
Type-based Nondeterminism Checking in
Functional Logic Programs �

Michael Hanus and Frank Steiner

Institut für Informatik, Christian-Albrechts-Universität Kiel
Olshausenstr. 40, D-24098 Kiel, Germanyfmh,fstg�informatik.uni-kiel.de

ABSTRACTFuntional logi languages ombine nondeterministi searhfailities of logi languages with features of funtional lan-guages, e.g., monadi I/O to provide a delarative methodto deal with I/O ations. Unfortunately, monadi I/Oannot be used in programs whih split the omputationdue to nondeterministi redutions. This problem an beavoided if nondeterministi omputations are enapsulatedby searh operators whih are available, for instane, in themulti-paradigm language Curry. To support the program-mer in identifying nondeterministi parts of a program,we develop a method based on a type and e�et systemthat will �nd every possible soure of nondeterminism.Additionally, suh information an be exploited in ompilersto optimize deterministially reduible parts of a program.
1. INTRODUCTIONAn important feature of logi languages is the ability to dealwith nondeterministi omputations to ompute solutionsfor partially instantiated goals. This an lead to problemswhen using I/O operations, beause they are usually notbaktrakable. For instane in Prolog, output made by afailing branh of the searh tree will remain on the sreenand disturb the output of a possibly suessful omputation.In languages supporting more exible searh strategies in-stead of baktraking, like Curry [10, 16℄ or Oz [28℄, theproblem beomes more serious sine di�erent branhes of anondeterministi omputation might be evaluated onur-rently. Thus, di�erent branhes of the searh tree wouldompete for the input and output devies.To provide a lean and delarative method of I/O, one an�The researh desribed in this paper has been partiallysupported by the German Researh Counil (DFG) undergrant Ha 2457/1-1.In Pro. of the 2nd International ACM SIGPLAN Confer-ene on Priniple and Pratie of Delarative Programming(PPDP'2000), pp. 202{213, Montreal, 2000.2000 ACM. Permission to make digital or hard opiesof part or all of this work for personal or lassroom useis granted without fee provided that opies are not madeor distributed for pro�t or ommerial advantage and thatopies bear this notie and the full itation on the �rst page.To opy otherwise, to republish, to post on servers, or to re-distribute to lists, requires prior spei� permission.

use the monadi I/O onept [30℄ whih was developed forHaskell [27℄ and adapted in Curry. In this onept, I/Ooperations are seen as transformations that at on the out-side world, whih ontains the �le system, the Internet et.Sine this world an not be opied, nondeterminism in om-bination with monadi I/O is not allowed and leads to arun-time error in Curry. To avoid this problem, Curry al-lows to enapsulate nondeterministi omputations [15, 28℄,thus inreasing program stability and safety.The remaining problem is to detet all possible soures fornondeterminism in a program. This an be very diÆulteven for small programs and often also depends on the formof queries the user may ask. Thus, our aim is to develop amethod to detet all possible soures of nondeterminism.Additionally, the information omputed by our programanalysis an be used for ompiler optimizations. For in-stane, instrutions for heking funtion arguments and de-iding if the atual all of this funtion redues determin-istially or not an be eliminated for funtions whih areproven to redue deterministially. If larger program partsor the omplete program do not ause nondeterminism, odefor handling nondeterminism, for instane for spawning newomputation branhes, an be dropped (dead ode elimina-tion). Suh optimizations an be applied for instane to theCurry2Java ompiler [14℄ whih is part of our Curry systemPAKCS [17℄ and ompiles Curry programs into ode for anabstrat mahine implemented in Java.Our analysis is based on a type and e�et system (see [23℄ foran overview) whih an be seen as an extension of lassialtype systems known from funtional languages. The basiidea is to annotate funtion types with some e�et to de-sribe the run-time behavior of the funtion. In our ase weannotate the names of those funtions as an e�et that mightause nondeterministi omputations. Then our analysis re-turns all funtion names that ould split the omputationwhen applied during the evaluation of a ertain expression(i.e., the goal to be solved).Note that existing determinism analyses for (funtional)logi languages annot be diretly adapted to Curry be-ause the same funtion might redue deterministially ornot, depending on its arguments. Thus, we need to de-rive groundness information for arguments in funtion allswhih is not trivial due to the lazy evaluation mehanism in

Curry. Existing analyses for strit languages will indeed failto analyse Curry programs orretly. Consider the followingsimple example:f 1 x = xf 2 x = x+xg 1 = 3and the all f x (g x). A strit analysis will analyse the all(g x) before analysing the all to f. Thus, it will onsider xto be bound to 1 by evaluating g and then analyse the allf 1 3 whih would deterministially redue with the �rstrule. But in Curry, (g x) will be evaluated after applyinga rule to f. Thus, in Curry, f will indeed be alled with anunbound variable as �rst argument, whih will ause a non-deterministi splitting (see Setion 2.1 for an explanationof the redution mehanisms in Curry). Therefore, analy-ses for languages like Prolog [29, 5℄, Merury [18℄, or HAL[6℄ do not apply beause they do not deal with lazy evalu-ation. In ontrast, analyses proposed for narrowing-basedfuntional logi languages dealing with lazy evaluation an-not handle residuation, whih additionally exists in Curry,and rely on the non-ambiguity ondition [21℄ whih is toorestritive for Curry programs. Furthermore, these analysesare either applied during run time (like in Babel [21℄ andpartially in K-Leaf [20℄), or are unable to derive groundnessinformation for funtion alls in arguments (like in K-Leaf).In the next setion we will briey introdue the languageCurry whih is the objet language of our analysis. Notethat the analysis itself should be adaptable also to other(funtional) logi languages that su�er from similar prob-lems. In Setion 3 the type and e�et system will be de-sribed together with some examples and an informal de-sription of a type inferene algorithm. Setion 4 disussessome pratial results of our �rst implementation, and Se-tion 5 ontains our onlusions and points out some futurework. Due to lak of spae, some detailed de�nitions andthe proofs of the results are omitted.
2. OVERVIEW OF CURRYCurry [10, 16℄ is a multi-paradigm language ombining in aseamless way features from funtional programming (nestedexpressions, lazy evaluation, higher-order funtions), logiprogramming (logial variables, partial data strutures,built-in searh), and onurrent programming (onurrentevaluation of onstraints with synhronization on logialvariables). It also amalgamates the most important oper-ational priniples developed in the area of integrated fun-tional logi languages: \residuation" and \narrowing" (see[9℄ for a survey on funtional logi programming). Thus, var-ious operational models developed for delarative programsan be seen as restritions of Curry's omputation model(see [10℄ for a detailed disussion).A Curry program spei�es the semantis of expressions,where goals, whih our in logi programming, are par-tiular onstraint expressions. Exeuting a Curry programmeans simplifying an expression until a value (or solution)is omputed. To distinguish between values and reduibleexpressions, Curry has a strit distintion between (data)onstrutors and operations or de�ned funtions on thesedata. Hene, a Curry program onsists of a set of typeand funtion delarations. The type delarations de�ne the

