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Abstract. In functional logic programs, rules are applicable indepen-
dently of textual order, i.e., any rule can potentially be used to evaluate
an expression. This is similar to logic languages and contrary to func-
tional languages, e.g., Haskell enforces a strict sequential interpretation
of rules. However, in some situations it is convenient to express alterna-
tives by means of compact default rules. Although default rules are often
used in functional programs, the non-deterministic nature of functional
logic programs does not allow to directly transfer this concept from func-
tional to functional logic languages in a meaningful way. In this paper
we propose a new concept of default rules for Curry that supports a
programming style similar to functional programming while preserving
the core properties of functional logic programming, i.e., completeness,
non-determinism, and logic-oriented uses of functions. We discuss the
basic concept and sketch an initial implementation of it which exploits
advanced features of functional logic languages.

1 Motivation

Functional logic languages combine the most important features of functional
and logic programming in a single language (see [7, 15] for recent surveys). In
particular, the functional logic language Curry [17] conceptually extends Haskell
with common features of logic programming, i.e., non-determinism, free vari-
ables, and constraint solving. Moreover, the amalgamated features of Curry sup-
port new programming techniques, like deep pattern matching through the use
of functional patterns, i.e., evaluable functions at pattern positions [4].

For example, suppose that we want to compute two elements x and y in a
list l with the property that the distance between the two elements is n, i.e., in
l there are n− 1 elements between x and y. We will use this condition in the n-
queens program discussed later. Of course, there may be many pairs of elements
in a list statisfying the given condition (“++” denotes the concatenation of lists):

dist n (_++[x]++zs++[y]++_) | n == length zs + 1 = (x,y)

Defining functions by case distinction through pattern matching is a very useful
feature. Functional patterns make this feature even more convenient. However,
in functional logic languages, this feature is slightly more delicate because of the



possibility of functional patterns, which typically stand for an infinite number of
standard patterns, and because there is no textual order among the rules defining
a function. The variables in a functional pattern are bound like the variables in
ordinary patterns.

As a simple example, consider an operation isSet intended to check whether
a given list represents a set, i.e., does not contain duplicates. In Curry, we might
implement it as follows:

isSet (_++[x]++_++[x]++_) = False

isSet _ = True

The first rule uses a functional pattern: it returns False if the argument matches
a list where two identical elements occur. The intent of the second rule is to
return True if no identical elements occur in the argument. However, according
to the semantics of Curry, which ensures completeness w.r.t. finding solutions or
values, all rules are tried to evaluate an expression. Therefore, the second rule
is always applicable to calls of isSet so that the expression isSet [1,1] will be
evaluated to False and True.

The unintended application of the second rule can be avoided by the ad-
ditional requirement that this rule should be applied only if no other rule is
applicable. We call such a rule a default rule and mark it by adding the suffix
’default to the function’s name (in order to avoid a syntactic extension of the
base language). Thus, if we define isSet with the rules

isSet (_++[x]++_++[x]++_) = False

isSet’default _ = True

then isSet [1,1] evaluates only to False and isSet [0,1] only to True.
In this paper we propose a concept for default rules for Curry, define its

precise semantics, and discuss implementation options. In the next section, we
review the main concepts of functional logic programming and Curry. Our in-
tended concept of default rules is informally introduced in Sect. 3. Some exam-
ples showing the convenience of default rules for programming are presented in
Sect. 4. In order to avoid the introduction of a new semantics specific to default
rules, we define the precise meaning of default rules by transforming them into
already known concepts in Sect. 5. Options to implement default rules efficiently
are sketched and evaluated in Sect. 6 before we relate our proposal to other work
and conclude.

2 Functional Logic Programming and Curry

Before presenting the concept and implementation of default rules in more detail,
we briefly review those elements of functional logic languages and Curry that are
necessary to understand the contents of this paper. More details can be found
in recent surveys on functional logic programming [7, 15] and in the language
report [17].

Curry is a declarative multi-paradigm language combining in a seamless way
features from functional, logic, and concurrent programming (concurrency is



irrelevant as our work goes, hence it is ignored in this paper). The syntax of
Curry is close to Haskell [21], i.e., type variables and names of defined operations
usually start with lowercase letters and the names of type and data constructors
start with an uppercase letter. α→ β denotes the type of all functions mapping
elements of type α into elements of type β (where β can also be a functional
type, i.e., functional types are “curried”), and the application of an operation
f to an argument e is denoted by juxtaposition (“f e”). In addition to Haskell,
Curry allows free (logic) variables in conditions and right-hand sides of rules and
expressions evaluated by an interpreter. Moreover, the patterns of a defining rule
can be non-linear, i.e., they might contain multiple occurrences of some variable,
which is an abbreviation for equalities between these occurrences.

