
Controlling Searh in Delarative Programs?Mihael Hanus and Frank SteinerRWTH Aahen, Informatik II, D-52056 Aahen, Germanyfhanus,steinerg�i2.informatik.rwth-aahen.de
Springer-VerlagIn Pro. of the Joint International Symposium PLILP/ALP'98,Pisa (Italy). Springer LNCS 1490, pp. 374{390, 1998

Abstrat. Logi languages an deal with non-deterministi omputationsvia built-in searh failities. However, standard searh methods like globalbaktraking are often not suÆient and a soure of many programmingerrors. Therefore, we propose the addition of a single primitive to logi-oriented languages to ontrol non-deterministi omputation steps. Basedon this primitive, a number of di�erent searh strategies an be easilyimplemented. These searh operators an be applied if the standard searhfailities are not suessful or to enapsulate searh. The latter is importantif logi programs interat with the (non-baktrakable) outside world.We de�ne the searh ontrol primitive based on an abstrat notion of om-putation steps so that it an be integrated into various logi-oriented lan-guages, but to provide onrete examples we also present the integrationof suh a ontrol primitive into the multi-paradigm delarative languageCurry. The lazy evaluation strategy of Curry simpli�es the implementa-tion of searh strategies, whih also shows the advantages of integratingfuntions into logi languages.1 IntrodutionComputing solutions to partially instantiated goals and dealing with non-deterministi omputations via built-in searh failities is one of the most import-ant features of logi languages. Standard logi languages like Prolog use a globalbaktraking strategy to explore the di�erent alternatives of a omputation. Thisis often not suÆient and a soure of many problems:{ If a top-level prediate fails, all alternatives of previously alled prediatesare also explored. This may lead to an unexpeted behavior and makes thedetetion of programming errors diÆult (e.g., if the baktraking is aused bya missing alternative in the top-level prediate). This problem is often solvedby inserting \uts" whih, however, dereases the readability of programs.{ Depth-�rst searh is an inomplete strategy. Although this drawbak an bemanaged by experiened programmers, it auses diÆulties for beginners (whofrequently use prediates like ommutativity or left-reursive lauses in thebeginning). As a onsequene, one is fored to talk about Prolog's depth-�rst searh strategy too early in logi programming ourses. This an have anegative impat on the delarative style of programming.{ In larger appliation programs (e.g., ombinatorial problems), other strategiesthan the standard depth-�rst searh are often neessary. In suh ases theprogrammer is fored to program her own strategies (e.g., by using meta-? This researh has been partially supported by the German Researh Counil (DFG)under grant Ha 2457/1-1.

programming tehniques). The possible interation with the standard strategyan lead to errors whih are diÆult to �nd.These problems an be solved if there is a simple way to replae the standardsearh strategy by other strategies and to implement new searh strategies fairlyeasy. In this paper we show that this is possible by adding a single primitiveoperation to ontrol non-deterministi omputation steps. This primitive, whihis a generalization of Oz's searh operator [15℄, evaluates the program as usualbut immediately stops if a non-deterministi step ours. In the latter ase, thedi�erent alternatives are returned so that the programmer an determine the wayto proeed the omputation. Based on this primitive, a number of di�erent searhoperators, like depth-�rst searh, breadth-�rst searh, findall, or the Prolog shell,an be easily implemented. These operators also allow the enapsulation of possiblesearh in loal prediates. This feature is important if logi programs interat withthe (non-baktrakable) outside world, like �le aesses or Internet appliations.In ontrast to Oz's searh operator [15℄, whih is diretly onneted to a syn-tati onstrut of the language (disjuntions), our ontrol operator is based onan abstrat notion of basi omputation steps. Thus, it an be onsidered as ameta-level onstrut to ontrol (don't know) non-deterministi omputation stepswhih ould be added to logi-oriented languages provided that they o�er on-straints or equations to represent variable bindings and existential quanti�ationto distinguish variables whih an be bound in a loal omputation. Moreover, weprovide a formal onnetion between the searh trees of the base language and theresults omputed by our searh operators. Hene, soundness and ompleteness res-ults for the base language arry over to orresponding results for partiular searhstrategies based on our ontrol operator.The next setion introdues our notion of omputation steps of the base lan-guage. The primitive to ontrol non-deterministi omputations is desribed inSetion 3. Based on this primitive, we show the implementation of di�erent searhstrategies in Setion 4. The relations of these searh strategies with the searhtrees of the base language are established in Setion 5. We show the advantages ofa base language with lazy evaluation to provide a simple implementation of searhstrategies in Setion 6. Setion 7 ompares our tehniques with related work, andSetion 8 ontains our onlusions. Due to lak of spae, we omit some details andthe proofs of the theorems whih an be found in [4, 5℄.2 Operational Semantis of the Base LanguageAs mentioned above, the searh primitive should ontrol the di�erent non-deterministi steps ourring in a derivation. To abstrat from the operationalmodel of the onrete base language, we only assume that a omputation stepof the base language redues an expression (goal) to a disjuntion onsisting ofa sequene of pairs of substitutions (bindings) and expressions (goals), i.e, theoperational semantis of the base language is de�ned by a one step relatione) �1; e1 | � � � | �n; en 2

