
An Implementation of Narrowing Strategies

Sergio Antoy
antoy@cs.pdx.edu

Michael Hanus
mh@informatik.uni-kiel.de

Bart Massey
bart@cs.pdx.edu

Frank Steiner
fst@informatik.uni-kiel.de

Department of Computer Science
Portland State University

P.O. Box 751, Portland, OR 97207
U.S.A.

Institut für Informatik
Christian-Albrechts-Universität Kiel

Olshausenstr. 40, D-24098 Kiel
Germany

ABSTRACTThis paper desribes an implementation of narrowing, an es-sential omponent of implementations of modern funtionallogi languages. These implementations rely on narrowing,in partiular on some optimal narrowing strategies, to exe-ute funtional logi programs. We translate funtional logiprograms into imperative (Java) programs without an inter-mediate abstrat mahine. A entral idea of our approahis the expliit representation and proessing of narrowingomputations as data objets. This enables the implementa-tion of operationally omplete strategies (i.e., without bak-traking) or tehniques for searh ontrol (e.g., enapsulatedsearh). Thanks to the use of an intermediate and portablerepresentation of programs, our implementation is generalenough to be used as a ommon bak end for a wide varietyof funtional logi languages.
Categories and Subject DescriptorsD.3.2 [Programming Languages℄: Language Classi�a-tions|Multiparadigm Languages
General TermsLanguages, Design, Theory, Experimentation
KeywordsFuntional logi, narrowing, Curry, XML, Java
1. INTRODUCTIONThis paper desribes an implementation of narrowing foroverlapping indutively sequential rewrite systems [5℄. Nar-rowing is the essential omputational engine of funtionalIn Pro. of the 3rd International ACM SIGPLAN Confer-ene on Priniple and Pratie of Delarative Programming(PPDP'01), pp. 207{217, Florene, Italy, 2001.2001 ACM. Permission to make digital or hard opiesof part or all of this work for personal or lassroom useis granted without fee provided that opies are not madeor distributed for pro�t or ommerial advantage and thatopies bear this notie and the full itation on the �rst page.To opy otherwise, to republish, to post on servers, or to re-distribute to lists, requires prior spei� permission.

logi languages (see [14℄ for a survey on suh languages andtheir implementations). An implementation of narrowingtranslates a program onsisting of rewrite rules into exe-utable ode. This exeutable ode urrently falls into twoategories: Prolog prediates (e.g., [4, 12, 15, 27℄) or in-strutions for an abstrat mahine (e.g., [11, 19, 26, 29℄). Al-though these approahes are relatively simple, in both ases,several layers of interpretation separate the funtional logiprogram from the hardware intended to exeute it. Obvi-ously, this situation does not lead to eÆient exeution.In this paper we investigate a di�erent approah. Wetranslate a funtional logi program into an imperative pro-gram. Our target language is Java, but we make limiteduse of spei� objet-oriented features, suh as inheritaneand dynami polymorphism. Replaing Java with a lower-level target language, suh as C or mahine ode, would bea simple task.In Setion 2 we briey introdue the aspets of funtionallogi programming relevant to our disussion. In Setion 3we review bakground information for the key onepts pre-sented in this paper. In Setion 4 we desribe the elementsand the harateristis of our implementation of narrowing.In Setion 5 we desribe aspets of our ompilation proess,as well as exeution issues suh as input, output and tra-ing/debugging that may greatly a�et the usability of a sys-tem. In Setion 6 we summarize urrent e�orts toward theimplementation of funtional logi languages, partiularlyw.r.t. implementations of narrowing and how they ompareto our work. Setion 7 skethes planned extensions to ourframework, and Setion 8 o�ers some onlusions.
2. FUNCTIONAL LOGIC PROGRAMSFuntional logi languages ombine the operational prin-iples of two of the most important delarative program-ming paradigms, namely funtional and logi programming(see [14℄ for a survey). EÆient demand-driven funtionalomputations are amalgamated with the exible use of logi-al variables, providing for funtion inversion and searh forsolutions. Funtional logi languages with a sound and om-plete operational semantis are usually based on narrowing(originally introdued in automated theorem proving [32℄)whih ombines redution (from the funtional part) andvariable instantiation (from the logi part). A narrowing

step instantiates variables of an expression and applies a re-dution step to a redex of the instantiated expression. Theinstantiation of variables is usually omputed by unifying asubterm of the entire expression with the left-hand side ofsome program equation.Example 1. Consider the following rules de�ning the �prediate leq on natural numbers whih are represented byterms built from zero and succ:
leq(zero,Y) = true
leq(succ(X),zero) = false
leq(succ(X),succ(Y)) = leq(X,Y)The expression leq(succ(M),Y) an be evaluated (i.e.,redued to a value) by instantiating Y to succ(N) to ap-ply the third equation, followed by the instantiation of M to

zero to apply the �rst equation:
leq(succ(M),Y) ;fY7!succ(N)g leq(M,N);fM7!zerog trueNarrowing provides ompleteness in the sense of logi pro-gramming (omputation of all answers, i.e., substitutionsleading to suessful evaluations) as well as funtional pro-gramming (omputation of values). Sine simple narrowingan have a huge searh spae, a lot of e�ort has been madeto develop sophistiated narrowing strategies without los-ing ompleteness (see [14℄). Needed narrowing [7℄ is basedon the idea of evaluating only subterms whih are neededin order to ompute a result. For instane, in a term like

leq(t1,t2), it is always neessary to evaluate t1 (to somevariable or onstrutor-rooted term) sine all three rules inExample 1 have a non-variable �rst argument. On the otherhand, the evaluation of t2 is only needed if t1 is of the form
succ(t). Thus, if t1 is a free variable, needed narrowing in-stantiates it to a onstrutor term, here zero or succ(V).Depending on this instantiation, either the �rst equation isapplied or the seond argument t2 is evaluated. Needednarrowing is urrently the best narrowing strategy for �rst-order (indutively sequential) funtional logi programs dueto its optimality properties w.r.t. the length of derivationsand the independene of omputed solutions, and due to thepossibility of eÆiently implementing needed narrowing bypattern mathing and uni�ation [7℄. Moreover, it has beenextended in various diretions, e.g., higher-order funtionsand �-terms as data strutures [18℄, overlapping rules [5℄,and onurrent omputations [16℄.Needed narrowing is omplete, in the sense that for eahsolution to a goal there exists a narrowing derivation om-puting a more general solution. However, most of the ex-isting implementations of narrowing lak this property sinethey are based on Prolog-style baktraking. Sine bak-traking is not fair in exploring all derivation paths, somesolutions might not be found in the presene of in�nitederivations, i.e., these implementations are inomplete froman operational point of view. An important property ofour implementation is its operational ompleteness, i.e., allomputable answers are eventually omputed by our imple-mentation.
3. BACKGROUNDSine pattern mathing is an essential feature of existingfuntional logi languages, term rewriting systems (TRSs)

