e2 which are satisfiable if both
sides e1 and e2 are reducible to unifiable patterns. However, spe-
cific Curry systems also support more powerful constraint struc-
tures, like arithmetic constraints on real numbers or finite domain
constraints, as in the PAKCS implementation [13].

The operational semantics of Curry, described in detail in [10, 15],
is based on an optimal evaluation strategy [1] which is a conser-
vative extension of lazy functional programming and (concurrent)
logic programming. Due to its demand-driven behavior, it provides
optimal evaluation (e.g., shortest derivation sequences, minimal so-
lution sets) on well-defined classes of programs (see [1] for details).
Curry also offers standard features of functional languages, like
higher-order functions (e.g., “\x -> e” denotes an anonymous func-
tion that assigns to each x the value of e) or monadic I/O (which is
identical to Haskell’s I/O concept [25]).

3. HTML Programming in Curry
This section surveys the model supported in Curry for program-
ming dynamic web pages. This model exploits the functional and
logic features of Curry and is available through the library HTML
which is part of the PAKCS distribution [13]. The ideas of this li-
brary and its implementation are described in detail in [11].

If one wants to write a program that generates an HTML document,
one must decide about the representation of such documents inside
a program. A textual representation (as often used in CGI scripts
written in Perl or with the Unix shell) is very poor since it does
not avoid certain syntactical errors (e.g., unbalanced parenthesis) in
the generated document. Thus, it is better to introduce an abstrac-
tion layer and model HTML documents as elements of a specific
data type together with a wrapper function that is responsible for
the correct textual representation of this data type. Since HTML
documents have a tree-like structure, they can be represented in
functional or logic languages in a straightforward way [7, 19, 23].
For instance, the type of HTML expressions is defined in Curry as
follows:

data HtmlExp =
HtmlText String

| HtmlStruct String [(String,String)] [HtmlExp]
| HtmlElem String [(String,String)]

Thus, an HTML expression is either a plain string or a struc-
ture consisting of a tag (e.g., b,em,h1,h2,. . . ), a list of attributes
(name/value pairs), and a list of HTML expressions contained in
this structure (because there are a few HTML elements without
a closing tag, like <hr> or <br>, there is also the constructor
HtmElem to represent these elements).

Note that this definition of HTML documents covers only their tree-
like structure but does not put further restrictions on the documents
so that combinations not conform with the HTML standard can
be created. Although this can be avoided with refined definitions
and more sophisticated type systems [23], we use this definition
for the sake of simplicity since such details are not important for
our subsequent approach.

Writing HTML documents in the form of this data type might
be tedious. Therefore, the HTML library defines several functions
as useful abbreviations (htmlQuote transforms characters with a
special meaning in HTML into their HTML quoted form):

htxt s = HtmlText (htmlQuote s)
h1 hexps = HtmlStruct "h1" [] hexps
bold hexps = HtmlStruct "b" [] hexps

breakline = HtmlElem "br" []
...

A dynamic web page is an HTML document (with header infor-
mation) that is computed by a program at the time when the page
is requested by a client (usually, a web browser). For this purpose,
there is a data type

data HtmlForm =
HtmlForm String [FormParam] [HtmlExp]

to represent complete HTML documents, where the first argument
to HtmlForm is the document’s title, the second argument contains
optional parameters (e.g., cookies, style sheets), and the third ar-
gument is the document’s content. As before, there are also useful
abbreviations:

form title hexps = HtmlForm title [] hexps

standardForm title hexps =
form title (h1 [htxt title] : hexps)

The intention of a dynamic web page is to represent some informa-
tion that depends on the environment of the web server (e.g., stored
in data bases). Therefore, a dynamic web page has always the type
“IO HtmlForm”, i.e., it is an I/O action that retrieves some infor-
mation from the environment and produces a web document.

Dynamic web pages become more interesting by processing user
inputs during the generation of a page. For this purpose, HTML
provides various input elements (e.g., text fields, text areas, check
boxes). A subtle point in HTML programming is the question how
the values typed in by the user are transmitted to the program gener-
ating the answer page. This is the purpose of the Common Gateway
Interface (CGI) but the details are completely hidden by the HTML
library. The programming model supported by the HTML library can
be characterized as programming with call-back functions. A web
page with user input and buttons for submitting the input to a web
server is modeled by attaching an event handler to each submit but-
ton that is responsible to compute the answer document. In order to
access the user input, the event handler is a function from a “CGI
environment” (holding the user input) into an I/O action that returns
an HTML document. A CGI environment is simply a mapping from
CGI references, which identify particular input fields, into strings.
Thus, there are the following type synonyms:

type CgiEnv = CgiRef -> String

type HtmlHandler = CgiEnv -> IO HtmlForm

Thus, a submit button takes string (shown in the button) and an
event handler as a parameter, where the associated event handler is
called with the appropriate CGI environment when the user pushes
the submit button:

button :: String -> HtmlHandler -> HtmlExp

An input element that occurs in an HTML form has a parameter of
type CgiRef so that an event handler can refer to its contents. For
instance, a text input field has the following type:

textfield :: CgiRef -> String -> HtmlExp

The first argument is its reference and the second argument is the
initial contents of this field.

What are the elements of type CgiRef, i.e., the CGI references
to identify input fields? In traditional web programming (e.g., raw
CGI, Perl, PHP), one uses strings to refer to input elements. How-
ever, this has the risk of programming errors due to typos and does
not support abstraction facilities for composing documents (see
[11] for a more detailed discussion). Here, free variables are use-
ful. Since it is not necessary to know the concrete representation



of a CGI reference, the type CgiRef is abstract. Thus, we use free
variables as CGI references. Since each input element has a CGI
reference as a parameter, the free variables of type CgiRef are the
links to connect the input elements with the use of their contents in
the event handlers. For instance, the following program implements
a (dangerous!) web page where a client can submit a file name. As a
result, the contents of this file (stored on the web server) are shown
in the answer document:3

getFile = return $ form "Question"
[htxt "Enter local file name:",
textfield fileref "",
button "Get file!" handler]

where
fileref free

handler env = do
contents <- readFile (env fileref)
return $ form "Answer"

[h1 [htxt ("Contents of " ++ env fileref)],
verbatim contents]

Since the locally defined name fileref (of type CgiRef) is visible
in the right-hand side of the definition of getFile as well as in the
definition of handler, it is not necessary to pass it explicitly to the
event handler. Note the simplicity of retrieving values entered into
the form: since the event handlers are called with the appropriate
CGI environment containing these values, they can easily access
these values by applying the environment to the appropriate CGI
reference, like (env fileref).

