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Abstract. Constraint Handling Rules (CHR) is a rule-based language
to specify application-oriented constraint solvers. CHR requires a host
language that provides the basic constraints used in a CHR program.
In this paper, we argue that an integrated functional logic language like
Curry is an appropriate host language for CHR since it supports a natural
formulation of constraint handling rules and a seamless integration into
a typed environment. As a proof of concept, we describe CHR(Curry),
an integration of CHR into Curry, together with two implementations.
The first is an interpreter of CHR’s refined operational semantics imple-
mented in Curry, and the second compiles CHR rules into Prolog which
can be directly used in Prolog-based Curry implementations, such as
PAKCS.

1 Motivation

Functional logic languages [4,15] integrate the most important features of func-
tional and logic languages in order to provide a variety of programming concepts.
They support functional concepts like higher-order functions and lazy evaluation
as well as logic programming concepts like non-deterministic search and com-
puting with partial information. This combination allows better abstractions for
application programming and has also led to new design patterns [1,5] as well as
better abstractions in application programs such as implementing graphical user
interfaces [12] or web frameworks [17]. The declarative multi-paradigm language
Curry [11,18] is a modern functional logic language with advanced concepts for
application programming [2,3].

An important application area of declarative, and in particular, logic pro-
gramming languages is constraint programming [19,22]. Since logic programming
is a subset of functional logic programming, there exist various attempts to ex-
tend functional logic languages with constraint solving facilities (see [24] for a
survey). For instance, Lux [21] describes an implementation of a solver for real
arithmetic constraints for Curry, and the inclusion of finite domain constraints
in the functional logic language TOY [20] is described in [9].

An alternative to using a fixed set of constraint solvers are Constraint Han-
dling Rules (CHR) [10]. CHR is a declarative language for specifying application-
oriented constraint systems. They are useful for applications that require specific



constraints for which no standard solvers (like solvers for finite domain or real
arithmetic constraints) exist. CHR defines the processing of multisets of con-
straints by the specification of multi-headed simplification or propagation rules.
Thus, CHR is a high-level language to specify and implement constraint solvers
for various application domains (see [10,27] for more detailed surveys).

Since CHR consists only of rewrite rules, CHR programs require a host lan-
guage H. On the one hand, the results of CHR computations are intended to
be used in some application program, written in H, that interacts with users,
databases etc. On the other other hand, CHR is based on the existence of a set
of basic constraints and data types that are used inside CHR rules. In order
to make the reference to the host language H explicit, the notation CHR(H) is
used. Most CHR systems implement CHR(Prolog) so that Prolog predicates can
be used as basic constraints in CHR programs.

Example 1. The following CHR(Prolog) program [10] defines a generic less-than-
or-equal relation leq.
reflexivity @ leq(X,Y) <=> X=Y | true.
antisymmetry @ leq(X,Y), leq(Y,X) <=> X=Y.
transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

The first rule uses the Prolog predicate “=” to check the equality of the leq
arguments, i.e., if both arguments are equal, then the CHR constraint leq(X,Y)
can be omitted (or replaced by true). The second rule uses the same predicate
as a constraint that unifies the arguments X and Y in order to enforce the anti-
symmetry property of leq. The detailed meaning of these rules will be explained
in Section 3.

Most implementation and research efforts have been done for CHR(Prolog). Nev-
ertheless, Prolog does not seem the most natural host language since non-Prolog
features, like evaluable expressions, are sometimes used in example programs.

Example 2. The following simple CHR program, presented in [8], calculates the
greatest common divisor (gcd) of two integers:
gcd1 @ gcd(0) <=> true.
gcd2 @ gcd(N) \ gcd(M) <=> M >= N | gcd(M-N).

The intended use of this program is to put two CHR constraints gcd(A) and
gcd(B) into the initial store. The second rule replaces the larger value by smaller
ones (if N is positive) so that, after removing one CHR constraint by the first
rule, the remaining CHR constraint contains the greatest common divisor.

Although the authors of [8] use the general notation of CHR(Prolog), they re-
mark that the term M-N occurring in the second rule is not treated as in Prolog
but it is “automatically evaluated” (as in functional programming). Since such
functional notations occur also in many other examples (and they are translated
in the actually implemented examples into non-declarative Prolog features), it
seems that a functional logic language is a more appropriate host language than
Prolog. In order to show that this idea is feasible, we propose in this paper
CHR(Curry). Curry as a host language for CHR has the following advantages:



– The natural functional notation can be used in CHR rules.
– All functions defined in a Curry program as well as all predicates or con-

straints can be used in CHR rules.
– CHR constraints can be used in Curry programs. In particular, one can define

application-oriented constraint solvers as high-level CHR rules and use them
as any other predefined constraint.