where n � 0, e, e1,. . . ,en are expressions, �1; : : : ; �n are substitutions on the freevariables in e, and \|" joins di�erent alternatives to a disjuntion. A substitution isa mapping from variables into terms and we denote it by � = fx1 7! t1; : : : ; xn 7!tng. Dom(�) = fx1; : : : ; xng is the domain of � and VRan(�) = Var(t1) [: : : [Var(tn) is its variable range, where Var(e) denotes the set of all free variablesourring in an expression e. The identity substitution (i.e., the substitution idwith Dom(id) = ;) is often omitted in omputation steps. We all the evaluationstep deterministi if n = 1 and non-deterministi if n > 1. The ase n = 0orresponds to a failure and is also written as e) fail.This notion of a omputation step makes the possible don't know non-determinism of the base language expliit whih will be ontrolled by our searhprimitive. A possible don't are non-determinism (e.g., in a onurrent base lan-guage) orresponds to an indeterminate de�nition of \)" and will not be on-trolled by our searh primitive. Furthermore, note that this notion of a ompu-tation step overs a variety of delarative languages. In funtional programming,n is at most 1 (i.e., no non-deterministi step ours) and all substitutions arethe identity sine unbound variables do not our during a omputation. In logiprogramming, e is a goal, e1; : : : ; en are all resolvents of this goal and �1; : : : ; �nare the orresponding uni�ers restrited to the goal variables (for onstraint logiprogramming, the notion of substitutions must be replaed by onstraints).Sine our searh ontrol operator will be based on this abstrat notion of aomputation step of the base language (in ontrast to Oz [15℄), it is appliable toa variety of (funtional, onstraint) logi languages. To provide onrete examplesand to show the advantages of integrating lazily evaluated funtions into a logilanguage, we present the addition of the searh ontrol operator to Curry [3, 5℄,a multi-paradigm delarative language aiming to amalgamate funtional, logi,and onurrent programming paradigms. Therefore, we outline in the rest of thissetion Curry's omputation model (details an be found in [3, 5℄).Values in Curry are, similarly to funtional or logi languages, data termsonstruted from onstants and data onstrutors. These are introdued throughdata type delarations like1data bool = true | falsedata nat = z | s(nat)data list(A) = [℄ | [A|list(A)℄true and false are the Boolean onstants, z and s are the zero value and thesuessor funtion to onstrut natural numbers,2 and polymorphi lists (A is atype variable ranging over all types) are de�ned as in Prolog.A data term is a well-typed3 expression ontaining variables, onstants and dataonstrutors, e.g., s(s(z)), [true|Z℄ et. Funtions (prediates are onsidered asBoolean funtions for the sake of simpliity) operate on data terms. Their mean-1 In the following we use a Prolog-like syntax whih is slightly di�erent from the atualCurry syntax.2 Curry has also built-in integer values and arithmeti funtions. We use here the expliitde�nition of naturals only to provide some simple and self-ontained examples.3 The urrent type system of Curry is a Hindley/Milner-like system with parametripolymorphism, e.g., a term like s(true) is ill-typed and thus exluded.3

ing is spei�ed by rules (or equations) of the form l | fg = r (the ondition part\| fg" is optional) where l is a pattern, i.e., l has the form f(t1; : : : ; tn) with fbeing a funtion, t1; : : : ; tn data terms and eah variable ours only one, and ris a well-formed expression ontaining funtion alls, onstants, data onstrutorsand variables from l and . The ondition is a onstraint whih onsists of aonjuntion of equations and optionally ontains a list of loally delared vari-ables, i.e., a onstraint an have the form let v1; : : : ; vk free in feq1; : : : ; eqngwhere the variables vi are only visible in the equations eq1; : : : ; eqn. If a loalvariable v of a ondition should be visible also in the right-hand side, the ruleis written as l | fg = r where v free. A rule an be applied if its ondition issatis�able. A head normal form is a variable, a onstant, or an expression of theform (e1; : : : ; en) where is a data onstrutor. A Curry program is a set of datatype delarations and equations.Example 1. The addition on natural numbers (type nat above) is de�ned byadd(z ,Y) = Yadd(s(X),Y) = s(add(X,Y))The following rules de�ne the onatenation of lists and funtions for omputingthe �rst and the last element of a list (_" denotes an anonymous variable):append([℄ ,Ys) = Ysappend([X|Xs℄,Ys) = [X|append(Xs,Ys)℄first([X|_℄) = Xlast(Xs) | fappend(_,[X℄)=Xsg = X where X freeIf the equation append(_,[X℄)=Xs is solvable, then X is the last element of Xs. 2From a funtional point of view, we are interested in omputing the value of anexpression, i.e., a data term whih is equivalent (w.r.t. the program rules) to theinitial expression. The value an be omputed by applying rules from left to right.For instane, to ompute the value of add(s(z),s(z)), we apply the rules foraddition to this expression:add(s(z),s(z))) s(add(z,s(z)))) s(s(z))A strategy selets a single funtion all for redution in the next step. Curry isbased on a lazy (leftmost outermost) strategy. This also allows the omputationwith in�nite data strutures and provides more modularity, as we will see in Se-tion 6. Thus, to evaluate the expression add(add(z,s(z)),z), the �rst subtermadd(z,s(z)) is evaluated to head normal form (in this ase: s(z)) sine its value isrequired by all rules de�ning add (suh an argument is also alled demanded). Onthe other hand, the evaluation of the subterm append([z℄,[℄) is not needed inthe expression first([z|append([z℄,[℄)℄) sine it is not demanded by first.Therefore, this expression is redued to z by one outermost redution step.Sine Curry subsumes logi programming, it is possible that the initial expres-sion may ontain variables. In this ase the expression might not be reduible to asingle value. For instane, a logi programming system should �nd values for thevariables in a goal suh that it is reduible to true. Fortunately, it requires onlya slight extension of the lazy redution strategy to over non-ground expressionsand variable instantiation: if the value of a variable argument is demanded by the4

