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Abstra
t

Narrowing is the operational prin
iple of languages that

integrate fun
tional and logi
 programming. We pro-

pose a notion of a needed narrowing step that, for in-

du
tively sequential rewrite systems, extends the Huet

and L�evy notion of a needed redu
tion step. We de-

�ne a strategy, based on this notion, that 
omputes

only needed narrowing steps. Our strategy is sound

and 
omplete for a large 
lass of rewrite systems, is op-

timal w.r.t. the 
ost measure that 
ounts the number of

distin
t steps of a derivation, 
omputes only indepen-

dent uni�ers, and is eÆ
iently implemented by pattern

mat
hing.

1 Introdu
tion

In re
ent years, most proposals with a sound and 
om-

plete operational semanti
s for the integration of fun
-

tional and logi
 programming languages [5, 10℄ were

based on narrowing, e.g., [6, 15, 17, 19, 37, 44℄. Narrow-

ing, originally introdu
ed in automated theorem proving

[46℄, solves equations by 
omputing uni�ers with respe
t

to an equational theory [14℄. Informally, narrowing uni-

�es a term with the left-hand side of a rewrite rule and

�res the rule on the instantiated term.

Example 1 Consider the following rewrite rules de�n-

ing the operations \less than or equal to" and addition

for natural numbers, whi
h are represented by terms

built with 0 and s:

0 � X ! true R

1

s(X) � 0 ! false R

2

s(X) � s(Y ) ! X � Y R

3

0 +X ! X R

4

s(X) + Y ! s(X + Y ) R

5

The rules of \�" will be used in following examples.

To narrow the equation Z + s(0) � s(s(0)), rule R

5

is applied by instantiating Z to s(X). To narrow the

resulting equation, s(X + s(0)) � s(s(0)), R

4

is ap-

plied by instantiating X to 0. The resulting equation,

s(s(0)) � s(s(0)), is trivially true. Thus, fZ 7! s(0)g is

the equation's solution.

A brute-for
e approa
h to �nding all the solutions of

an equation would attempt to unify ea
h rule with ea
h

non-variable subterm of the given equation. The result-

ing sear
h spa
e would be huge even for small rewrite

programs. Therefore, many narrowing strategies for

limiting the size of the sear
h spa
e have been pro-

posed, e.g., basi
 [25℄, innermost [15℄, outermost [12℄,

outer [49℄, lazy [9, 36, 44℄, or narrowing with redun-

dan
y tests [31℄. Ea
h strategy demands 
ertain 
ondi-

tions of the rewrite relation to ensure the 
ompleteness

of narrowing (the ability to 
ompute all the solutions of

an equation.)

Our 
ontribution is a strategy that, for indu
tively se-

quential systems [1℄, preserves the 
ompleteness of nar-

rowing and performs only steps that are \unavoidable"

for solving equations. This 
hara
terization leads to the

optimality of our strategy with respe
t to the number

of \distin
t" steps of a derivation. Advantages of our

strategy over existing ones in
lude: the large 
lass of

rewrite systems to whi
h it is appli
able, both the op-

timality of the derivations and the independen
e of the

uni�ers it 
omputes, and the ease of its implementation.

The notion of an unavoidable step is well-known for

rewriting. Orthogonal systems have the property that

in every term t not in normal form there exists a re-

dex, 
alled needed, that must \eventually" be redu
ed

to 
ompute the normal form of t [24, 30, 39℄. Further-

more, repeated rewriting of needed redexes in a term

suÆ
es to 
ompute its normal form, if it exists. Loosely

speaking, only needed redexes really matter for rewrit-

ing in orthogonal systems. We extend this fa
t to nar-

rowing in indu
tively sequential systems, a sub
lass of

the orthogonal systems.

Restri
ting our dis
ussion to this sub
lass is not a

limitation for the use of narrowing in programming lan-



guages. Computing a needed redex in a term is an un-

solvable problem. Strongly sequential systems are, in

pra
ti
e, the largest 
lass for whi
h the problem be-


omes solvable. Indu
tively sequential systems are a

large 
onstru
tor-based sub
lass of the strongly sequen-

tial systems.

After some preliminaries in Se
tion 2, we present our

strategy in Se
tion 3. We formulate the soundness and


ompleteness results in Se
tion 4. We address our strat-

egy's optimality in Se
tion 5. We 
ompare related work

in Se
tion 6. Our 
on
lusion is in Se
tion 7. Due to

la
k of spa
e we omit the proofs of the theorems, but

the interested reader will �nd them in [3℄.

2 Preliminaries

We re
all some key notions and notations about rewrit-

ing. See [11, 29℄ for tutorials.

Terms are 
onstru
ted w.r.t. a given many-sorted sig-

nature �. We write Var(t) for the set of variables o

ur-

ring in a term t. Equational logi
 programs are gener-

ally 
onstru
tor-based, i.e., symbols, 
alled 
onstru
tors,

that 
onstru
t data terms are distinguished from those,


alled de�ned fun
tions or operations, that operate on

data terms (see, for instan
e, the Equational Interpreter

[40℄ and the fun
tional logi
 languages ALF [19℄, BA-

BEL [37℄, K-LEAF [16℄, LPG [6℄, SLOG [15℄). Hen
e,

we assume that R is a 
onstru
tor-based term rewriting

system 
onsisting of rewrite rules of the form l ! r,

where l is an innermost term, i.e., the root of l is an

operation and the arguments of l do not 
ontain any

operation symbol.

Substitutions and uni�ers are de�ned as usual [11℄,

where we write mgu(s; t) for the most general uni�er of

s and t. We write � � �

0

[V ℄ i� there is a substitution �

with �

0

(x) = �(�(x)) for all variables x 2 V . Two sub-

stitutions � and �

0

are independent on a set of variables

V i� there exists some x 2 V su
h that �(x) and �

0

(x)

are not uni�able.

An o

urren
e or position p is a path identifying a

subterm in a term. tj

p

denotes the subterm of t at posi-

tion p, and t[s℄

p

denotes the result of repla
ing tj

p

with

s in t.

