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Abstract. KiCS2 is a new system to compile functional logic programs of the
source language Curry into purely functional Haskell programs. The implemen-
tation is based on the idea to represent the search space as a data structure and
logic variables as operations that generate their values. This has the advantage
that one can apply various, in particular, complete search strategies or even user-
defined strategies to compute solutions. However, the generation of all values for
logic variables might be inefficient for applications that exploit constraints on
partially known values. To overcome this drawback, we propose new techniques
to implement equational constraints in this framework. In particular, we show
how unification modulo function evaluation and functional patterns can be added
without sacrificing the efficiency of the kernel implementation.

1 Introduction

Functional logic languages combine the most important features of functional and logic
programming in a single language (see [6,16] for recent surveys). In particular, they
provide higher-order functions and demand-driven evaluation from functional program-
ming together with logic programming features like non-deterministic search and com-
puting with partial information (logic variables). This combination has led to new de-
sign patterns [3,7] and better abstractions for application programming, but it also gave
rise to new implementation challenges.

In order to implement a functional logic language, one can develop a suitable ab-
stract machine and implement it in some (typically, imperative) language, like C [24] or
Java [8,20]. One could also compile into logic languages like Prolog and reuse existing
backtracking implementations for non-deterministic search as well as logic variables
and unification for computing with partial information [2,23]. More recent approaches
[10,12,13] compile functional logic programs into non-strict functional programs to
reuse the implementation of lazy evaluation and higher-order functions. Although this
requires the implementation of non-deterministic computations in a deterministic lan-
guage, it has the advantage that the explicit handling of non-determinism allows for
various search strategies, like depth-first, breadth-first, parallel, or iterative deepening,
instead of committing to a fixed (incomplete) strategy like backtracking [12].

This paper is related to the latter implementation approach. In particular, we con-
sider KiCS2 [11], a new system that compiles functional logic programs of the source
language Curry [21] into purely functional Haskell programs. KiCS2 is based on the



idea to represent the search space, i.e., all non-deterministic results of a computation,
as a data structure that can be traversed by operations implementing various strategies.
Logic variables are replaced by generators, i.e., operations that non-deterministically
evaluate to all possible ground values of the type of the logic variable. This is justified
by the fact that computing with logic variables by narrowing [28,31] and computing
with generators by rewriting are equivalent, i.e., yield the same values [5]. Although
this implementation technique outperforms other implementations of Curry on deter-
ministic programs and can compete with them on non-deterministic programs (see [11]
for benchmarks), the generation of all values for logic variables might be inefficient for
applications that exploit constraints on partially known values. For instance, the equal-
ity constraint “X=c(a)” is solved in Prolog by instantiating the variable X to c(a), but
the equality constraint “X=Y” is solved by binding X to Y without enumerating any val-
ues for X or Y. In order to obtain a similar behavior in KiCS2, we propose in this paper
new techniques to implement equational constraints (in contrast to Prolog, Curry per-
forms unification modulo function evaluation) in a purely functional target language.
A purely functional, i.e., side-effect free, implementation is reasonable in order to sup-
port different, in particular, parallel or user-defined search strategies. Beyond equational
constraints, we also show how functional patterns [4], i.e., patterns containing evaluable
operations for more powerful pattern matching than in logic or functional languages,
can be implemented in this framework. We show that both extensions lead to efficiency
improvements without sacrificing the efficiency of the kernel implementation.

In the next section, we review the source language Curry and the features considered
in this paper. Section 3 recapitulates the implementation scheme of KiCS2 originally
presented in [11]. Sections 4 and 5 discuss our new extensions to implement unification
modulo function evaluation and functional patterns, respectively. Benchmarks demon-
strating the usefulness of these extensions are presented in Sect. 6 before we conclude
in Sect. 7.