are an adequate formal model for funtional logi programs.Therefore, we review in the following some notions fromterm rewriting [9℄.We onsider a (many-sorted) signature partitioned into aset C of onstrutors and a set F of (de�ned) funtions or op-erations. We write =n 2 C and f=n 2 F for n-ary onstru-tor and operation symbols, respetively. As usual, terms arebuilt from these symbols and variables (e.g., x; y; z). A on-strutor term is a term without operation symbols. The setof variables ourring in a term t is denoted by Var(t). Aterm t is ground if Var(t) = ?. A term is linear if it doesnot ontain multiple ourrenes of one variable.A pattern is a term of the form f(d1; : : : ; dn) where f=n 2F and d1; : : : ; dn are onstrutor terms. A term is operation-rooted (onstrutor-rooted) if it has an operation (onstru-tor) symbol at the root. A position p in a term t is repre-sented by a sequene of natural numbers. tjp denotes thesubterm of t at position p, and t[s℄p denotes the result ofreplaing the subterm tjp by the term s.We denote by fx1 7! t1; : : : ; xn 7! tng the substitution� with �(xi) = ti for i = 1; : : : ; n (with xi 6= xj if i 6=j) and �(x) = x for all other variables x. Substitutionsare extended to morphisms on terms by �(f(t1; : : : ; tn)) =f(�(t1); : : : ; �(tn)) for every term f(t1; : : : ; tn).A set of rewrite rules l = r suh that l is not a variable andVar(r) � Var(l) is alled a term rewriting system (TRS).The terms l and r are alled the left-hand side (lhs) and theright-hand side (rhs) of the rule, respetively. A TRS R isleft-linear if l is linear for all l = r 2 R. A TRS is onstrutorbased (CB) if eah lhs l is a pattern. In the remainder of thispaper, a funtional logi program is a left-linear CB-TRS.A rewrite step is an appliation of a rewrite rule to aterm, i.e., t!p;R s if there exists a position p in t, a rewriterule R = l = r and a substitution � with tjp = �(l) ands = t[�(r)℄p (p and R will often be omitted in the notationof a omputation step). The instantiated lhs �(l) is alleda redex and the instantiated rhs �(r) is alled the redutof this redex. A (onstrutor) head normal form is eithera variable or a onstrutor-rooted term. A term t is alledirreduible or in normal form if there is no term s with t! s.!+ denotes the transitive losure of ! and!� denotes thereexive and transitive losure of !.To evaluate terms ontaining variables, narrowing non-deterministially instantiates the variables so that a rewritestep is possible. Formally, t ;p;R;� t0 is a narrowing stepif p is a non-variable position in t and �(t) !p;R t0. Wedenote by t0 ;�� tn a sequene of narrowing steps t0 ;�1: : : ;�n tn with � = �n Æ � � � Æ �1. Sine we are interestedin omputing values (onstrutor terms) as well as answers(substitutions) in funtional logi programming, we say thatthe narrowing derivation t ;�� omputes the result withanswer � if is a onstrutor term. The evaluation to groundonstrutor terms (and not to arbitrary expressions) is theintended semantis of funtional languages and also of mostfuntional logi languages.A hallenge in the design of funtional logi languages isthe de�nition of a \good" narrowing strategy, i.e., a restri-tion on the narrowing steps issuing from t, without losingompleteness. In the following, we briey outline the needednarrowing strategy (a formal desription an be found in [7℄).Needed narrowing extends Huet and L�evy's notion of aneeded redution [23℄ and is de�ned on indutively sequentialprograms [3℄. Roughly speaking, in an indutively sequen-

leq(X ,Y)

leq(zero,Y) = true

leq(succ(M), Y)

leq(succ(M),zero) = false

leq(succ(M),succ(N)) = leq(M,N)

���� QQQQQQ��� QQQQQQFigure 1: De�nitional tree for the operation leq ofExample 1tial program the rules for eah funtion an be organizedin a tree-like struture (de�nitional tree [3℄). The leavesontain all (and only) the rules de�ning the funtion. Theinner nodes have a disriminating argument, also alled anindutive position: all hild nodes have di�erent onstrutorsymbols at this position. For instane, the de�nitional treefor the funtion leq in Example 1 is illustrated in Figure 1;the indutive position is marked by a surrounding box.The omputation of a needed narrowing step is guidedby the de�nitional tree for the root of the operation-rootedterm t. If t is a leaf node, we redue it with the rule atthis leaf. Otherwise, we hek the subterm orresponding tothe indutive position of the branh: if it is a variable, it is(non-deterministially) instantiated to the onstrutor of ahild; if it is already a onstrutor, we proeed with the or-responding hild; if it is a funtion, we evaluate it (to headnormal form) by reursively applying needed narrowing.
4. IMPLEMENTATION OF NEEDED NAR-

ROWINGIn this setion we desribe the main ideas of our imple-mentation of narrowing. We implement a strategy, referredto as INS [5℄, proven sound and omplete for the lass of theoverlapping indutively sequential rewrite systems. In thesesystems, the left-hand sides of the rewrite rules de�ning anoperation an be organized in de�nitional trees. However, anoperation may have distint rewrite rules with the same left-hand side (modulo renaming of variables): operation coin(Setion 4.8), is one example. To ease the understandingof our work, we �rst desribe the implementation of rewriteomputations in indutively sequential rewrite systems. Wethen desribe the extensions that lead to narrowing in over-lapping indutively sequential rewrite systems.
4.1 OverviewThe overall goals of our implementation are speed of exe-ution and operational ompleteness. The following prin-iples guide our implementation and are instrumental inahieving the goal.1. A redution step replaes a redex of a term with itsredut. A term is represented as a tree-like data stru-ture. The exeution of a redution updates only theportion of this data struture a�eted by the replae-ment. Thus, the ost of a redution is independentof its ontext. We all this priniple in-plae replae-ment.