Example 1. The following simple program shows the functional and logic fea-
tures of Curry. It defines an operation “++” to concatenate two lists, which is
identical to the Haskell encoding. The second operation, dup, returns some list
element having at least two occurrences:1

(++) :: [a] → [a] → [a]

[] ++ ys = ys

(x:xs) ++ ys = x : (xs ++ ys)

dup :: [a] → a

dup xs | xs == _ ++ [x] ++ _ ++ [x] ++ _

= x where x free

Function calls can contain free variables. They are evaluated lazily where free
variables as demanded arguments are non-deterministically instantiated. Hence,
the condition of the rule defining dup is solved by instantiating x and the anony-
mous free variables “-”. This evaluation method corresponds to narrowing [24,
22], but Curry narrows with possibly non-most-general unifiers to ensure the
optimality of computations [3].

Note that dup is a non-deterministic operation since it might deliver more
than one result for a given argument, e.g., the evaluation of dup [1,2,2,1] yields
the values 1 and 2. Non-deterministic operations, which are interpreted as map-
pings from values into sets of values [13], are an important feature of contempo-
rary functional logic languages. Hence, there is also a predefined choice opera-
tion:

x ? _ = x

_ ? y = y

Thus, the expression “0 ? 1” evaluates to 0 and 1 with the value non-determin-
istically chosen.

Some operations can be defined more easily and directly using functional
patterns [4]. A functional pattern is a pattern occurring in an argument of the
left-hand side of a rule containing defined operations (and not only data construc-
tors and variables). Such a pattern abbreviates the set of all standard patterns

1 Note that Curry requires the explicit declaration of free variables, as x in the rule
of dup, to ensure checkable redundancy.



to which the functional pattern can be evaluated (by narrowing). For instance,
we can rewrite the definition of dup as

dup (_++[x]++_++[x]++_) = x

Functional patterns are a powerful feature to express arbitrary selections in tree
structures, e.g., in XML documents [14]. Details about their semantics and a con-
structive implementation of functional patterns by a demand-driven unification
procedure can be found in [4].

Set functions [6] allow the encapsulation of non-deterministic computations
in a strategy-independent manner. For each defined function f , fS denotes the
corresponding set function. fS encapsulates the non-determinism caused by eval-
uating f except for the non-determinism caused by evaluating the arguments to
which f is applied. For instance, consider the operation decOrInc defined by

decOrInc x = (x-1) ? (x+1)

Then “decOrIncS 3” evaluates to (an abstract representation of) the set {2, 4},
i.e., the non-determinism caused by decOrInc is encapsulated into a set. However,
“decOrIncS (2 ? 5)” evaluates to two different sets {1, 3} and {4, 6} due to its non-
deterministic argument, i.e., the non-determinism caused by the argument is not
encapsulated. This property is desirable and essential to define and implement
default rules by a transformational approach, as shown in Sect. 5. In the following
section, we discuss default rules and their intended semantics.

3 Default Rules: Concept and Informal Semantics

Default rules are often used in both functional and logic programming. In lan-
guages in which rules are applied in textual order, such as Haskell and Prolog,
losely speaking every rule is a default rule of all the preceding rules. For in-
stance, the following standard Haskell function takes two lists and return the
list of corresponding pairs, where excess elements of a longer list are discarded:

zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip _ _ = []

The second rule is applied only if the first rule is not applicable, i.e., if one of
the argument lists is empty. We can avoid the consideration of rule orderings by
replacing the second rule with rules for the patterns not matching the first rule:

zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip (_:_) [] = []

zip [] _ = []

In general, this coding is cumbersome since the number of additional rules in-
creases if the patterns of the first rule are more complex (e.g., we need three
additional rules for the function zip3 combining three lists). Moreover, this cod-
ing might be impossible in conjunction with some functional patterns, as in
the first rule of isSet above. Some functional patterns conceptually denote an



infinite set of standard patterns (e.g., [x,x], [x,-,x], [-,x,-,x],. . . ) and the
complement of this set is infinite too.

In Prolog, one often uses the “cut” operator to implement the behavior of
default rules. For instance, zip can be defined as a Prolog predicate as follows:

zip([X|Xs],[Y|Ys],[(X,Y)|Zs]) :- !, zip(Xs,Ys,Zs).

zip(_,_,[]).

Although this definition behaves as intended for instantiated lists, the com-
pleteness of logic programming is destroyed by the cut operator. For instance,
the goal zip([],[],[]) is provable, but Prolog does not compute the answer
{Xs=[],Ys=[],Zs=[]} for the goal zip(Xs,Ys,Zs).