left-hand sides of program rules in order to proeed the omputation, the variableis non-deterministially bound to the di�erent demanded values.Example 2. Consider the funtion f de�ned by the rulesf(a) = f(b) = d(a, b, , d are onstants). Then the expression f(X) with the variable argument X isevaluated to or d by binding X to a or b, respetively. Thus, this non-deterministiomputation step an be denoted as follows: f(X)) fX 7! ag | fX 7! bg d. 2A single omputation step in Curry performs a redution in exatly one (unsolved)expression of a disjuntion. For indutively sequential programs [1℄ (these are,roughly speaking, funtion de�nitions without overlapping left-hand sides), thisstrategy, alled needed narrowing [1℄, omputes the shortest possible suessfulderivations (if ommon subterms are shared) and a minimal set of solutions, andit is fully deterministi if variables do not our.4Funtional logi languages are often used to solve equations between ex-pressions ontaining de�ned funtions. For instane, onsider the equationfadd(X,z)=s(z)g w.r.t. Example 1. It an be solved by evaluating the left-handside add(X,z) to the answer expression fX 7! s(z)gs(z) (here we omit the otheralternatives). Sine the resulting equation is trivial, the equation is valid w.r.t. theomputed answer fX 7! s(z)g. In general, an equation or equational onstraintfe1=e2g is satis�ed if both sides e1 and e2 are reduible to the same data term.Operationally, an equational onstraint fe1=e2g is solved by evaluating e1 and e2to uni�able data terms where the lazy evaluation of the expressions is interleavedwith the binding of variables to onstrutor terms [10℄. Thus, an equational on-straint fe1=e2g without ourrenes of de�ned funtions has the same meaning(uni�ation) as in Prolog.5 Note that onstraints are solved when they appear inonditions of program rules in order to apply this rule or when a searh oper-ator is applied (see Setion 3). Conjuntions of onstraints an also be evaluatedonurrently but we omit this aspet here (see [3, 5℄ for more details).3 Controlling Non-deterministi Computation StepsMost of the urrent logi languages are based on global searh implemented bybaktraking, i.e., disjuntions distribute to the top-level (i.e., a goal A^B, whereA is de�ned by A $ A1 _ A2, is logially replaed by (A1 ^ B) _ (A2 ^ B)). Asdisussed in Setion 1, this must be avoided in some situations in order to ontrolthe exploration of the searh spae.For instane, onsider the problem of doing input/output. I/O is implementedin most logi languages by side e�ets. To handle I/O in a delarative way, as done4 These properties also show some of the advantages of integrating funtions into logiprograms, sine similar properties for purely logi programs are not known.5 We often use the general notion of a onstraint instead of equations sine it is on-eptually fairly easy to add other onstraint strutures than equations over Herbrandterms. 5

in Curry, one an use the monadi I/O onept [18℄ where an interative programis onsidered as a funtion omputing a sequene of ations whih are applied tothe outside world. An ation hanges the state of the world and possibly returnsa result (e.g., a harater read from the terminal). Thus, ations are funtions ofthe typeWorld ! pair(�;World)(where World denotes the type of all states of the outside world). This funtiontype is also abbreviated by IO(�). If an ation of type IO(�) is applied to a par-tiular world, it yields a value of type � and a new (hanged) world. For instane,getChar of type IO(Char) is an ation whih reads a harater from the standardinput whenever it is exeuted, i.e., applied to a world. The important point is thatvalues of type World are not aessible to the programmer | she/he an onlyreate and ompose ations on the world. For instane, the ation getChar an beomposed with the ation putChar (whih writes a harater to the terminal) bythe sequential omposition operator >>=, i.e., \getChar >>= putChar" is a om-posed ation whih prints the harater typed in the keyboard to the sreen (see[18℄ for more details).An ation, obtained as a result of a program, is exeuted when the programis exeuted. Sine the world annot be opied (note that the world ontains atleast the omplete �le system or the omplete Internet in web appliations), aninterative program having a disjuntion as a result makes no sense. Therefore, allpossible searh must be enapsulated between I/O operations. In the following, wedesribe a primitive operation to get ontrol over non-deterministi omputationsso that one an enapsulate the neessary searh for solving goals.3.1 Searh Goals and a Control PrimitiveSine searh is used to �nd solutions to some onstraint, we assume that searhis always initiated by a onstraint ontaining a searh variable for whih a solu-tion should be omputed.6 A diÆulty is that the searh variable may be boundto di�erent solutions (by di�erent alternatives in non-deterministi steps) whihshould be represented in a single expression for further proessing. As a solution,we adapt the idea of Oz [15℄ and abstrat the searh variable w.r.t. the onstraintto be solved, whih is possible in a language providing funtions as �rst-lass ob-jets.7 Therefore, a searh goal has the funtion type �! Constraint where � isthe type of the values whih we are searhing for and Constraint is the type ofall onstraints (e.g., an equation like fadd(X,z)=s(z)g is an expression of typeConstraint, f. [5℄). In partiular, if is a onstraint ontaining a variable x andwe are interested in solutions for x, i.e., values for x suh that is satis�ed, thenthe orresponding searh goal has the form \x-> (this is the notation for lambda6 The generalization to more than one searh variable is straightforward by the use oftuples.7 If the base language does not provide funtions as �rst-lass objets, one has to intro-due a speial language onstrut to denote the searh variable, like in Prolog's setofor findall prediate. 6