2. Only somewhat needed steps are exeuted. We usethe quali�er \somewhat" beause di�erent notions ofneed have been proposed for di�erent lasses of rewritesystems. We exeute a partiular kind of steps thatfor redutions in orthogonal systems is known as root-needed [30℄. Thus, redutions that are a priori uselessare never performed. We all this priniple useful step.3. Don't know non-deterministi redutions are exeutedin parallel. Both narrowing omputations (in mostrewrite systems) and redutions (in interesting rewritesystems) are non-deterministi. Without some form ofparallel exeution, operational ompleteness would belost. We all this priniple operational ompleteness.In indutively sequential rewrite systems, and when om-putations are restrited to rewriting, it is relatively easyto faithfully implement all the above priniples. In fat,our implementation does it. However, our environment isonsiderably riher. We exeute narrowing omputations inoverlapping indutively sequential rewrite systems. In thissituation, two ompliations arise. The non-determinismof narrowing and/or of overlapping rules imply that a re-dex may have several replaements. In these situations,there annot be a single in-plae replaement. Furthermore,the steps that we ompute in overlapping indutively se-quential rewrite systems are needed, but only modulo non-deterministi hoies [5℄. Hene, some step may not beneeded in the strit sense of [7, 23℄, but we may not beable to know by feasible means whih steps.The arhiteture of our implementation is haraterizedby terms and omputations. Both terms and omputationsare organized into tree-like linked (dynami) strutures. Aterm onsists of a root symbol applied to zero or more argu-ments whih are themselves terms. A omputation onsistsof a stak of terms that identify redution steps. All theterms in the stak, with the possible exeption of the top,are not yet redexes, but will eventually beome redexes, andbe redued, before the omputation is omplete. In terms,links go from a parent to its hildren, whereas in omputa-tions links go from hildren to their parent.A graphial representation of these objets is shown inFigure 2. In this �gure, the steps to the left represent theterms in the stak of the omputation. Step0 is the bottomof the stak: it annot be exeuted before Step1 is exeuted.Likewise Step1 annot be exeuted before Step2 is exeuted.To ease understanding, we begin with an aount of ourimplementation of rewriting omputations in indutively se-quential rewrite systems. Although non-trivial, this imple-mentation is simple enough to inspire on�dene in bothits orretness and eÆieny. Then, we generalize the dis-ussion to larger lasses of rewrite systems and �nally tonarrowing omputations and argue why both orretnessand eÆieny of this initial implementation are preservedby these extensions.
4.2 Symbol representationSymbols are used to represent terms. A symbol is an ob-jet that ontains two piees of information: a name and akind. Sine there is no good reason to have more than oneinstane of a given symbol in a program, eah distint sym-bol is implemented as an immutable singleton objet. Thename is a string. The kind is a tag that lassi�es a symbol.For now, the tag is either \de�ned operation" or \data on-

strutor". Additional tags will be de�ned later to omputewith larger lasses of rewrite systems. The tag of a symbolis used to dispath omputations that depend on the las-si�ation of a symbol. Of ourse, we ould dispath theseomputations by dynami polymorphism, i.e., by de�ningan abstrat method overridden by sublasses. Often, thesemethods would onsist of a few statements that use the en-vironment of the aller. A tag avoids both a proliferationof small methods and the ineÆieny of passing around theenvironment. Furthermore, this arhiteture supports im-plementations in objetless target languages as well.Nevertheless, in our Java arhiteture, lass symbol hassublasses suh as operation and onstrutor. In partiular,there is one sublass of operation for eah de�ned operationf of a funtional logi program. This lass, aording to ourseond priniple, ontains the ode for the exeution of auseful step of any term rooted by f . Operations are de�nedby rewrite rules. We use the following rules in the examplesto ome.
add (zero, Y) = Y
add (succ (X), Y) = succ (add (X, Y))

positive (zero) = false
positive (succ (-)) = true

4.3 Term representationTerms of user-de�ned type ontain two piees of infor-mation: the root of the term, whih is a symbol, and thearguments of the root, whih are terms themselves. Termsof builtin types ontain speialized information, e.g., termsof the builtin type int ontain an int. This situation sug-gests de�ning a ommon base lass and a speialization ofthis lass for eah appropriate type of term. However, this isin onit with the fat that aording to the �rst prinipleof our implementation, a term is a mutable objet. In Java,the lass of an objet annot hange during exeution.Therefore, we implement a term as a bridge pattern. Aterm delegates its funtionality to a representation. Dif-ferent types, suh as user-de�ned types, builtin types, andvariables are represented di�erently. All the representationsprovide a ommon funtionality. The representation of aterm objet an hange at run-time and thus provide muta-bility of both value and behavior as required by the imple-mentation.
4.4 Computation representationA omputation is an objet abstrating the neessity toexeute a sequene of spei� redution steps in a term.Class omputation ontains two piees of information:1. A stak of terms to be ontrated (redued at theroot). The terms in the stak are not redexes exept,possibly, the top term. Eah term in the stak is asubterm of the term below it, and must be redued toa onstrutor-rooted term in order to redue the termbelow it. Therefore, the elements of the stak in a om-putation may be regarded as steps as well. The under-pinning theoretial justi�ation of this stak of stepsis in the proof of Th. 24 of the extended version of [5℄.We ensure that every term in the stak eventually willbe ontrated. To ahieve this aim, if a omplete strat-egy annot exeute a step in an operation-rooted term,it redues the term to the speial value failure.

2. A set of bookkeeping information. For example, thisinformation inludes the number of steps exeuted bythe omputation and the elapsed time. An interest-ing bookkeeping datum is the state of a omputation.Computations being exeuted are in a ready state. Aomputation's state beomes exhausted after the om-putation has been exeuted and it has been determinedthat no more steps will be exeuted at the root ofthe bottom-most term of the stak. Before beomingexhausted a omputation state may be either resultor failure. Later, we will extend our model of om-putation with residuation. With the introdution ofresiduation, a new state of a omputation, ounder, isintrodued as well.Loosely speaking, an initial omputation is reated for aninitial top-level expression to evaluate. This expression isthe top and only term of the stak of this omputation. Ifthe top term t is not a redex, a subterm of t needed toontrat t is plaed on the stak and so on until a redex isfound. A redex on top of the stak is replaed by its redut.If the redut is onstrutor-rooted, the stak is popped (itstop element is disarded).Step0 // positiveStep1 // add

??
??

??
?

��
��

��
�Step2 // coin tFigure 2: Snapshot of a omputation of term

positive(add(coin,t))
4.5 Search space representationThe searh spae is a queue of omputations whih are re-peatedly seleted for proessing. The mahinery of a queueand fair seletion is not neessary for rewriting in indu-tively sequential rewrite systems. For these systems, om-putations are stritly sequential and onsequently a single(possibly impliit) stak of steps would suÆe. However, thearhiteture that we desribe not only aommodates theextensions from rewriting to narrowing and/or from indu-tively sequential rewrite systems to the larger lasses thatare oming later, but it allows us to ompute more eÆiently.A omputation serves two purposes: (1) �nding maximaloperation-rooted subterms t of the top-level term to eval-uate and (2) reduing eah t to head normal form. Thepseudo-ode of Figure 3 skethes part (2), whih is the mosthallenging. Some optimizations would be possible, but weavoid them for the sake of larity.Sine indutively sequential rewrite systems are onuent,replaing in-plae a subterm u of a term t with u's redutdoes not prevent reahing t's normal form. When a termhas a result this result is found, sine repeated ontrationsof needed redexes are normalizing.
4.6 SentinelThe �rst extension to the previous model is the intro-dution of a \sentinel" at the root of the top-level expres-sion being evaluated. For this, we introdue a distinguished