This structure of CGI programming is made possible by the func-
tional as well as logic programming features of Curry. Although
some aspects of this programming model, in particular, the use of
event handlers, can also be implemented in a purely functional lan-
guage [24], other aspects like the use of free variables for locally
defined input fields can only be simulated in a restricted way, e.g.,
by the use of monads to create unique references, since the local
creation of globally unique identifiers is a typical functional logic
design pattern [2]. More details and the advantages of this program-
ming model are discussed in [11].

4. Constructing Web User Interfaces
In this section we present our concept to construct WUIs from a
programmer’s point of view, i.e., we present the WUI API before
we discuss its implementation in the next section.

4.1 Basic WUIs

In order to support the construction of WUIs for a large class of
applications, we only require that the application program supplies
the WUI with the current state of the data and an operation to store
the data modified by the user. Thus, the main operation to construct
a WUI could have the type signature (remember that dynamic web
pages are of type IO HtmlForm)

mainWUI :: a -> (a -> IO HtmlForm) -> IO HtmlForm

so that an expression of the form (mainWUI d store) evaluates
to a web page containing an editor that shows the current data d
and executes (store d′) when the user submits the modified data
d′. The operation store (also called update form) usually stores the
modified data in a file or database, returns a web page that informs
the user about the successful (or failed) modification, and proceeds
with a further interaction. Therefore, the result type of store is
IO HtmlForm rather than IO ().

3 The predefined right-associative infix operator f $ e denotes the applica-
tion of f to the argument e.

Note that mainWUI is polymorphic in the type of the data to be
processed so that it can be applied to any kind of data. However, in
practice one needs HTML forms that depend on the data types and
exploit the various possibilities of HTML input elements (strings,
text areas, radio buttons, selection boxes, etc). Therefore, mainWUI
should be better treated as an overloaded function. Although type
classes as in Haskell [20, 26] allow an elegant formulation of
overloaded operations, this is not sufficient for our purpose since
there could be different interaction forms for identical data types.
For instance, strings can be modified with simple text input fields or
with larger text areas, finite sets of constants can be represented as
radio buttons or selection boxes, etc. Based on these considerations,
mainWUI should also take a specification of the interaction form as
a further argument so that we obtain the type signature

mainWUI :: WuiSpec a -> a -> (a -> IO HtmlForm)
-> IO HtmlForm

Here, WuiSpec a is a data type to specify an interaction form,
which we also call WUI specification or widget, to modify values
of type a. For instance, to edit simple strings, there is a predefined
entity

wString :: WuiSpec String

defining a WUI element that shows the string in a simple text input
field. For larger text paragraphs, there is an entity

wTextArea :: (Int,Int) -> WuiSpec String

defining a WUI element that shows the string in a text area with a
particular height and width (the argument pair of this entity). As an
example for another data type, there is an entity

wInt :: WuiSpec Int

defining a WUI element that shows an integer in a text input field.
Note that WUI elements are type safe, i.e., if the user inputs a
non-integer in such an input field, the implementation of the WUI
emits an error message and asks the user to correct the input. As
an example, consider the definition of a form that just shows its
argument:4

resultForm :: a -> IO HtmlForm
resultForm v =
return $ form "Result"

[htxt ("Modified value: "++show v)]

Then the expression

mainWUI wInt 42 resultForm

evaluates to a simple web page with an input field (with initial value
42, see left part of Figure 1) where integer values can be modified.
If the user tries to modify the input field with a non-integer value,
an error page is returned that allows the user to modify the input
with a correct value (see right part of Figure 1).

Similarly, there are WUI elements for other elementary data types.
For instance,

wSelect :: (a->String) -> [a] -> WuiSpec a

defines a WUI element to select a value from a list of values by a
selection box. The first argument is a function to show an element
as a string (shown in the selection box) and the second argument
contains the list of elements to be selected. As a concrete example,
we can derive the following WUI element to select Boolean values
(where the parameters are the strings that are shown for the values
True and False in the selection box, respectively):

wSelectBool :: String -> String -> WuiSpec Bool

4 show is a universal operation to portray any value as a string.



Figure 1. A simple integer WUI (left) with an input error (right)

wSelectBool t f = wSelect (\b -> if b then t else f)
[True,False]

If one provides an interface to manipulate larger data structures,
it is often required that some parts of the structure (e.g., unique
identifiers like insurance numbers) should only be shown but not
modified. For this purpose, we also provide a WUI element

wConstant :: (a->HtmlExp) -> WuiSpec a

which requires a function to visualize the (non-editable) value by
an HTML expression. Similarly, there is a WUI element

wHidden :: WuiSpec a

that does not visualize the value in the interface. This is useful to
hide parts of larger structures that should not be shown in the inter-
face (e.g., internal identifiers such as database keys). The construc-
tion of WUIs for such larger structures is the topic of the following
section.

4.2 WUI Combinators

Similarly to the use of type constructors for the construction of
complex data types from simpler types, WUIs for complex types
can be constructed from WUIs for simpler types by WUI combina-
tors. A WUI combinator is a mapping from simpler WUIs to WUIs
for structured types. For instance, there is a family of WUI combi-
nators for tuple types:

wPair :: WuiSpec a -> WuiSpec b -> WuiSpec (a,b)
wTriple :: WuiSpec a -> WuiSpec b -> WuiSpec c

-> WuiSpec (a,b,c)
...