2 Curry Programs

The syntax of the functional logic language Curry [21] is close to Haskell [27], i.e., type
variables and names of defined operations usually start with lowercase letters and the
names of type and data constructors start with an uppercase letter. The application of f
to e is denoted by juxtaposition (“f e”). In addition to Haskell, Curry allows free (logic)
variables in conditions and right-hand sides of defining rules. Hence, an operation is
defined by conditional rewrite rules of the form:

f t1 . . . tn | c = e where vs free (1)

where the condition c is optional and vs is the list of variables occurring in c or e but
not in the left-hand side f t1 . . . tn.

In contrast to functional programming and similarly to logic programming, opera-
tions can be defined by overlapping rules so that they might yield more than one re-
sult on the same input. Such operations are also called non-deterministic. For instance,
Curry offers a choice operation that is predefined by the following rules:
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x ? _ = x
_ ? y = y

Thus, we can define a non-deterministic operation aBool by
aBool = True ? False

so that the expression “aBool” has two values: True and False.
If non-deterministic operations are used as arguments in other operations, a seman-

tical ambiguity might occur. Consider the operations
not True = False xor True x = not x
not False = True xor False x = x

xorSelf x = xor x x

and the expression “xorSelf aBool”. If we interpret this program as a term rewriting
system, we could have the reduction
xorSelf aBool → xor aBool aBool → xor True aBool

→ xor True False → not False → True

leading to the unintended result True. Note that this result cannot be obtained if we
use a strict strategy where arguments are evaluated prior to the function calls. In or-
der to avoid dependencies on the evaluation strategies and exclude such unintended
results, the rewriting logic CRWL is proposed in [15] as a logical (execution- and
strategy-independent) foundation for declarative programming with non-strict and non-
deterministic operations. This logic specifies the call-time choice semantics [22], where
values of the arguments of an operation are determined before the operation is evalu-
ated. In a lazy strategy, this can be enforced by sharing actual arguments. For instance,
the expression above can be lazily evaluated provided that all occurrences of aBool are
shared so that all of them reduce either to True or to False consistently.

The condition c in rule (1) typically is a conjunction of equational constraints of
the form e1 =:= e2. Such a constraint is satisfiable if both sides e1 and e2 are reducible
to unifiable data terms. For instance, if the symbol “++” denotes the usual list concate-
nation operation, we can define an operation last that computes the last element e of
a non-empty list xs as follows:
last xs | ys++[e] =:= xs = e where ys, e free

Like in Haskell, most rules defining functions are constructor-based [26], i.e., in (1)
t1, . . . , tn consist of variables and/or data constructor symbols only. However, Curry
also allows functional patterns [4], i.e., ti might additionally contain calls to defined
operations. For instance, we can also define the last element of a list by the more concise
definition
last’ (xs++[e]) = e

Here, the functional pattern (xs++[e]) states that (last’ t) is reducible to e pro-
vided that the argument t can be matched against some value of (xs++[e]) where xs
and e are free variables. By instantiating xs to arbitrary lists, the value of (xs++[e])
is any list having e as its last element. Functional patterns are a powerful feature to ex-
press arbitrary selections in term structures. For instance, they support a straightforward
processing of XML data with incompletely specified or evolving formats [17].
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3 The Compilation Scheme of KiCS2

To understand the extensions described in the subsequent sections, we review the trans-
lation of Curry programs into Haskell programs as performed by KiCS2. More details
about this translation scheme can be found in [10,11].

As mentioned in the introduction, the KiCS2 implementation is based on the ex-
plicit representation of non-deterministic results in a data structure. This is achieved by
extending each data type of the source program by constructors to represent a choice
between two values and a failure, respectively. For instance, the data type for Boolean
values defined in a Curry program by
data Bool = False | True