– One can use high-level APIs developed in functional logic style to visual-
ize the results of CHR computations, e.g., in graphical user interfaces [12],
interactive web pages [13], or web frameworks [17].

– If CHR is embedded into a strongly typed host language, such as Curry, one
gets type safety and (polymorphically) typed CHR constraints for free.

We develop CHR(Curry) as follows. In a first step, we show how CHR rules can
be written in Curry without any language extension, i.e., we basically develop an
eDSL (embedded domain specific language) for CHR in Curry. In a second step,
we sketch two implementations of this eDSL: an interpreter oriented towards the
refined operational semantics of CHR [8], and a compiler that translates CHR
rules into an existing CHR(Prolog) implementation.

In the next section, we introduce some concepts of functional logic program-
ming and the language Curry. Section 3 reviews the basic ideas of CHR. Section 4
contains our proposal to integrate CHR in Curry. Sections 5 and 6 sketches the
implementations of this proposal before we conclude with a review of related
work in Sections 7 and 8.

2 Basic Elements of Curry

We briefly review those elements of Curry which are necessary to understand the
contents of this paper. More details can be found in recent surveys on functional
logic programming [4,15] and in the language report [18].

Curry is a multi-paradigm declarative language that combines in a seamless
way features from functional, logic, and concurrent programming and supports
application-oriented programming (with types, modules, encapsulated search,
monadic I/O [29]). The syntax of Curry is close to Haskell [23], i.e., type variables
and names of defined operations usually start with lowercase letters and the
names of type and data constructors start with an uppercase letter. Functional
types are “curried,” i.e., α→ β denotes the type of all functions mapping elements
of type α into elements of type β, and the application of an operation f to an
argument e is denoted by juxtaposition (“f e”).

In addition to Haskell, Curry allows free (logic) variables in rules and initial
expressions. Function calls with free variables are evaluated by a possibly non-
deterministic instantiation of demanded arguments.

Example 3. The following Curry program defines the data type of polymorphic
lists and operations to concatenate two lists and compute the last element of a
list:



data List a = [] | a : List a

(++) :: [a] → [a] → [a]
[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

last :: [a] → a
last xs | _ ++ [x] =:= xs

= x
where x free

The data type declaration defines [] (empty list) and : (non-empty list) as the
constructors for polymorphic lists (a is a type variable ranging over all types and
the type “List a” is written as [a] for conformity with Haskell). The (optional)
type declaration (“::”) of the operation “++” specifies that “++” takes two lists
as input and produces an output list, where all list elements are of the same
(unspecified) type. Since “++” can be called with free variables in arguments, the
equation “_ ++ [x] =:= xs” in the condition of last is solved by instantiating the
anonymous free variable _ to the list xs without the last argument, i.e., the only
solution to this equation satisfies that x is the last element of xs.

The (optional) condition of a program rule is a constraint, where a constraint is
any expression of the built-in type Success. Each Curry system provides at least
equational constraints of the form e1 =:= e2 which are satisfiable if both sides e1
and e2 are reducible to unifiable data terms. “c1 & c2” denotes the concurrent con-
junction of the constraints c1 and c2, i.e., this expression is evaluated by proving
both argument constraints concurrently. Some Curry systems also support more
powerful constraint structures, like arithmetic constraints on real numbers or
finite domain constraints, as in the PAKCS implementation [16]. The purpose of
this paper is to provide a mechanism to specify application-oriented constraint
solvers on the level of Curry programs.

3 Constraint Handling Rules

In this section we review the basic ideas of the language CHR. More details about
the concept and implementation of CHR can be found in the surveys [10,27] and
the CHR website1.

A CHR program describes the processing of a multiset of user-defined con-
straints (also called the constraint store) by two kinds of rules. Simplification
rules specify the replacement of several constraints by a multiset of constraints.
Propagation rules specify the propagation of new constraints from several ex-
isting constraints, i.e., the new constraints are added to the constraint store. In
order to restrict the applicability of rules, rules can contain guards that consist
of predefined (built-in) primitive constraints. Such primitive constraints can also
occur in the right-hand sides of simplification or propagation rules.