omputational domains (onstrutors) and the funtion de-larations the operations on these domains.Curry ombines various features known in delarative pro-gramming, like higher-order funtions, onstraints and thepossibility to use onstraint solvers for various domains, en-apsulated searh [15, 28℄, a Hindley/Milner-like polymor-phi type system [4℄, monadi I/O [30℄ and features for om-muniation and distributed programming [11℄. A detaileddesription of these features an be found in [16℄. In thefollowing we will only outline those whih are neessary tounderstand the ideas of our analysis.
2.1 Basic Features of CurryValues in Curry are, similarly to funtional or logi lan-guages, data terms onstruted from onstants and data on-strutors. For instane, the datatype delarationsdata Bool = True | Falsedata List a = [℄ | a : List aintrodue the datatype Bool with the 0-ary onstrutors(onstants) True and False, and the polymorphi type\List a" of lists. Natural numbers, whih we will use in theexamples, are represented in Curry by onstants (0, 1, 2,. . .)of type Int.A data term is a well-typed expression ontaining vari-ables, onstants and data onstrutors, e.g., 1:2:xs. Fun-tions operate on data terms. Their meaning is spei�edby rules (or equations) of the form \l | = r" (the on-dition part \| " is optional) where l is a pattern, i.e., lhas the form f t1 : : : tn with f being a funtion symbol,t1; : : : ; tn data terms and eah variable ours only one,and r is a well-formed expression ontaining funtion alls,onstants, data onstrutors and variables from l and .The ondition is a onstraint whih optionally ontainsa list of loally delared variables, i.e., a onstraint an havethe form let v1; : : : ; vk free in on where the variables viare only visible in the onstraint on. Basi onstraints are(strit) equations of the form e1 =:= e2 whih are solvable ife1 and e2 are reduible to uni�able data terms. Constraintsan be omposed by the onurrent onjuntion operator&, i.e., 1 & 2 will be evaluated by onurrently evaluating1 and 2. If a loal variable v of a ondition should bevisible also in the right-hand side, the rule is written asl | = r where v free. A rule an be applied if its ondi-tion is solvable. A head normal form is a variable, a on-stant, or an expression of the form e1 : : : en where is adata onstrutor. A Curry program is a set of data typedelarations and equations.Example 1. The following rules de�ne the onatenationof lists, a funtion for omputing the last element of a listand a (partial) square funtion sq, whih we will use in laterexamples:append [℄ ys = ysappend (x:xs) ys = x : append xs yslast l | let xs free in append xs [x℄ =:= l = xwhere x freesq 1 = 1sq 2 = 4

If the equation \append xs [x℄ =:= l" is solvable, then xis the last element of the list l. 2From a funtional point of view, we are interested in om-puting the value of an expression, i.e., a data term whih isequivalent (w.r.t. the program rules) to the initial expres-sion. In logi languages, we want to solve goals, i.e., om-pute bindings for free variables in an initial expression. SineCurry integrates these two paradigms, it omputes answerpairs onsisting of a substitution and an expression. Due tothe nondeterministi features of Curry, an expression mayredue to more than one answer pair, i.e., a redution stephas the general form1e) �1; e1 | � � � | �n; enwhere n � 0, e, e1,. . . ,en are expressions, �1; : : : ; �n are sub-stitutions on the free variables in e, and \|" joins di�erentalternatives to a disjuntion. We all the evaluation stepdeterministi if n = 1 and nondeterministi if n > 1. Thease n = 0 orresponds to a failure.For seleting the next reduible funtion all (so alled re-dex) in an expression that must be evaluated, Curry usesa ombination of residuation and needed narrowing [1, 10℄.This is, roughly speaking, the ombination of lazy evalua-tion with bindings of uninstantiated variables as demandedby the patterns of left-hand sides in the rules. For instane,onsider the funtion sq from Example 1: The funtion all\sq 2" is redued to the value 4 like in any funtional lan-guage. However, if the argument is an uninstantiated vari-able, there are two possibilities:1. If we evaluate sq by residuation (in this ase sq isalled rigid), the all sq x will suspend until x is boundto some onstrutor term that will allow to hooseone of the rules for redution. This is possible by theonurrent evaluation of onstraints where a di�erentthread an bind x to some value.2. If we evaluate sq by narrowing, as it will be done in allfollowing examples (in this ase sq is alled exible),we bind x to all possible patterns of the left-hand sidesand ontinue with all di�erent omputation branhesindependently:sq x �) {x=1} 1 | {x=2} 4Thus, the all sq x auses a nondeterministi step inour omputation.In Curry, onstraints are evaluated by narrowing (sine theyorrespond to prediates in logi languages), while non-onstraint funtions are omputed using residuation. Thisbehavior an be easily hanged by annotations [16℄.To make the pattern mathing and the rigid/exible statusof funtions expliit, we assume that all funtions are de�nedby one rule whih left-hand side ontains only variables asarguments and the right-hand side ontains ase-expressionsfor pattern mathing. Thus, expressions have the following1See [16℄ for a de�nition of the one step relation).

form (we assume that lambda abstrations and loal dela-rations are eliminated by lambda lifting [19℄):e ::= x j f e1 : : : en j let x free in e jase e of p1 : e1; : : : ; pn : en jfase e of p1 : e1; : : : ; pn : en j e1 or e2f is a onstrutor or de�ned funtion and pi are at patternsof the form C x1 : : : xn where C is a n-ary data onstrutor.ase and fase are the rigid and exible ase distintions,respetively, and or denotes a don't-know alternative be-tween two expressions.The assumption that eah funtion f is de�ned by a sin-gle rule with left-hand side f x1 : : : xn does not restrit thelass of Curry programs we an handle, sine all funtionde�nitions an be transformed into this form (higher-orderfeatures an be translated into �rst-order using Warren'smethod [31℄). For instane, the sq funtion an be rewrit-ten assq x = (f)ase x of 1:1; 2:4where ase is used if sq is de�ned as rigid (i.e., evaluatedby residuation), and fase if it is exible (i.e., evaluated bynarrowing). A preise de�nition of this transformation anbe found in [13℄.The binary or operator is used to translate funtions withoverlapping left-hand sides. For instane, the rigid funtionde�ned by0 * y = 0x * 0 = 0is translated into the single rulex * y = (ase x of 0:0) or (ase y of 0:0)Nesting the binary or operator allows to enode funtionswith more than two overlapping left-hand sides.
2.2 Nondeterminism and I/ONondeterministi omputations are problemati if they ap-pear in programs that use I/O. A delarative treatment ofinput/output, as implemented in Curry, an be obtained bythe monadi I/O onept [30℄. In this onept, an inter-ative program is onsidered as a funtion omputing a se-quene of ations whih are applied to the outside world. Anation hanges the state of the world and possibly returnsa result (e.g., a harater read from the terminal). For in-stane, getChar reads a harater from the standard inputwhenever it is exeuted, i.e., applied to a world. SeveralI/O ations an be omposed, e.g., getChar an be om-posed with the ation putChar (whih writes a harater tothe terminal) by the sequential omposition operator >>=,i.e., getChar >>= putCharis a omposed ation whih prints the harater typed in thekeyboard to the sreen (see [30℄ for more details).Sine the world annot be opied (note that the world on-tains at least the omplete �le system or the omplete In-ternet in web appliations), an interative program having adisjuntion as a result makes no sense. For instane onsiderthe programnonsense file x = writeFile file (sq x)