while the queue is not emptyj selet a ready omputation k from the queuej let t be the term at the top of k's stakj swith on the root of tj j ase t is operation-rootedj j j swith on the reduibility of tj j j j ase t is a redexj j j j j replae t with its redutj j j j j put k bak into the queuej j j j ase t is not a redexj j j j j swith on s, a maximal needed subterm of tj j j j j j ase s existsj j j j j j j push s on k's stakj j j j j j j put k bak into the queuej j j j j j ase s does not existj j j j j j j stop the omputation, no result existsj j j j j endswithj j j endswithj j ase t is onstrutor-rootedj j j pop k's stakj j j if k's stak is not emptyj j j j put k bak into the queuej endswithendwhileFigure 3: Proedure to evaluate a term to a headnormal formsymbol alled sentinel that takes exatly one argument ofany kind. If t is the term to evaluate, our implementationevaluates sentinel(t) instead. Thus, this is the atual termof the initial omputation. Symbol sentinel has harater-istis of both an operation and a onstrutor. Similar toan operation, the stak of the initial omputation ontainssentinel(t), but similar to a onstrutor, sentinel(t) annotbe ontrated for any t. Having a sentinel has several ad-vantages. The strategy works with the sentinel by meansof impliit rewrite rules that always look for an internalneeded redex and never ontrat the sentinel -rooted termitself. Also, using a sentinel saves frequent tests similar tousing a sentinel in many lassi algorithms, e.g., sorting.
4.7 FailureThe seond extension to the previous model is onernedwith the possibility of a \failure" of a omputation. A failureours when a term has no onstrutor normal form. Theomputation detets a failure when the strategy, whih isomplete, �nds no useful steps (redexes) in an operation-rooted term.The pseudo-ode presented earlier simply terminates theomputation when it detets a failure. For the extensionsdisussed later it is more onvenient to expliitly representfailures in a term. This allows us, e.g., to lean up ompu-tations that annot be ompleted and to avoid dupliatingertain omputations. To this purpose we introdue a newsymbol alled failure. The failure symbol is treated as aonstant onstrutor.Suppose that u is an operation-rooted term. If the strat-egy �nds no step in u, it evaluates u to failure. A failuresymbol is treated as a onstrutor during the pattern math-ing proess. Impliit rewrite rules for eah de�ned operationrewrite any term t to failure when a failure ours at aneeded position of t. For example, we perform the following

redution:
add (failure, v) ! failureWith these impliit rewrite rules, an inner ourrene offailure in a term propagates up to the sentinel, whih anthus report that a omputation has no result. The expliitrepresentation of failing omputations is also important inperforming non-deterministi omputations.

4.8 Non-determinismThe third extension to the previous model is onernedwith non-determinism. In our work, non-determinism is ex-pressed by rewrite rules with idential left-hand sides, butdistint right-hand sides. A textbook example of a non-deterministi de�ned operation is:
coin = zero
coin = succ (zero)This operation di�ers from the previous ones in that a giventerm, say s = coin, has two distint reduts.The most immediate problem posed by non-deterministioperations is that if s ours in some term t and we replaein-plae s with one of its replaements, we may lose a resultthat ould be obtained with another replaement. If a termsuh as s beomes the top of the stak of a omputationk, we hange the state of k to exhausted and we start twoor more new omputations. Eah new omputation, say k0,begins with a stak ontaining a single term obtained by oneof the several possible redutions of s.The proedure desribed above an be optimized in manyways. We mention only the most important one that wehave implemented | the sharing of subterms disjoint froms. We show this optimization in an example. Suppose thatthe top-level term being evaluated is:
add (coin, t)The non-determinism of coin gives rise to the omputationof the following two terms:
add (zero, t)
add (succ (zero), t)These terms are evaluated onurrently and independently.However, term t in the above display is shared rather thandupliated. Sharing improves the eÆieny of omputa-tions sine only one term, rather than several equal opies,is onstruted and possibly evaluated. In some situations,a shared term may our in the staks of two indepen-dent omputations and be onurrently evaluated by eahomputation. This approah avoids a ommon problem ofbaktraking-based implementations of funtional logi lan-guages, in whih t will be evaluated twie if it is neededduring the evaluation of both add terms shown above.

4.9 Rewrite rulesThe �nal relevant portion of our arhiteture is the im-plementation of rewrite rules. All the rules of an ordinaryde�ned operation f are translated into a single Java method.This method impliitly uses a de�nitional tree of f to om-pare onstrutor symbols in indutive positions of the treewith orresponding ourrenes in an f -rooted term t to re-due. Let kt be a omputation in the queue, ready the stateof kt, and t the term on the top of kt's stak. The followingase breakdown de�nes the ode that needs to be generated.1. If t is a redex with a single redut, then t is replaedin-plae by its redut.

2. If t is a redex with several reduts, then a new om-putation is started for eah redut. The state of kt ishanged to exhausted.3. If in a needed position of t there is failure, then t isonsidered a redex as well and it is replaed in-plaeby failure.4. If in a needed position of t there is an operation-rootedordinary term s, then s is pushed on the stak of kt.5. The last ase to onsider is when operation f is inom-pletely de�ned and no needed subterm is found in t.In this ase, t is replaed in-plae by failure.
4.10 NarrowingAt this point we are ready to disuss the extension of ourimplementation to narrowing. A narrowing step instantiatesvariables in a way very similar to a non-deterministi redu-tion step. For example, suppose that allnat is an operationde�ned by the rules:

allnat = zero
allnat = succ (allnat)Narrowing term add(X,t), where X is an uninstantiatedvariable and t is any term, is not muh di�erent from redu-ing add(allnat,t).There are two key di�erenes in the handling of variablesw.r.t. non-deterministi redutions: (1) we must keep trakof variable bindings to onstrut the omputed answer atthe end of a omputation, and (2) if a given variable oursrepeatedly in a term being evaluated, the replaement of avariable with its binding must replae all the ourrenes.We solve point (1) by storing the binding of a variable ina omputation. Point (2) is simply bookkeeping. We rep-resent substitutions \inrementally." A omputation om-putes both a value (for the funtional part) and an answer(for the logi part). The answer is a substitution. In mostases, a narrowing step produes several distint bindingsfor a variable. Eah of these bindings inrements a previ-ously omputed substitution. For example, suppose that theexpression to narrow is:
add (X, Y) = tfor some term t. Some omputation may initially bind Xto zero. Later on, a narrowing step may bind Y indepen-dently to both zero and succ(Y1). These bindings will\add" to the previous one. The previous binding is shared,whih saves both memory and exeution time.