1 http://dtai.cs.kuleuven.be/CHR/
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For instance, the CHR program shown in Example 1 contains two simplifi-
cation rules (reflexivity, antisymmetry) and one propagation rule (transitivity).
Simplification and propagation rules are denoted by “<=>” and “==>”, respectively.
The primitive constraints to the left of the symbol “|” constitute the guard of
a rule. Multiple constraints are separated by commas which are interpreted as
logical conjunction. The rule
reflexivity @ leq(X,Y) <=> X=Y | true.

specifies that an occurrence of a constraint leq(X,Y) can be eliminated provided
that X=Y holds, i.e., both arguments are syntactically identical. The rule
antisymmetry @ leq(X,Y), leq(Y,X) <=> X=Y.

specifies that occurrences of both leq(X,Y) and leq(Y,X) in the constraint store
can be replaced by X=Y that enforces the syntactic identity of X and Y. Note
the different rôles of the primitive constraint X=Y in both rules. This constraint
acts in rule reflexivity as a condition (test) to determine the applicability of
the rule, whereas in rule antisymmetry it enforces the equality by manipulating
the constraint store. In general, the applicability of a rule is tested without
modifying the constraint store (in contrast to predicates in logic programming
that are applied by instantiating the actual arguments), i.e., the left-hand side
and the condition must be entailed by the constraint store before the constraints
in the right-hand side are added to the store. The rule
transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

propagates a new constraint, i.e., leq(X,Z) is added to the constraint store if the
store already contains the constraints leq(X,Y) and leq(Y,Z). The redundancy
in the constraint store caused by propagation is useful to enable the application
of further simplification rules. For instance, if the constraint store contains
leq(X1,X2), leq(X3,X1), leq(X2,X3)

the application of rule transitivity adds the new constraint leq(X1,X3) so
that the application of rule antisymmetry deletes the constraints leq(X3,X1) and
leq(X1,X3) and enforces the syntactic equality between X1 and X3. As a conse-
quence, the remaining two constraints can be deleted by enforcing the equality
between X1 and X2.

Since the uncontrolled application of propagation rules might lead to non-
terminating derivations, the operational semantics of CHR (see Section 5) defines
conditions to restrict the application of such rules. Sometimes it is useful to
combine a simplification and a propagation rule into one rule, called simpagation
rule, where the left-hand side contains two parts separated by “\”, as shown in
Example 2:
gcd2 @ gcd(N) \ gcd(M) <=> M >= N | gcd(M-N).

The part to the left of “\” is kept like in a propagation rule and the right part
is deleted like in a simplification rule. Actually, simpagation rules can also be
seen as the most general form of CHR rules. This is further discussed in the
following section where we present our syntactic embedding of CHR in Curry so
that CHR rules become regular Curry expressions.



4 Constraint Handling Rules in Curry

As already mentioned in Section 1, instead of extending the syntax of Curry in
order to deal with CHR, we want to embed CHR rules into Curry programs. For
this purpose, we represent CHR rules as data objects in Curry. Remember that
the most general form of a CHR rule is the simpagation rule

r @ H1 \ H2 ⇐⇒ g | B

where r is a name of the rule, H1 and H2 are sequences of CHR (user-defined)
constraints, the guard g is a sequence of built-in (primitive) constraints and B is
a sequence of CHR and built-in constraints. Simplification and propagation rules
are special cases of the simpagation rule with H1 = ∅ and H2 = ∅, respectively.
Hence, it suffices to specifiy a data structure to represent simpagation rules.

In order to abstract from the set of CHR constraints used in actual programs,
we assume that the type variable chr denotes the type of CHR constraints, which
is usually an enumeration of the various CHR constraints occurring in a CHR
program. Furthermore, the variables occurring in CHR rules have a distinct
domain (e.g., Int in case of the gcd rules shown in Example 2) which we denote
by the type variable dom. Using a single domain in CHR rules is not a restriction
since this domain could also be a union type. Therefore, we can specify the
structure of a CHR rule by the following data type:
data CHR dom chr =

SimpaRule [chr] [chr] [PrimConstraint dom] (Goal dom chr)

The four arguments of SimpaRule correspond to the components H1, H2, g, and
B of a simpagation rule. We do not include the name r of the rule since we
will identify rules by program objects. The type Goal denotes sequences of user-
defined and primitive constraints and is defined as follows:
data Goal dom chr = Goal [CHRconstr dom chr]

data CHRconstr dom chr = PrimCHR (PrimConstraint dom)
| UserCHR chr

Hence, CHRconstr is the union of primitive and user-defined constraints.
Finally, the type PrimConstraint contains the primitive (built-in) CHR con-

straints such as equality, disequality, etc. Moreover, one can also embed any
constraint defined in a Curry program as a primitive constraint. For this pur-
pose, we define this type as follows:
data PrimConstraint a =