where writeFile f e is an ation that writes the value ofe to the �le f. If we all nonsense "dummy" x, a nondeter-ministi splitting during the evaluation of sq x would resultin two independent omputation branhes, both trying towrite di�erent values to the same �le. This must obviouslybe avoided beause it ould, for instane, lead to an inonsis-tent �le state. Thus, a Curry program that uses I/O ationswill result in a run-time error whenever a nondeterministiomputation is deteted. The goal of this paper is to pro-vide a method to detet suh kind of programming errors atompile time, so that they an be avoided by enapsulatingall possible searh between I/O operations (see [15, 28℄ fora more detailed desription of enapsulated searh).
3. THE NONDETERMINISM ANALYSISIn this setion we develop a method based on a non-standardtype system to hek expressions for possible nondetermin-isti evaluation steps. First we sketh the ideas behind ournondeterminism analysis before we provide and explain thetyping rules in detail.As we have seen in the examples in Setion 2, uninstantiatedvariables as arguments may ause nondeterministi stepswhen using narrowing. Hene, we propose a type and e�etsystem that allows us to identify the form of arguments, i.e.,if they are ground terms or not. This is a non-trivial taskbeause the arguments an be funtion alls whih are evalu-ated lazily in Curry. Thus, the type of the arguments annotbe derived from their atual form but the analysis must takeinto aount their redution behavior. We will ollet thenames of the funtions that might split the omputation asan e�et of this omputation.In a �rst step, the program will be typed, either by handor by a type inferene algorithm (see also Setion 3.4). Forinstane, the funtion de�nitionf x = sq xould be given the following type:A ff;sqg�! GThis type expresses that f takes Any argument and returnsaGround term but during the appliation of f nondetermin-isti steps may be raised by the funtions f and sq. Thisis signalized by the e�et ff; sqg whih is annotated abovethe arrow.In a seond step, we will analyse an expression with re-spet to the program and obtain results like \the expressionredues deterministially" or \the redution of the expres-sion raises a nondeterminism aused by the evaluation of thefuntion f ." We will explain this in more detail in the nextsetions.
3.1 The Types and EffectsType and e�et systems an be seen as an extension of las-sial type systems known from funtional languages (see [22,23℄ for details). The basi idea is to extend the type anno-tation for a funtion with an e�et that may our duringthe appliation of this funtion. For every expression a typeand the e�et of its redution an be approximated. Typeand e�et systems provide for powerful analyses like exep-

tion analysis [26℄, side e�et analysis [22℄ or ommuniationanalysis [23, 24℄.Sine nondeterminism is mostly aused by uninstantiatedvariables in arguments of exible funtions, we use a non-standard type system to distinguish between ground termsand any terms. Thus, we de�ne type expressions as follows:� = G j A j �1 : : : �n ! �G denotes a ground term and A denotes any term. Sinea ground term is also any term, we have subtyping [2℄, i.e.,G < A where �1 < �2 means that any term of type �1 has alsotype �2. For funtions it is important to note that ovarianeholds for the result type but ontravariane for the argumenttypes, i.e., �1 ! �2 � � 01 ! � 02 i� � 01 � �1; �2 � � 02. Thisis easy to understand if we think of smaller types as morepreise information. The typeA! G is smaller thanG! Gand it is more preise, beause it provides information abouta larger set of inputs. Thus, the larger the input type, themore preise the information, i.e., the smaller the funtiontype. The opposite holds for the output type, i.e., A ! Gis smaller than A ! A, beause the information about thetarget set is more preise. Our type system allows severaltypes for one expression. For instane, for a funtion de�nedby f x = x the two types G ! G and A ! A are orretbut not related by subtyping.As an e�et we want to ollet the names of funtionswhih appliation an ause nondeterministi omputations.Therefore, we de�ne the e�et ' by' � F [fase; orgwhere F is the set of funtion symbols of a program P . Thee�et annotated for a funtion delaration must ontain allfuntion names that might redue in a nondeterministi wayduring the appliation of this funtion. For instane, a typeannotation for a funtion f ould bef :: A ff;g;hg�! Aif in the right-hand side of f a all to the funtion g auses anondeterminism, whereas g splits the omputation beauseit alls the funtion h in its body whih raises the nonde-terminism. Additionally, f ould have another type, forinstane f :: G ;! Gif f does not split the omputation when applied to a groundterm.The aim of our analysis is to alulate type judgementsE ` e :: �='for an expression e with respet to a program P , where Eis a type environment, i.e., a set of type annotations forfuntion and onstrutor symbols from P and for variables.E ` e :: �=' means that the expression e has type � , andduring the redution of e the e�et ' may our. For in-stane, the type judgementE ` f x :: A=ff; g; hgfor the expression f x reets the nondeterministi be-haviour of f by returning a non-empty e�et. In ontrast,