4.11 ParallelismOur implementation inludes a form of parallelism knownas parallel-and. And-parallel steps do not a�et the sound-ness or ompleteness of the strategy, INS, underlying ourimplementation, but in some ases they may signi�antlyredue the size of the narrowing spae of a omputation |possibly from in�nite to �nite. The parallel-and operation ishandled expliitly by our implementation. If a omputationk leads to the evaluation of t & u, where t and u are termsand \&" denotes the parallel-and operation, then steps ofboth t and u are sheduled. This requires to hange thestak of a omputation into a tree-like struture. The set ofleaves of this tree-like struture replaes the top of the stakpreviously disussed.As soon as one of these parallel steps has to be removedfrom the tree, whih means that its term argument has been

redued to a onstrutor term (inluding failure), the par-ent of the step is reonsidered. Depending on 's value,either the parent term is redued (to a failure if = failure)and the other parallel steps are removed, or (if = suess)the omputation of the other parallel steps ontinues nor-mally.
4.12 ResiduationResiduation is a omputational mehanism that delays theevaluation of a term ontaining an uninstantiated variablein a needed position [1℄. Similar to narrowing, it supportsthe integration of funtional programming with logi pro-gramming by allowing uninstantiated variables in funtionalexpressions. However, in ontrast to narrowing it is inom-plete, i.e., unable to �nd all the solutions of some problems.Residuation is useful for dealing with built-in types suh asnumbers [10℄. Residuation is meaningful only when a om-putation has several steps exeuting in parallel. If a ompu-tation has only one step exeuting, and this step residuates,the omputation annot be ompleted and it is said to oun-der.Operations that residuate are alled rigid, whereas oper-ations that narrow are alled exible. A formal model forthe exeution of programs de�ning both rigid and exibleoperations is desribed in [16℄. Our implementation alreadyhas the neessary infrastruture to aommodate this model.When a step s residuates on some variable V , we store (areferene to) s in V , mark s as residuating and ontinue theexeution of the other steps. When V is bound, we removethe residuating mark from s so that s an be exeuted as anyother step. If all the steps of a omputation are residuating,the omputation ounders.
5. THE COMPILATION PROCESSThe main motivation of this new implementation of nar-rowing is to provide a generi bak end that an be used byfuntional logi languages based on a lazy evaluation strat-egy. Current work [6℄ shows that any narrowing ompu-tation in a left-linear onstrutor-based onditional rewritesystem an be simulated, with little or no loss of eÆieny, inan overlapping indutively sequential rewrite system, heneby our implementation. Therefore, our implementation anbe used by languages suh as Curry [21℄, Esher [25℄ andToy [28℄.To support this idea, our implementation works indepen-dently of any onrete soure language. The soure pro-grams of our implementation are funtional logi programswhere all funtions are de�ned at the top level (i.e., no loaldelarations) and the pattern-mathing strategy is expliit.This language, alled FlatCurry, has been developed as anintermediate language for the Curry2Prolog ompiler [8℄ inthe Curry development system PAKCS [17℄ and is used forvarious other purposes, e.g., meta-programming and par-tial evaluation [2℄. Basially, a FlatCurry program is (apartfrom data type and operator delarations) a list of funtiondelarations where eah funtion f is de�ned by a single ruleof the form f(x1; : : : ; xn) = e, i.e., the left-hand side onsistsof pairwise di�erent variable arguments and the right-handside is an expression ontaining ase expressions for patternmathing.To be more preise, an expression an take any of theforms shown in Figure 4. The shallow patterns pi our-ring in ase expressions have the form (x1; : : : ; xn), i.e., all

x (variable)(e1; : : : ; en) (onstrutor)f(e1; : : : ; en) (funtion all)ase e0 offp1 ! e1; : : : ; pn ! eng (rigid ase)fase e0 offp1 ! e1; : : : ; pn ! eng (exible ase)or(e1; e2) (hoie)partall(f; e1; : : : ; ek) (partial appliation)apply(e1; e2) (appliation)onstr(fx1; : : : ; xng; e) (onstraint)guarded(fx1; : : : ; xng; e1; e2) (guarded expression)Figure 4: FlatCurry expressions
leq(X,Y) = fase X of f

zero ! true;
succ(M) ! fase Y of f

zero ! false;
succ(N) ! leq(M,N)ggFigure 5: Enoding of Example 1 in FlatCurryase branhes are onstrutors applied to pairwise distint(fresh) variables. Any indutively sequential program an betranslated into FlatCurry rules whose right-hand side on-sists of only onstrutor appliations, funtion appliationsand ase expressions [18℄. For instane, the funtion leq ofExample 1 is represented in FlatCurry as shown in Figure 5.The other options for expressions are used for the ex-tensions of indutively sequential programs that our invarious funtional logi languages. For instane, or expres-sions are used to represent non-deterministi hoies (seeSetion 4.8), rigid ase expressions for residuation, i.e., fun-tions whih suspend on insuÆiently instantiated arguments(see Setion 4.12), (partial) appliations for higher-orderfuntions (whih an be implemented by a transformationinto �rst-order rules, see [34℄), and guarded expressions foronditional rules1.Although FlatCurry was originally designed as an inter-mediate language to ompile and manipulate Curry pro-grams, it should be lear that it an also be used for variousother delarative languages (e.g., Haskell-like lazy languageswith strit left-to-right pattern mathing an be ompiledby generating appropriate ase expressions). Our bak endaepts a syntati representation of FlatCurry programsin XML format2 so that other funtional logi languagesan be ompiled into this implementation-independent for-mat. XML is beoming the format of hoie for exhangingstrutured information, suh as external representations ofompiled programs, between di�erent programs and non-homogeneous systems. Our hoie of this format is intendedto easily aommodate a variety of soure languages and tomaximize the usability of our bak end. Figure 6 shows the1See http://www.informatik.uni-kiel.de/~urry/flat/for more details.2The DTD for the XML FlatCurry representation is avail-able from http://www.informatik.uni-kiel.de/~urry/flaturry.dtd.

XML ode for the FlatCurry representation of leq givenabove.Our ompiler, whih is fully implemented in Curry, readsan XML representation and ompiles it into a Java programfollowing the ideas desribed in Setion 4. Reall that everyfuntion is represented by a sublass of operation. For eahfuntion, we de�ne a method expand whih will expand afuntion all aording to its rules and depending on itsarguments (Setions 4.9, 4.10).To show the simpliity of our ompiled ode, we providean exerpt of the expand method for leq in Figure 7 whihis generated from the XML representation given above. A-ording to Setion 4.9, we must deide whether leq(t1; t2)is a redex. This expression is a redex if t1 is a variable (wemust narrow) or zero (we apply the �rst rule). If t1 equals
succ(..), we must do the same hek for the seond ar-gument. If t1 fails, so does leq. If t1 is a funtion all, wemust evaluate it �rst. For the sake of simpliity, we showpseudo-ode, whih reets the basi struture and is verysimilar to the real Java ode.To use our bak end for a funtional logi language, it isonly neessary to ompile programs from this language to aXML representation aording to the FlatCurry DTD. Forinstane, our ompiler an be used as a bak end for Currysine Curry programs an be translated into this XML repre-sentation with PAKCS [17℄. Again, it is worth emphasizingthat FlatCurry an enode more than just Curry programsor needed narrowing, beause the evaluation strategy is om-piled into the ase expressions. For instane, FlatCurry is asuperset of TFL, whih is used as an intermediate represen-tation for a Toy-like language based on the CRWL paradigm(Construtor-based onditional ReWriting Logi) [22℄.The omputation engine is designed to work with the read-eval-print loop typial of many funtional, logi and fun-tional logi interpreters. In our Java implementation, theomputation engine and the read-eval-print loop are threadsthat interat with eah other in a produer/onsumer pat-tern. When a omputed expression (value plus answer) be-omes available, the omputation engine noti�es the read-eval-print loop while preserving the state of the narrowingspae. The read-eval-print loop presents the results to theuser and waits. The user may request further results or ter-minate the omputation. If the user requests a new result,the read-eval-print loop noti�es the omputation engine tofurther searh the narrowing spae. Otherwise, the narrow-ing spae is disarded.Currently we provide a naive trae faility that is use-ful to debug both user ode and our own implementation.Sine the omputations originating from a goal are truly on-urrent, as is neessary to ensure operational ompleteness,and sine some terms are shared between omputations, thetrae is not always easy to read. Computations are identi�edby a unique id. We envision a tool, oneptually and stru-turally well separated from the omputation engine, thatollets the interleaved traes of all omputations, separatesthem, and presents eah trae in a di�erent window for eahomputation. This tool may have a graphial user interfaeto selet whih omputations to see and/or interat with.
6. RELATED WORKIn this setion we disuss and ompare other approahesto funtional logi language implementation (see [14℄ for asurvey). Our approah provides an operationally omplete