Thus, the expression

mainWUI (wTriple wString wInt
(wSelectBool "male" "female"))

("Joe",30,True) resultForm

evaluates to an HTML form to edit a triple consisting of a string,
an integer, and a Boolean.

In order to manipulate lists of data objects, there is a WUI combi-
nator for list types:

wList :: WuiSpec a -> WuiSpec [a]

For instance, consider the following derived WUI types for dates
and persons consisting of first name, surname, and date of birth:

wDate = wTriple (wSelect show [1..31])
(wSelect show [1..12])
wInt

Figure 2. A WUI for a personal data list

wPerson = wTriple wString wString wDate

In order to manipulate lists of persons, we can use the WUI
(wList wPerson) which is of type

WuiSpec [(String,String,(Int,Int,Int))] .

Figure 2 shows an example form of this type. Note that the elements
in a list are vertically aligned in a table in the HTML form. Later
we will see how such default renderings can be easily modified.

In order to construct WUIs for union types, there is a combinator
for Either types:

wEither :: WuiSpec a -> WuiSpec b
-> WuiSpec (Either a b)

Other types with more alternatives can be easily reduced to a
combination of several Either types. This is sufficient in practice
since we will also provide possibilities to adapt WUIs for standard
types to arbitrary user-defined types (see below).

4.3 Constraining WUIs

As already discussed, our type-oriented construction of WUIs leads
to type-safe user interfaces, i.e., the user can only enter type correct
data so that the application does not need to perform any checks
for this purpose. Up to now, type-correctness is interpreted w.r.t.
the types of the underlying programming language. However, many
applications require a more fine-grained definition of types. For in-
stance, not every triple of natural numbers that can be entered with
the WUI wDate above is acceptable, e.g., the triple (29,2,2006)
is illegal from an application point of view. In order to support
also correctness checks for such application-dependent type con-
straints, one can attach a computable predicate to any WUI. For
this purpose, there is an operation (also defined as an infix opera-
tor)

withCondition :: WuiSpec a -> (a->Bool) -> WuiSpec a

that combines a WUI specification with a predicate on values of
the same type so that the result specifies a WUI that accepts only
values satisfying the given predicate.

As a simple example, we can derive a WUI that accepts only non-
empty strings:

wRequiredString :: WuiSpec String
wRequiredString =

wString ‘withCondition‘ (not . null)



Consider a predicate isEmail on strings that is satisfied if its
argument is a syntactically valid email address. Then we can easily
define a WUI that accepts only correct email addresses:

wEmail :: WuiSpec String
wEmail = wString ‘withCondition‘ isEmail

Obviously, one can also add conditions on non-elementary WUIs.
For instance, if correctDate is a predicate on triples of inte-
gers that checks whether this triple represents a legal date (e.g.,
correctDate (29,2,2006) evaluates to False), then the WUI
specification wDate above should be better defined by

wDate = wTriple (wSelect show [1..31])
(wSelect show [1..12])
wInt

‘withCondition‘ correctDate

If specific conditions on input values are added, appropriate error
messages should be provided. For this purpose, there is an opera-
tion (also defined as an infix operator)

withError :: WuiSpec a -> String -> WuiSpec a

that combines a WUI specification with a specific message which
is shown in case of inputs that do not satisfy the input constraints.
For instance, we can improve the above WUI wEmail with an
appropriate error message by the following improved definition:

wEmail = wString
‘withCondition‘ isEmail
‘withError‘ "Illegal email address:"

4.4 Adapting WUIs

In Section 4.2 we have shown how to define WUIs for complex
data types constructed by standard type constructors like tuples or
lists. WUIs for application-specific types can be implemented by
the following techniques:

• One implements WUI combinators for the application-specific
types using the same techniques as for the standard WUI combi-
nators. As we will see in Section 5, this is not difficult although
technically non-trivial and tedious to implement in detail.

• One uses the standard WUI combinators and adapts them to
application-specific types by defining mappings between stan-
dard types and application-specific types. Since such mappings
are not difficult to define in a functional logic language, we pro-
pose this method in practice.

In order to support the second alternative, there is an operation to
transform WUIs from one type to another:

transformWSpec :: (a->b, b->a) -> WuiSpec a
-> WuiSpec b

The corresponding value mappings are provided as parameters to
this transformation. Note that value mappings must be given for
both directions: first, a value of type b must be transformed into a
value of type a in order to manipulate it with the WUI for a-values,
and after submitting this (modified) value, it must be transformed
into a b-value in order to pass it to the application. Fortunately, if
both value types are isomorphic, it is sufficient to provide only one
transformation as a (bijective) function since the other direction can
be automatically derived exploiting the functional logic features of
Curry. For instance, consider the following data types for dates and
persons:

data Date = Date Int Int Int
data Person = Person String String Date

Then one can easily define a function that maps values of the tuple-
oriented person type used in Section 4.2 for the WUI wPerson into
Person values:

tuple2person :: (String,String,(Int,Int,Int))
-> Person

tuple2person (first,name,(d,m,y)) =
Person first name (Date d m y)

Now, exploiting the concept of function patterns [3], where defined
functions can also occur at pattern positions, we can easily define
the inverse of tuple2person by

person2tuple (tuple2person t) = t

so that WUIs for values of type Person can be specified as follows:

wPersonType :: WuiSpec Person
wPersonType =

transformWSpec (tuple2person,person2tuple) wPerson

It is not difficult to provide a general definition of this technique
so that we can define a “WUI adapter” where only one bijective
mapping need to be provided:

adaptWSpec :: (a->b) -> WuiSpec a -> WuiSpec b
adaptWSpec a2b = transformWSpec (a2b,invert a2b)

Here, invert is a function that inverts a given function by the con-
cept of function patterns above, i.e., it is required that the first argu-
ment to adaptWSpec is a bijective function like tuple2person (of
course, this property is undecidable so that it must be ensured by
the programmer), otherwise the programmer must provide an ex-
plicit definition of the inverse mapping and use transformWSpec.