These examples show that neither the functional style nor the logic style of
default rules is suitable for functional logic programming. The functional style,
based on textual order, curtails non-determinism. The logic style, based on the
cut operator, destroys the completeness of some computations. Thus, a new
concept of default rules is required for functional logic programming if we want
to keep the strong properties of the base language, in particular, a simple to
use non-determinism and the completeness of logic-oriented evaluations. Before
presenting the exact definition of default rules, we introduce them informally
and discuss their intended semantics.

We intend to extend a “standard” function definition by one default rule.
Hence, a function definition with a default rule has the following form (ok denotes
a sequence of objects o1 . . . ok):2

f t1k | c1 = e1
...

f tnk | cn = en

f’default tn+1
k | cn+1 = en+1

We call the first n rules standard rules and the final rule the default rule of
f . Informally, the default rule is applied only if no standard rule is applicable,
where a rule is applicable if the pattern matches and the condition is satisfied.
Hence, an expression e = f sk, where sk are expressions, is evaluated as follows:

1. If there is a standard rule whose left-hand side matches e and the condition
is satisfied (i.e., evaluable to True), the default rule is ignored to evaluate e.

2. If no standard rule can be applied, the default rule is used to evaluate e.
3. If some argument is non-deterministic, the previous points apply indepen-

dently for each non-deterministic choice of the combination of arguments.
In particular, if an argument is a free variable, it is non-deterministically in-
stantiated to all its possible values before deciding whether the default rule
is chosen.

As usual in a non-strict language like Curry, arguments of an operation appli-
cation are evaluated as they are demanded by the operation’s pattern matching

2 We consider only conditional rules since an unconditional rule can be regarded as a
conditional rule with condition True.



and condition. However, any non-determinism or failure during argument evalua-
tion is not passed inside the condition evaluation. A precise definition of “inside”
is in [6, Def. 3]. This behavior is quite similar to set functions to encapsulate
internal non-determinism. Therefore, we will exploit set functions to implement
default rules.

Before discussing the advantages and implementation of default rules, we
explain and motivate the intended semantics of our proposal. First, it should be
noted that this concept distinguishes non-determinism outside and inside a rule
application. This difference is irrelevant in purely functional programming but
essential in functional logic programming.

Example 2. Consider the operation zip defined with a default rule:

zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip’default _ _ = []

Since the standard rule is applicable to zip [1] [2], the default rule is ignored
so that this expression is solely reduced to (1,2):zip [] []. Since the standard
rule is not applicable to zip [] [], the default rule is applied and yields the
value []. Altogether, the only value of zip [1] [2] is [(1,2)]. However, if some
argument has more than one value, we use the evaluation principle above for
each combination. Thus, the call zip ([1] ? []) [2] yields the two values [(1,2)]

and [].

These considerations are even more relevant if the evaluation of the condition
might be non-deterministic, as the following example shows.

Example 3. Consider an operation to look up values for keys in an association
list:

lookup key assoc | assoc == (_ ++ [(key,val)] ++ _)

= Just val where val free

lookup’default _ _ = Nothing

Note that the condition of the standard rule can be evaluated in various ways.
In particular, it can be evaluated (non-deterministically) to True and False for
a fixed association list and key. Therefore, using if-then-else (or an otherwise

branch as in Haskell) instead of the default rule might lead to unintended results.
If we evaluate lookup 2 [(2,14),(3,17),(2,18)], the condition of the standard

rule is satisfiable so that the default rule is ignored. Since the condition has the
two solutions {val 7→ 14} and {val 7→ 18}, we yield the values Just 14 and
Just 18. If we evaluate lookup 2 [(3,17)], the condition of the standard rule is
not satisfiable but the default rule is applicable so that we obtain the result
Nothing.

On the other hand, non-deterministic arguments might trigger different rules
to be applied. Consider the expression lookup (2 ? 3) [(3,17)]. Since the non-
determinism in the arguments leads to independent evaluations of the expres-
sions lookup 2 [(3,17)] and lookup 3 [(3,17)], we obtain the results Nothing and
Just 17.



Similarly, free variables as arguments might lead to independent results since
free variables are equivalent to non-deterministic values [5]. For instance, the
expression lookup 2 xs yields the value Just v with the binding {xs 7→ (2,v): },
but also the value Nothing with the binding {xs 7→ []} (as well as many other
solutions).

The latter desirable property has also implications for the handling of failures
occurring when arguments are evaluated. For instance, consider the expression
lookup 2 failed (where failed is a predefined operation which always fails when-
ever it is evaluated). Because the evaluation of the condition of the standard rule
demands the evaluation of failed and the subsequent failure comes from “out-
side” the condition, the entire expression evaluation fails instead of returning
the value Nothing. This is motivated by the fact that we need the value of the
association list in order to check the satisfiability of the condition and, thus, to
decide the applicability of the standard rule, but this value is not available.