Eq a a -- equality
| Neq a a -- disequality
| Fail -- always unsatisfiable
| Compare (a → a → Bool) a a -- ordering constraint
| Ground a -- ground value?
| Nonvar a -- bound variable?
| AnyPrim (() → Success) -- user-defined primitive

Although constraints like Nonvar and Ground have a non-declarative flavor, they
are often used in CHR rules to control the application of rules. The argument



type of AnyPrim reflects the fact that any constraint abstraction available in
Curry can be used as a primitive constraint.

Although these type definitions cover the essential structure of CHR rules, it
would be tedious to use them for writing concrete rules. Therefore, we define a
bunch of operations as syntactic sugar for writing CHR rules. Since some special
characters (comma, vertical bar) belong to the syntax of Curry and are not al-
lowed as operators, we can not provide the exact Prolog-oriented syntax of CHR.
Nevertheless, we want to be very close to this syntax. For this purpose, we use a
goal-oriented syntax to define CHR rules. For instance, to define simplification
rules, we will define an operator of type
(<=>) :: Goal dom chr → Goal dom chr → CHR dom chr

where the left- and right-hand sides are goals. To construct goals in a readable
manner, we define the operator “/\” for the conjunction of two goals:
(/\) :: Goal dom chr → Goal dom chr → Goal dom chr
(/\) (Goal c1) (Goal c2) = Goal (c1 ++ c2)

Similarly, we define true as the always satisfiable (empty) goal:
true :: Goal dom chr
true = Goal []

To support a nice notation for primitive constraints, we define a generic embed-
ding of primitive constraints into goals by
primToGoal :: PrimConstraint dom → Goal dom chr
primToGoal pc = Goal [PrimCHR pc]

and introduce some operators2 to denote the various primitive constraints:
fail = primToGoal Fail
x .=. y = primToGoal (Eq x y)
x ./=. y = primToGoal (Neq x y)
x .>=. y = primToGoal (Compare (>=) x y)
. . .

Finally, we introduce operators to write CHR rules in the usual way:
(<=>) :: Goal dom chr → Goal dom chr → CHR dom chr
g1 <=> g2 | null (primsOfGoal g1)

= SimpaRule [] (uchrOfGoal g1) [] g2

(==>) :: Goal dom chr → Goal dom chr → CHR dom chr
g1 ==> g2 | null (primsOfGoal g1)

= SimpaRule (uchrOfGoal g1) [] [] g2

Here we use operations primsOfGoal and uchrOfGoal that extract the list of prim-
itive and user-defined CHR constraints from a goal. The condition expresses the
fact that primitive constraints are not allowed in the left-hand sides of CHR
rules.3 To denote simpagation rules, we introduce the operator “\\”:
2 We omit in this paper the definition of the operator priorities since they should be
clear from the context.

3 Our actual implementation yields also a sensible error message if this condition is
not satisfied.



(\\) :: Goal dom chr → CHR dom chr → CHR dom chr
g \\ (SimpaRule h1 h2 c b) | null (primsOfGoal g) && null h1

= SimpaRule (uchrOfGoal g) h2 c b

To attach a condition to a CHR rule, we define a guard operator “|>” (note that
the right-hand side of the already existing rule becomes the condition of the new
rule by the use of this operator):
(|>) :: CHR dom chr → Goal dom chr → CHR dom chr
(SimpaRule h1 h2 _ c) |> b | null (uchrOfGoal c)

= SimpaRule h1 h2 (primsOfGoal c) b

In order to exploit the strong type system of the host language in CHR programs,
we introduce user-defined CHR constraints as a data type. For instance, the CHR
program of Example 1 contains rules for a single CHR constraint leq. Since the
arguments of leq are compared by equality in the reflexivity and antisymmetry
rule, they can be arbitrary but have to be of the same type.4 Thus, we define
the following data type to represent this CHR constraint:
data LEQ a = Leq a a

Since user-defined CHR constraints should be embedded into CHR goals, our
CHR implementation defines a generic embedding of binary constraints (actually,
it defines a family of embeddings for various arities):
toGoal2 :: (a → b → chr) → a → b → Goal dom chr
toGoal2 c x y = Goal [UserCHR (c x y)]