the seond type G ;! G ould be used to analyze f 1 andthe omputed type judgement would beE ` f 1 :: G=;;signalizing that the all f 1 redues deterministially (be-ause funtion symbols that ould split the omputationwere not found).The soundness of our approximation, whih will be formal-ized at the end of Setion 3.2, ensures that we �nd everyfuntion whih an raise a nondeterminism and that termsidenti�ed as ground by our analysis will atually redue toground terms. Similarly to most program analyses, we an-not ompute preise information for all program parts butonly approximations of the real program behavior. In ourase this means that the omputed type might be too impre-ise, e.g., A instead of G, and the e�et might be too large,i.e., it might ontain funtions that will never raise a nonde-terminism. This impreision an be redued by re�ning thetype domain (see Setion 5). Nevertheless, our �rst imple-mentation has shown that the analysis is already quite a-urate even for larger examples whih our in pratie andespeially for purely funtional programs (f. Setion 4).
3.2 The Typing RulesFigure 1 shows the typing rules for our analysis whih de�nethe type judgements E ` e :: �='.The DECL rule de�nes when a program rule r is orretlytyped w.r.t. a type annotation A (i.e., E `A r): The typeannotation A for the funtion f must be given in the envi-ronment E, and with the orresponding types for the argu-ments xi added to the environment2 the derived type for theright-hand side must math the type of f . For the e�et, twoases are distinguished: If ' 6= ; then the right-hand side epossibly raises a nondeterministi omputation step. Thus,f ould also redue nondeterministially and so the anno-tated e�et must inlude ' and ffg. Otherwise, if ' = ;, is ompletely unrestrited. In both ases an ontainarbitrary funtion symbols from the program, beause, dueto sube�eting (see below), it is still a safe approximationto annotate a larger e�et.The VAR rule is ommon. If a type is given for x in the envi-ronment, this type and an empty e�et an be derived. Notethat x an be a variable, a funtion symbol, or a onstrutorsymbol.The NEWVAR rule handles loal (existentially quanti�ed)variables. The newly introdued variable xfresh is unin-stantiated, and thus must be given the type A for analysinge. By e[x=t℄ we denote the replaement of all free our-renes of x in e by t. An ourrene of a variable x in e isfree if it does not our inside a subterm e0 of e with e0 =let x free in ~e. A variable x ours free in e if at leastone ourrene of x in e is free.2E[x1 :: �1; : : : ; xn :: �n℄ denotes the type environment ob-tained from E by deleting all existing type annotationsfor x1; : : : ; xn and adding the new type annotations in thesquare brakets.

When applying a funtion f to some ei, the e�et ' anno-tated for f might our. Thus, in the APP rule, ' is returnedtogether with the e�ets derived for the arguments.The FCASE rule handles nondeterminism aused by nar-rowing. If the type A is derived for e and more than twoase branhes exist, a non-empty e�et must be returnedto signalize the potential nondeterminism. This is ensuredby adding the keyword ase (whih ould be indexed bythe funtion name from the left-hand side, as we will doit in subsequent examples) to the e�et. Additionally, alle�ets from the right-hand sides must be olleted. Notethat for analysing the right-hand sides, the pattern variablesare given the type of e: If e redues to a ground term, sowill the terms that the pattern variables are instantiated to.Otherwise, they ould be uninstantiated in the subsequentomputation and therefore they have the type A. If onlyone right-hand side has type A, the entire fase-expressionmight return this type. Thus, the maximum type of allright-hand sides (w.r.t. the ordering G < A) is the type ofthe fase-expression.The CASE rule analyses rigid funtions. Thus, the ase-expression itself will never split the omputation and no ad-ditional e�et is returned.Nondeterminism whih is aused by overlapping left-handsides is handled by the OR rule, where the keyword or isreturned. Like in the (F)CASE rules, the e�ets of the right-hand sides are olleted and the maximal type is returned.Note that by using ase and or keywords, nondeterminismaused by narrowing and by overlapping left-hand sides anbe distinguished.The last rule, SUB, de�nes subtyping and sube�eting [23℄.For our type system, the rule expresses that any expressionof type G is also of type A, and that every e�et ' an beenlarged without loosing the safety ondition. The approx-imation just beomes more impreise.In order to show the orretness of the typing rules, we mustde�ne orret type environments.Definition 1. Let P be a Curry program and E a typeenvironment whih ontains at least one type annotation foreah funtion and onstrutor ourring in P .1. Let r 2 P be a program rule with left-hand sidef x1 : : : xn and Ef � E the set of all type annota-tions for f in E. r is orretly typed w.r.t. E, denotedby E ` r, i� E `A r for all A 2 Ef .2. E is a orret type environment for P i� E ` r forall r 2 P , and for all type annotations :: �1 : : : �n '!� 2 E, where is an n-ary onstrutor, �i = A implies� = A.Thus, a orret type environment E for a program mustontain at least one type for eah de�ned funtion and on-strutor. Otherwise, the rules that use these onstrutorsand funtions annot be orretly typed. Note that for a

Typing of rules:DECL E[x1 ::�1; : : : ; xn ::�n℄ ` e ::�=;E `A f x1 : : : xn = e if A = f ::�1 : : : �n ! � 2 EDECL E[x1 ::�1; : : : ; xn ::�n℄ ` e ::�='E `A f x1 : : : xn = e if ' 6= ;; A=f ::�1 : : : �n ['[ffg�! � 2ETyping of expressions:VAR E ` x ::�=; if x :: � 2 ENEWVAR E[xfresh :: A℄ ` e[x=xfresh℄ ::�='E ` let x free in e :: �='APP E ` e1 ::�1='1 : : : E ` en ::�n='n E ` f ::�1 : : : �n '! �=;E ` f e1 : : : en :: �=Si 'i ['FCASE E ` e ::�=' E[x1m ::� ℄ ` e1 ::�1='1 : : : E[xnm ::� ℄ ` en ::�n='nE ` fase e of p1(x1m) : e1; : : : pn(xnm) : en :: maxi(�i)=Si 'i [' ['0where '0 = � faseg if � = A and n > 1; otherwiseCASE E ` e ::�=' E[x1m ::� ℄ ` e1 ::�1='1 : : : E[xnm ::� ℄ ` en ::�n='nE ` ase e of p1(x1m) : e1; : : : pn(xnm) : en :: maxi(�i)=Si 'i ['OR E ` e1 :: �1='1 E ` e2 :: �2='2E ` or(e1; e2) :: max(�1; �2)='1 ['2 [forgSUB E ` e ::�='E ` e ::� 0='0 if � � � 0; ' � '0Note: xij denotes the sequene xi1; : : : ; xiji .Figure 1: Typing rulesonstrutor its result type is always the maximum of itsinput types (i.e., 0-ary onstrutors ould always have typeG), and it is always orret to annotate ' = ; beause aonstrutor itself is not redued (only its arguments) and sodoes never raise a nondeterministi redution step.In the following we use Ee as an abbreviation forE [x1 ::A; : : : ; xn ::A℄ where fx1; : : : ; xng is the set of vari-ables whih our free in the expression e.The following lemma states the orretness of the typingrules w.r.t. a single redution step.Lemma 1 (Subjet redution). Let E be a orrettype environment for a Curry program and e an expres-sion. If Ee ` e :: �=' and there is a redution stepe) �1; e1 | � � � | �n; en with n > 0, then Eei ` ei :: �='.Thus, the type and e�et of an expression is invariant underredution steps. We an easily prove the following orret-ness results for our framework with this important prop-erty:33The redution semantis of Curry an be found in [16℄ and(onerning ase-expressions) in [13℄.