4.5 Application-specific Rendering

To support the efficient construction of WUIs, basic WUIs and
WUI combinators have standard renderings that produce reason-
able layouts in most cases. For instance, wSelect shows the alter-
native elements in a selection box, wList aligns the renderings of
the individual list elements vertically in a table, or tuple combina-
tors combine the elements horizontally (see Figure2). Nevertheless,
it is sometimes desirable to have a particular layout in some appli-
cations. For this purpose, our approach also support the modifica-
tion of such standard renderings that is described in the following.

Conceptually, we define a rendering as a function that combines
the layout of the substructures of some WUI (i.e., the HTML
expressions for the component WUIs in a WUI combinator) into a
new combined layout specified by some HTML expression. Thus,
a rendering is a function of the following type:

type Rendering = [HtmlExp] -> HtmlExp

For instance, the standard renderings for lists and tuples are defined
as follows:

renderList hexps = table (map (\h->[[h]]) hexps)
renderTuple hexps = table [map (\h->[h]) hexps]

renderList maps the elements into a table where each element is
put into one row, and renderTuple maps the elements into a table
consisting of one row where each element is put into a column of
that row.

As mentioned above, each WUI element has a default rendering,
like renderTuple for WUIs containing tuples or renderList
for list WUIs. Since the main rendering of basic WUIs is fixed
(e.g., selection boxes for wSelect or text input fields for wString
or wInt), the rendering function for such basic WUIs is simply
head, i.e., the projection on the first element of the list of HTML
expressions. Thus, each WUI element contains a default rendering



function of type Rendering. This default rendering can be changed
so that one can decorate basic WUIs with further HTML structures
or define new alignments or combinations for combined WUIs.

To change the default rendering of a WUI, there is an operation to
transform a WUI into a WUI with a new rendering (also defined as
an infix operator):

withRendering :: WuiSpec a -> Rendering -> WuiSpec a

Thus, we can easily derive from wList a new WUI combinator for
lists where the elements are horizontally aligned in a table:

wHList :: WuiSpec a -> WuiSpec [a]
wHList wspec = wList wspec

‘withRendering‘ renderTuple

We can combine the combinators wList and wHList to a combina-
tor for matrices, i.e., lists of lists of elements visualized as a matrix:

wMatrix :: WuiSpec a -> WuiSpec [[a]]
wMatrix wspec = wList (wHList wspec)

The latter combinator can be exploited to define a WUI for “Su-
Doku” puzzles (see Section 4.7) consisting of a 9 × 9 matrix of
digits (where zero is shown as a blank, see upper part of Figure 3):

wSudoku :: WuiSpec [[Int]]
wSudoku =

wMatrix (wSelect (\i -> if i==0 then " "
else show i)

[0..9])

Note that this definition of a matrix WUI works well only for
matrices where the cells in each column have the same width, since
each row of the matrix is a separate table. This drawback can be
easily avoided by a new definition of renderList that merges a
“table of tables” (i.e., a table where each row contains a table) into
a single table. Actually, this is the implementation of renderList
in our library, otherwise a WUI for list of tuples, like in Figure 2,
would not look well.

4.6 Embedding WUIs in Web Pages

As we have seen in Section 4.1, we can generate web pages con-
taining a form for a particular WUI specification and data values
by a call to the function mainWUI (see Figure 1). However, in most
applications one wants to embed the manipulation of data into web
pages with a fixed design (headers, menu bars, etc). For this pur-
pose, the translation of a WUI into a complete form is not desirable
so that it is reasonable to provide a function

wui2html :: WuiSpec a -> a -> (a -> IO HtmlForm)
-> (HtmlExp,HtmlHandler)

that is similar to mainWUI but returns an HTML expression im-
plementing the WUI layout and a handler that can be attached to
a submit button. Using this function, WUIs can be integrated into
any web page and the function mainWUI can be implemented as
follows:

mainWUI wuispec val store =
let (hexp,handler) = wui2html wuispec val store
in return $ form "WUI" [hexp, breakline,

button "Submit" handler]

Moreover, our WUI library also offers functions to embed a WUI
into a web page having “holes” for the WUI layout and handler.
Note that the underlying library for HTML programming [11] is
compositional: a web form (i.e., an expression of type HtmlForm,
see Section 3) can contain HTML expressions with an arbitrary
number of submit buttons for different handlers. Thus, one can
also embed severals WUIs with separate submit buttons at arbitrary

Figure 3. A WUI for “SuDoku” puzzles (upper part: input, lower
part: solution output)

places in a single web page without any conflicts in the naming of
references for input fields.

4.7 Summary

Before discussing the implementation of our WUI concept, which
we have introduced in this section from a programmer’s point of
view, we summarize its basic features and provide a complete
example.

Our approach is tailored towards an efficient implementation of
WUIs where the application programmer is freed from implement-
ing the process of retrieving the input data from individual input
fields or checking the type correctness or other constraints on in-
put values. Although some default design decisions support the
straightforward construction of WUIs, our concept also allows the
modification of these defaults. For instance, the programmer can
define parts of the data as constant (i.e., non-editable) or hide it in
the form. Standard renderings can be easily modified or complex
input conditions can be attached to WUIs. Furthermore, WUIs for



user-defined data types can be easily derived by providing bijective
mappings to standard data types like lists, tuples, or unions.

During the design of our concept, we have also investigated possi-
bilities to provide standard WUIs for dynamic data structures, such
as lists, with interaction elements to extend them (e.g., add a new
value to a list of values). However, our framework does not provide
specific support for this due to the numerous possibilites to extend
such structures (e.g., insert elements at arbitrary positions in a list,
extend tree structures at arbitrary nodes or leaves). Nevertheless, it
is fairly easy to implement HTML forms that support such value
extensions at well-defined places, e.g., by generating WUIs with
default or blank input values.