is translated into the Haskell data type1

data Bool = False | True | Choice ID Bool Bool | Fail

where Fail represents a failure and (Choice i t1 t2) a non-deterministic value,
i.e., a selection of two values t1 and t2 that can be chosen by some search strategy. The
first argument i of type ID of a Choice constructor is used to implement the call-time
choice semantics discussed in Sect. 2. Since the evaluation of xorSelf aBool dupli-
cates the argument operation aBool, we have to ensure that both duplicates, which later
evaluate to a non-deterministic choice between two values, yield either True or False.
This is obtained by assigning a unique identifier (of type ID) to each Choice construc-
tor. The difficulty is to get a unique identifier on demand, i.e., when some operation
evaluates to a Choice. We cannot thread an identifier supply, e.g., a counter, through
the search tree without fixing an evaluation order. Since we want to compile into purely
functional programs (in order to enable powerful program optimizations), we can nei-
ther use unsafe features with side effects to generate such identifiers. Hence, we follow
the idea presented in [9] and pass a (conceptually infinite) set of identifiers, also called
identifier supply, to each operation so that a Choice can pick its unique identifier from
this set. For this purpose, we assume a type IDSupply, representing an infinite set of
identifiers, with operations
initSupply :: IO IDSupply
thisID :: IDSupply → ID
leftSupply :: IDSupply → IDSupply
rightSupply :: IDSupply → IDSupply

The operation initSupply creates such a set (at the beginning of an execution),
the operation thisID takes some identifier from this set, and leftSupply and
rightSupply split this set into two disjoint subsets without the identifier obtained
by thisID. There are different implementations available (see below for a simple one)
and our system is parametric over concrete implementations of IDSupply.

When translating Curry to Haskell, KiCS2 adds to each operation an additional
argument of type IDSupply. For instance, the operation aBool defined in Sect. 2 is
translated into:

1 Actually, our compiler performs some renamings to avoid conflicts with predefined Haskell
entities and introduces type classes to resolve overloaded symbols like Choice and Fail.
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aBool :: IDSupply → Bool
aBool s = Choice (thisID s) True False

Similarly, the operation
main :: Bool
main = xorSelf aBool

is translated into
main :: IDSupply → Bool
main s = xorSelf (aBool (leftSupply s)) (rightSupply s)

so that the set s is split into a set (leftSupply s) containing identifiers for the eval-
uation of the argument aBool and a set (rightSupply s) containing identifiers for
the evaluation of the operation xorSelf.

Since all data types are extended by additional constructors, we must also extend
the definition of operations performing pattern matching.2 For instance, consider the
definition of polymorphic lists
data List a = Nil | Cons a (List a)

and an operation to extract the first element of a non-empty list:
head :: List a → a
head (Cons x xs) = x

The type definition is then extended as described above:
data List a = Nil | Cons a (List a) | Choice ID (List a) (List a) | Fail

The operation head is extended by an identifier supply and further matching rules:
head :: List a → IDSupply → a
head (Cons x xs) s = x
head (Choice i x1 x2) s = Choice i (head x1 s) (head x2 s)
head _ s = Fail

The second rule transforms a non-deterministic argument into a non-deterministic result
and the final rule returns Fail in all other cases, i.e., if head is applied to the empty list
as well as if the matching argument is already a failed computation (failure propaga-
tion). Since deterministic operations do not introduce new Choice constructors, head
does not use the identifier supply s.

To show a concrete example, we use the following implementation of IDSupply
based on unbounded integers:
type IDSupply = Integer
initSupply = return 1
thisID n = n
leftSupply n = 2 * n
rightSupply n = 2 * n + 1

If we apply the same transformation to the rules defining xor and evaluate the main
expression (main 1), we obtain the result

2 To obtain a simple compilation scheme, KiCS2 transforms source programs into uniform pro-
grams [11] where pattern matching is restricted to a single argument. This is always possible
by introducing auxiliary operations.
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Choice 2 (Choice 2 False True) (Choice 2 True False)

Thus, the result is non-deterministic and contains three choices, whereby all of them
have the same identifier. To extract all values from such a Choice structure, we have
to traverse it and compute all possible choices but consider the choice identifiers to
make consistent (left/right) decisions. Thus, if we select the left branch as the value of
the outermost Choice, we also have to select the left branch in the selected argument
(Choice 2 False True) so that False is the only value possible for this branch.
Similarly, if we select the right branch as the value of the outermost Choice, we also
have to select the right branch in its selected argument (Choice 2 True False),
which again yields False as the only possible value. In consequence, the unintended
value True is not extracted as a result.