Theorem 1 (Corretness of typing rules). LetE be a orret type environment for a Curry program, e anexpression and Ee ` e :: �='.1. If � = G and e redues in �nitely many steps to a valuev (i.e., a term without de�ned funtion symbols), thenv is a ground term.2. If e redues in �nitely many steps to an expression~e and ~e) �1; e1 | � � � | �n; en with n > 1, then 'ontains \ase" or \or" depending on the redex of ~ewhih aused the nondeterminism.From the seond property we an diretly onlude that eredues deterministially if ' = ;.Thus, we know that every funtion that might raise a non-deterministi omputation step during the redution of ewill be olleted in the e�et ' by our typing rules, i.e., wewill never miss suh a funtion4. This is the meaning of a4Note that the ourrene of ase (or) in the e�et guaran-tees that also the name of the funtion, in whih body thease (or) expression ours, is olleted in the e�et due tothe DECL rule. Thus, we know whih funtion de�nitionsto onsider for deteting the soure of nondeterminism.

safe approximation for our analysis. The same holds for thetype, i.e., a term analysed as ground will indeed redue toa ground term (if its redution suessfully terminates).
3.3 ExamplesWe want to larify the ideas of our analysis by providingsome simple examples. If the type environment E ontainsonly one type annotation A for the funtion in the left-handside of the rule r, we simply write E ` r instead of E `A r.Example 2. We want to show that the rulef :: A ;! Gf x = 0is orretly typed. The type expresses that f will redue de-terministially and return a ground term regardless of itsinput argument. It should be obvious that this type is or-ret. The initial type environment ontains the type for fand the onstrutor 0:E = ff :: A ;! G; 0 :: GgThe orretness of the type is proven by the following deriva-tion:E[x :: A℄ ` 0 :: G=; VARE ` f x = 0 DECLWith E extended by x ::A aording to the type annotationfor f, the analysis of the right-hand side returns the groundtype and an empty e�et, thus mathing the target type off and the empty e�et annotated with f. Note that due tosubtyping and sube�eting, there are more orret types forf, e.g., A ;! A, G ;! G, G ;! A and any of these types withevery non-empty e�et. However, all these types are largerthan the most preise type A ;! G.Another simple example is the identity funtion where theanalysis of the right-hand side depends on the results fromthe left-hand side:id :: G ;! Gid x = xThe following derivation, using E = fid :: G ;! Gg as ini-tial environment, proves that the type annotation is orret:E[x :: G℄ ` x :: G=; VARE ` id x = x DECLBeause E is extended by the type for the input argument ofid (x :: G), we an derive the type G for the right-hand side,too. 2Due to spae limitations, we do not mark the rules withtheir names anymore in the following examples.Example 3. To study an example where nondetermin-ism ours, we use the funtion sq whih was de�ned inSetion 2:sq :: G ;! Gsq :: A fsq;asesqg�! G

sq x = fase x of 1:1; 2:4Two types are de�ned for sq, laiming that the funtion willredue deterministially when applied to a ground term, butmight raise a nondeterministi step otherwise. The initialenvironment ontains the two types together with the typesfor the onstrutors (we identify the two types by A1 andA2):E = fA1 : sq :: G ;! G; A2 : sq :: A fsq;asesqg�! G;1 :: G; 2 :: G; 4 :: GgSine we have two types for sq, we must verify two asesof the DECL rule, one for eah type (we drop the VARderivation for the onstrutor 4 beause it is the same asfor 1):E[x :: G℄ ` x :: G=; E[x :: G℄ ` 1 :: G=;E[x :: G℄ ` fase x of 1:1;2:4 :: G=;E `A1 sq x = fase x of 1:1; 2:4E[x :: A℄ ` x :: A=; E[x :: A℄ ` 1 :: G=;E[x :: A℄ ` fase x of 1:1;2:4 :: G=fasesqgE `A2 sq x = fase x of 1:1; 2:4Using the �rst type of sq, x has type G and therefore theFCASE rule returns an empty e�et for the right-hand side,thus mathing the type of sq. With the seond type, E isextended by x ::A, ausing the FCASE rule to return a non-empty e�et. Therefore, the DECL rule demands the e�etannotated with sq to ontain sq as well as the e�et fromthe right-hand side, whih is satis�ed. Thus, the rule is or-retly typed beause it is orretly typed w.r.t. to both typeannotations.In ontrast, the type annotation sq ::A ;�! G, whih laimsthat sq will redue in a deterministi way even if we passany term as argument, is wrong (f. Setion 2.1). This isindeed deteted by our analysis:sq :: A ;! Gsq x = fase x of 1:1; 2:4Given the initial environment E = fsq :: A ;! G; 1 :: G,2 :: G, 4 :: Gg, the analysis behaves orretly in refuting thistype:E[x :: A℄ 6` x :: G=; E[x :: A℄ ` 1 :: G=;E[x :: A℄ 6` ase x of 1:1;2:4 :: G=;E 6` sq x = ase x of 1:1;2:4Sine we annot derive the type G for x after E has beenextended by x :: A, the FCASE rule is not able to analyse anempty e�et for the right-hand side of sq. But this would beneessary to math the empty e�et annotated for sq. 2The next example shows how to analyse funtion applia-tions.Example 4. We de�ne a simple funtion f that alls sq,assuming that the two orret types for sq from Example 3are spei�ed in the initial environment.

f :: G ;! Gf :: A ff;sq;asesqg�! Gf x = sq xsq :: G ;! Gsq :: A fsq;asesqg�! Gsq x = fase x of 1:1; 2:4We drop the types for sq and the natural numbers in E tokeep it small:E = fA1 : f :: G ;�! G; A2 : f :: A ff;sq;asesqg�! GgWe must show the orretness of both types for the rule tobe orretly typed:E[x :: G℄ ` x :: G=; E[x :: G℄ ` sq ::G ;! G=;E[x :: G℄ ` sq x :: G=;E `A1 f x = sq xSine x :: G is added to the environment to math the ar-gument type of f, we an derive the result type G and anempty e�et for sq x by seleting the �rst type annotationfor sq (f. Example 3).If, aording to the annotation A2, the type A is assigned tox, the seond type annotation for sq mathes and we derive anon-empty e�et that is onsistent with the annotation for f:E[x ::A℄ `x ::A=; E[x ::A℄`sq ::Afsq;asesqg�! G=;E[x :: A℄ ` sq x :: G=fsq; asesqgE `A2 f x = sq x 2So far, we have only shown how to verify given type annota-tions for program rules. Usually, the �rst step in analysing aprogram will be to �nd suh annotations, either by guessingand heking them as shown above, or by using a type infer-ene algorithm. In the seond step, we analyse expressionsto be evaluated w.r.t. the program. Very often we mightbe interested only in one expression, i.e., a main funtion,that starts all alulations. Note that we are �nished afterthe �rst step, if the main funtions is unparameterized: Ifthe behaviour of the main funtion does not depend on ar-guments, then the type annotation inferred for main in the�rst step spei�es the runtime behaviour ompletely.If we want to evaluate any other expression (e.g., a all toa parameterized main funtion), we must derive its type.Note that we need only the VAR, NEWVAR, APP and SUBrules in this ase, beause we only have to analyse fun-tion/onstrutor appliations. The right hand sides of therules are not onsidered anymore, beause all informationwe need is stored in the type annotation of the funtion.Example 5. We want to evaluate the expressionsf (sq 1) and f (sq x) w.r.t. the program and environ-ment from Example 4. For the �rst expression, the analysis