abstrations, e.g., \X->3*X denotes an anonymous funtion whih multiplies its ar-gument with 3). For instane, if we are interested in values for the variable X suhthat the equation append([1℄,X)=[1,2℄holds, then the orresponding searh goalis \X->fappend([1℄,X)=[1,2℄g.To ontrol the non-deterministi steps performed to �nd solutions to searhgoals, we introdue a funtion8 try of type(� ! Constraint) ! list(� ! Constraint)i.e., try takes a searh goal as an argument and produes a list of searh goals.The idea is that try attempts to evaluate the onstraint of the searh goal untilthe omputation �nishes or does a non-deterministi step. In the latter ase, theomputation is immediately stopped and the di�erent onstraints obtained by thenon-deterministi step are returned. Thus, an expression of the form try(g) anhave the following outomes:try(g) = [℄: The empty list indiates that the searh goal g has no solution. Forinstane, the expressiontry(\X -> f1=2g)redues to [℄. Note that a failure of the searh an now be handled expliitlybeause it does not lead to a failure of the whole omputation as it would dowithout the searh operator.try(g) = [g0℄: A one-element list indiates that the searh goal g has a singlesolution represented by the element of this list. For instane, the expressiontry(\X -> f[X℄=[0℄g)redues to [\X->fX=0g℄. Note that a solution, i.e., a binding for the searhvariable like a substitution fx 7! tg, an always be represented as an equationalonstraint fx=tg. In the following, we denote by � the equational representationof the substitution �.try(g) = [g1,...,gn℄, n > 1: If the result list ontains more than one element,the evaluation of the searh goal g requires a non-deterministi omputationstep. The di�erent alternatives immediately after this non-deterministi stepare represented as elements of this list, where the di�erent bindings of thesearh variable are added as onstraints. For instane, if the funtion f isde�ned as in Example 2, then the expressiontry(\X -> ff(X)=dg)redues to the list [\X->fX=a,=dg, \X->fX=b,d=dg℄. This example alsoshows why the searh variable must be abstrated: the alternative bindings an-not be atually performed (sine a variable is only bound to at most one valuein eah omputation thread) but are represented as equational onstraints inthe searh goal. Note that the searh goals in the result list are not furtherevaluated. The further evaluation an be done by a subsequent appliationof try to the list elements. This allows the expliit ontrol of the strategy toexplore the searh tree. It will be disussed in more detail in Setion 4.8 If the base language does not provide funtions, like Prolog, we an also implementtry as a binary prediate where the seond argument denotes the result.7

try(g) =
8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

[℄ if fg) fail[g0℄ if fg) � fg (i.e., � is a mgu for all equations in) withDom(�) � fx; x1; : : : ; xng, g0 = \x->letx1; : : : ; xn free in f�gtry(g0) if fg) � f0g with Dom(�) � fx; x1; : : : ; xngand g0 = \x->let x1; : : : ; xn; y1; : : : ; ym free in f�; 0gwhere fy1; : : : ; ymg = VRan(�) n (fx; x1; : : : ; xng [Var(g))[g1,...,gk℄ if fg) �1 f1g| � � � |�k fkg, k > 1, and, for i = 1; : : : ; k,Dom(�i) � fx; x1; : : : ; xng andgi = \x->let x1; : : : ; xn; y1; : : : ; ymi free in f�i; igwhere fy1; : : : ; ymig = VRan(�i) n (fx; x1; : : : ; xng [Var(g))suspend otherwiseFig. 1. Operational semantis of the try operator for g = \x->letx1; : : : ; xn free in fg3.2 Loal VariablesSome are is neessary if free variables our in a searh goal, as in\E -> fappend(L,[E℄)=[3,4,5℄g (�)To ompute the last element E of the list [3,4,5℄ with this goal, the variable Lmust be instantiated whih is problemati sine L is free. There are di�erent possib-ilities to deal with this ase. In Prolog's bagof/setof prediates, free variables are(possibly non-deterministially!) instantiated and then remain instantiated withthis value, whih does not help to really enapsulate all searh and sometimes leadsto unexpeted results. Another ad-ho method is to onsider a try appliation toa searh goal ontaining free variables as a run-time error. Sine Curry as wellas most Prolog systems is equipped with oroutining failities, we take anothersolution and require that the try operator never binds free variables of its searhgoal. If it is neessary to bind a free variable in order to proeed a try evaluation,the omputation suspends. Thus, a try appliation to the searh goal (�) annotbe evaluated and suspends until the variable L is bound.To allow possible bindings of unbound variables during a loal searh, they anbe delared as loal to the onstraint so that they might have di�erent bindingsin di�erent branhes of the searh. For instane, we start the evaluation oftry(\E -> let L free in fappend(L,[E℄)=[3,4,5℄g) (��)to ompute the last element of the list [3,4,5℄. Now the variable L is only visibleinside the onstraint (i.e., existentially quanti�ed) and an be bound to di�erentvalues in di�erent branhes. Therefore, the expression (��) evaluates to[\E -> let L free in fL=[℄, [E℄=[3,4,5℄g,\E -> let L,X,Xs free in fL=[X|Xs℄, [X|append(Xs,[E℄)℄=[3,4,5℄g℄The new variables X and Xs (introdued by uni�ation) are also added to the listof loal variables so that they an be further instantiated in subsequent steps.The exat behavior of the try operator is spei�ed in Figure 1. Thus, thesearh goal is solved (seond ase) if the onstraint is solvable without bindings ofglobal variables. In a deterministi step (third ase), we apply the try operator8