Hence, we define leq as a goal corresponding to the CHR constraint Leq:
leq = toGoal2 Leq

With this preparation and our CHR operators introduced above, we can write
the rules of Example 1 as the following Curry program:
reflexivity [x,y] = leq x y <=> x .=. y |> true
antisymmetry [x,y] = leq x y /\ leq y x <=> x .=. y
transitivity [x,y,z] = leq x y /\ leq y z ==> leq x z

Apart from small syntactic differences, this is the “standard” notation for CHR
rules. Note that all variables occurring in a CHR rule have to be introduced
at some point. In Curry, they could be declared either as free variables or as
parameters. In our eDSL for CHR, we decided to introduce these variables as
parameters. The name of each CHR rule is represented by the name of the opera-
tion defining this rule. Thus, a CHR program consists of a list of operations (not
a set, which is relevant for the refined operational semantics of CHR, see below)
defining the various rules. As shown later, such a list is the input parameter to
our implementations.

In a well typed CHR program, all rules have the same type, i.e., they operate
over the same domain type and specify the semantics of user-defined constraints

4 In Haskell, they should have the type class context Eq, but the current version of
Curry does not support type classes so that equality is syntactically defined on any
type.



of the same type. For instance, the reflexivity rule (as well as all other leq rules)
has the type:
reflexivity :: [a] → CHR a (LEQ a)

It should be noted that the polymorphic type system of Curry automatically
yields a polymorphic type system for CHR. This is in contrast to [6] where
a separate (monomoprhic) type system and type checker for CHR has been
developed. The soundness of our typing of CHR rules will be an immediate
consequence of our well-typed interpreter (see below).

Example 4. As a final example of this section, we show the implementation of
Example 2 in our framework. First, we define the type of gcd constraints
data GCD = GCD Int

and embed them into goals by
gcd = toGoal1 GCD

Then, we can easily write the two rules:
gcd1 [] = gcd 0 <=> true
gcd2 [m,n] = gcd n \\ gcd m <=> m .>=. n |> gcd (m-n)

Thanks to our embedding into Curry, we can actually use the functional notation
(m-n) for the argument of gcd in rule gcd1 without any further transformation,
in contrast to CHR(Prolog).

5 Interpretation

In order to provide a first implementation of our embedded CHR language, we
implement an interpreter for CHR in Curry. Since the interpreter is written in
a strongly typed language, it also ensures the type correctness of CHR rules:
since it manipulates a typed constraint store, the type system of Curry (which is
a Hindley-Milner like polymorphic type system [7]) ensures that the constraint
store always contains type-correct constraints.

The implementation of the interpreter is oriented towards the operational
semantics of CHR. The original operational semantics of CHR [10] is defined as
a transition system that describes the application of the different kinds of CHR
rules. Since simpagation rules are the most general kind of CHR rules, it suffices
to consider such kind of rules only. A state of the transition system is a triple
〈G,S,B〉 where the goal G and the store S are multi-sets of constraints and B
consists of built-in constraints. The initial state has the form 〈G,∅, true〉 and is
reduced according to the following transition steps (A ] B denotes the disjoint
union of the multi-sets A and B):

1. Solve: 〈{c} ]G,S,B〉 7−→ 〈G,S, c ∧B〉 if c is a built-in constraint
2. Introduce: 〈{c}]G,S,B〉 7−→ 〈G, {c}]S,B〉 if c is not a built-in constraint
3. Apply: 〈G,H1 ]H2 ] S,B〉 7−→ 〈C ]G,H1 ] S,H ′

1 = H1 ∧H ′
2 = H2 ∧B〉

where r @ H ′
1 \ H ′

2 ⇐⇒ g | C is a renamed CHR rule and B → ∃x(H ′
1 =

H1 ∧H ′
2 = H2 ∧ g) (i.e., the rule heads match and the condition is satisfied

w.r.t. B)



Although these transition rules specify a superset of all possible evaluations,
they are too weak to be used in practice. First of all, they do not include any
mechanism to avoid trivial infinite propagations. This can be improved by adding
a propagation history so that a rule is not applied again to the same literals [8].
Even with this improvement, the semantics is still a “theoretical only” semantics
and not used in practice (i.e., not implemented by CHR systems). For instance,
consider the gcd rules of Example 2 (which is a popular CHR example and one
of the first appearing on the CHR website). With this theoretical semantics,
the program is non-terminating since rule gcd2 can always be applied to the
constraints gcd(0) and gcd(2) so that the constraint gcd(2) is added to the
goal in every application step. In practice, this is avoided by ordering rules
and constraints and considering CHR constraints as procedure calls or active
constraints that try to find matching partners constraints to apply a rule. For
instance, the gcd solver immediately removes the constraint gcd(0) with the first
rule gcd1 so that the infinite loop is avoided.