Example 4. To see the consequences of an alternative design decision, consider
the following contrived definition of an operation that checks whether its argu-
ment is the unit value () (which is the only value of the unit type):

isUnit x | x == () = True

isUnit’default _ = False

In our proposal, the evaluation of “isUnit failed” fails. In an alternative design
(like Prolog’s if-then-else construct), one might skip any failure during condi-
tion checking and proceed with the next rule. In this case, we would return the
value False for the expression isUnit failed. This is quite disturbing since the
(deterministic!) operation isUnit, which has only one possible input value, could
return two values: True for the call isUnit () and False for the call isUnit failed.
Moreover, if we call this operation with a free variable, like isUnit x, we obtain
the single binding {x 7→ ()} and value True (since free variables are never bound
to failures). Thus, either our semantics would be incomplete for logic compu-
tations or we compute too many values. In order to get a consistent behavior,
we require that failures of arguments demanded for condition checking lead to
failures of evaluations.

4 Examples

To show the applicability and convenience of default rules for functional logic
programming, we sketch a few more examples in this section.

Example 5. Default rules are important in combination with functional patterns,
since functional patterns denote an infinite set of standard patterns which often
has no finite complement. Consider again the operation lookup as introduced in
Example 3. With functional patterns and default rules, this operation can be
conveniently defined:

lookup key (_ ++ [(key,val)] ++ _) = Just val

lookup’default _ _ = Nothing



Example 6. Functional patterns are also useful to check the deep structure of
arguments. In this case, default rules are useful to express in an easy manner
that the check is not successful. For instance, consider an operation that checks
whether a string contains a float number (without an exponent but with an
optional minus sign). With functional patterns and default rules, the definition
of this predicate is easy:

isFloat (("-" ? "") ++ n1 ++ "." ++ n2)

| (all isDigit n1 && all isDigit n2) = True

isFloat’default _ = False

Example 7. In the classical n-queens puzzle, one must place n queens on a chess
board so that no queen can attack another queen. This can be solved by comput-
ing some permutation of the list [1..n], where the i-th element denotes the row
of the queen placed in column i, and check whether this permutation is a safe
placement. The latter property can easily be expressed with functional patterns
and default rules where the non-default rule fails on a non-safe placement:

safe (_++[x]++zs++[y]++_) | abs (x-y) == length zs + 1 = failed

safe’default xs = xs

Hence, a solution can be obtained by computing a safe permutation:

queens n = safe (permute [1..n])

This example shows that default rules are a convenient way to express negation-
as-failure from logic programming.

Example 8. This programming pattern can also be applied to solve the map
coloring problem. Our map consists of the states of the Pacific Northwest and a
list of adjacent states:

data State = WA | OR | ID | BC

adjacent = [(WA,OR),(WA,ID),(WA,BC),(OR,ID),(ID,BC)]

Furthermore, we define the available colors and an operation that associates
(non-deterministically) some color to a state:

data Color = Red | Green | Blue

color x = (x, Red ? Green ? Blue)

A map coloring can be computed by an operation solve that takes the informa-
tion about potential colorings and adjacent states as arguments, i.e., we compute
correct colorings by evaluating the initial expression

solve (map color [WA,OR,ID,BC]) adjacent

The operation solve fails on a coloring where two states have an identical color
and are adjacent, otherwise it returns the coloring:

solve (_++[(s1,c)]++_++[(s2,c)]++_) (_++[(s1,s2)]++_) = failed

solve’default cs _ = cs



5 Transformational Semantics

In order to define a precise semantics of default rules, one could extend an ex-
isting logic foundation of functional logic programming (e.g., [13]) to include
a meaning of default rules. This approach has been partially done in [19] but
without considering the different sources of non-determinism (inside, outside)
which is important for our intended semantics, as discussed in Sect. 3. Fortu-
nately, the semantic aspects of these issues have already been discussed in the
context of encapsulated search [6, 11] so that we can put our proposal on these
foundations. Hence, we do not develop a new logic foundation of functional logic
programming with default rules, but we provide a transformational semantics,
i.e., we specify the meaning of default rules by a transformation into existing
constructs of functional logic programming.

We start the description of our transformational approach by explaining the
translation of the default rule for zip. A default rule is applied only if no standard
rule is applicable (because the rule’s pattern does not match the argument or
the rule’s condition is not satisfiable). Hence, we translate a default rule into a
regular rule by adding the condition that no other rule is applicable. For this
purpose, we generate from the original standard rules a set of “test applicability
only” rules where the right-hand side is replaced by a constant (here: the unit
value “()”). Thus, the single standard rule of zip produces the following new
rule:

zip’TEST (x:xs) (y:ys) = ()

Now we have to add to the default rule the condition that zip’TEST is not
applicable. Since we are interested in the failure of attempts to apply zip’TEST

to the actual argument, we have to check that this application has no value.
Furthermore, non-determinism and failures in the evaluation of actual arguments
must be distinguished from similar outcomes caused by the evaluation of the
condition.