The requirement to make consistent decisions can be implemented by storing the
decisions already made for some choices during the traversal. For this purpose, we
introduce the type
data Decision = NoDecision | ChooseLeft | ChooseRight

where NoDecision represents the fact that the value of a choice has not been decided
yet. Furthermore, we assume operations to lookup the current decision for a given iden-
tifier or change it (depending on the implementation of IDSupply, KiCS2 supports
several implementations based on memory cells or finite maps). For a top-level opera-
tion that prints all values contained in a choice structure in a depth-first manner, these
operations would be of the following types:
lookupDecision :: ID → IO Decision
setDecision :: ID → Decision → IO ()

Now the search operation can be defined by the I/O operation below:3

printValsDFS :: a → IO ()

printValsDFS Fail = return ()

printValsDFS (Choice i x1 x2) = lookupDecision i >>= follow
where
follow ChooseLeft = printValsDFS x1
follow ChooseRight = printValsDFS x2
follow NoDecision = do newDecision ChooseLeft x1

newDecision ChooseRight x2

newDecision d x = do setDecision i d
printValsDFS x
setDecision i NoDecision

printValsDFS v = print v

This operation ignores failures and prints values that are not rooted by a Choice con-
structor. For a Choice constructor, it checks whether a decision for this identifier has
already been made (note that the initial value for all identifiers is NoDecision). If a
decision has been made for this choice, it follows this decision. Otherwise, the left al-

3 Note that this code has been simplified and slightly renamed compared to [11] for readability.
The type system of Haskell does not allow this direct definition.
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ternative is used and this decision is stored. After printing all values w.r.t. this decision,
the decision is undone (like in backtracking) and the right alternative is used and stored.

In general, this operation is applied to the normal form of the main expression
(where initSupply is used to compute an initial identifier supply passed to this ex-
pression). The normal form computation is necessary for structured data, like lists, so
that a failure or choice in some part of the data is moved to the root.

Other search strategies, like breadth-first search, iterative deepening, or parallel
search, can be obtained by different implementations of this top-level operation to print
all values. Instead of printing them, one can also collect the values in a tree-like data
structure for further processing. Thus, KiCS2 supports a primitive
getSearchTree :: a → IO (SearchTree a)

that returns the search tree corresponding to the evaluation of its argument, where the
search tree is some computed value, a failure, or a choice between two trees:
data SearchTree a = Value a | Fail | Or (SearchTree a) (SearchTree a)

This primitive is useful to encapsulate non-deterministic operations and select some
result value, e.g., the “first” or the “best” one according to some ordering. Since the
search tree is created in a demand-driven manner, the primitive is also applicable to
infinite search spaces (in contrast to Prolog’s findall primitive [25]). Based on this
representation, a Curry programmer can define his own search strategies as tree traver-
sals in his source program without any modification of the Curry compiler (see [19]
for detailed examples). Note that these kinds of applications demand for a side-effect
free implementation of non-deterministic computations (in contrast to traditional Prolog
implementations [1])—which is the challenge addressed in this paper.

Since large parts of typical functional logic computations are deterministic, KiCS2
performs an optimization for deterministic operations. If an operation is defined by
non-overlapping rules and does not call, neither directly nor indirectly through other
operations, an operation defined by overlapping rules, the evaluation of such an opera-
tion (like head) cannot introduce non-deterministic values. Thus, it is not necessary to
pass an identifier supply to the operation. In consequence, only the matching rules are
extended by additional cases for handling Choice and Fail so that the generated code
is nearly identical to a corresponding functional program. Actually, the benchmarks pre-
sented in [11] show that for deterministic operations this implementation outperforms
all other Curry implementations, and, for non-deterministic operations, outperforms
Prolog-based implementations of Curry and can compete with MCC [24], a Curry im-
plementation that compiles to C.