A term rewriting system R is orthogonal if for ea
h

rule l ! r 2 R the left-hand side l does not 
ontain

multiple o

urren
es of one variable (left-linearity) and

for ea
h non-variable subterm lj

p

of l there exists no rule

l

0

! r

0

2 R su
h that lj

p

and l

0

unify (non-overlapping).

A rewrite step t!

p; l!r

s is the appli
ation of the rule

l ! r to the redex tj

p

, i.e., s = t[�(r)℄

p

for some sub-

stitution � with tj

p

= �(l). A term is in normal form

if it 
annot be rewritten. Fun
tional logi
 programs


ompute with partial information, i.e., a fun
tional ex-

pression may 
ontain logi
al variables. The goal is to


ompute values for these variables su
h that the expres-

sion is evaluable to a parti
ular normal form, e.g., a


onstru
tor term [16, 37℄. This is done by narrowing.

De�nition 1 A term t is narrowable to a term s if there

exist a non-variable position p in t (i.e., tj

p

is not a

variable), a variant l ! r of a rewrite rule in R with

Var(t)\Var(l ! r) = ; and a uni�er � of tj

p

and l su
h

that s = �(t[r℄

p

). In this 
ase we write t;

p; l!r;�

s. If

� is a most general uni�er of tj

p

and l, the narrowing

step is 
alled most general. We write t

0

�

;

�

t

n

if there

is a narrowing sequen
e t

0

;

p

1

;R

1

;�

1

t

1

;

p

2

;R

2

;�

2

� � �;

p

n

;R

n

;�

n

t

n

with � = �

n

Æ � � � Æ �

2

Æ �

1

.

Sin
e the instantiation of the variables in the rule l! r

by � is not relevant for the 
omputed result of a narrow-

ing derivation, we will omit this part of � in the example

derivations in this paper.

Example 2 Referring to Example 1,

A+B ;

�;R

5

;fA7!s(0);B 7!0g

s(0 + 0)

and

A+B ;

�;R

5

;fA7!s(X)g

s(X +B)

are narrowing steps of A + B, but only the latter is a

most general narrowing step.

Padawitz [42℄ too distinguishes between narrowing and

most general narrowing, but in most papers narrowing

is intended as most general narrowing (e.g., [25℄). Most

general narrowing has the advantage that most general

uni�ers are uniquely 
omputable, whereas there exist

many independent uni�ers. Dropping the requirement

that uni�ers be most general is 
ru
ial to the de�ni-

tion of needed narrowing step, sin
e these steps may be

impossible with most general uni�ers.

Narrowing solves equations, i.e., 
omputes values for

the variables in an equation su
h that the equation be-


omes true, where an equation is a pair t � t

0

of terms of

the same sort. Sin
e we do not require terminating term

rewriting systems, normal forms may not exist. Hen
e,

we de�ne the validity of an equation as a stri
t equal-

ity on terms in the spirit of fun
tional logi
 languages

with a lazy operational semanti
s su
h as K-LEAF [16℄

and BABEL [37℄. Thus, a substitution � is a solution

for an equation t � t

0

i� �(t) and �(t

0

) are redu
ible

to a same ground 
onstru
tor term. Equations 
an also

be interpreted as terms by de�ning the symbol � as a

binary operation symbol, more pre
isely, one operation

symbol for ea
h sort. Therefore all notions for terms,

su
h as substitution, rewriting, narrowing et
., will also

be used for equations. The semanti
s of � is de�ned by

the following rules, where ^ is assumed to be a right-

asso
iative in�x symbol, and 
 is a 
onstru
tor of arity

0 in the �rst rule and arity n > 0 is the se
ond rule.


 � 
 ! true


(X

1

; : : : ; X

n

) � 
(Y

1

; : : : ; Y

n

) ! ^

n

i=1

(X

i

� Y

i

)

true ^X ! X

2



These are the equality rules of a signature. It is easy to

see that the orthogonality status of a rewrite system is

not 
hanged by these rules. The same holds true for the

indu
tive sequentiality, whi
h will be de�ned shortly.

With these rules a solution of an equation is 
omputed

by narrowing it to true|an approa
h also taken in K-

LEAF [16℄ and BABEL [37℄. The equivalen
e between

the redu
ibility to a same ground 
onstru
tor term and

the redu
ibility to true using the equality rules is ad-

dressed by Proposition 1.

Our strategy extends to narrowing the rewriting no-

tion of need. The idea, for rewriting, is to redu
e in

a term only 
ertain redexes whi
h must be redu
ed to


ompute the normal form of t. In orthogonal term

rewriting systems, every term not in normal form has a

redex that must be redu
ed to 
ompute the term's nor-

mal form. The following de�nition [24℄ formalizes this

idea.

De�nition 2 Let A = t!

u; l!r

t

0

be a rewrite step of

some term t into t

0

at position u with rule l ! r. The

set of des
endants (or residuals) of a position v by A,

denoted v nA, is

v nA =

8

>

>

>

>

<

>

>

>

>

:

; if u = v,

fvg if u 6� v,

fup

0

q su
h that rj

p

0

= xg

if v = upq and lj

p

= x,

where x is a variable.

The set of des
endants of a position v by a rewrite

derivation B is de�ned by indu
tion as follows

v nB =

(

fvg if B = ;,

S

w2vnB

0

w nB

00

if B = B

0

B

00

.

A position u of a term t is 
alled needed i� in every

rewrite derivation of t to a normal form a des
endant of

tj

u

is rewritten at its root.

A position uniquely identi�es a subterm of a term. The

notion of des
endant for terms stems dire
tly from the


orresponding notion for positions.

A more intuitive de�nition of des
endant of a position

or term is proposed in [30℄. Let t

�

! t

0

be a redu
tion

sequen
e and s a subterm of t. The des
endants of s

in t

0

are 
omputed as follows: Underline the root of s

and perform the redu
tion sequen
e t

�

! t

0

. Then, every

subterm of t

0

with an underlined root is a des
endant of

s.