All these requirements call for the encapsulation of a search for values of
zip’TEST where “inside” and “outside” non-determinism are distinguished and
handled differently. Fortunately, set functions [6] (as sketched in Sect. 2) provide
an appropriate solution to this problem. Since set functions have a strategy-
independent denotational semantics [11], we will use them to specify and im-
plement default rules. Using set functions, one could translate the default rule
into

zip xs ys | isEmpty (zip’TESTS xs ys) = []

Hence, this rule can be applied only if all attempts to apply the standard rule
fail. To complete our example, we add this translated default rule as a further
alternative to the standard rule so that we obtain the transformed program

zip’TEST (x:xs) (y:ys) = ()

zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip xs ys | isEmpty (zip’TESTS xs ys) = []



Thanks to the logic features of Curry, one can use this definition also to generate
appropriate argument values for zip. For instance, if we evaluate the equation
zip xs ys == [] with the Curry implementation KiCS2 [10], the search space is
finite and computes, among others, the solution {xs=[]}.

Unfortunately, this scheme does not yield the best code to ensure optimal
computations. To understand the potential problem, consider the following func-
tion:

f 0 1 = 1

f _ 2 = 2

Intuitively, the best strategy to evaluate a call to f is a case distinction on the
second argument, since its value is demanded by both rules. Formally, f is an
inductively sequential function [1] since the rules can be organized in a struc-
ture called “definitional tree” [1] that expresses the following pattern matching
strategy:

1. Evaluate the second argument (to head normal form).
2. If its value is 2, apply the second rule.
3. If its value is 1, evaluate the first argument and try to apply the first rule.
4. Otherwise, no rule is applicable.

In particular, if loop denotes a non-terminating operation, the call f loop 2 eval-
uates to 2. This is in contrast to Haskell [21] which performs pattern matching
from left to right so that Haskell loops on this call. This strategy has been ex-
tended to functional logic programming (needed narrowing [3]) and is known
to be optimal for inductively sequential programs. It is also used in Curry but
extended to overlapping rules in order to cover general functional logic programs.

Now consider the following default rule for f:

f’default _ x = x

If we apply our transformation scheme sketched above, we obtain the following
Curry program:

f’TEST 0 1 = ()

f’TEST _ 2 = ()

f 0 1 = 1

f _ 2 = 2

f x y | isEmpty (f’TESTS x y) = y

As a result, the definition of f is no longer inductively sequential since the left-
hand sides of the first and third rule overlap. Since there is no argument de-
manded by all rules of f, the rules could be applied independently. In fact, the
Curry implementation KiCS2 [10] loops on the call f loop 2 (since it tries to
evaluate the first argument in order to apply the first rule), whereas it yields the
result 2 without the default rule.

To avoid this undesirable behavior when adding default rules, we could try
to use the same strategy for the standard rules and the test in the default rule.
This can be done by translating the original standard rules into an auxiliary



operation and redefining the original operation into one that either applies the
standard rules or the default rules. For our example, we transform the definition
of f (with the default rule) into the following functions:

f’TEST 0 1 = () f’INIT 0 1 = 1

f’TEST _ 2 = () f’INIT _ 2 = 2

f’DFLT x y | isEmpty (f’TESTS x y) = y

f x y = f’INIT x y ? f’DFLT x y

Now, both f’TEST and f’INIT are inductively sequential so that the optimal
needed narrowing strategy can be applied, and f simply denotes a choice (without
an argument evaluation) between two expressions that are evaluated optimally.
Observe that at most one of these expressions is reducible. As a result, the Curry
implementation KiCS2 evaluates f loop 2 to 2 and does not run into a loop.

The overall transformation of default rules can be described by the following
scheme (its simplicity is advantageous to obtain a comprehensible definition of
the semantics of default rules). The function definition

f t1k | c1 = e1
...

f tnk | cn = en

f’default tn+1
k | cn+1 = en+1

is transformed into (where f’TEST, f’INIT, f’DFLT are new function names):

f’TEST t1k | c1 = () f’INIT t1k | c1 = e1
...