omputes the following:E ` 1 :: G=; E ` sq ::G ;! G=;E ` sq 1 :: G=; E ` f ::G ;! G=;E ` f (sq 1) :: G=;Sine the argument sq 1 of f redues to a ground term, the�rst type annotation for f is seleted and an empty e�etis returned. Thus, from the type judgement for f (sq 1)we onlude that the expression will redue to a groundterm without splitting the omputation. For the seondexpression, the initial environment is extended to ontainthe type A for all free variables. Then, with Ex := E[x ::A℄,the result is di�erent:Ex `x ::A=; Ex`sq ::Afsq;asesqg�! G=;Ex ` sq x :: G=fsq; asesqgE ` f ::G ;! G=;Ex ` f (sq x) :: A=fsq;asesqgHere the e�et of the omputed type judgement is not empty.Thus, we are warned that nondeterminism might (and in thisase does) our during the evaluation of this expression. Itis important to notie that f is not ontained in the om-puted e�et, beause the nondeterminism is not aused bythe ode of the right-hand side of f but by the evaluation ofthe argument sq x. First, f is redued with a non-groundargument to its right-hand side sq (sq x). But before theouter all of sq an redue further, it must evaluate the ar-gument sq x. This evaluation splits the omputation, butreturns only ground terms. Therefore, when the outer sqis �nally redued, its formerly non-ground argument has be-ome ground, and so the right-hand side is evaluated as if fwas alled with a ground term. Thus, not f, but its argumentis the real ause for the nondeterminism, and the APP ruleorretly returns only the e�et olleted from the argument.In this way, the e�et alulated for (possibly nested) fun-tion alls gives quite preise information about the origin ofthe nondeterminism. 2Finally we show that our analysis will detet the problem-ati behaviour of our motivating example, i.e., the nonsensefuntion.Example 6. The nonsense funtion was de�ned asnonsense file x = writeFile file (sq x)We already know the type annotations for sq. The smallestorret type for writeFile is A A ;! G, beause writing toa �le will not split a omputation, and writeFile is de�nedrigid (f. Setion 2.1). Thus, it will wait until its argumentsare instantiated and after writing the �le it will return aspeial, internal I/O onstrutor whih is a ground term.With the type for writeFile given5, the following is a orret5The type of ertain I/O operations annot be derived, be-

type environment:E = fwriteFile :: A A ;! G;sq :: G ;! G; sq :: A fsq;asesqg�! G;1 :: G; 2 :: G; 4 :: G;nonsense :: A G ;! G;nonsense :: A A fnonsense;sq;asesqg�! GgNow we analyse the all nonsense "dummy" x withEx := E[x :: A℄. We must hose the seond type fornonsense from Ex to math the type A for the parameter x:Ex ` x :: A=;Ex ` nonsense ::A A fnonsense;sq;asesqg�! GEx ` nonsense "dummy" x :: G=fnonsense; sq;asesqgThus, the nondeterminism is deteted through the non-emptye�et, and a warning due to the ombination with I/O fun-tions an be generated. 2
3.4 Type InferenceThe goal of this work is the development of a orretmethod to derive information about possible nondeterminis-ti omputations in a program. In the previous setions wehave shown how we an hek given annotations for a pro-gram (and afterwards derive type judgements for expressionswhih should be evaluated w.r.t. to the program). But forthe pratial appliation it is tedious to add expliitly alltype annotations for the program rules, whih demands fora method to infer them automatially. Due to lak of spae,we annot present it in detail but we sketh the basi ideasto onstrut an inferener for our type and e�et system.Basially, an inferene algorithm an be onstruted follow-ing the standard tehniques for polymorphi type inferene[4℄, i.e., the typing rules in Figure 1 an be also used fortype inferene by providing a new type variable for the typeof eah syntati entity whose type is not yet known. Thenthe type analysis of an expression leads to the generation ofa set of onstraints between type expressions to be solved.Without subtyping, these type onstraints an be solved bya standard uni�ation proedure for type terms [4℄. Theonly problem is the subtyping rule SUB whih is not indu-tive on the syntax of expressions. For the purpose of typeinferene, this rule an be eliminated by onsidering the pos-sibility of subtyping in other rules. In partiular, the VAR ishanged so that for x :: � 2 E the type/e�et �=; is inferredfor x, where � is a new type variable, and the new subtypeonstraint � � � is generated. In this way, the type infer-ene generates a set of equations and inequations betweentype expressions. In the same pass, all e�ets an be in-ferred but here we must allow onditional e�ets of the form\�) ase" to onsider the fat that an e�et in the FCASErule depends on the groundness of the fase-argument. Suhause they are realized by external funtions, i.e., their odeis not visible. The annotations for external funtions an bespei�ed in a prelude and will be aepted by a type hekerand inferener.