Example 3 Consider the operation that doubles its ar-

gument by means of an addition. The rules of addition

are in Example 1.

double(X) ! X +X R

6

In the following redu
tion of double(0 + 0) we show, by

means of underlining, the des
endants of 0 + 0.

double(0 + 0)!

�;R

6

(0 + 0) + (0 + 0)

The set of des
endants of position 1 by the above re-

du
tion is f1; 2g.

3 Outermost-needed narrowing

An eÆ
ient narrowing strategy must limit the sear
h

spa
e. No suitable rule 
an be ignored, but some posi-

tions in a term may be negle
ted without losing 
om-

pleteness. For instan
e, Hullot [25℄ has introdu
ed ba-

si
 narrowing, where narrowing is not applied at po-

sitions introdu
ed by substitutions, Fribourg [15℄ has

proposed innermost narrowing, where narrowing is ap-

plied only at an innermost position, and H�olldobler [22℄

has 
ombined innermost and basi
 narrowing. Narrow-

ing only at outermost positions is 
omplete only if the

rewrite system satis�es strong restri
tions su
h as non-

uni�ability of subterms of the left-hand sides of rewrite

rules [12℄. Lazy narrowing [9, 36, 44℄, akin to lazy eval-

uation in fun
tional languages, attempts to avoid un-

ne
essary evaluations of expressions. A lazy narrowing

step is applied at outermost positions with the ex
ep-

tion that inner arguments of a fun
tion are evaluated,

by narrowing them to their head normal forms, if their

values are required for an outermost narrowing step.

Unfortunately, the property \required" depends on the

rules tried in following steps, and looking-ahead is not

a viable option.

We want to perform only narrowing steps that are

ne
essary for 
omputing solutions. Naively, one 
ould

say that a narrowing step t;

p; l!r;�

t

0

is needed i� p is

a position of t, � is the most general uni�er of tj

p

and

l, and �(tj

p

) is a needed redex. Unfortunately, a sub-

stantial 
ompli
ation arises from this simple approa
h.

If t

0

is a normal form, the step is trivially needed. How-

ever, some instantiation performed later in the deriva-

tion 
ould \undo" this need.

Example 4 Referring to Example 1, 
onsider the term

t = X � Y + Z. A

ording to the naive approa
h, the

following narrowing step of t at position 2

X � Y + Z ;

2;R

4

;fY 7!0g

X � Z

would be needed, sin
e X � Z is a normal form. This

step is indeed ne
essary to solve the inequality if s(x),

for some term x, is eventually substituted for X , al-

though this 
laim may not be obvious without the re-

sults presented in this note. However, the same step

be
omes unne
essary if 0 is substituted for X , as shown

by the following derivation, whi
h 
omputes a more gen-

eral solution of the inequation without ever narrowing

any des
endant of t at 2.

X � Y + Z ;

�;R

1

;fX 7!0g

true

Thus, in our de�nition, we impose a 
ondition strong

enough to ensure the ne
essity of a narrowing step, no

3



matter whi
h uni�ers might be used later in the deriva-

tion.

De�nition 3 A narrowing step t ;

p;R;�

t

0

is 
alled

needed or outermost-needed i�, for every � � �, p is the

position of a needed or outermost-needed redex of �(t),

respe
tively. A narrowing derivation is 
alled needed

or outermost-needed i� every step of the derivation is

needed or outermost-needed, respe
tively.

Our de�nition adds, with respe
t to rewriting, a new di-

mension to the diÆ
ulty of 
omputing needed narrowing

steps. We must take into a

ount any instantiation of

a term in addition to any derivation to normal form.

Lu
kily, as for rewriting, the problem has an eÆ
ient

solution in indu
tively sequential systems. We forgo

the requirement that the uni�er of a narrowing step be

most general. The instantiation that we demand in ad-

dition to that for the most general uni�
ation ensures

the need of the position irrespe
tive of future uni�ers.

It turns out that this extra instantiation would eventu-

ally be performed later in the derivation. Thus we are

only \anti
ipating" it, and the 
ompleteness of narrow-

ing is preserved. This approa
h, however, 
ompli
ates

the notion of narrowing strategy.

A

ording to [12, 42℄, a narrowing strategy is a fun
-

tion from terms into non-variable positions in these

terms so that exa
tly one position is sele
ted for the

next narrowing step. Unfortunately, this notion of nar-

rowing strategy is inadequate for narrowing with arbi-

trary uni�ers, whi
h, as Example 4 shows, are essential

to 
apture the need of a narrowing step.

De�nition 4 A narrowing strategy is a fun
tion from

terms into sets of triples. If S is a narrowing strategy, t

is a term, and (p; l ! r; �) 2 S(t), then p is a position

of t, l ! r is a rewrite rule, and � a substitution su
h

that t;

p; l!r;�

�(t[r℄

p

) is a narrowing step.

We now de�ne a 
lass of rewrite systems for whi
h there

exists an eÆ
iently 
omputable needed narrowing strat-

egy. Systems in this 
lass have the property that the

rules de�ning any operation 
an be organized in a hi-

erar
hi
al stru
ture 
alled de�nitional tree [1℄, whi
h is

used to implement needed rewriting. This note gener-

alizes that result to narrowing.

The symbols bran
h, rule, and exempt, used in the

next de�nition, are uninterpreted fun
tions used to 
las-

sify the nodes of the tree. A pattern is an innermost

term 
ontained in ea
h node.

De�nition 5 T is a partial de�nitional tree, or pdt,

with pattern � w.r.t. a 
onstru
tor-based rewrite sys-

tem R i� one of the following 
ases holds:

T = bran
h(�; o; T

1

; : : : ; T

k

); where � is a pattern, o

is the o

urren
e of a variable of �, the sort of

�j

o

has 
onstru
tors 


1

; : : : ; 


k

, for some k > 0,

and for all i in f1; : : : ; kg, T

i

is a pdt with pattern

�[


i

(X

1

; : : : ; X

n

)℄

o

, where n is the arity of 


i

and

X

1

; : : : ; X

n

are new variables.

T = rule(�; l! r); where � is a pattern and l ! r is

a rewrite rule in R su
h that l = �.