...

f’TEST tnk | cn = () f’INIT tnk | cn = en

f’DFLT tn+1
k | isEmpty (f’TESTS tn+1

k ) && cn+1 = en+1

f xk = f’INIT xk ? f’DFLT xk

Note that the patterns and conditions of the original rules are not changed.
Hence, this transformation is also compatible with other advanced features of
Curry, like functional patterns, “as” patterns, non-linear patterns, local decla-
rations, etc. Furthermore, if an efficient strategy exists for the original standard
rules, the same strategy can be applied in the presence of default rules. This
property can be formally stated as follows:

Proposition 1. Let R be a program without default rules, and R′ be the same
program except that default rules are added to some operations of R. If R is
overlapping inductively sequential, so is R′.
Proof. Let f be an operation of R. The only interesting case is when a default
rule of f is in R′. Operation f of R produces four different operations of R′: f ,
f’DFLT, f’INIT, and f’TEST. The first two are overlapping inductively sequential
since they are defined by a single rule. The last two are overlapping inductively
sequential when f of R is overlapping inductively sequential since they have the
same definitional tree as f modulo a renaming of symbols. ut



The above proposition could be tightened a little when operation f is non-
overlapping. In this case three of the four operations produced by the trans-
formation are non-overlapping as well. Prop. 1 is important for the efficiency
of computations. In overlapping inductively sequential systems, needed redexes
exist and can be easily and efficiently computed [2]. If the original system has a
strategy that reduces only needed redexes, the transformed system has a strat-
egy that reduces only needed redexes. This ensures that optimal computations
are preserved by the transformation regardless of non-determinism.

This result is in contrast to Haskell (or Prolog), where the concept of default
rules is based on a sequential testing of rules, which might inhibit optimal evalu-
ation and prevent or limit non-determinism. Hence, our concept of default rules
is more powerful than existing concepts in functional or logic programming (see
also Sect. 7).

We now relate values computed in the original system to those computed
in the transformed system and vice versa. As expected, extending an operation
with a default rule preserves the values computed without the default rule.

Proposition 2. Let R be a program without default rules, and R′ be the same
program except that default rules are added to some operations of R. If e is an
expression of R that evaluates to the value t w.r.t. R, then e evaluates to t w.r.t.
R′.

Proof. Let f tk → u w.r.t. R, for some expression u, a step of the evaluation of
e. The only interesting case is when a default rule of f is in R′. By the definitions
of f and f’INIT in R′, f tk → f’INIT tk → u w.r.t. R′. A trivial induction on
the length of the evaluation of e completes the proof. ut

The converse of Prop. 2 does not hold becauseR′ typically computes more values
than R—that is the reason why there are default rules. The following statement
relates values computed in R′ to values computed in R.

Proposition 3. Let R be a program without default rules, and R′ be the same
program except that default rules are added to some operations of R. If e is an
expression of R that evaluates to the value t w.r.t. R′, then either e evaluates
to t w.r.t. R or some default rule of R′ is applied in e

∗→ t in R′.

Proof. Let A denote an evaluation e
∗→ t in R′ that never applies default rules.

For any operation f of R, the steps of A are of two kinds: (1) f tk → f’INIT tk
(2) f’INIT tk → t′, for some expressions tk and t′. If we remove from A the steps
of kind (1) and replace f’INIT with f , we obtain an evaluation of e to t in R. ut

In Curry, by design, the textual order of the rules is irrelevant. A default rule
is a constructive alternative to a certain kind of failure. For these reasons, a
single default rule, as opposed to multiple default rules without any order, is
conceptually simpler and adequate in practial situations. Nevertheless, a default
rule of a function f may invoke an auxiliary function with multiple ordinary
rules thus producing the same behavior of multiple default rules of f .



6 Implementation

The implementation of default rules for Curry based on the transformational
approach is available as a preprocessor. The preprocessor is integrated into the
compilation chain of the Curry systems PAKCS [16] and KiCS2 [10]. In some
future version of Curry, one could also add a specific syntax for default rules and
transform them in the front end of the Curry system.

The transformation scheme shown in the previous section is mainly intended
to specify the precise meaning of default rules (similarly to the specification of
the meaning of guards in Haskell [21]). Although this transformation scheme
leads to a reasonably efficient implementation, the actual implementation can
be improved in various ways. For instance, the generated functions f’TEST and
f’INIT might duplicate some work to check the patterns and the conditions of
the standard rules. This can be avoided by a more sophisticated (but less com-
prehensible) transformation scheme where the common parts of the definitions
of f’TEST and f’INIT are somehow joined into a single function definition.

Further improvements are possible for specific classes of programs. For in-
stance, consider a function where functional patterns are not used and all stan-
dard rules are unconditional. If the left-hand side of the default rule overlaps
with the left-hand side of some standard rule, one can compute the complement
of the patterns of the standard rules and replace the default rule with patterns
from this complement that are compatible with the default pattern. Since the
complement might be infinite, one has to find a finite representation of it by
considering the size of the standard patterns. For instance, the complement of
the pattern ((x:xs),(y:ys)) can be represented by the set {((x:xs),[]), ([],-)}
(there are also other possible representations). Hence, we can replace the default
rule of zip (Example 2) by two rules and obtain the definition shown at the be-
ginning of Sect. 3 and avoid the use of any encapsulated search operation (which
is usually less efficient than a case distinction).