As a small example for the construction of a complete web applica-
tion exploiting our concept, we show the implementation of a web
interface to a “SuDoku” solver. A SuDoku puzzle consists of a 9×9

matrix of digits between 1 and 9 so that each row, each column, and
each of the nine 3×3 sub-matrices contain pairwise different digits.
The challenge is to find the missing digits if some digits are given
(see upper part of Figure 3). We assume that a solver exists as an
operation

solveSudoku :: [[Int]] -> IO (Maybe [[Int]])

that takes a matrix of integers (where a zero value represents an
unknown digit) and returns a solution or Nothing if no solution
exists (an implementation of this operation using finite domain
constraints in Curry is shown in the appendix).

The initial web form has a matrix (e.g., a distinct example) as input
and allows the user to change some digits by the WUI wSudoku
defined above. It puts the HTML expression and handler into a
standard form with a “Solve” button:

initForm s =
let (hexp,handler) = wui2html wSudoku s solveForm
in return $ standardForm "SuDoku"

[hexp, button "Solve" handler]

The integer matrix defined by the user in this web form is processed
by the operation solveForm that calls the SuDoku solver and
returns a web page that shows the solution (see lower part of
Figure 3):

solveForm m = do
sol <- solveSudoku m
return $ standardForm "SuDoku"
(if sol==Nothing
then [h1 [htxt "No solution"]]
else [fst (wui2html wMatConst

(fromJust sol) initForm)])
where wMatConst = wMatrix (wConstant (htxt . show))

Note that we also use our WUI concept to show the (non-editable)
constant value of a solution. In this case, the button and continu-
ation store form is not used. Therefore, we put initForm at the
corresponding argument position.

Now we can provide an initial “empty” form by evaluating the
expression

initForm (map (const (take 9 (repeat 0))) [1..9])

which can be interpreted as the main function of our web script.
This example shows the compactness of code that is necessary to
attach a web user interface to an existing application.

5. Implementation
This section sketches the implementation of our WUI concept using
the features for HTML programming [11] of Curry. The complete

implementation is available with the current distribution of PAKCS
[13].

As apparent from the type of the function wui2html (see Sec-
tion 4.6), the implementation must be able to translate a WUI spec-
ification together with a value and an update form into an HTML
expression that implements the WUI layout and a handler for a sub-
mit button. Furthermore, WUI combinators take the functionality of
the component WUIs as input and produce the functionality of the
combined WUI. Therefore, a WUI specification must contain some
information about translating WUIs into appropriate HTML ex-
pressions and generating the corresponding event handlers. Based
on these considerations, one could define the type WuiSpec as fol-
lows:

data WuiSpec a = WuiSpec (a -> HtmlState)
(CgiEnv -> WuiState -> a)

type HtmlState = (HtmlExp,WuiState)

Thus, a WUI specification consists of two operations. From the
current value to be manipulated by the user, the first operation
produces the corresponding HTML expression contained in the
web form together with a state that is passed (by the implemen-
tation of wui2html) to the event handler (such pairs are of type
HtmlState). The state is necessary to store the references of the
input fields of the HTML expression in order to enable the event
handler to extract the corresponding user inputs. Consequently, the
second operation of a WUI specification returns the value modified
by the user in the form from the current CGI environment and the
state.

For instance, assume operations to encode and decode a CGI refer-
ence in a state (of type WuiState, see below):

cgiRef2state :: CgiRef -> WuiState

state2cgiRef :: WuiState -> CgiRef

Then one can implement the basic WUI for strings as follows:

wString :: WuiSpec String
wString =
WuiSpec
(\v -> let ref free in

(textfield ref v, cgiRef2state ref))
(\env state -> env (state2cgiRef state))

In order to implement a WUI combinator like wPair, it is neces-
sary to compose and decompose several states into one. For this
purpose, we assume the existence of the operations

states2state :: [WuiState] -> WuiState

state2states :: WuiState -> [WuiState]

so that one can implement the pair combinator as follows:

wPair :: WuiSpec a -> WuiSpec b -> WuiSpec (a,b)
wPair (WuiSpec showa reada) (WuiSpec showb readb) =
WuiSpec
(\(va,vb) -> let (hexpa,statea) = showa va

(hexpb,stateb) = showb vb
in (renderTuple [hexpa,hexpb],

states2state [statea,stateb]))
(\env state ->

let [statea,stateb] = state2states state
in (reada env statea, readb env stateb))

Other WUI combinators can be constructed in a similar way. It is
also not difficult to implement the transformation of WUIs between
data types (see Section 4.4) by applying the transformation func-
tions at appropriate places:



transformWSpec :: (a->b,b->a) -> WuiSpec a
-> WuiSpec b

transformWSpec (a2b,b2a) (WuiSpec showa reada) =
WuiSpec (\vb -> showa (b2a vb))

(\env state -> a2b (reada env state))

The data type of states used in WUIs can be defined as follows:

data WuiState = Ref CgiRef
| CompNode [WuiState]
| AltNode (Int,WuiState)
| Hidden String

The constructor Ref represents a reference to an elementary input
field (see cgiRef2state and state2cgiRef above), CompNode
represents a state combined from several states (see states2state
and state2states above), AltNode represents alternatives, i.e.,
the union of components as used in a combinator like wEither,
and Hidden is used to keep a string representation of hidden values
(used to implement wConstant and wHidden).