again after adding the newly introdued variables to the list of loal variables.Note that the free variables Var(g) ourring in g must not be delared as loalbeause they an appear also outside of g, and therefore they have to be removedfrom VRan(�). In a non-deterministi step (fourth ase), we return the di�erentalternatives as the result. If a omputation step on the onstraint tries to bind afree variable, the evaluation of the try operator suspends. In order to ensure thatan enapsulated searh will not be suspended due to neessary bindings of freevariables, the searh goal should be a losed expression when a searh operator isapplied to it, i.e., the searh variable is bound by the lambda abstration and allother variables are existentially quanti�ed by loal delarations.Note that the operational semantis of the try operator depends only on themeaning of omputation steps of the underlying language. Thus, it an be intro-dued in a similar way to other logi-oriented languages than Curry.9 Althoughthe management and testing of loal variable bindings look ompliated, it an beeÆiently implemented by deorating eah variable with a delaration level andheking the level in binding attempts (similarly to the implementation of sop-ing onstruts in logi languages [12℄). Moreover, the equational representations�i of the substitutions need not be expliitly implemented but an be impliitlyrepresented by binding lists for the variables.4 Searh StrategiesThe searh ontrol operator try introdued in the previous setion is a basis to im-plement powerful and easily appliable searh strategies. This setion demonstratesthe use of try to implement some searh strategies in Curry. These strategies anbe de�ned in a similar way in other delarative languages. However, we will showin Setion 6 that Curry's lazy evaluation strategy an be exploited to simplify theappliation of searh operators.The following funtion de�nes a depth-�rst searh strategy whih olletsall solutions of a searh goal in a list:all(G) = ollet(try(G))where ollet([℄) = [℄ollet([G℄) = [G℄ollet([G1,G2|Gs℄) = onat(map(all,[G1,G2|Gs℄))The auxiliary funtion ollet applies reursively all to all resulting alternat-ives of a non-deterministi step and appends all solutions in a single list (onatonatenates a list of lists to a single list and map applies a funtion to all elementsof a list). Thus, the expressionall(\L->fappend(L,[1℄)=[0,1℄g)redues to [\L->fL=[0℄g℄.Due to the laziness of Curry, searh goals with in�nitely many solutions auseno problems if one is interested only in �nitely many of them. A funtion whih9 For onurrent languages, one ould modify the de�nition of try suh that non-deter-ministi steps lead to a suspension as long as a deterministi step might be enabled byanother omputation thread. This orresponds to stability in AKL [8℄ and Oz [15℄.9

omputes only the �rst solution w.r.t. a depth-�rst searh strategy an be simplyde�ned byone(G) = first(all(G))Note that one is a partial funtion, i.e., it is unde�ned if G has no solution.The value omputed for the searh variable in a searh goal an be easilyaessed by applying it to an unbound variable. For instane, the evaluation of theappliative expressionone(\L->fappend(L,[1℄)=[0,1℄g)� X(F�E denotes the appliation of a funtion F to some E, where F and E an bearbitrary expressions) binds the variable X to the value [0℄, sine the �rst subex-pression evaluates to \L->fL=[0℄g and the onstraint fX=[0℄g obtained by theappliation of this expression to X an only be solved by this binding. Based onthis idea, we an de�ne a funtion unpak that takes a list of solved searh goalsand omputes the list of the orresponding values for the searh variable:unpak([℄) = [℄unpak([G|Gs℄) | fG�Xg = [X|unpak(Gs)℄ where X freeNow it is simple to de�ne a funtion similarly to Prolog's findall prediate:findall(G) = unpak(all(G))For a searh goal without free variables, findall explores the searh tree (depth�rst) and ollets all omputed values for the searh variable in a list.A bounded searh strategy, where searh is performed only up to a givendepth n in the searh tree, an also be easily implemented when we onsider searhtrees ontaining only the nodes for non-deterministi steps. This means that searhwill not end after n arbitrary redution steps but only after n non-determinististeps. The following funtion is very similar to the funtion all but explores thesearh goal G only up to depth N.all_bounded(N,G) = if N>1 then ollet(try(G)) else [℄ whereollet([℄) = [℄ollet([G℄) = [G℄ollet([G1,G2|Gs℄) = onat(map(all_bounded(N-1),[G1,G2|Gs℄))Note that the algorithm may not terminate if an in�nite deterministi redutionours (whih is seldom in pratial searh problems) beause the searh operatorwill never return a result in this ase. The same an happen with the next algorithmimplementing a breadth-�rst searh strategy that traverses the searh tree levelby level and eah level from left to right, regarding as level n all goals obtainedfrom the searh goal after n non-deterministi steps.all_bfs(G) = trygoals([G℄) wheretrygoals([℄) = [℄trygoals([G|Gs℄) = splitgoals(map(try,[G|Gs℄),[℄)splitgoals([℄ ,Ugs) = trygoals(Ugs)splitgoals([[℄|Gs℄ ,Ugs) = splitgoals(Gs,Ugs)splitgoals([[G℄|Gs℄ ,Ugs) = [G|splitgoals(Gs,Ugs)℄splitgoals([[G1,G2|G3℄|Gs℄,Ugs) = splitgoals(Gs,append(Ugs,[G1,G2|G3℄))10