a onditional e�et is equivalent to the e�et ase if � is Aand to the empty e�et if � is G.Sine our subtype struture is very simple (G � G, G � A,A � A, and the ontra/ovariane rules for funtion types),inequations between types an be solved by known meth-ods for type inferene in the presene of subtyping be-tween basi types [7℄: after transforming all inequationsinto inequations between basi types (by applying the on-tra/ovariane rules for funtion types), we instantiate thefree type variables to their least possible types in order toompute a minimal type and solve all onditional e�ets.
4. PRACTICAL RESULTSAn implementation of the type inferener is atually underonstrution, whereas a type heker (following the rules in�gure 1) has already been implemented in Curry itself andis available from the authors. All examples desribed in thispaper are orretly analysed by this type heker. Moreover,we have analysed a large set of typial examples, inludingomplex strutures like graphial user interfaes, and havereeived very aurate results.Of ourse, there are situations where the analysis will pro-due impreise results but the program strutures ausingsuh impreiseness are seldom in real appliations. For in-stane, passing an argument like [x℄ to a list-proessingfuntion will ause the analysis to onsider the argumentof type A due to the free variable x. Thus, for a fun-tion like append, whih has the types G G ;�! G andA G fappend;aseappendg�! A (among others), the analysis willderive a possible nondeterministi behaviour for the allappend [x℄ [℄. Suh impreiseness ours only if a exi-ble funtion, i.e., evaluated by narrowing, is onsidered, itsarguments ontain free variables inside data strutures andthese free variables will not ause a nondeterminism lateron. Note that espeially the last ondition will not hold inmost pratial examples. For instane, analysing the ex-pression append (1:2:xs) [℄ will preisely report a nonde-terminism, beause due to the de�nition of append the freevariable xs will be passed as �rst argument to append in areursive all and indeed split the omputation. The lat-ter (preisely analysed) situation is more likely to appear,for instane in logi programs, where free variables our ingoals and narrowing is used to searh for solutions. On theother hand, the onatenation of two lists ontaining vari-ables as elements (or similar situations) ours very seldomin the large set of Curry examples whih we have studied.Even in examples where free variables are used in datastrutures and bound by narrowing, nondeterminism doesnot neessarily our. For instane, to implement graphi-al user interfaes (GUIs) in a high-level delarative stylein Curry [12℄, the funtional features are exploited to de-�ne the graphial struture, while the logial features areused to speify the logial dependenies of an interfae. Fig-ure 2 shows a simple example (a ounter GUI). Note thatthe GUI spei�ation is passed as a partially instantiateddata struture in the seond parameter of runWidget. Inthis data struture, the unbound variable val is used as areferene (TkRef val) to onnet the entry �eld (TkEntry),initially ontaining \42" (TkText "42") with the buttons

runWidget "Counter Demo"(TkCol [℄ [TkEntry [TkRef val, TkText "42"℄,TkRow [℄ [TkButton (tkUpdate inrText val) [TkText "Inrement"℄,TkButton (tkSetValue val "0") [TkText "Reset"℄,TkButton tkExit [TkText "Stop"℄℄℄)where val freeFigure 2: A spei�ation of a ounter GUIInrement and Reset. When reating the GUI, the variableval will be set to an internal value pointing to the entry�eld. Now by pressing the Inrement button, the funtionall (tkupdate inrText val) will be exeuted to updatethe value in the ounter window by inreasing it. At thispoint, the referene variable val is used to identify the �eldwhere the value to be inreased an be found and wherethe inreased value should be written to. Thus, val will beuniquely bound to a pointer value during the setup of theGUI.The GUI library is ompletely implemented in Curry [12℄.Therefore, programs ontaining GUI spei�ations an beanalysed together with the GUI library by our nondeter-minism analysis. Sine the referene variables ontained inGUI strutures are uniquely bound by a narrowing step,our analysis preisely veri�es that the program parts han-dling GUI spei�ations are deterministi.This example shows the importane of partially instantiateddata strutures whih ombine in a very powerful way fun-tional and logi features, in this ase by providing a muhmore delarative spei�ation for GUIs than in other ap-proahes in funtional languages [3℄. Unfortunately, it isoften diÆult to implement these data strutures in mode-based logi languages whih restrit themselves to just inand out modes. Even in Merury, where partially instanti-ated data strutures an be handled in priniple, it wouldrequire quite diÆult and omplex strutures of nested, pa-rameterized mode delaration to desribe the GUI data typestrutures. Moreover, it is for instane not possible to spe-ify in Merury that a funtion works on a list ontainingground terms and free variables at the same time, e.g.,[x,2℄. Similar but muh more omplex situations ourin our Tl/Tk library. Thus, we ould not rely on a modebased analysis to handle any of our GUI-based programs.A sublass of Curry programs, for whih our analysis om-putes very aurate results, are purely funtional subom-putations, whih take large parts of most funtional logiprograms in pratie. We onsider a omputation as purelyfuntional if it behaves like a Haskell omputation, i.e., thereare no unbound variables at run time and funtions are de-�ned so that at most one rule is appliable. In our frame-work, we an haraterize a lass of suh programs as fol-lows. We all a program purely funtional if the rules for allfuntions ontain neither or-subexpressions (i.e., the orig-inal rules have no overlapping left-hand sides, or, in theterminology of [1℄, they are indutively sequential) nor ex-pressions of the form let...free in (i.e., free variables arenot introdued at run time). This restrition is satis�ed by

typial funtional programs (e.g., note that in Haskell ruleswith syntatially overlapping left-hand sides are translatedinto nested ase-expressions rather than nondeterministior-expressions [27℄).We de�ne the ground type environment EG byEG = ff :: G : : : G| {z }n ;! G j for all n-ary funtionsor onstrutors fgThen we have the following result:Proposition 1 (Purely funtional programs).Let P be a purely funtional program and EG a groundtype environment for P .1. EG is a orret type environment.2. For all expressions e without free variables, it is EG `e :: G=;.Thus, purely funtional programs (and, similarly, purelyfuntional subomputations in a program) are preiselyanalysed as deterministi in our framework.
5. CONCLUSIONS AND FUTURE WORKWe have proposed a method to analyse funtional logi pro-grams in order to identify expressions that might raise non-deterministi omputations during their evaluation. By theresults obtained from suh an analysis, the programmer willbe able to hange the program to make it more robust. Forinstane, to avoid splitting omputations she might removenondeterminism ompletely if it was not neessary or a resultof a programming error. Otherwise, she an enapsulate thea�eted program parts, if the nondeterminism is neessaryfor omputing the result. This will avoid run-time errors inprograms that use I/O ations (whih is the ase for almostevery larger program) and thus inreases program stability.Additionally, ompilers an exploit the analysis results tooptimize the ode for deterministially reduible parts of aprogram. Although we have presented the typing rules andsome examples for the funtional logi language Curry, theanalysis should be easily adaptable to other funtional logilanguages (or just logi languages).For future work we will study how the urrent set of typingrules needs to be extended to over features like externalfuntions or searh operators. This should not be diÆultbut has just not been onsidered yet. Another importantpoint for future work is the eÆient implementation of the