Unfortunately, the implementation shown so far is not able to sup-
port the complete functionality of WUIs presented in Section 4.
For instance, the functionality of WUIs can be modified by oper-
ations like withRendering, withError, or withCondition so
that WUIs must also contain information about the rendering, error
messages in case of input errors, and predicates on the input data.
For this purpose, we can define the following data type to keep this
information in one structure:

type WuiParams a = (Rendering, String, a->Bool)

These parameters must be stored in a WUI specification (in order
to modify them by an operation like withRendering) and passed
to the WUI operations so that we obtain the following improved
definition of the type of WUI specifications:

data WuiSpec a =
WuiSpec (WuiParams a)

(WuiParams a -> a -> HtmlState)
(WuiParams a -> CgiEnv -> WuiState -> a)

However, one final modification of this type is necessary in order
to implement the reaction to illegal inputs in a form. In this case,
the input values are not returned to the update form but they are
shown in a new HTML form together with the corresponding error
message (see right of Figure 1). Therefore, the return type of the
second WUI operation must be modified to a Maybe value (where
Nothing is returned in case of an illegal input) together with an
HTML expression and state for the subsequent error form. Hence,
we obtain our final definition of the type of WUI specifications:

data WuiSpec a =
WuiSpec (WuiParams a)

(WuiParams a -> a -> HtmlState)
(WuiParams a -> CgiEnv -> WuiState

-> (Maybe a, HtmlState))

Note that the structure of the error form must be always con-
structed, i.e., also in case of valid inputs, since illegal inputs can
occur at any level of the construction of the output value.

According to this final definition of the type WuiSpec, the imple-
mentation of the basic WUI for strings is as follows:

wString :: WuiSpec String
wString =
WuiSpec
(head, "?", const True)
(\(rnd,_,_) v -> stringWidget rnd v)
(\wparams env s ->

checkLegalInput wparams stringWidget
(env (state2cgiRef s)))

where
stringWidget render v =
let ref free in
(render [textfield ref v], cgiRef2state ref)

The polymorphic function checkLegalInput is responsible to
check a user input and returns, according to the validity of the input,
a corresponding Maybe value together with a form that is used if the
input is invalid:

checkLegalInput :: WuiParams a
-> (Rendering -> a -> HtmlState)
-> a
-> (Maybe a,HtmlState)

checkLegalInput (rnd,errmsg,legal) v2widget v =
if legal v
then (Just v, v2widget rnd v)
else (Nothing, v2widget (renderError rnd errmsg) v)

The function renderError is of type

renderError :: Rendering -> String -> Rendering

and combines a given rendering with an error message so that the
resulting rendering produces an HTML expression containing the
input rendering surrounded by the error message (see right part of
Figure 1).

In a similar way, the implementation of WUI combinators, like
wPair shown above, can be adapted to the final definition of
WuiSpec with error handling.

A tricky detail of the complete implementation of our WUI concept
is the generation of input forms and error handling forms. This is
done by the main operation wui2html introduced in Section 4.6.
This operation translates a WUI specification, a value, and an up-
date form into an HTML expression and a handler that implements
the edit form. Basically, an expression

(wui2html wuispec val store) (1)

where the argument wuispec has the form

WuiSpec wparams showhtml readval

is evaluated as follows:

1. Compute the initial HTML form containing the input elements
to modify the given value val: this is done by evaluating the
expression (showhtml wparams val). The result is a pair
(hexp,wstate) of type HtmlState, where hexp is the HTML
expression specifying the layout of the initial form and wstate
is a WuiState value containing the references to the input fields
of hexp.

2. The value hexp is the first component of the result of (1).

3. The second component (the event handler) of the result of (1) is
computed as follows. First of all, the lambda abstraction

\env -> readval wparams env wstate

has the functional type CgiEnv -> (Maybe a, HtmlState).
In order to obtain the required event handler from this ab-
straction, i.e., a function of type HtmlHandler, we have
to process the result (mb,hst) of the body expression
“readval wparams env wstate”:

• If mb has the form Just v, then the modified value v is legal
so that we return (store v) which is of the required type
IO HtmlForm.



• If mb is the value Nothing, then the current user input is not
legal. In this case we use hst = (errhexp,errwstate)
which consists of an HTML expression errhexp specifying
the layout of the error handling form and a state errwstate
containing the references to the input fields of errhexp.
Then our event handler proceeds with step (2.) where it
uses errhexp and errwstate instead of hexp and wstate,
respectively.

This case distinction together with the recursion in the second
case implements the dynamic generation of correct error han-
dling forms. Note that, conceptually, the error handling forms
are always constructed, i.e., even in the case of legal user in-
puts. However, thanks to lazy evaluation, the concrete HTML
expressions are only computed when they are really demanded.

With these type definitions and explanations, the implementation of
the concrete code can be done without difficulties. Thus, we omit
further details here. The interested reader might look into the source
code of the WUI library that can be found in the current PAKCS
distribution [13].

6. Related Work
The implementation of web-based user interfaces has an increasing
relevance in modern applications. In principle, dynamic web pages
can be implemented in any programming language since the re-
quirements on CGI programs that generate dynamic web pages are
very low due to the text-based CGI protocol. Although scripting
languages like Perl or PHP are quite common for this purpose, they
lack support for reliable programming (e.g., types, static checking
of declarations) so that various approaches to implement web inter-
faces with higher-level programming languages have been devel-
oped. Some of them are discussed in the following.

MAWL [18] is an early domain-specific language for program-
ming web interfaces. It supports the checking of well-formedness
of HTML documents by writing HTML documents with some gaps
that are filled by the server before sending the document to the
client. Since these gaps are filled only with simple values, the gen-
eration of documents whose structure depends on complex data is
largely restricted. To relax this restriction, MAWL offers special
iteration gaps which can be filled with list values. More complex
tree structures are supported in DynDoc [22] (part of the <bigwig>
project [5]) which supports higher-order document templates, i.e.,
the gaps in a document can be filled with other documents that
can also contain gaps. In order to validate user inputs in HTML
forms, the <bigwig> project proposes PowerForms [4], an exten-
sion of HTML with a declarative specification language to anno-
tate acceptable form inputs. Since the specification language is
based on regular expressions, it is less powerful than our approach
which supports any computable predicate on inputs. Furthermore,
PowerForms are translated into JavaScript so that input checking
is done on the client side. This has the advantage to reduce net-
work traffic but the disadvantage that such forms cannot be used on
clients where JavaScript is disabled for security reasons. Finally,
the <bigwig> project is based on a domain-specific language for
writing dynamic web services while we exploit the features of the
existing high-level language Curry.