T = exempt(�); where � is a pattern and l 6� � for

every rule l! r in R.

T is a de�nitional tree of an operation f i� T is a pdt

with f(X

1

; : : : ; X

n

) as the pattern argument, where n

is the arity of f and X

1

; : : : ; X

n

are new variables.

We 
all indu
tively sequential an operation f of a

rewrite system R i� there exists a de�nitional tree T

of f su
h that the rules 
ontained in T are all and only

the rules de�ning f in R. We 
all indu
tively sequential

a rewrite system R i� any operation of R is indu
tively

sequential.

Example 5 We show a pi
torial representations of def-

initional trees of the operations de�ned in Example 1.

A bran
h node of the pi
ture shows the pattern of a 
or-

responding node of the de�nitional tree. A leaf node of

the pi
ture shows the right sides of a rule 
ontained in

a rule node of the tree. The o

urren
e argument of a

bran
h node is shown by emboldening the 
orresponding

subterm in the pattern argument.

X

1

� X

2

0 � X

2

true

s(X

3

) �X

2

s(X

3

) � 0

false

s(X

3

) � s(X

4

)

X

3

� X

4

Y

1

+ Y

2

0 + Y

2

s(Y

3

) + Y

2

Y

2

s(Y

3

+ Y

2

)

Indu
tively sequential systems are 
onstru
tor-based

and strongly sequential [1℄. We 
onje
ture that these

two 
lasses are the same. Indu
tively sequential systems

model the �rst-order fun
tional 
omponent of program-

ming languages, su
h as ML and Haskell, that establish

priorities among rules by textual pre
eden
e or spe
i-

�
ity [28℄. We now give an informal a

ount of our

strategy.

4



The patterns of a de�nitional tree are a �nite set par-

tially ordered by the subsumption preordering and 
om-

plete in the sense of [23℄. Let t = f(t

1

; : : : ; t

k

) be a term

to narrow. We unify t with some maximal element of

the set of patterns of a de�nitional tree of f . Let � de-

note su
h a pattern, � the most general uni�er of t and

�, and T the pdt in whi
h � is 
ontained. If T is a rule

pdt , then we narrow �(t) at the root with the rule 
on-

tained in T . If T is an exempt pdt , then �(t) 
annot be

narrowed to a 
onstru
tor-rooted term. If T is a bran
h

pdt , then we re
ur on �(tj

o

), where o is the o

urren
e


ontained in T and � is the anti
ipated substitution.

The result of the re
ursive invo
ation is suitably 
om-

posed with � and o. The details of this 
omposition are

in the formal de�nition presented below.

We derive our outermost-needed strategy from a

mapping, �, that implements the above 
omputation.

� takes two arguments, an operation-rooted term t

and a de�nitional tree T of the root of t, and non-

deterministi
ally returns a triple, (p;R; �), where p is

a position of t, R is either a rule l ! r of R or the

distinguished symbol \?", and � is a substitution. If

R = l ! r, then our strategy performs the narrowing

step t ;

p; l!r;�

�(t[r℄

p

). If R = ?, then our strat-

egy gives up, sin
e it is impossible to narrow t to a


onstru
tor-rooted term.

In the following de�nition, pattern(T ) denotes the

pattern argument of T .

De�nition 6 The fun
tion � takes two arguments,

an operation-rooted term t and a pdt T su
h that

pattern(T ) and t unify. The fun
tion � yields a set

of triples of the form (p;R; �), where p is a position of

t, R is either a rewrite rule or the distinguished symbol

\?", and � is a uni�er of pattern(T ) and t. Thus, let t

be a term and T a pdt in the domain of �. The fun
-

tion � is de�ned by strong arithmeti
al indu
tion on the

number of o

urren
es of operation symbols in t and by

stru
tural indu
tion on T in Figure 1. The fun
tion

� is well-de�ned in the third 
ase sin
e, by the de�ni-

tion of pdt , there exists a proper subpdt T

i

of T su
h

that pattern(T

i

) and t unify if tj

o

is 
onstru
tor-rooted

or a variable. Similarly, � is well-de�ned in the fourth


ase sin
e this 
ase 
an only o

ur if tj

o

is operation-

rooted. In this 
ase �

jVar(t)

is a 
onstru
tor substitution

sin
e � is a linear innermost term. Sin
e t is operation-

rooted and o 6= �, �(tj

o

) has fewer o

urren
es of oper-

ation symbols than t. Sin
e tj

o

is operation-rooted, so

is �(tj

o

). By the de�nition of pdt , pattern(T

0

) � �(tj

o

),

i.e., pattern(T

0

) and �(tj

o

) unify. This implies that � is

well-de�ned in this 
ase too.

As in proof pro
edures for logi
 programming, we have

to apply variants of the rewrite rules with fresh variables

to the 
urrent term. Therefore, we assume in the fol-

lowing that the de�nitional trees 
ontain new variables

if they are used in a narrowing step.

The 
omputation of �(t; T ) may entail a non-deter-

ministi
 
hoi
e when T is a bran
h pdt|the integer i

when tj

o

is 
onstru
tor-rooted or a variable. The substi-

tution � when tj

o

is operation-rooted is the anti
ipated

substitution guaranteeing the need of the 
omputed po-

sition. It is pushed down in the re
ursive 
all to � to

ensure the 
onsisten
y of the 
omputation when t is non-

linear. The anti
ipated substitution is negle
ted when

tj

o

is not operation-rooted, sin
e the pattern in T

i

is an

instan
e of �. Hen
e, � extends the anti
ipated substi-

tution.

Example 6 We tra
e the 
omputation of � for the ini-

tial step of a derivation of X � Y + Z, whi
h was dis-


ussed in Example 4.