The funtion trygoals applies the searh operator to the list of remaining altern-atives and sans the result (a list of lists) using the funtion splitgoals, whihremoves failures and returns all solutions omputed so far. Then the remaininggoals, whih result from non-deterministi steps, are reursively explored further.Similarly, one an also implement other searh strategies like depth-�rst iterativedeepening or best solution searh with branh and bound [15℄. Moreover, a par-allel fair searh for the �rst or all solutions an be implemented with our searhprimitive and a ommitted hoie [15℄ (whih is also available in Curry). To showthe use of enapsulated searh to ontrol the failure of omputations, we de�nea funtion on onstraints whih implements negation as �nite failure knownfrom logi programming:naf(C) = fall(_->fCg) = [℄gThus, if C is a onstraint where all variables are existentially quanti�ed, thennaf(C) is solvable i� the searh spae of solving C is �nite and does not ontainany solution.5 Searh Trees and Searh OperatorsIn this setion we sketh the onnetion between the searh trees of the baselanguage and the results omputed by some of the searh operators de�ned above.More details an be found in [4℄.The notion of a searh tree w.r.t.) an be de�ned as in logi programming[9℄, i.e., eah node is marked with a onstraint, and if an inner node N is markedwith and) �1; 1| � � � |�k; k is a omputation step of the base language, thenN has k sons N1; : : : ; Nk where Ni is marked with i and the edge from to i ismarked with �i (i = 1; : : : ; k). In ase of logi programming, where) denotes aresolution step with all resolvents for a goal, searh trees w.r.t.) are similar toSLD-trees [9℄. Leaves are nodes marked with a onstraint that annot be furtherderived. The leaf is suessful if is the empty onstraint (in this ase we all theomposition of all substitutions marked along the branh from the root to this leafa)-omputed answer for the onstraint at the root of the tree). The leaf is failedif fg) fail. All other leaves are suspended.The following theorems relate searh trees w.r.t.) to results omputed bysome of the searh operators (here we assume the funtional de�nition as givenin the previous setion, but these properties an be also transferred to otherde�nitions, e.g., in a relational style). To simplify the formulation of the theor-ems, we represent a searh goal as a triple (V; �;) where V = fx1; : : : ; xng isa set of variables, � is a substitution and is a onstraint. This orresponds to_->let x1; : : : ; xn free in f�,g in the representation introdued in Setion 3,i.e., here we ignore the speial rôle of the searh variable sine it is not importantfor the results in this setion. In order to avoid the problem of suspension due toneessary bindings of free variables, we onsider only initial searh goals where allvariables are existentially quanti�ed.The �rst theorem states the soundness of the all operator.11

Theorem 1 (Soundness of \all"). Let be a onstraint and g = (Var(); id;).If all(g) evaluates to a list [(V1; �1; 1),(V2; �2; 2),...℄, then eah i is anempty onstraint, eah �i is a)-omputed answer for and Var()[VRan(�i) �Vi.The onverse result does not hold in general due to in�nite branhes in the searhtree, sine all implements a depth-�rst searh through the tree. However, we anstate a ompleteness result for the ase of �nite searh trees.Theorem 2 (Completeness of \all" for �nite searh trees). Let be aonstraint and � be a)-omputed answer for . If the searh tree with root is�nite, then all((Var(); id;)) evaluates to a list [(V1; �1; 1),...,(Vn; �n; n)℄,where �i = � for some i 2 f1; : : : ; ng.A orollary of this theorem is the ompleteness of the negation-as-failure operator.Corollary 1 (Completeness of \naf" for �nite searh trees). Let be aonstraint. If the searh tree with root is �nite and ontains only failed leaves,then naf() is a solvable onstraint.A further interesting result is the ompleteness of the breadth-�rst searh strategyall_bfs. As already disussed, this strategy may be inomplete in ase of in�nitedeterministi evaluations. Therefore, we all a searh tree deterministially termin-ating if there is no in�nite branh where eah inner node has exatly one suessor.Exluding this ase, whih is seldom in pratial searh problems, we an state thefollowing ompleteness result.Theorem 3 (Completeness of \all_bfs"). Let be a onstraint and � bea)-omputed answer for . If the searh tree with root is deterministiallyterminating, then all_bfs((Var(); id;)) evaluates to a (possibly in�nite) list[(V1; �1; 1),(V2; �2; 2),...℄, where �i = � for some i > 0.6 Exploiting LazinessWe already exploited the advantages of Curry's lazy evaluation strategy by de�ningthe searh for the �rst solution (one) based on the general depth-�rst searhstrategy all. This shows that lazy evaluation an redue the programming e�orts.Furthermore, it is well known from funtional programming that lazy evaluationprovides more modularity by separating ontrol aspets [7℄. We want to emphasizethis advantage by an implementation of Prolog's top-level shell with our searhoperator.The interative ommand shell of a Prolog interpreter roughly behaves as fol-lows. If the user types in a goal, a solution for this goal is omputed by the standarddepth-�rst searh strategy. If a solution is found, it is presented to the user whoan deide to ompute the next solution (by typing `;' and <return>) or to ignorefurther solutions (by typing <return>). This behavior an be easily implementedwith our searh operator: 12