Similar to the approach for HTML programming in Curry [11],
there are also libraries to support HTML programming in other
functional and logic languages. For instance, the PiLLoW library
[7] is an HTML/CGI library for Prolog. Due to the untyped nature
of Prolog, static checks on the form of HTML documents are not
supported. Furthermore, there is no higher-level support for com-
plex interaction sequences as required in typical user interfaces.

Meijer [19] has developed a CGI library for Haskell that defines a
data type for HTML expressions together with a wrapper function
that translates such expressions into a textual HTML representa-
tion. However, it does not offer any abstraction for programming
sequences of interactions (e.g., by event handlers). These must be
implemented in the traditional way by choosing strings for identify-
ing input fields, passing states as hidden input fields etc. Thiemann
[23] proposed a representation of HTML documents in Haskell that
ensures the well-formedness of documents by exploiting Haskell’s
type class system. In [24] he extended this approach by combining
it with the ideas of [11] to implement interaction sequences by an
event handler model. Although his approach also supports typed in-
put fields similarly to our concept, it is more restricted. It does not
support arbitrary conditions on input data or type-based combina-
tors for input fields. Furthermore, the layout of the generated web
pages is more restrictive. Since Thiemann uses a purely functional
language and a monadic model to create references to input fields,
submit buttons must always be placed below the input fields. Such
a restriction is not required in our approach due to the use of logic
programming features (free variables as references).

Plasmeijer and Achten [21] proposed the iData toolkit to imple-
ment type-safe web interfaces in the functional language Clean.
Similarly to our approach, editors for typed values are created in
a type-oriented way. However, there are also important differences.
For instance, the editable data elements are identified in the pro-
gram by strings so that it is the task of the programmer to use un-
ambiguous names throughout the program for different data. The
use of strings, that are not checked at compile-time, is a source of
potential programming errors similarly to scripting languages like
Perl or PHP. Furthermore, the application using the iData toolkit
must be built around the iData model since it provides specific sup-
port for making the considered data persistent. This is in contrast to
our approach which has no specific restriction on the application.
For instance, persistent data can be stored in files or in databases
using standard access methods [8, 12], and a web-based user inter-
face can be added in an independent way after the application logic
has been implemented.

7. Conclusion
We have presented a new concept to implement web user interfaces
in a type-oriented way. As we have shown in the paper, the type-
oriented construction leads to a high-level, compact, and maintain-
able implementation of the interface. The construction is based on
basic WUI components for elementary data types and powerful
combinators to construct WUIs for complex data types. Further-
more, our approach has several advantages:

• Interfaces are type safe, i.e., it is ensured that the modified
values satisfy the given types or constraints.

• Interfaces can be integrated into separately designed web pages.
There are no restrictions on the layout, e.g., the submit buttons
can be put at any place in the web form.

• Interfaces are compositional, i.e., forms can contain any number
of value editors and submit buttons where it is ensured that
conflicts between the references of the different input fields do
not occur.

• The editing facilities are separated from the application as in
the classical model/view/controller paradigm for user interfaces
[17]: by defining several WUI specifications for the same data
type, one can have different views on the same data.

• Interfaces have various defaults to produce reasonable results
without much effort. However, it is easily possible to mod-



ify these defaults (e.g., renderings, input conditions, error mes-
sages) for specific applications.

• Existing interfaces can be transformed into interfaces for
application-specific types by providing mappings between the
data types.

Due to these advantages, our WUI concept is already used in sev-
eral applications. One simple application, a solver for SuDoku puz-
zles, has been shown in this paper. The compactness of the code (12
lines of code for the solver and 9 lines of code for the web interface)
shows the advantages of functional logic languages and declarative
programming. It is questionable whether such a compactness can
be obtained in other universal programming languages.

For future work it would be interesting to adapt parts of this pro-
gramming model to other programming languages. Furthermore,
the checking of user inputs could be improved for specific cases.
Currently, the validity of user inputs is checked on the server side.
This has the advantage that no specific requirements are placed on
client side (e.g., enabled JavaScript) and one could use any predi-
cate implemented in the base language Curry to specify the validity
of user inputs. However, the disadvantage is an increased network
traffic in case of illegal user inputs. Instantaneous feedback on in-
correct inputs on the client side could be provided by JavaScript if it
is enabled on the client side. Thus, it would be interesting to trans-
late simple predicates into JavaScript programs that are sent with
the generated forms to the client, e.g., as done with PowerForms
[4]. However, this does not free the server-side application from
input checking in order to avoid security risks from hand-crafted
malicious client inputs.

Acknowledgments
The author is grateful to the anonymous referees for their sugges-
tions to improve the paper and to Sebastian Fischer for helpful com-
ments and suggestions to improve the implementation of the WUI
library.

References
[1] S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy.

Journal of the ACM, Vol. 47, No. 4, pp. 776–822, 2000.

[2] S. Antoy and M. Hanus. Functional Logic Design Patterns. In
Proc. of the 6th International Symposium on Functional and Logic
Programming (FLOPS 2002), pp. 67–87. Springer LNCS 2441, 2002.

[3] S. Antoy and M. Hanus. Declarative Programming with Function
Patterns. In Proceedings of the International Symposium on Logic-
based Program Synthesis and Transformation (LOPSTR’05), pp.
6–22. Springer LNCS 3901, 2005.

[4] C. Brabrand, A. Møller, M. Ricky, and M.I. Schwartzbach. Power-
Forms: Declarative Client-side Form Field Validation. World Wide
Web Journal, Vol. 3, No. 4, pp. 205–214, 2000.

[5] C. Brabrand, A. Møller, and M.I. Schwartzbach. The <bigwig>
Project. ACM Transactions on Internet Technology, Vol. 2, No. 2, pp.
79–114, 2002.

[6] B. Braßel, M. Hanus, and F. Huch. Encapsulating Non-Determinism
in Functional Logic Computations. Journal of Functional and Logic
Programming, Vol. 2004, No. 6, 2004.