As mentioned in the introduction, KiCS2 translates occurrences of logic variables
into generators. For instance, the expression “not x”, where x is a logic variable, is
translated into “not (aBool s)”, where s is an IDSupply provided by the context of
the expression. The latter expression is evaluated by reducing the argument (aBool s)

to a choice between True or False followed by applying not to this choice. This is
similar to a narrowing step [28] on “not x” that instantiates the variable x to True

or False. Since such generators are standard non-deterministic operations, they are
translated like any other operation and, therefore, do not require any additional run-time
support. However, in the presence of equational constraints, there are methods which
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are more efficient than generating all values. These methods and their implementation
are discussed in the next section.

4 Equational Constraints and Unification

As known from logic programming, predicates or constraints are important to restrict
the set of intended values in a non-deterministic computation. Apart from user-defined
predicates, equational constraints of the form e1 =:= e2 are the most important kind of
constraints. We have already seen a typical application of an equational constraint in
the operation last in Sect. 2.

Due to the presence of non-terminating operations and infinite data structures,
“=:=” is interpreted as the strict equality on terms [14], i.e., the equation e1 =:= e2 is
satisfied iff e1 and e2 are reducible to unifiable constructor terms. In particular, expres-
sions that do not have a value are not equal w.r.t. “=:=”, e.g., the equational constraint
“head [] =:= head []” is not satisfiable.4

According to this definition, “=:=” can be considered as a binary function defined
by the following rules (we only present the rules for the Boolean and list types, where
Success denotes the only constructor of the type Success of constraints):
True =:= True = Success
False =:= False = Success

[] =:= [] = Success
(x:xs) =:= (y:ys) = x =:= y & xs =:= ys

Success & c = c

If we translate these operations into Haskell by the scheme presented in Sect. 3, the
following rules are added to these rules in order to propagate choices and failures:
Fail =:= _ = Fail
_ =:= Fail = Fail
Choice i l r =:= y = Choice i (l =:= y) (r =:= y)
x =:= Choice i l r = Choice i (x =:= l) (x =:= r)
_ =:= _ = Fail

Fail & _ = Fail
Choice i l r & c = Choice i (l & c) (r & c)
_ & _ = Fail

Although this is a correct implementation of equational constraints, it might lead to
an unnecessarily large search space when it is applied to generators representing logic
variables. For instance, consider the following generator for Boolean lists:
aBoolList = [] ? (aBool : aBoolList)

This is translated into Haskell as follows:

4 From now on, we use the standard notation for lists, i.e., [] denotes the empty list and
(x:xs) denotes a list with head element x and tail xs.

8



aBoolList :: IDSupply → [Bool]
aBoolList s = Choice (thisID s) [] (aBool (leftSupply s)

: aBoolList (rightSupply s))

Now consider the equational constraint “x =:= [True]”. If the logic variable x is re-
placed by aBoolList, the translated expression “aBoolList s =:= [True]” cre-
ates a search space when evaluating its first argument, although there is no search
required since there is only one binding for x satisfying the constraint. Furthermore
and even worse, unifying two logic variables introduces an infinite search space. For
instance, the expression “xs =:= ys & xs++ys =:= [True]” results in an infinite
search space when the logic variables xs and ys are replaced by generators.

To avoid these problems, we have to implement the idea of the well-known unifi-
cation principle [29]. Instead of enumerating all values for logic variables occurring in
an equational constraint, we bind the variables to another variable or term. Since we
compile into a purely functional language, the binding cannot be performed by some
side effect. Instead, we add binding constraints to the computed results to be processed
by a search strategy that extracts values from choice structures.