�(X � Y + Z; bran
h(X

1

� X

2

; 1; : : :))

�(X � Y + Z; bran
h(s(X

3

) � X

2

; 2; : : :))

�(Y + Z; bran
h(Y

1

+ Y

2

; 1; : : :))

�(Y + Z; rule(0 + Y

2

;R

4

))

(�;R

4

; fY 7! 0; Y

2

7! Zg)

(�;R

4

; fY 7! 0; Y

2

7! Zg)

(2;R

4

; fX 7! s(X

3

); X

2

7! 0 + Z; Y 7! 0; Y

2

7! Zg)

(2;R

4

; fX 7! s(X

3

); X

2

7! 0 + Z; Y 7! 0; Y

2

7! Zg)

We are interested only in narrowing derivations that end

in a 
onstru
tor term. Our key result is that if �, on

input of a term t, 
omputes a position p and a substitu-

tion �, and � extends �, then �(t) must \eventually" be

narrowed at p to obtain a 
onstru
tor term. \Eventu-

ally" is formalized by the notion of des
endant, whi
h,

initially proposed for rewriting [24℄, is extended to nar-

rowing simply by repla
ing !

u; l!r

with ;

u; l!r;�

in

De�nition 2.

Theorem 1 Let R be an indu
tively sequential rewrite

system, t an operation-rooted term, and T a de�nitional

tree of the root of t. Let (p;R; �) 2 �(t; T ) and � extend

�, i.e., � � �.

1. In any narrowing derivation of �(t) to a 
onstru
-

tor-rooted term a des
endant of �(tj

p

) is narrowed

to a 
onstru
tor-rooted term.

2. If R = l ! r, then t ;

p;R;�

�(t[r℄

p

) is an outer-

most-needed narrowing step.

3. If R = ?, then �(t) 
annot be narrowed to a 
on-

stru
tor-rooted term.

We say that a narrowing derivation is 
omputed by �

i� for ea
h step t ;

p;R;�

t

0

of the derivation, (p;R; �)

belongs to �(t; T ). The fun
tion � implements our nar-

rowing strategy as dis
ussed next. The theorem shows

(
laim 2) that our strategy � 
omputes only outermost-

needed narrowing steps. The theorem, however, does

not show that the 
omputation su

eeds, i.e., a narrow-

ing step is 
omputed for any operation-rooted, hen
e ex-

pe
tedly narrowable, term. This requirement may seem

5



�(t; T ) 3

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(�; R;mgu(t; �)) if T = rule(�;R);

(�; ?;mgu(t; �)) if T = exempt(�);

(p;R; �) if T = bran
h(�; o; T

1

; : : : ; T

k

),

t and pattern(T

i

) unify, for some i, and

(p;R; �) 2 �(t; T

i

);

(o � p;R; � Æ �) if T = bran
h(�; o; T

1

; : : : ; T

k

),

t and pattern(T

i

) do not unify, for any i,

� = mgu(t; �),

T

0

is a de�nitional tree of the root of �(tj

o

), and

(p;R; �) 2 �(�(tj

o

); T

0

).

Figure 1: De�nition of �

essential, sin
e to narrow a term \all the way" a strategy

should 
ompute a narrowing step, when one exists. In-

deed, in in
omplete rewrite systems, � may fail to 
om-

pute any narrowing step even when some step 
ould be


omputed.

Example 7 Consider an in
ompletely de�ned opera-

tion, f , taking and returning a natural number.

f(0)! 0

The term t = f(s(f(0))) 
an be narrowed (a
tually

rewritten, sin
e it is ground) to its normal form, f(s(0)).

The only redex position of t is 1 � 1, but � returns the

set f(1; ?; fg)g.

The inability of � to 
ompute 
ertain outermost-needed

narrowing steps is a blessing in disguise. The theorem

(
laim 3) justi�es giving up a narrowing attempt as soon

as the failure to �nd a rule o

urs|without further at-

tempts to narrow t at other positions with the hope

that a di�erent rule might be found after other nar-

rowing steps or that the position might be deleted [7℄

by another narrowing step. If (p; ?; �) 2 �(t; T ), no

equation having �(t) as one side 
an be solved. Any

amount of work applied toward �nding a solution would

be wasted. This is an opportunity for optimization. In

fa
t �(t) may be narrowable at other positions di�erent

from p and an equation with �(t) as a side may even

have an in�nite sear
h spa
e. However, any amount of

work applied toward �nding a solution would be wasted.

Example 8 Consider the following term rewriting sys-

tem for subtra
tion:

X � 0 ! X R

1

s(X)� s(Y ) ! X � Y R

2

This term rewriting system is indu
tively sequential and

a de�nitional tree, T , of the operation \�" has an ex-

empt node for the pattern 0� s(X), i.e., the system is

in
omplete and (�; ?; fg) 2 �(0�s(X); T ). Therefore we


an immediately stop the needed narrowing derivation

of the equation 0� s(X) � Y �Z while there would be

in�nitely many narrowing derivations for the right-hand

side of this equation.

The de�nition of our outermost-needed narrowing strat-

egy does not determine the 
omputation spa
e for a

given indu
tively sequential rewrite system in a unique

way. The 
on
rete strategy depends on the de�nitional

trees, and there is some freedom to 
onstru
t these.

For a dis
ussion on how to 
ompute de�nitional trees

from rewrite rules and the impli
ations of some non-

deterministi
 
hoi
es of this 
omputation see [1℄. As

we will show in Se
tion 5, this does not a�e
t the op-

timality of our strategy w.r.t. 
omputed solutions. But

in 
ase of failing derivations a de�nitional tree whi
h is

\unne
essarily large" 
ould result in unne
essary deriva-

tion steps.

E.g., a minimal de�nitional tree of the operation

\�" in Example 8 has an exempt node for the pattern

0 � s(X). However, De�nition 5 also allows a de�ni-

tional tree with a bran
h node for the pattern 0� s(X)

whi
h has exempt nodes for the patterns 0 � s(0) and

0 � s(s(X

1

)). Our strategy would perform some un-

ne
essary steps if this de�nitional tree were used for

narrowing the term 0 � s(t), where t is an operation-

rooted term. These unne
essary steps 
an be avoided

if all bran
h nodes in a de�nitional tree are useful, i.e.,

there is at least one rule node in ea
h bran
h subpdt .