[7] D. Cabeza and M. Hermenegildo. Internet and WWW Programming
using Computational Logic Systems. In Workshop on Logic
Programming and the Internet, 1996. See also http://clip.
dia.fi.upm.es/Software/pillow/.

[8] S. Fischer. A Functional Logic Database Library. In Proc. of the
ACM SIGPLAN 2005 Workshop on Curry and Functional Logic
Programming (WCFLP 2005), pp. 54–59. ACM Press, 2005.

[9] M. Hanus. The Integration of Functions into Logic Programming:
From Theory to Practice. Journal of Logic Programming, Vol. 19&20,
pp. 583–628, 1994.

[10] M. Hanus. A Unified Computation Model for Functional and Logic
Programming. In Proc. of the 24th ACM Symposium on Principles of
Programming Languages (Paris), pp. 80–93, 1997.

[11] M. Hanus. High-Level Server Side Web Scripting in Curry. In
Proc. of the Third International Symposium on Practical Aspects of
Declarative Languages (PADL’01), pp. 76–92. Springer LNCS 1990,
2001.

[12] M. Hanus. Dynamic Predicates in Functional Logic Programs.
Journal of Functional and Logic Programming, Vol. 2004, No. 5,
2004.

[13] M. Hanus, S. Antoy, B. Braßel, M. Engelke, K. Höppner, J. Koj,
P. Niederau, R. Sadre, and F. Steiner. PAKCS: The Portland Aachen
Kiel Curry System. Available at http://www.informatik.
uni-kiel.de/~pakcs/, 2006.

[14] M. Hanus and F. Huch. An Open System to Support Web-based
Learning. In Proc. 12th International Workshop on Functional
and (Constraint) Logic Programming (WFLP 2003), pp. 269–
282. Technical Report DSIC-II/13/03, Universidad Politécnica de
Valencia, 2003.

[15] M. Hanus (ed.). Curry: An Integrated Functional Logic Language
(Vers. 0.8.2). Available at http://www.informatik.uni-kiel.
de/~curry, 2006.

[16] S.H. Huseby. Innocent Code: A Security Wake-Up Call for Web
Programmers. Wiley, 2003.

[17] G. Krasner and S. Pope. A Cookbook for using the Model-View-
Controller User Interface in Smalltalk-80. Journal of Object-Oriented
Programming, Vol. 1, No. 3, pp. 26–49, 1988.

[18] D.A. Ladd and J.C. Ramming. Programming the Web: An
Application-Oriented Language for Hypermedia Services. In 4th
International World Wide Web Conference, 1995.

[19] E. Meijer. Server Side Web Scripting in Haskell. Journal of
Functional Programming, Vol. 10, No. 1, pp. 1–18, 2000.

[20] S. Peyton Jones, editor. Haskell 98 Language and Libraries—The
Revised Report. Cambridge University Press, 2003.

[21] R. Plasmeijer and P. Achten. The Implementation of iData -
A Case Study in Generic Programming. In Proc. of the 17th
International Workshop on Implementation and Application of
Functional Languages (IFL 2005). Trinity College, University of
Dublin, Technical Report TCD-CS-2005-60, 2005.

[22] A. Sandholm and M.I. Schwartzbach. A Type System for Dynamic
Web Documents. In Proc. of the 27th ACM Symposium on Principles
of Programming Languages, pp. 290–301, 2000.

[23] P. Thiemann. Modelling HTML in Haskell. In International
Workshop on Practical Aspects of Declarative Languages (PADL’00),
pp. 263–277. Springer LNCS 1753, 2000.

[24] P. Thiemann. WASH/CGI: Server-side Web Scripting with Sessions
and Typed, Compositional Forms. In 4th International Symposium
on Practical Aspects of Declarative Languages (PADL 2002), pp.
192–208. Springer LNCS 2257, 2002.

[25] P. Wadler. How to Declare an Imperative. ACM Computing Surveys,
Vol. 29, No. 3, pp. 240–263, 1997.

[26] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad
hoc. In Proc. POPL’89, pp. 60–76, 1989.



A. A SuDoku Solver
The following program implements a SuDoku solver in Curry us-
ing constraints over finite domains [13]. The SuDoku puzzle is rep-
resented as a matrix of integers between 1 and 9 containing free
variables for unknown digits:

sudoku :: [[Int]] -> Success
sudoku m =
domain (concat m) 1 9 &
foldr1 (&) (map allDifferent m) &
foldr1 (&) (map allDifferent (transpose m)) &
foldr1 (&) (map allDifferent (squaresOfNine m)) &
labeling [FirstFailConstrained] (concat m)

-- translate a matrix into a list of elements
-- of small 3x3 squares
squaresOfNine :: [[a]] -> [[a]]
squaresOfNine [] = []
squaresOfNine (l1:l2:l3:ls) =

group3Rows [l1,l2,l3] ++ squaresOfNine ls
where group3Rows l123 = if null (head l123) then []

else concatMap (take 3) l123 :
group3Rows (map (drop 3) l123)

The definition of the constraint sudoku is straightforward. First,
the domain of all matrix elements is defined to be between 1 and
9. Then, the constraints for different elements (allDifferent) in
rows, columns, and 3 × 3 squares are established by higher-order
functions and standard operations on lists before concrete solutions
are tested by a first-fail labeling strategy.

A solution to a sudoku constraint is computed by the standard
operator getOneSolution for encapsulating search (see [6] for a
discussion on encapsulating search in Curry) that returns Nothing
if no solution exists for a constraint abstraction, or one solution s
in the form Just s. The auxiliary operation transDigit translates
zeros from the input matrix into free variables.

solveSudoku :: [[Int]] -> IO (Maybe [[Int]])
solveSudoku s =

getOneSolution (\m -> m =:= map (map transDigit) s
&> sudoku m)

where
transDigit i = if i==0 then let x free in x else i