A refined operational semantics covering these issues has been precisely de-
fined in [8] by a refined set of transition rules. Due to lack of space, we do not
recapitulate them here. In a declarative programming language, the transition
rules can be implemented with reasonable effort. Hence, we have written a sim-
ple interpreter (approximately 50 lines of code) based on these transition rules
in Curry. Since the standard evaluation mode of Curry is narrowing (i.e., uni-
fication + functional reduction), it cannot be directly used to implement CHR
rules since the application of a rule requires the check for the applicability of a
rule without instantiating free variables in a goal. Therefore, our implementa-
tion exploits the predefined operation rewriteSome of the library Findall5 which
evaluates an expression by term rewriting, i.e., without binding free variables.

The basic interface to our CHR interpreter has the following type:
runCHR :: [[dom] → CHR dom chr] → Goal dom chr → [chr]

Hence, it takes as input a list of CHR rules and a goal and returns, in case of a
successful evaluation, the list of remaining user-defined constraints. For instance,
the evaluation of the expression
runCHR [gcd1,gcd2] (gcd 16 /\ gcd 28)

yields the result [GCD 4]. In order to embed CHR constraints into Curry as
predefined constraints, there is also an operation
solveCHR :: [[dom] → CHR dom chr] → Goal dom chr → Success

This solver succeeds in case of a successful evaluation and, in addition, it issues
a warning if there are some remaining (suspended) constraints. Using solveCHR,
we can use CHR constraints as any other constraint in Curry programs, e.g., we
can write CHR constraints in conditions of defined operations in order to restrict
their applicability.

As already mentioned, the type system of Curry ensures that well-typed CHR
rules yield well-typed CHR computations, i.e., we obtain a polymorphic CHR

5 http://www.informatik.uni-kiel.de/~pakcs/lib/CDOC/Findall.html
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type system for free. In particular, we can also define CHR rules for polymorphic
constraints.

Example 5. The union-find algorithm is an interesting example to demonstrate
the power of CHR [26]. The algorithm maintains a collection of disjoint subsets
with canonical elements (representatives) and operations union and find. Since
the type of the elements is not important, the sets can be modeled as a poly-
morphic data type. Thus, the CHR(Prolog) program presented in [26] can be
defined in a type-safe manner in CHR(Curry) as follows:
data UF a = Root a | Arrow a a | Make a

| Union a a | Find a a | Link a a

root = toGoal1 Root (~>) = toGoal2 Arrow make = toGoal1 Make
union = toGoal2 Union find = toGoal2 Find link = toGoal2 Link

makeI [a] = make a <=> root a
unionI [a,b,x,y] = union a b <=> find a x /\ find b y /\ link x y
findNode [a,b,x] = a ~> b \\ find a x <=> find b x
findRoot [a,x] = root a \\ find a x <=> x .=. a
linkEq [a] = link a a <=> true
linkTo [a,b] = link a b /\ root a /\ root b <=> b ~> a /\ root a

Since the type UF is polymorphic, this union-find algorithm can be applied to
sets of various types (e.g., sets containing integers, characters, or strings) and
the type system ensures that sets of different types can not be mixed.

6 Compilation

Since our CHR interpreter is parameterized over the list of CHR rules, it is
useful to develop and test CHR programs. For instance, one can evaluate CHR
goals with different sets of rules or rules in various orders. However, due to the
interpretive approach and purely declarative implementation without any side
effects or global state, the implementation is quite inefficient compared to native
CHR implementations. As an alternative, one can reuse existing CHR imple-
mentations to which we can compile our CHR(Curry) programs. For instance,
there are good CHR(Prolog) implementations available for SICStus- or SWI-
Prolog [25]. Since the Curry system PAKCS [16] compiles Curry programs into
SICStus- or SWI-Prolog programs, it is reasonable to compile CHR(Curry) pro-
grams into CHR(Prolog) programs. For this purpose, our CHR library contains
an operation
compileCHR :: String → [[dom] → CHR dom chr] → IO ()

The first argument is the name of the target Curry module into which the CHR
rules, specified in the second argument, are compiled. Actually, the generated
Curry module only contains an interface to access the compiled CHR constraints
from Curry programs. The generated CHR(Prolog) constraints are accessed from
this module by the usual foreign function interface provided by PAKCS.