prolog(G) = printloop(all(G))printloop([℄) = putStr("no") >> newlineprintloop([A|As℄) = browse(A) >> putStr("? ")>> getChar >>= evalAnswer(As)evalAnswer(As,';') = newline >> printloop(As)evalAnswer(As,'\n') = newline >> putStr("yes") >> newlineHere we make use of the monadi I/O onept disussed at the beginning of Se-tion 3. The result of browse(A) is an ation whih prints a solution on the sreen.Similarly, putStr and newline are ations to print a string or an end-of-line. >>and >>= are the sequential omposition operators for ations [18℄. The seond argu-ment of >>= must be a funtion whih takes the result value of the �rst ation andmaps this value to another ation. The expression \evalAnswer(As)" is a partiallyapplied funtion all, i.e., it is a funtion whih takes a further argument (a hara-ter) and produes an ation: if the harater is ';', the next solution is omputedby a all to printloop(As), and if the harater is a <return> ('\n'), then theomputation �nishes with an ation to print the string "yes". Note that disjun-tions do not our in the printloop evaluation sine potential non-deterministiomputation steps of the goal G are enapsulated with all(G).Sine the solutions for the goal are evaluated by all in a lazy manner, onlythose solutions are omputed whih are requested by the user. This has the advant-age that the user interfae to present the solutions (printloop) an be implemen-ted independently of the mehanism to ompute solutions. In an eager languagelike Prolog, the omputation of the next solution must be interweaved with theprint loop, otherwise all solutions are omputed (whih may not terminate) beforethe print loop is alled, or only one standard strategy an be used. Our imple-mentation is independent of the partiular searh strategy, sine the followingfuntions use the same top-level shell but bounded and breadth-�rst searh to �ndthe solutions:prolog_bounded(N,G) = printloop(all_bounded(N,G))prolog_bfs(G) = printloop(all_bfs(G))7 Related WorkThis setion briey ompares our operator for ontrolling non-deterministi om-putations with some related methods.Prolog provides built-in prediates for omputing all solutions, like bagof,setof, or findall. As shown in Setion 4, they an be easily implemented withour ontrol primitive, provided that all variables are existentially quanti�ed. Onthe other hand, the searh strategy in these prediates is �xed to Prolog's depth-�rst searh and they always ompute all solutions, i.e., they do not terminate ifthere are in�nitely many solutions. In partiular, they annot be used in situationswhere not all solutions are immediately proessed, like in an interative shell wherea demand-driven omputation beomes important (f. Setion 6).The lazy funtional language Haskell [6℄ supports the use of list omprehen-sions to deal with searh problems. List omprehensions allow the implementation13

of many generate-and-test programs, sine logi programs with a strit data ow(\well-moded programs") an be translated into funtional programs by the use oflist omprehensions [17℄. On the other hand, list omprehensions are muh morerestrited than our searh operators, sine purely funtional programs do not allowthe use of partially instantiated strutures, and list omprehensions �xes a par-tiular searh strategy (diagonalization of the generators) so that other strategies(like best solution searh) annot be applied.The higher-order onurrent onstraint language Oz [16℄ provides a primit-ive operator to ontrol searh [15℄ similarly to ours. Atually, our operator trygeneralizes Oz's operator sine try is not onneted to a onstrut of the lan-guage (like or expressions in Oz) but its semantis is de�ned on the meaning ofomputation steps of the base language. This has an important onsequene of theprogramming style and auses a signi�ant di�erene between both onepts whihshould be explained in the following. An Oz programmer must expliitly speifyin the program whether a searh operator should later be appliable or not. Anon-deterministi step an be performed in Oz only if an expliit disjuntion (oror hoie, see [14, 15℄) ours in a proedure. As a onsequene, programs must bewritten in di�erent ways depending on the use of searh operators. The followingsimpli�ed example explains this fundamental di�erene to our approah in moredetail. Consider the multipliation with zero de�ned by the following rules:mult(X,z) = zmult(z,X) = zThen expressions like mult(z,z) or mult(add(z,z),z) an be redued to z withone deterministi redution step using the �rst rule.10In Oz, there are two implementation hoies by using a onditional (mult) ora disjuntion (multd):pro fmult A B Cg pro fmultd A B Cgif B=z then C=z or B=z then C=z[℄ A=z then C=z [℄ A=z then C=zfi roend endConditionals ommit to single omputation branhes, e.g., fmult z z Xg reduesto the onstraint X=z. However, we annot use mult if we want to ompute solu-tions to a goal like fmult X Y zg sine the onditions in an if are only hekedfor entailment. Thus, we have to take the disjuntive formulation multd wherewe an ompute a solution using some searh operator [15℄. On the other hand,the advantages of deterministi redutions are lost in multd, sine the expressionfmultd z z Xg is only omputable with a searh operator (a disjuntion is notredued until all but at most one lause fails [15℄). Therefore, one has to implementmult twie to ombine the deterministi redution and searh possibilities.10 Although one ould also apply the seond rule in this situation, sophistiated oper-ational models for funtional logi programming exploit the determinism property offuntions: if a funtion all is reduible (i.e., a rule is appliable without instantiatingarguments), then all other alternative rules an be ignored [2, 11℄.14