As a further example, consider the following definition of the Boolean con-
junction:

and True True = True

and’default _ _ = False

By computing the complement pattern of the first rule, we obtain the following
transformed definition:

and True True = True

and True False = False

and False _ = False

Note that this definition is inductively sequential so that it can be evaluated
with the optimal needed narrowing strategy [3].

Although the computation of pattern complements is expensive in general
[18], it can be done with limited efforts in most practical cases, as shown above.
For instance, pattern complements can be computed in a constructive manner
with definitional trees. One has to construct a definitional tree for the pattern



of the default rule, extend it up to the size of all patterns of standard rules,
and remove the overlaps with patterns of standard rules in order to obtain the
remaining patterns for the default rule. The precise description of this method
requires a number of technical definitions which are omitted from this paper due
to space restrictions.

To show the practical advantage of the transformation with pattern com-
plements, we evaluated a few simple operations defined in a typical functional
programming style with default rules. For instance, the computation of the last
element of a list can be defined with a default rule as follows:

last [x] = x

last’default (_:xs) = last xs

Our final example extracts all values in a list of optional (“Maybe”) values:

catMaybes [] = []

catMaybes (Just x : xs) = x : catMaybes xs

catMaybes’default (_:xs) = catMaybes xs

Figure 1 shows the run times (in seconds) to evaluate the operations discussed in
this section with the different transformation schemes (i.e., the scheme of Sect. 5
and the improvements with pattern complements presented in this section) and
different Curry implementations (where “call size” denotes the number of calls
to and and the lengths of the input lists for the other examples). All benchmarks
were executed on a Linux machine (Debian Jessie) with an Intel Core i7-4790
(3.60Ghz) processor and 8GB of memory. The results clearly indicate the advan-
tage of computing pattern complements, in particular for PAKCS, which has a
less sophisticated implementation of set functions than KiCS2.

System: PAKCS [16] KiCS2 [10]

Operation: zip and last catMaybes zip and last catMaybes

Call size: 1000 100000 2000 2000 1000000 1000000 100000 1000000

Sect. 5: 3.66 8.46 2.53 2.45 2.72 1.35 0.38 0.40

Sect. 6: 0.01 0.25 0.01 0.01 0.04 0.08 0.01 0.01

Fig. 1. Performance comparison of different schemes for different compilers for some
operations discussed in this section.

7 Related Work

In this section, we compare our proposal of default rules for Curry with existing
proposals for other rule-based languages.

The functional programming language Haskell [21] has no explicit concept
of default rules. Since Haskell applies the rules defining a function sequentially
from top to bottom, it is a common practice in Haskell to write a “catch all”
rule as a final rule to avoid writing several nearly identical rules (see example



zip at the beginning of Sect. 3). Thus, our proposal for default rules increases
the similarities between Curry and Haskell. However, our approach is more gen-
eral, since it also supports logic-oriented computations, and it is more powerful,
since it ensures optimal evaluation for inductively sequential standard rules, in
contrast to Haskell (as shown in Sect. 5).

Since Haskell applies rules in a sequential manner, it is also possible to define
more than one default rule for a function, e.g., where each rule has a different
specificity. This cannot be directly expressed with our default rules where at
most one default rule is allowed. However, one can obtain the same behavior
by introducing a sequence of auxiliary functions where each function has one
default rule.

The logic programming language Prolog [12] is based on backtracking where
the rules defining a predicate are sequentially applied. Similarly to Haskell, one
can also define “catch all” rules as the final rules of predicate definitions. In
order to avoid the unintended application of these rules, one has to put “cut”
operators in the preceding standard rules. As already discussed in Sect. 3, these
cuts are only meaningful for instantiated arguments so that the completeness of
logic programming is destroyed. Hence, this kind of default rules can be used
only if the predicate is called in a particular mode, in contrast to our approach.

Various encapsulation operators have been proposed for functional logic pro-
grams [9] to encapsulate non-deterministic computations in some data struc-
ture. Set functions [6] have been proposed as a strategy-independent notion of
encapsulating non-determinism to deal with the interactions of laziness and en-
capsulation (see [9] for details). One can also use set functions to distinguish
successful and non-successful computations, similarly to negation-as-failure in
logic programming, exploiting the possibility to check result sets for emptiness.
When encapsulated computations are nested and performed lazily, it turns out
that one has to track the encapsulation level in order to obtain intended results,
as discussed in [11]. Thus, it is not surprising that set functions and related
operators fit quite well to our proposal. Actually, many explicit uses of set func-
tions in functional logic programming to implement negation-as-failure can be
implicitly and more tersely encoded with our concept of default rules, as shown
in Examples 7 and 8.