However, the non-determinism of the trees of 
ertain

operations makes it possible that some work may be

wasted when a narrowing derivation 
omputed by �

terminates with a non-
onstru
tor term. The problem

seems inevitable and is due to the inherent parallelism

of 
ertain operations, su
h as �; this issue is dis
ussed

in some depth in [1, Display (8)℄. The problem o

urs

only in terms with two or more outermost-needed nar-

rowing positions, one of whi
h 
annot be narrowed to a


onstru
tor-rooted term.
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4 Soundness and 
ompleteness

Outermost-needed narrowing is a sound and 
omplete

pro
edure to solve equations if we add the equality rules

to narrow equations to true. The following proposition

shows the equivalen
e between the redu
ibility to a same

ground 
onstru
tor term and the redu
ibility to true

using the equality rules.

Proposition 1 Let R be a term rewriting system with-

out rules for � and ^. Let R

0

be the system obtained

by adding the equality rules to R. The following propo-

sitions are equivalent for all terms t and t

0

:

1. t and t

0

are redu
ible in R to a same ground 
on-

stru
tor term.

2. t � t

0

is redu
ible in R

0

to `true'.

The soundness of outermost-needed narrowing is easy

to prove, sin
e outermost-needed narrowing is a spe
ial


ase of general narrowing.

Theorem 2 (Soundness of outermost-needed narrow-

ing) Let R be an indu
tively sequential rewrite system

extended by the equality rules. If t � t

0

�

;

�

true is

an outermost-needed narrowing derivation, then � is a

solution for t � t

0

.

Outermost-needed narrowing instantiates variables to


onstru
tor terms. Thus, we only show that outermost-

needed narrowing is 
omplete for 
onstru
tor substitu-

tions as solutions of equations. This is not a limitation

in pra
ti
e, sin
e more general solutions would 
ontain

unevaluated or unde�ned expressions. This is not a lim-

itation with respe
t to related work, sin
e most general

narrowing is known to be 
omplete only for irredu
ible

solutions [42℄, and lazy narrowing is 
omplete only for


onstru
tor substitutions [16, 37℄. The following the-

orem shows the 
ompleteness of our strategy, �, and


onsequently of outermost-needed narrowing.

Theorem 3 (Completeness of outermost-needed nar-

rowing) Let R be an indu
tively sequential rewrite sys-

tem extended by the equality rules. Let � be a 
on-

stru
tor substitution that is a solution of an equation

t � t

0

and V be a �nite set of variables 
ontain-

ing Var(t) [ Var(t

0

). Then there exists a derivation

t � t

0

�

;

�

0

true 
omputed by � su
h that �

0

� �[V ℄.

The theorem justi�es our earlier remark on the rela-

tionship between 
ompleteness and anti
ipated substi-

tutions. Any anti
ipated substitution of a needed nar-

rowing step is irrelevant or would eventually be done

later in the derivation, and thus, it does not a�e
t

the 
ompleteness. Anti
ipating substitutions is appeal-

ing, even without the bene�ts related to the need of a

step, sin
e less general substitutions are likely to yield

a smaller sear
h spa
e to 
ompute the same set of solu-

tions.

5 Optimality

In Se
tion 3 we showed that our strategy 
omputes only

ne
essary steps. We now strengthen this 
hara
teriza-

tion by showing that our strategy 
omputes only ne
es-

sary derivations of minumum length. The next theorem


laims that no redundant derivation is 
omputed by �.

Theorem 4 (Independen
e of solutions) Let R be an

indu
tively sequential rewrite system extended by the

equality rules, e an equation to solve and V = Var(e).

Let e

+

;

�

true and e

+

;

�

0

true be two distin
t deriva-

tions 
omputed by �. Then, � and �

0

are independent

on V .

We now dis
uss the 
ost and length of a derivation


omputed by our strategy.

If p is a needed position of some term t, then in any

narrowing derivation of t to a 
onstru
tor term there is

at least one step asso
iated with p. If this step is de-

layed and p is not outermost, then several des
endants

of p may be 
reated and several steps may be
ome ne
-

essary to narrow this set of des
endants, e.g., see Ex-

ample 3. However, from a pra
ti
al standpoint, if terms

are appropriately represented, the 
ost of narrowing t at

(some des
endant of) p is largely independent of where

the step o

urs in the derivation of t. We formalize this

viewpoint, whi
h leads to another optimality result for

our strategy.

De�nition 7 Let t ;

p

i

; l

i

!r

i

;�

i
t

i

, for i in some set

of indi
es I = f1; : : : ; ng, be a narrowing step su
h

that for any distin
t i and j in I , p

i

and p

j

are dis-

joint and �

i

Æ �

j

= �

j

Æ �

i

. We say that t is narrow-

able to t

0

in a multistep, denoted t ;

hp

i

;l

i

!r

i

;�

i

i

i2I

t

0

,

i� t

0

= Æ

i2I

�

i

(((t[r

1

℄

p

1

)[r

2

℄

p

2

) : : : [r

n

℄

p

n

), where Æ

i2I

�

i

denotes the 
omposition �

n

Æ : : : Æ �

2

Æ �

1

(the order is

irrelevant.)

When we want to emphasize the di�eren
e between a

step as de�ned in De�nition 1 and a multistep, we re-

fer to the former as elementary. Otherwise, we identify

an elementary step with a multistep in whi
h the set of

narrowed positions has just one element. A narrowing

multistep 
an be thought of as a set of elementary steps

performed in parallel. In fa
t, the 
onditions that we

impose on the positions and substitutions of ea
h ele-

mentary step from whi
h a multistep is de�ned imply

that in a multistep the order in whi
h substitutions are


omposed and positions are narrowed is irrelevant.

To 
laim that our strategy is optimal, we assign a

\
ost" to both a step and a derivation. By 
onvention,

an elementary step has unit 
ost. However, it does not

seem appropriate, for pra
ti
al reasons, to set the 
ost

of a multistep equal to the number of positions narrowed

in the step. We will justify our 
hoi
e after giving our

de�nition of 
ost.
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For any set I and equivalen
e relation � on I , jI j de-

notes the 
ardinality of I , and I=� denotes the quotient

of I modulo �.