type and e�et inferene algorithm sine the goal of thiswork is the development of a fully automati nondetermin-ism analysis so that the user is not fored to speify the typeand e�et annotations by hand (in ontrast to mode-basedlanguages like Merury). Last but not least, we will onsiderto re�ne the type domain. The simple Ground-Any-domain,whih orresponds to the lassial domain used for ground-ness analysis in logi languages [25℄, is often suÆient foromputing quite exat groundness information. But espe-ially the nondeterminism analysis ould bene�t for instanefrom a three element domain, distinguishing between groundterms, terms in head normal form and any terms, or fromusing regular types [32℄. To further improve the preisenessof the analysis, we might also onsider to inlude sharinginformation in our analysis. At the moment, all argumentsof a funtion all are analysed independently. This does notprodue any wrong results, but if the order for analysingarguments would be �xed in some way (whih should bepossible beause the evaluation order is enoded in the aserules), information omputed while analysing one argumentould be used for analysing the next one. In some ases,this ould indeed improve the preiseness of the omputedresults.
6. REFERENCES[1℄ S. Antoy, R. Ehahed, and M. Hanus. A needednarrowing strategy. To appear in Journal of the ACM,2000. Previous version in Pro. 21st ACM Symposiumon Priniples of Programming Languages, pages268{279, Portland, 1994.[2℄ L. Cardelli. Type systems. In Allen B. Tuker, Jr.(Editor-in-Chief), The Computer Siene andEngineering Handbook. CRC Press, in ooperationwith ACM, 1997.[3℄ K. Claessen, T. Vullinghs, and E. Meijer. Struturinggraphial paradigms in TkGofer. In Pro. of ICFP'97,pp. 251{262. ACM SIGPLAN Noties Vol. 32, No. 8,1997.[4℄ L. Damas and R. Milner. Prinipal type-shemes forfuntional programs. In Pro. 9th Annual Symposiumon Priniples of Programming Languages, pages207{212, 1982.[5℄ S. K. Debray and D. S. Warren. Detetion andoptimization of funtional omputations in Prolog. InPro. of ICLP'86, pages 490{504. Springer LNCS,1986.[6℄ B. Demoen, M. Gar��a de la Banda, W. Harvey,K. Marriott, and P. Stukey. Herbrand onstraintsolving in HAL. In Pro. of ICLP'99, pages 260{274.MIT Press, 1999.[7℄ Y.-C. Fuh and P. Mishra. Type Inferene withSubtypes. Theoretial Computer Siene, 73:155{175,1990.[8℄ J.C. Gonz�ales-Moreno, M.T. Hortal�a-Gonz�ales, F.J.L�opez-Fraguas, and M. Rodr��guez-Artalejo. Arewriting logi for delarative programming. In Pro.ESOP'96, pages 156{172. Springer LNCS 1058, 1996.

[9℄ M. Hanus. The integration of funtions into logiprogramming: From theory to pratie. Journal ofLogi Programming, 19&20:583{628, 1994.[10℄ M. Hanus. A uni�ed omputation model for funtionaland logi programming. In Pro. of the 24th ACMSymposium on Priniples of Programming Languages(Paris), pages 80{93, 1997.[11℄ M. Hanus. Distributed programming in amulti-paradigm delarative language. In Pro. ofPPDP'99, pages 376{395. Springer LNCS 1702, 1999.[12℄ M. Hanus. A Funtional Logi ProgrammingApproah to Graphial User Interfaes. In Pro. ofPADL'00, pp. 47{62. Springer LNCS 1753, 2000.[13℄ M. Hanus and C. Prehofer. Higher-Order Narrowingwith De�nitional Trees. In Journal of FuntionalProgramming, 9(1):33{75, 1999.[14℄ M. Hanus and R. Sadre. An Abstrat Mahine forCurry and its Conurrent Implementation in Java.Journal of Funtional and Logi Programming,1999(6).[15℄ M. Hanus and F. Steiner. Controlling searh indelarative programs. In Pro. of Joint InternationalSymposium PLILP/ALP'98, pages 374{390. SpringerLNCS 1490, 1998.[16℄ M. Hanus (ed.). Curry: An integrated funtional logilanguage. Available athttp://www.informatik.uni-kiel.de/~urry/, 2000.[17℄ M. Hanus , S. Antoy, J. Koj, R. Sadre, and F. Steiner.PAKCS: The Portland Aahen Kiel Curry System.Available at:http://www.informatik.uni-kiel.de/~paks/, 2000.[18℄ F. Henderson and T. Somogyi, Z. Conway.Determinism analysis in the Merury ompiler. InPro. of the Nineteenth Australasian ComputerSiene Conferene, pages 337{346, 1996.[19℄ T. Johnsson. Lambda Lifting: Transforming Programsto Reursive Funtions. In Funtional ProgrammingLanguages and Computer Arhiteture, pp. 190{203.Springer LNCS 201, 1985.[20℄ F. Liu. Towards lazy evaluation, sharing andnon-determinism in resolution based funtional logilanguages. In Pro. of FPCA'93, pages 201{209, NewYork, NY, USA, 1993. ACM Press.[21℄ R. Loogen and S. Winkler. Dynami detetion ofdeterminism in funtional logi languages. TheoretialComputer Siene, 142(1):59{87, 1995.[22℄ J.M. Luassen and D.K. Gi�ord. Polymorphi E�etSystems. In Pro. of the 15th ACM Symposium onPriniples of Programming Languages, pages 47{57,1988.[23℄ F. Nielson, H. R. Nielson, and C. Hankin. Priniplesof Program Analysis. Springer, 1999.

[24℄ H. R. Nielson and F. Nielson. Communiation analysisfor Conurrent ML. In ML with Conurreny,Monographs in Computer Siene, pages 185{235.Springer-Verlag, 1997.[25℄ U. Nilsson. Towards a Framework for the AbstratInterpretation of Logi Programs. In Pro. ofPLILP'88, pp. 68{82, Orl�eans, 1988. Springer LNCS348.[26℄ F. Pessaux and X. Leroy. Type-based analysis ofunaught exeptions. In Pro. of POPL'99, pages276{290. ACM Press, 1999.[27℄ J. Peterson et al. Haskell: A Non-strit, PurelyFuntional Language (Version 1.4). Tehnial Report,Yale University, 1997.[28℄ C. Shulte and G. Smolka. Enapsulated searh forhigher-order onurrent onstraint programming. InPro. of ILPS'94, pages 505{520. MIT Press, 1994.[29℄ P. Van Roy, B. Demoen, and Y.D. Willems. Improvingthe exeution speed of ompiled Prolog with modes,lause seletion, and determinism. In Pro. of theTAPSOFT '87, pages 111{125. Springer LNCS 250,1987.[30℄ P. Wadler. How to delare an imperative. ACMComputing Surveys, 29(3)240{263, 1997.[31℄ D.H.D. Warren. Higher-order extensions to PROLOG:are they needed? In Mahine Intelligene 10, pp.441{454, 1982.[32℄ E. Yardeni and E. Shapiro. A Type System for LogiPrograms. Journal of Logi Programming, 10:125{153,1991.