<fun name="leq" arity="2"><funtype>... </funtype> // the type of the funtion<rule> // the rule for the funtion<lhs> <var>X</var> <var>Y</var> </lhs> // two arguments, enumerated<rhs><ase type="flex"> // evaluate by narrowing<var>X</var> // swith on �rst argument<branh><pattern name="zero" /> // if it mathes Zero...<omb type="ConsCall" name="true" /> // ...redue to True</branh><branh><pattern name="su"> // if it mathes su(M)...<var>M</var></pattern><ase type="flex"> // ...then go on with seond argumentode for mathing the seond argument</ase></branh> </ase> </rhs> </rule> </fun>Figure 6: XML ode for leqexpand (Computation omp) {term = omp.getTerm(); // get the term from top of the stakX = term.getArg(0); // get �rst argumentY = term.getArg(1); // get seond argumentswith on kind of X // ase X of ...ase variable: // do narrowing: bind to patternsX.bindTo(zero);spawn new omputation for leq(zero,Y);X.bindTo(su(M));spawn new omputation for leq(su(M),Y);omp.setExhausted(); // this omputation is exhaustedase onstrutor: // argument is onstrutor-rooted,swith on kind of onstrutor // thus do pattern mathingase zero: // apply �rst rule:term.update(true); // replae term with truease su: // ase X of su(M) ! ase Y of...reursive ase for swithing on Yase failure: // the needed subterm has failed,term.update(failure) // thus leq fails, tooase operation: // X is a funtion all, thusomp.pushOnStak(X); // evaluate this all �rst} Figure 7: Simpli�ed pseudo-ode for the expand method of leqand eÆient arhiteture for implementing narrowing whihan potentially aommodate sophistiated onepts, e.g.,the ombination of narrowing and residuation, enapsulatedsearh or ommitted hoie. As some reent narrowing-based implementations of funtional logi languages show,most implementations that inlude these onepts lak om-pleteness or are ineÆient.One ommon approah to implement funtional logi lan-guages is the transformation of soure funtional logi pro-grams into Prolog programs. This approah is favored forits simpliity sine Prolog has most of the features of fun-tional logi languages: logial variables, uni�ation, andnon-determinism implemented by baktraking. However,the hallenge in suh an implementation is the implemen-tation of a sophistiated evaluation strategy that exploitsthe presene of funtions in the soure programs. Di�er-ent implementations of this kind are ompared and evalu-ated in [15℄ where it is demonstrated that needed narrow-ing is eÆiently implemented in a (strit) language suh asProlog and that this implementation is superior to othernarrowing strategies. Therefore, most of the newer propos-

als to implement funtional logi languages in Prolog arebased on needed narrowing [4, 8, 15, 27℄. In ontrast toour implementation of narrowing, all of these e�orts are op-erationally inomplete (i.e., existing solutions might not befound due to in�nite derivation paths) sine they are basedon Prolog's depth-�rst searh mehanism. The same draw-bak also ours in implementations of funtional logi lan-guages based on abstrat mahines (e.g., [11, 26, 29, 22℄)sine these abstrat mahines use baktraking to implementnon-determinism.An exeption is the Curry2Java ompiler [19℄ whih isbased on an abstrat mahine implementation in Java butuses independent threads to implement non-deterministihoies. If these threads are fairly evaluated (whih an beensured by spei� instrutions), in�nite derivations in onebranh do not prevent �nding solutions in other branhes.Our approah is more exible sine it does not depend onthreads, but it an ontrol to any degree of granularity thesheduling of steps in distint omputations. This eases theimplementation of problem-spei� searh strategies at thetop level, whereas Curry2Java is restrited to enapsulated

searh [20℄.Our implementation is the subjet of ative investigationin several diretions. Thus, we are not spei�ally onernedwith its eÆieny at this time. Rather, we are studyingarhitetures that easily integrate onepts and ideas thathave been proposed for funtional logi programming. Ef-�ieny is an important issue, though, and we expet thatit will be a strong point of our implementation due to thediret translation into an imperative language without theadditional ontrol layers of an abstrat mahine. While wehave attempted to selet an eÆient arhiteture, we havenot paid muh attention to detailed optimization of our im-plementation, and we do not expet top speed as long as weompile to Java. We performed only a limited number ofbenhmarks to get a feel for where we stand.For the funtional evaluation, we evaluated the naive re-verse of a list of 1200 elements (400 only for omparingCurry2Java). To benhmark non-determinism we evalu-ated add x y =:= peano300, where peano300 de-notes the term enoding 300 in unary notation and the in�xoperator =:= denotes the strit equality with uni�ation.This goal is solved by reating 301 parallel omputations bynarrowing on the add operation.The two fastest available implementations of needed nar-rowing, to the best of our knowledge, are the Curry2Prologompiler of the PAKCS system and theM�unster Curry Com-piler (MCC) [29℄. The Curry2Java bak end (C2J), inludedin the PAKCS system, is not as fast, but is the fastest avail-able orret and omplete implementation of needed narrow-ing. We have also ompared our approah to a Java-basedimplementation of Prolog: Jinni [33℄ is the fastest engine inthe naive reverse benhmark among the Java-based Prologimplementations ompared in [13℄. Table 1 shows exeutiontimes, in seonds, for simple benhmarks on a PIII-900 MHzLinux mahine. These results show that our engine is ur-rently the fastest omplete implementation of narrowing. Inall likelihood, its speed is partially due to the elimination ofthe overhead paid by Curry2Java for omputing with an ab-strat mahine. In omparison with Jinni, we perform betterin the rev1200 benhmark, where the number of redutionsteps is more or less the same for needed narrowing and SLD-resolution. For the add benhmark, we evaluate the goal
add(X,Y,peano300) in Jinni. Due to the rules for stritequality with uni�ation, even an optimized implementationof needed narrowing will perform at least twie as many re-dution steps for add x y =:= peano300 as a SLD-resolution of add(X,Y,peano300). However, we arestill faster than Jinni in this benhmark, too. Curry2Prologand MCC are faster than our approah by a fator 8 for
rev and by fator 20 for add. This is to be expeted.Baktraking-based implementations are simpler and fasterbeause they sari�e ompleteness. Additionally, Curry2-Prolog is exeuted by the highly optimized SICStus Prologompiler, and the abstrat mahine of MCC is written inC, while our implementation is exeuted by the JVM. Weexpet that if our implementation were optimized and/oroded in C, it would o�er performane ompetitive withthese inomplete systems while retaining ompleteness.A fator of 8-20 speedup over Java for a C implemen-tation is reasonable and supported by the results of [19℄.The authors have shown that a C++ implementation of theCurry2Java abstrat mahine was more than 50 times fasterthan the same implementation in Java. We do not expet a