To implement unification, we have to distinguish free variables from “standard
choices” (introduced by overlapping rules) in the target code. For this purpose, we refine
the definition of the type ID as follows:5

data ID = ChoiceID Integer | FreeID Integer

The new constructor FreeID identifies a choice corresponding to a free variable, e.g.,
the generator for Boolean variables is redefined as
aBool s = Choice (FreeID (thisID s)) True False

If an operation is applied to a free variable and requires its value, the free variable is
transformed into a standard choice. For this purpose, we define a simple operation to
perform this transformation:
narrow :: ID → ID
narrow (FreeID i) = ChoiceID i
narrow x = x

We use this operation in narrowing steps, i.e., in all rules operating on Choice con-
structors. For instance, in the implementation of the operation not we replace the rule
not (Choice i x1 x2) s = Choice i (not x1 s) (not x2 s)

by the rule
not (Choice i x1 x2) s = Choice (narrow i) (not x1 s) (not x2 s)

to ensure that the resulting choice is not considered a free variable.
As mentioned above, the consideration of free variables is relevant in equational

constraints where binding constraints are generated. For this purpose, we introduce a
type to represent a binding constraint as a pair of a choice identifier and a decision for
this identifier:
data Constraint = ID :=: Decision

5 For the sake of simplicity, in the following, we consider the implementation of IDSupply to
be unbounded integers.
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Furthermore, we extend each data type by the possibility to add constraints:
data Bool = . . . | Guard [Constraint] Bool
data List a = . . . | Guard [Constraint] (List a)

A single Constraint provides the decision for one constructor. In order to support
constraints for structured data, a list of Constraints provides the decision for the
outermost constructor and the decisions for all its arguments. Thus, (Guard cs v)

represents a constrained value, i.e., the value v is only valid if the constraints cs are
consistent with the decisions previously made during search. These binding constraints
are created by the equational constraint operation “=:=”: if a free variable should be
bound to a constructor, we make the same decisions as it would be done in the successful
branch of the generator. In case of Boolean values, this can be implemented by the
following additional rules for “=:=”:
Choice (FreeID i) _ _ =:= True = Guard [i :=: ChooseLeft ] Success
Choice (FreeID i) _ _ =:= False = Guard [i :=: ChooseRight] Success

Hence, the binding of a variable to some known value is implemented as a binding con-
straint for the choice identifier for this variable. However, if we want to bind a variable
to another variable, we cannot store a concrete decision. Instead, we store the informa-
tion that the decisions for both variables, when they are made to extract values, must be
identical. For this purpose, we extend the Decision type to cover this information:
data Decision = . . . | BindTo ID

Furthermore, we add to the definition of “=:=” the rule that an equational constraint
between two variables yields a binding for these variables:
Choice (FreeID i) _ _ =:= Choice (FreeID j) _ _
= Guard [i :=: BindTo j] Success

The consistency of constraints is checked when values are extracted from a choice
structure, e.g., by the operation printValsDFS. For this purpose, we extend the defi-
nition of the corresponding search operations by calling a constraint solver for the con-
straints. For instance, the definition of printValsDFS is extended by a rule handling
constrained values:

. . .
printValsDFS (Guard cs x) = do consistent <- add cs

if consistent then do printValsDFS x
remove cs

else return ()
. . .

The operation add checks the consistency of the constraints cs with the decisions made
so far and, in case of consistency, stores the decisions made by the constraints. In this
case, the constrained value is evaluated before the constraints are removed to allow
backtracking. Furthermore, the operations lookupDecision and setDecision are
extended to deal with bindings between two variables, i.e., they follow variable chains
in case of BindTo constructors.

Finally, with the ability to distinguish free variables (choices with an identifier of the
form (FreeID . . .)) from other values during search, values containing logic variables
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can also be printed in a specific form rather than enumerating all values, similarly to
logic programming systems. For instance, KiCS2 evaluates the application of head to
an unknown list as follows:
Prelude> head xs where xs free
{xs = (_x2:_x3)} _x2

Here, free variables are marked by the prefix _x.