De�nition 8 Let � =

t

0

;

hp

i

1

;R

i

1

;�

i

1

i

i2I

1

t

1

;

hp

i

2

;R

i

2

;�

i

2

i

i2I

2

� � � be a narrowing

(multi)derivation. The symbol �

n

denotes the equiv-

alen
e relation on I

n

de�ned as follows: for any i and j

in I

n

, i�

n

j i� the subterms identi�ed by these indi
es

have a 
ommon an
estor, more pre
isely, there exists

somem, less than n, su
h that for some position q in t

m

,

both Æ

k2I

n+1

�

k

n+1

(t

n

j

p

i

n+1

) and Æ

k2I

n+1

�

k

n+1

(t

n

j

p

j

n+1

)

are des
endants of Æ

k2I

m+1

�

k

m+1

(t

m

j

q

).

We 
all a family any maximal subset of equivalent

indi
es. The 
ost of the n-th step of � is the number

of families in I

n

, i.e., jI

n

=�

n

j. The 
ost of �, denoted


ost(�), is the total 
ost of its steps.

We say that a family is 
omplete i� it 
annot be en-

larged, and we say that a step is 
omplete i� all its

families are 
omplete, more pre
isely, I

n

is 
omplete i�

if i is in I

n

, then for any position q of Æ

k2I

n

�

k

n+1

(t

n�1

)

su
h that p

i

n

and q have a 
ommon an
estor in some

term of �, there exists some j in I

n

su
h that q = p

j

n

.

We say that a derivation is 
omplete i� all its steps are


omplete.

If I is the set of indi
es of a narrowing step and i and

j belong to I , then i� j i� p

i

and p

j

are, using an

anthropomorphi
 metaphor, blood related. A 
omplete

derivation is 
hara
terized by narrowing 
omplete \fam-

ilies," i.e., sets 
ontaining all the pairwise blood related

subterms of a term. Note that the blood related sub-

terms of a term are all equal and that their positions

are pairwise disjoint, thus all of them 
an be in
luded

in a multistep. Our 
hoi
e of 
ost measure is suggested

by the observation that if t ;

p;R;�

t

0

, and q and p are

blood related positions, then narrowing t at q \when t

is being narrowed at p" involves no additional 
omputa-

tion of a substitution and/or a rule, and 
onsequently no

additional 
omputation of a substituting term (the in-

stantiation of the right side of a rule,) sin
e the redu
ts

of blood related subterms are all equal, too. This im-

plies that all the members of a family 
ould be \shared"

in the representation of t. When this is being done (as

in eÆ
ient implementations of narrowing [19℄), a multi-

step entailing a whole family does not di�er, in pra
ti
e,

from an elementary step.

Theorem 5 If � = t

�

;

�

u is a 
omplete outermost-

needed narrowing multiderivation of a term t into a 
on-

stru
tor term u, then � has minimum 
ost. I.e., for any

multiderivation � = t

�

;

�

u, 
ost(�) � 
ost(�).

Elementary steps are easier to understand and to imple-

ment than multisteps. To a
hieve optimality, we need

multisteps only as far as blood related terms are 
on-


erned. Full sharing of blood related subterms implies

that no family ever 
ontains more than a single member,

in pra
ti
e, and thus any elementary step be
omes triv-

ially 
omplete. In turn, this equates derivations of min-

imum 
ost with those of minimum length. Te
hniques

for rewriting \terms" with shared subterms go under the

name of term graph rewriting [47℄ and adapting them

to narrowing, for the systems we are 
onsidering, poses

no major problem [4℄.

6 Related work

There are three resear
h topi
s related to our work: (1)

the 
on
ept of need as the foundation of laziness, (2)

strategies for using narrowing in programming, and (3)

implementations of narrowing in Prolog.

6.1 Narrowing and need

Seminal studies on the 
on
ept of need in rewriting ap-

pear in [24, 39℄. Subsequent variations and extensions,

e.g., [7, 21, 27, 30, 33, 40, 41, 45, 48℄, do not address nar-

rowing, but limit the dis
ussion to rewriting. We have

introdu
ed a 
on
ept of need for narrowing that extends

a similar 
on
ept for rewriting. We have shown that the


on
ept of need for narrowing is inherently more 
om-

pli
ated than that for rewriting. In orthogonal systems,

a redu
tion step has one degree of freedom, the sele
tion

of the position, but a narrowing step has two, both the

position and the uni�er.

We have dis
ussed only indu
tively sequential sys-

tems. Further resear
h will extend this 
lass to strongly

sequential and/or weakly orthogonal systems. The ex-

tension to weakly orthogonal systems would weaken

our strong optimality result, but in
lude additional

non-determinism. Sekar and Ramakrishnan [45℄ pro-

pose ne
essary sets as a generalization of the notion

of need for weakly orthogonal systems. Antoy [1℄ sug-

gests rewriting ne
essary sets of redexes using parallel

de�nitional trees and a fun
tion analogous to �. This

approa
h 
an be extended to narrowing without major

problems.

6.2 Narrowing strategies

The trade-o� between power and eÆ
ien
y is 
entral to

the use of narrowing, espe
ially in programming. To this

aim, several narrowing strategies, e.g., [9, 12, 13, 14, 15,

16, 18, 20, 22, 31, 35, 36, 37, 38, 44, 49℄ have been pro-

posed. The notion of 
ompleteness has evolved a

ord-

ingly. Plotkin's 
lassi
 formulation [43℄ has been relaxed

to 
ompleteness w.r.t. ground solutions (e.g. [15℄) or


ompleteness w.r.t. stri
t equality and domain-based in-

terpretations, as in [16, 37℄. The latter appear more ap-

propriate for narrowing as the 
omputational paradigm

8



of fun
tional logi
 programming languages in the pres-

en
e of in�nite data stru
tures and 
omputations.

We brie
y re
all the underlying ideas of a few major

strategies and 
ompare them with ours using the follow-

ing example. We 
hoose a strongly terminating rewrite

system with 
ompletely de�ned operations, otherwise

all the eager strategies would be immediately ex
luded.