Table 1: Exeution times for simple benhmarks onseveral FLP enginesOurs C2J MCC PAKCS Jinni
rev400 0.69 2.6
rev1200 5.5 N/A 0.69 0.68 45.9
add300 2.1 16.2 0.12 0.09 2.5similar improvement beause we have already eliminated theinterpretation layer of the abstrat mahine, and beause theresults of [19℄ were obtained with JDK 1.1 while we use JDK1.3. The latter is more eÆient. However, we are on�dentthat there are still onsiderable opportunities for improvingthe eÆieny of our implementation. We plan to work onthis aspet, but only after resolving the arhitetural issuesrelated to the inlusion of searh and onurreny featureswhih are disussed in the next setion.

7. FURTHER EXTENSIONSA very interesting feature for modern funtional logi lan-guages is enapsulated searh [20℄. Although this feature isnot yet inluded in our implementation, our arhiteture isready to aommodate it.Enapsulated searh uses a searh operator to expliitlyontrol di�erent branhes of a non-deterministi omputa-tion. It relies on a data struture to enode searh goalsand their non-deterministi splitting. This struture sup-ports di�erent searh strategies and ontrols failures. Ad-ditionally, it prevents non-determinism from splitting theglobal omputation, whih is ruial to avoid onits withirreversible I/O operations. Complete enapsulated searhstrategies rely on another key feature, ommitted hoie [24℄.Losely speaking, di�erent branhes of a omputation areevaluated in parallel. When one branh �nds a solution,the other branhes are disarded. The ombination of thesearh operator and ommitted hoie is neessary for im-plementing omplete enapsulated searh strategies [31, 20℄.To ensure ompleteness, it is neessary to distinguish be-tween loal and global omputations in three aspets. Non-deterministi steps of a goal annot split the global ompu-tation. If a goal either fails or sueeds we must take speialations like enoding the result in a data struture or killingsome other loal omputations (if the ommitted hoie is in-volved). The third aspet onerns variable binding. Globalvariables, i.e., variables not introdued by searh, annotbe bound by searh, beause di�erent loal omputationsan share a global variable. Di�erent bindings of any suhvariable in loal omputations would be inonsistent in theglobal omputation.We know of only two attempts at narrowing-based im-plementations of enapsulated searh. The M�unster CurryCompiler implements the searh operator, but it laks om-mitted hoie. Thus, omplete searh algorithms annot beoded in MCC. Curry2Java provides both the searh oper-ator and ommitted hoie. Curry2Java employs threadsfor non-deterministi searh, thus it faes the problem ofintegrating loal searh into an arhiteture whih was notdesigned for expliit ontrol. This problem has not yet beensolved and its solution is not near.In our arhiteture, it should be muh easier to implementand integrate enapsulated searh and ommitted hoie be-

ause we have expliit and diret ontrol of omputation.Computations are designed to be nested, whih eases intro-duing loal omputations. A ruial aspet of the imple-mentation of enapsulated searh is the distintion betweenloal and global variables. This an be solved by makinga omputation log a variable as loal when it is introduedinside this omputation, e.g., by evaluating a loal delara-tion of a free variable. This method was suessfully usedin Curry2Java.The implementation of ommitted hoie should be eveneasier than the searh operator. While the searh operatormust enode all possible branhes after a non-determinististep in a data struture, ommitted hoie an disard allother possibilities if it has found one suessful branh. If theomputation enounters a funtion all whih should be eval-uated by ommitted hoie, a new queue of omputations(Setion 4.5) is reated for goals to be evaluated in paral-lel. These loal omputations follow the rules for loal vari-able bindings desribed above. When a non-determinististep ours in one of the omputations, we just add newomputations to the queue. This loal queue is similar tothe global one, exept that when a omputation sueeds,we delete the entire loal queue and ontinue with a singlegoal. Thus, the expliit ontrol of omputation in our ar-hiteture allows us to implement both enapsulated searhand ommitted hoie with modest extensions.Another advantage of our model is the potential for aneÆient omplete enapsulated searh strategy. The searhoperator and ommitted hoie must be ombined to real-ize a omplete enapsulated searh strategy, but suh algo-rithms are highly ineÆient beause ommitted hoie willrepeatedly spawn many loal omputations whih are soonkilled again. In our model, we ould realize an eÆient al-gorithm with minimal e�ort. We just need to reate a loalqueue of omputations in whih we evaluate a searh goal.In ontrast to the global queue, we need to take are of loalvariable bindings, and we must return the solutions as a listof searh goals, whih an be done lazily. However, theseare all just hanges to the global queue. Thus, we ouldprovide a lazy, eÆient and omplete enapsulated searhalgorithm whih avoids the ineÆieny of ombining searhoperators and ommitted hoie, i.e., the repeated spawningand killing of loal omputations.
8. CONCLUSIONWe desribed the arhiteture of an engine for funtionallogi omputations. Our engine implements an eÆient,sound and omplete narrowing strategy, INS, and integratesthis strategy with other features, e.g., residuation and and-parallelism, desirable in funtional logi programming. Ourimplementation is operationally omplete, easy to extend(e.g., by external resoures like onstraint libraries) and gen-eral enough to be used as a bak end for a variety of lan-guages. Although our work is still evolving, simple benh-marks show that it is the fastest omplete implementationof narrowing urrently available: it has strong potential forfurther improvement in both performane and funtionality.
9. ACKNOWLEDGEMENTSThis researh has been partially supported by the NSFDAAD under grant INT-9981317 and the German ResearhCounil (DFG) under grant Ha 2457/1-2.