Default rules and negation-as-failure have been also explored in [19, 23] for
functional logic programs. In these works, an operator, fails, is introduced to
check whether every reduction of an expression to a head-normal form is not suc-
cessful. [19] proposes the use of this operator to define default rules for functional
logic programming. However, the authors propose a scheme where the default
rule is applied if no standard rule was able to compute a head normal form. This
is quite unusual and in contrast to functional programming (and our proposal)
where default rules are applied if pattern matches or conditions of standard rules
fail, but the computations of the rules’ right-hand sides are not taken into ac-
count to decide whether a default rule should be applied. The same applies to an
early proposal for default rules in an eager functional logic language [20]. Since
the treatment of different sources of non-determinism and their interaction were



not explored at that time, nested computations with failures are not considered
by these works. As a consequence, the operator fails might yield unintended
results if it is used in nested expressions. For instance, if we use fails instead
of set functions to implement the operation isUnit defined in Example 4, the
evaluation of isUnit failed yields the value False in contrast to our intended
semantics.

Finally, we proposed in [8] to change Curry’s rule selection strategy to a
sequential one. However, it turned out that this change has drawbacks w.r.t. the
evaluation strategy, since formerly optimal reductions are no longer possible in
particular cases. For instance, consider the function f defined in Sect. 5 and the
call f loop 2. In a sequential rule selection strategy, one starts by testing whether
the first rule is applicable. Since both arguments are demanded by this rule, one
might evaluate them from left to right (as done in the implementation [8]) so
that one does not terminate. This problem is avoided with our proposal which
returns 2 even in the presence of a default rule for f. Moreover, the examples
presented in [8] can be expressed with default rules in a similar way.

8 Conclusions

We proposed a new concept of default rules for Curry. Default rules are avail-
able in many rule-based languages, but a sensible inclusion into a functional logic
language is demanding. Therefore, we used advanced features for encapsulating
search to define and implement default rules. Thanks to this approach, typical
logic programming features, like non-determinism and evaluating functions with
unknown arguments, are still applicable with our new semantics. This distin-
guishes our approach from similar concepts in logic programming which simply
cut alternatives.

Our approach can lead to more elegant and comprehensible declarative pro-
grams, as shown by several examples in this paper. Moreover, many uses of
negation-as-failure, which are often implemented in functional logic programs by
complex applications of encapsulation operators, can easily be expressed with
default rules.

Since encapsulated search is more costly than simple pattern matching, we
have also shown some opportunities to implement default rules by computing
pattern complements. For future work it might be interesting to find more general
techniques to transform default rules into case distinctions and tests.

Acknowledgements. The authors are grateful to Sandra Dylus for her suggestions
to improve this paper. This material is based in part upon work supported by
the National Science Foundation under Grant No. 1317249.

References

1. S. Antoy. Definitional trees. In Proc. of the 3rd International Conference on
Algebraic and Logic Programming, pages 143–157. Springer LNCS 632, 1992.



2. S. Antoy. Optimal non-deterministic functional logic computations. In 6th Int’l
Conf. on Algebraic and Logic Programming (ALP’97), volume 1298, pages 16–30,
Southampton, UK, 9 1997. Springer LNCS.

3. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of
the ACM, 47(4):776–822, 2000.

4. S. Antoy and M. Hanus. Declarative programming with function patterns. In
Proceedings of the International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR’05), pages 6–22. Springer LNCS 3901, 2005.

5. S. Antoy and M. Hanus. Overlapping rules and logic variables in functional logic
programs. In Proceedings of the 22nd International Conference on Logic Program-
ming (ICLP 2006), pages 87–101. Springer LNCS 4079, 2006.

6. S. Antoy and M. Hanus. Set functions for functional logic programming. In Pro-
ceedings of the 11th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP’09), pages 73–82. ACM Press, 2009.

7. S. Antoy and M. Hanus. Functional logic programming. Communications of the
ACM, 53(4):74–85, 2010.

8. S. Antoy and M. Hanus. Curry without Success. In Proc. of the 23rd International
Workshop on Functional and (Constraint) Logic Programming (WFLP 2014), vol-
ume 1335 of CEUR Workshop Proceedings, pages 140–154. CEUR-WS.org, 2014.

9. B. Braßel, M. Hanus, and F. Huch. Encapsulating non-determinism in functional
logic computations. Journal of Functional and Logic Programming, 2004(6), 2004.
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