Example 9 The symbols a, b, and 
 are 
onstru
tors,

whereas f and g are de�ned operations.

f(a) ! a R

1

f(b(X)) ! b(f(X)) R

2

f(
(X)) ! a R

3

g(a;X) ! b(a) R

4

g(b(X); a) ! a R

5

g(b(X); b(Y )) ! 
(a) R

6

g(b(X); 
(Y )) ! b(a) R

7

g(
(X); Y ) ! b(a) R

8

The equation to solve is g(X; f(X)) � 
(a). Our strat-

egy 
omputes only three derivations, only one of whi
h

yields a solution.

g(X; f(X)) � 
(a) ;

1;R

4

;fX 7!ag

b(a) � 
(a)

g(X; f(X)) � 
(a) ;

1;R

8

;fX 7!
(X

1

)g

b(a) � 
(a)

g(X; f(X)) � 
(a) ;

1:2;R

2

;fX 7!b(X

1

)g

g(b(X

1

); b(f(X

1

))) � 
(a)

�

;

fg

true

Basi
 narrowing [25℄ avoids positions introdu
ed by

the instantiations of previous steps. Its 
ompleteness,

and that of its variations, e.g., [20, 22, 31, 35, 38℄, is

known for 
onvergent rewrite systems (see [35℄ for a sys-

temati
 study.) This strategy may perform useless steps

and 
omputes an in�nite sear
h spa
e for our ben
h-

mark example.

Innermost narrowing [15℄ narrows only innermost

terms. It is ground 
omplete only for strongly terminat-

ing 
onstru
tor-based systems with 
ompletely de�ned

operations. It may perform useless steps and it 
om-

putes an in�nite number of derivations for our ben
h-

mark example.

Outermost narrowing [12, 13℄ narrows outermost

operation-rooted terms. This strategy is 
omplete only

for a restri
tive 
lass of rewrite systems. It 
omputes

no solution for our ben
hmark example.

Outer narrowing [49℄ sele
ts an inner position only

when a step at an outer position is impossible. This

strategy is 
omplete for 
onstru
tor-based systems.

Outer narrowing behaves as needed narrowing on the

ben
hmark example, however the strategy is not 
har-

a
terized as 
omputing needed steps. Furthermore,

[49℄ des
ribes the enumeration of derivations for E-

mat
hing, but not the 
omputation of derivations for

general E-uni�
ation.

Lazy narrowing [9, 16, 18, 37, 36, 44℄, similar to outer,

narrows an inner term only when the step is demanded

to narrow an outer term. For these strategies, the qual-

i�er \lazy" is used as a synonym of \outermost" or \de-

mand driven," rather than in the te
hni
al sense we pro-

pose. The 
ompleteness of these strategies is generally

expensive to a
hieve: [18℄ requires an ad-ho
 implemen-

tation of ba
ktra
king, with the potential of evaluat-

ing some term several times; [16℄ requires 
attening of

fun
tional nesting and a spe
ialized WAM-like ma
hine

in whi
h terms are dynami
ally reordered; [37℄ requires

a transformation of the rewrite system whi
h, for our

ben
hmark example, in
reases the number of operations

and lengthen the derivations.

To summarize, the distinguishing features of our strat-

egy are the following: with respe
t to eager strategies,


ompleteness for non-terminating rewrite systems; with

respe
t to the so-
alled lazy strategies, a sharp 
har-

a
terization of laziness; with respe
t to any strategy,

optimality and ease of 
omputation.

6.3 Narrowing in Prolog

Implementations of narrowing in Prolog [2, 8, 26, 32℄

are proposed as a prototypi
al and portable integration

of fun
tional and logi
 languages. For example, [8, 26℄

have been proposed as an alternative to the spe
ialized

ma
hines required for K-LEAF [16℄ and BABEL [37℄ re-

spe
tively. The most re
ent proposals [2, 32℄ are based

on de�nitional trees and appear to 
ompute needed

steps for indu
tively sequential systems, although both

methods neither formalize nor 
laim this property. The

s
heme in [2℄ 
omputes � dire
tly by pattern mat
hing.

The patterns involved in the 
omputation of � are a su-

perset of those 
ontained in a de�nitional tree. This is

suggested by 
laim 1 of Theorem 1 that shows a \strong"

need for the positions 
omputed using �|not only the

terms at these positions must be eventually narrowed,

but they must be eventually narrowed to head normal

forms. The resulting implementation takes advantage

of this 
hara
teristi
 and its performan
e appears to be

superior to the other proposals.

7 Con
luding remarks

We have proposed a new narrowing strategy obtained by

extending to narrowing the well-known notion of need

for rewriting. Need for narrowing appears harder to

handle than need for rewriting|to 
ompute a needed

narrowing step one must also look ahead a potentially

in�nite number of substitutions. Remarkably, there is

an eÆ
iently algorithm for this 
omputation in indu
-

tively sequential systems.
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We have 
ontained our dis
ussion to narrowing oper-

ation-rooted terms. This limitation shortens our dis
us-

sion and suÆ
es for solving equations. Extending our

results also to 
onstru
tor-rooted terms is straightfor-

ward. To 
ompute an outermost-needed narrowing step

of a 
onstru
tor-rooted term it suÆ
es to 
ompute an

outermost-needed narrowing step of any of its maximal

operation-rooted subterms.

We have shown how our strategy is easily imple-

mented by pattern mat
hing, and we have reported,

in the previous se
tion, its good performan
e in Pro-

log with respe
t to other similar attempts. We have

also shown that our strategy 
omputes only indepen-

dent and optimal derivations. Although all the previ-

ously proposed lazy strategies have the latter as their

primary goal, our strategy is the only one for whi
h this

result is formalized and proved.

We want to 
on
lude with a general assessment of

the \overall quality" of the narrowing strategy used by

a programming language. The key fa
tor is the trade-o�

between the size of the 
lass of rewrite systems for whi
h

the strategy is 
omplete and the eÆ
ien
y of its 
om-

putations. We prove both 
ompleteness and optimality

for indu
tively sequential systems. We believe that it

is possible to extend our result to strongly sequential

systems and, in a weaker form, to weakly orthogonal

systems.
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