As an example, consider the CHR(Curry) program to compute the greatest
common divisor (Example 4). The call “compileCHR "GCDC" [gcd1,gcd2]” gener-
ates the following Curry module:
module GCDC where

import CHRcompiled

gcd :: Int → Goal GCD
gcd x1 = Goal (prim_gcd $!! x1)

prim_gcd external 〈internal code to call the CHR Prolog code 〉

The imported module CHRcompiled contains some definitions that are required to
handle (typed!) CHR goals also in combination with compiled CHR programs.
For instance, there is the definition
data Goal chr = Goal Success

Hence, the argument of the data constructor Goal is a constraint, which is reason-
able since it is a container for the compiled CHR(Prolog) constraints. However,
the type is parameterized by a phantom type chr in order to avoid a mixture
of CHR constraints with incompatible types. For instance, the conjunction of
constraints is defined in the module CHRcompiled by
(/\) :: Goal chr → Goal chr → Goal chr
(/\) (Goal g1) (Goal g2) = Goal (g1 & g2)

so that only goals over the same domain can be combined. Hence, mixing union-
find constraints (Example 5) over sets of integers and sets of characters in the
same goal would be rejected by Curry’s type system. In order to embed the
CHR(Prolog) solver as a Curry constraint, CHRcompiled also defines the operation
solveCHR :: Goal chr → Success

which solves the CHR goal and issues a warning if there are some remaining
(suspended) constraints.

It should be noted that the generated operation gcd evaluates its argument
(by the strictly evaluating application operator “$!!”) before putting the con-
straint into the constraint store. This is necessary to interface the functional
features of Curry with CHR. Since the CHR semantics (see Section 5) does
not evaluate arguments but consider them as free Herbrand terms as in logic
programming, defined functions need to be evaluated before passing the CHR
constraints to the CHR solver. Hence, we can write in the application program
“gcd (6+9*4)” which is passed as the constraint gcd(42) to CHR(Prolog).

The actual CHR(Prolog) program is generated by a straightforward transfor-
mation of the CHR(Curry) rules. The only interesting aspect is the interfacing
between the CHR(Prolog) solver and Curry, because CHR(Curry) rules can also
contain calls to operations defined in Curry programs (e.g., calls to the greater-
or-equal or subtraction operations in rule gcd2). Since CHR(Prolog) allows the
use of any Prolog predicate inside rules and Curry operations are compiled into
Prolog predicates by PAKCS, interfacing CHR(Prolog) and Curry is not difficult.
For instance, rules gcd1 and gcd2 of Example 4 are translated into the following



CHR(Prolog) rules (the code is simplified since the actual code requires addi-
tional control information for PAKCS):
gcd(0) <=> true.
gcd(N) \ gcd(M) <=> eq(’Prelude.>=’(M,N),’Prelude.True’)

| eq(X,’Prelude.-’(M,N)), gcd(X).

The Prolog predicate eq implements the strict unification operator “=:=”, i.e.,
both arguments are evaluated to normal form and unified. Thus, the original
argument (m-n) of gcd in rule gcd2 is evaluated by applying the subtraction
operation defined in the standard prelude of Curry (Prelude.-) and X is bound
to the result before the constraint gcd(X) is activated. In this way any (type-
correct) operation implemented in Curry can be used in CHR rules.

Compiled CHR constraints can be solved by solveCHR as any other Curry
constraint, e.g., in initial goals or conditions of defined operations. In contrast
to the interpreter “runCHR”, remaining (suspended) CHR constraints are not re-
turned but it is intended that all user-defined constraints should be removed at
the end. This can usually be obtained by adding rules and specific constraints
to access information contained in the constraint store. For instance, to retrieve
the value of the greatest common divisor that would remain in the constraint
store, we replace rule gcd1 by the following new rule (we omit here the simple
extension of the data type GCD):
gcda [n,x] = gcd 0 /\ gcd n /\ gcdanswer x <=> x .=. n

With this rule, the constraint gcd 0 is not simply discarded but, at the same time,
the argument of the constraint gcdanswer is unified with the remaining value and
all three constraints are discarded. If we compile the rules [gcda,gcd2], we yield
for the Curry goal
solveCHR (gcdanswer x & gcd 16 & gcd 28) where x free

the answer substitution {x=4}.