10. AVAILABILITYOur implementation and supporting material is availableunder the GNU Publi Liense at http://nmind.s.pdx.edu.
11. REFERENCES[1℄ H. A��t-Kai, P. Linoln, and R. Nasr. Le Fun: Logi,equations, and funtions. In Pro. 4th IEEE Internat.Symposium on Logi Programming, pages 17{23, SanFraniso, 1987.[2℄ E. Albert, M. Hanus, and G. Vidal. A pratial partialevaluator for a multi-paradigm delarative language.In Pro. 5th Intl. Symposium on Funtional and LogiProgramming (FLOPS '01), pages 326{342. SpringerLNCS 2024, 2001.[3℄ S. Antoy. De�nitional trees. In Pro. 3rd Intl.Conferene on Algebrai and Logi Programming,pages 143{157. Springer LNCS 632, 1992.[4℄ S. Antoy. Needed narrowing in Prolog. Tehnialreport 96-2, Portland State University, 1996.[5℄ S. Antoy. Optimal non-deterministi funtional logiomputations. In Pro. Intl. Conferene on Algebraiand Logi Programming (ALP '97), pages 16{30.Springer LNCS 1298, 1997.[6℄ S. Antoy. Construtor-based onditional narrowing. InPriniples and Pratie of Delarative Programming,(PPDP'01), Sept. 2001. (In this volume).[7℄ S. Antoy, R. Ehahed, and M. Hanus. A needednarrowing strategy. Journal ACM, 47(4):776{822,2000. Previous version in Pro. 21st ACM Symposiumon Priniples of Programming Languages, pp.268{279, 1994.[8℄ S. Antoy and M. Hanus. Compiling multi-paradigmdelarative programs into Prolog. In Pro. 3rd Intl.Workshop on Frontiers of Combining Systems(FroCoS '00), pages 171{185. Springer LNCS 1794,2000.[9℄ F. Baader and T. Nipkow. Term Rewriting and AllThat. Cambridge University Press, 1998.[10℄ S. Bonnier and J. Maluszynski. Towards a leanamalgamation of logi programs with externalproedures. In Pro. 5th Conferene on LogiProgramming & 5th Symposium on Logi Programming(Seattle), pages 311{326. MIT Press, 1988.[11℄ M. Chakravarty and H. Lok. Towards the uniformimplementation of delarative languages. ComputerLanguages, 23(2-4):121{160, 1997.[12℄ P. Cheong and L. Fribourg. Implementation ofnarrowing: The Prolog-based approah. In K. Apt,J. de Bakker, and J. Rutten, editors, Logiprogramming languages: onstraints, funtions, andobjets, pages 1{20. MIT Press, 1993.[13℄ E. Denti, A. Omiini, and A. Rii. tuProlog: Alight-weight Prolog for Internet appliations andinfrastrutures. In Pratial Aspets of DelarativeLanguages (PADL), pages 184{198. Springer LNCS1990, 2001.[14℄ M. Hanus. The integration of funtions into logiprogramming: From theory to pratie. Journal ofLogi Programming, 19&20:583{628, 1994.[15℄ M. Hanus. EÆient translation of lazy funtional logiprograms into Prolog. In Pro. Fifth Intl. Workshop

on Logi Program Synthesis and Transformation,pages 252{266. Springer LNCS 1048, 1995.[16℄ M. Hanus. A uni�ed omputation model for funtionaland logi programming. In Pro. 24th ACMSymposium on Priniples of Programming Languages(Paris), pages 80{93, 1997.[17℄ M. Hanus, S. Antoy, J. Koj, R. Sadre, and F. Steiner.PAKCS 1.3: The Portland Aahen Kiel Curry SystemUser Manual. Tehnial report, University of Kiel,Germany, 2000. Available athttp://www.informatik.uni-kiel.de/~paks.[18℄ M. Hanus and C. Prehofer. Higher-order narrowingwith de�nitional trees. Journal of FuntionalProgramming, 9(1):33{75, 1999.[19℄ M. Hanus and R. Sadre. An abstrat mahine forCurry and its onurrent implementation in Java.Journal of Funtional and Logi Programming,1999(6), 1999.[20℄ M. Hanus and F. Steiner. Controlling searh indelarative programs. In Priniples of DelarativeProgramming (Pro. Joint Intl. SymposiumPLILP/ALP '98), pages 374{390. Springer LNCS1490, 1998.[21℄ M. Hanus (ed.). Curry: An Integrated FuntionalLogi Language. Available athttp://www.informatik.uni-kiel.de/~urry, 2000.[22℄ T. Hortala-Gonzalez and E. Ullan. An abstratmahine based system for a lazy narrowing alulus.In Pro. 5th Intl. Symposium on Funtional and LogiProgramming (FLOPS '01), pages 216{232. SpringerLNCS 2024, 2001.[23℄ G. Huet and J.-J. L�evy. Computations in orthogonalrewriting systems. In J.-L. Lassez and G. Plotkin,editors, Computational Logi: Essays in Honor ofAlan Robinson, pages 395{443. MIT Press, 1991.[24℄ S. Janson. AKL { A Multiparadigm ProgrammingLanguage. PhD thesis, Swedish Institute of ComputerSiene, 1994.[25℄ J. Lloyd. Programming in an integrated funtionaland logi language. Journal of Funtional and LogiProgramming, 1999(3):1{49, 1999.[26℄ R. Loogen. Relating the implementation tehniques offuntional and funtional logi languages. NewGeneration Computing, 11:179{215, 1993.[27℄ R. Loogen, F. Lopez Fraguas, andM. Rodr��guez Artalejo. A demand driven omputationstrategy for lazy narrowing. In Pro. 5th Intl.Symposium on Programming LanguageImplementation and Logi Programming, pages184{200. Springer LNCS 714, 1993.[28℄ F. L�opez-Fraguas and J. S�anhez-Hern�andez. TOY: AMultiparadigm Delarative System. In Proeedings ofRTA '99, pages 244{247. Springer LNCS 1631, 1999.[29℄ W. Lux. Implementing enapsulated searh for a lazyfuntional logi language. In Pro. 4th Fuji Intl.Symposium on Funtional and Logi Programming(FLOPS '99), pages 100{113. Springer LNCS 1722,1999.[30℄ A. Middeldorp. Call by need omputations toroot-stable form. In Pro. 24th ACM Symposium onPriniples of Programming Languages (Paris), pages94{105, 1997.

[31℄ C. Shulte and G. Smolka. Enapsulated searh forhigher-order onurrent onstraint programming. InPro. 1994 Intl. Logi Programming Symposium, pages505{520. MIT Press, 1994.[32℄ J. Slagle. Automated theorem-proving for theorieswith simpli�ers, ommutativity, and assoiativity.Journal of the ACM, 21(4):622{642, 1974.[33℄ P. Tarau. Jinni. Available athttp://www.binnetorp.om/Jinni/, 2001.[34℄ D. Warren. Higher-order extensions to Prolog: arethey needed? In Mahine Intelligene 10, pages441{454, 1982.