In ontrast to Oz, the de�nition of our ontrol operator is based on the meaningof omputation steps, i.e., the possible appliation of searh operators does notinuene the way how the basi funtions or prediates are de�ned. This propertykeeps the delarative style of programming, i.e., funtion de�nitions desribe themeaning of funtions and ontrol aspets are overed by searh operators. Thus,funtions or prediates an be de�ned independently of their later appliation,and expliit disjuntions are not neessary. The latter property also allows to writemore prediates as funtions whih leads to potentially more eÆient exeutions ofprograms. Furthermore, the laziness of Curry allows the implementation of searhstrategies independently of their appliation, e.g., demand-driven variants of searhstrategies (see [15℄) are not neessary in our framework sine the user interfae anbe implemented independently of the searh strategy, as shown in Setion 6.8 ConlusionsWe have presented a new primitive whih an be added to logi languages in orderto ontrol the exploration of the searh tree. This operator, whih an be seen as ageneralization of Oz's searh operator [15℄, an be added to any logi-oriented lan-guage whih supports equational onstraints and existential quanti�ation. In thispaper, we have added it to the multi-paradigm language Curry and we have shownthe advantages of Curry's lazy evaluation strategy to simplify the implementationof the di�erent searh operators. Sine the searh operators an be applied to anyexpression (enapsulated in a onstraint), there is no need to translate funtionsinto prediates or to use expliit disjuntions as in other approahes.Sine the de�nition of our ontrol primitive is only based on an abstrat view ofomputation steps (deterministi vs. non-deterministi steps), it an be applied toa variety of programming languages with a non-deterministi omputation model,like pure logi or onstraint logi languages (extended by existential quanti�erslike in Prolog's bagof/setof onstrut), higher-order logi languages like �Prolog[13℄ whih already has expliit soping onstruts for variables, or the variousfuntional logi languages whih often di�er only in the de�nition of a omputationstep. The general onnetion between searh trees of the base language and theresults omputed by the searh operators, whih is also provided in this paper,supports the transfer of soundness and ompleteness results for the base languageto orresponding results for the searh operators.The use of searh operators supports the embedding of logi programs intoother appliation programs where baktraking is not possible or too ompliated(e.g., programs with side e�ets, input/output) sine searh operators allow theloal enapsulation of searh. Furthermore, they ontribute to an old idea of logiprogramming by separating logi and ontrol: the spei�ation of funtions orprediates beomes more independent of their use sine the same funtion an beused for evaluation (omputing values) or for searhing (omputing solutions) withvarious strategies without the neessity to de�ne them in di�erent ways. As shownin Setion 6, this feature enables to simply replae the standard depth-�rst searhby a bounded or breadth-�rst searh in the user interfae. This is quite useful toteah logi programming without talking about baktraking too early.15

Referenes1. S. Antoy, R. Ehahed, and M. Hanus. A Needed Narrowing Strategy. In Pro. 21stACM Symposium on Priniples of Programming Languages, pp. 268{279, Portland,1994.2. M. Hanus. Lazy Narrowing with Simpli�ation. Computer Languages, Vol. 23, No. 2{4, pp. 61{85, 1997.3. M. Hanus. A Uni�ed Computation Model for Funtional and Logi Programming. InPro. of the 24th ACM Symposium on Priniples of Programming Languages (Paris),pp. 80{93, 1997.4. M. Hanus and F. Steiner. Controlling Searh in Delarative Programs. TehnialReport, RWTH Aahen, 19985. M. Hanus (ed.). Curry: An Integrated Funtional Logi Language. Available athttp://www-i2.informatik.rwth-aahen.de/~hanus/urry, 1998.6. P. Hudak, S. Peyton Jones, and P. Wadler. Report on the Programming LanguageHaskell (Version 1.2). SIGPLAN Noties, Vol. 27, No. 5, 1992.7. J. Hughes. Why Funtional Programming Matters. In D.A. Turner, editor, ResearhTopis in Funtional Programming, pp. 17{42. Addison Wesley, 1990.8. S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel Language.In Pro. 1991 International Logi Programming Symposium, pp. 167{183. MIT Press,1991.9. J.W. Lloyd. Foundations of Logi Programming. Springer, seond, extended edition,1987.10. R. Loogen, F. Lopez Fraguas, and M. Rodr��guez Artalejo. A Demand Driven Com-putation Strategy for Lazy Narrowing. In Pro. of the 5th International Symposiumon Programming Language Implementation and Logi Programming, pp. 184{200.Springer LNCS 714, 1993.11. R. Loogen and S. Winkler. Dynami Detetion of Determinism in Funtional LogiLanguages. Theoretial Computer Siene 142, pp. 59{87, 1995.12. G. Nadathur, B. Jayaraman, and K. Kwon. Soping Construts in Logi Program-ming: Implementation Problems and their Solution. Journal of Logi Programming,Vol. 25, No. 2, pp. 119{161, 1995.13. G. Nadathur and D. Miller. An overview of �Prolog. In Pro. 5th Conferene onLogi Programming & 5th Symposium on Logi Programming (Seattle), pages 810{827. MIT Press, 1988.14. C. Shulte. Programming Constraint Inferene Engines. In Pro. of the Third In-ternational Conferene on Priniples and Pratie of Constraint Programming, pp.519{533. Springer LNCS 1330, 1997.15. C. Shulte and G. Smolka. Enapsulated Searh for Higher-Order Conurrent Con-straint Programming. In Pro. of the 1994 International Logi Programming Sym-posium, pp. 505{520. MIT Press, 1994.16. G. Smolka. The Oz Programming Model. In J. van Leeuwen, editor, ComputerSiene Today: Reent Trends and Developments, pp. 324{343. Springer LNCS 1000,1995.17. P. Wadler. How to Replae Failure by a List of Suesses. In Funtional Programmingand Computer Arhiteture. Springer LNCS 201, 1985.18. P. Wadler. How to Delare an Imperative. In Pro. of the 1995 International LogiProgramming Symposium, pp. 18{32. MIT Press, 1995.16