The concrete implementation of our compiler is rather technical so that
we omit a more detailed description here. The complete implementation of
CHR(Curry), i.e., the eDSL operations shown in Section 4, the interpreter and
the compiler, is freely available as a Curry module (CHR) in recent distribu-
tions of PAKCS [16]. As shown by the examples above, operations defined in
Curry can be used inside CHR(Curry) rules and CHR constraints can be used
in Curry programs so that we obtained a thorough embedding of CHR in Curry.
In addition to the examples presented in this paper, various constraint solvers
have been implemented in CHR(Curry), like Boolean constraints, finite domain
constraints, prime numbers, Gaussian elimination to solve linear equalities, or
computing Fibonacci numbers (as shown in [8]). The latter example also demon-
strates the improved efficiency of the compilation approach: our CHR interpreter
needs 1.4/9.7 seconds to compute the 50./100. Fibonacci number, whereas the
compiled CHR code computes these numbers in less than 10 milliseconds (with
an Intel Core i7-4790/3.60Ghz processor).



7 Related Work

Since there are a lot of publications related to CHR ([10,27] provide good surveys
on different stages of the CHR development), we compare our work to some
closely related work only.

HaskellCHR6 is an implementation of CHR in Haskell. It mainly emphasizes
on the implementation of the operational semantics of CHR in Haskell but does
not provide a deeper embedding of CHR rules in Haskell programs, e.g., neither
a specific syntactical embedding nor a type system for CHR. It has been success-
fully used in the Chameleon system [28] to implement advanced type systems.

HCHR [6] is a deeper embedding of CHR into Haskell. Although HCHR im-
plements a monadic interpreter for CHR in Haskell (including an implementa-
tion of logic variables and unification), HCHR is more restricted and less flexible
than our approach. Since HCHR uses a specific syntactic extension to write CHR
rules, it does not use Haskell’s type system for CHR. Actually, it implements a
monomorphic type system for CHR and transforms rules into Haskell operations
so that the Haskell type checker is used to detect type errors.

The CHR(Prolog) implementation distributed with SICStus-/SWI-Prolog
[25] also supports the declaration of type annotations to CHR constraints. Al-
though one can introduce polymorphic data structures like lists, the type anno-
tations to CHR constraints are restricted to monomorphic types.

An early predecessor of this work [14] contained a first proposal to integrate
CHR into Curry. This implementation was much more restricted than the current
approach. Only goals of a predefined set of types were supported, user-defined
Curry operations were not allowed inside CHR rules, and the implementation
was only a compiler into untyped CHR(Prolog) so that it was not clear that type
correct CHR rules do not yield type errors at run time. All these restrictions are
removed in our new framework.

8 Conclusion

In this paper we presented CHR(Curry), an embedding of CHR into the func-
tional logic host language Curry. To avoid a CHR-specific language extension of
Curry, we presented an eDSL to embed CHR rules into Curry programs with a
notation closely related to “standard” CHR programs. This representation has
the advantage that one can use functional notation in CHR rules, and Curry’s
type system can be exploited to check the well-typedness of CHR rules. Since
we implemented the refined operational semantics of CHR in Curry, the strong
type system of Curry ensures that well-typed CHR programs do not yield ill-
typed constraints at run time. Since Curry’s type system supports parametric
polymorphism, one can also specify polymorphic constraints, as shown in the
less-or-equal or union-find solvers. Due to the thorough embedding of CHR into
Curry, one can use operations defined in Curry programs inside CHR rules and

6 http://www.comp.nus.edu.sg/~gregory/haskellchr/
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one can use CHR constraints in conditions of rules defining Curry operations.
Hence, one can exploit the advantage of CHR to write application-specific con-
straint solvers.

The use of a functional logic host language instead of a purely logic host
language for CHR has various advantages. For instance, the natural functional
notation can be directly applied in CHR rules. This notation is often used in
examples in papers about CHR but then manually translated into a flat relational
notation in case of Prolog as a host language. Since our host language Curry
comes with a polymorphic type system, we obtain a polymorphic type system
for CHR for free.

We presented two implementations of CHR(Curry), an interpreter imple-
mented in Curry and a compiler to CHR(Prolog). Whereas the interpreter is
useful to develop and test various constraint solvers, the compiler is necessary
to use CHR(Curry) in practice. For future work, it might be interesting to ex-
plore methods to improve the efficiency of the interpreter, e.g., advanced data
structures, states, monadic computations, in order to get a more efficient imple-
mentation to quickly test also larger CHR systems.
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