5 Functional Patterns

A well-known disadvantage of equational constraints is the fact that “=:=” is inter-
preted as strict equality. Thus, if one uses equational constraints to express requirements
on arguments, the resulting operations might be too strict. For instance, the equational
constraint in the condition defining last (see Sect. 2) requires that ys++[e] as well
as xs must be reducible to unifiable terms so that in consequence the input list xs is
completely evaluated. Hence, if failed denotes an operation whose evaluation fails,
the evaluation of last [failed,True] has no result. On the other hand, the evalu-
ation of last’ [failed,True] yields the value True, i.e., the definition of last’
is less strict thanks to the use of functional patterns. Beyond this improved operational
behavior, functional patterns can lead to more expressive programs (e.g., matching and
unification on infinite structures, pattern matching at arbitrary depth in recursive data
structures) and more elegant program patterns (see [4,7,17] for examples).

Conceptually, a functional pattern like (xs++[e]) abbreviates all values to which
it can be evaluated (by narrowing), like [e], [x1,e], [x1,x2,e], and so on. In con-
sequence, the rule defining last’ abbreviates the following (infinite) set of rules:
last’ [e] = e
last’ [x1,e] = e
last’ [x1,x2,e] = e
. . .

Obviously, one cannot implement functional patterns by a transformation into an infi-
nite set of rules. Instead, they are implemented by a specific lazy unification procedure
“=:<=” [4]. For instance, the definition of last’ is transformed into
last’ ys | (xs++[e]) =:<= ys = e where xs, e free

The behavior of “=:<=” is similar to “=:=”, except for the case that a variable in the
left argument should be bound to some expression: instead of evaluating the expression
to some value and binding the variable to the value, the variable is bound to the uneval-
uated expression (see [4] for more details). Due to this slight change, failures or infinite
structures in actual arguments do not cause problems in the matching of functional pat-
terns.

Our proposed implementation of functional patterns in KiCS2 has a structure that
is quite similar to that of equational constraints with the exception that variables could
be also bound to unevaluated expressions. Only if such variables are later accessed, the
expressions they are bound to are evaluated. This can be achieved by adding a further
alternative to the type of decisions:
data Decision = . . . | LazyBind [Constraint]
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The implementation of the lazy unification operation “=:<=” is almost identical to the
strict unification operation “=:=” as shown in Sect. 4. The only difference is in the
rules where a free variable occurs in the left argument. All these rules are replaced by
the single rule
Choice (FreeID i) _ _ =:<= x
= Guard [i :=: LazyBind (lazyBind i x)] Success

where the auxiliary operation lazyBind implements the demand-driven evaluation of
the right argument x:
lazyBind :: ID → a → [Constraint]
lazyBind i True = [i :=: ChooseLeft]
lazyBind i False = [i :=: ChooseRight]

The use of the additional LazyBind constructor allows the argument x to be stored in
a binding constraint without evaluation (due to the lazy evaluation strategy of the target
language Haskell). However, it is evaluated by lazyBind to head normal form when its
binding is required by another part of the computation, whereas the binding constraints
for any sub-expression are in turn lazily computed using lazyBind.

Similarly to equational constraints, lazy bindings are processed by a solver when
values are extracted. In particular, if a variable has more than one lazy binding con-
straint (which is possible if a functional pattern evaluates to a non-linear term), the
corresponding expressions are evaluated and unified according to the semantics of func-
tional patterns [4].

In order to demonstrate the operational behavior of our implementation, we sketch
the evaluation of the lazy unification constraint xs++[e] =:<= [failed,True] that
occurs when the expression last’ [failed,True] is evaluated (we omit failed
branches and some other details). Note that logic variables are replaced by generators,
i.e., we assume that xs is replaced by aBoolList 2 and e is replaced by aBool 3:

aBoolList 2 ++ [aBool 3] =:<= [failed, True]
; [aBool 4, aBool 3] =:<= [failed, True]
; aBool 4 =:<= failed & aBool 3 =:<= True & [] =:<= []
; Guard [ 4 :=: LazyBind (lazyBind 4 failed)

, 3 :=: LazyBind (lazyBind 3 True)] Success

If the value of the expression last’ [failed,True] is later required, the value of
the variable e (with the identifier 3) is in turn required. Thus, (lazyBind 3 True)

is evaluated to [3 :=: ChooseLeft] which corresponds to the value True of the
generator (aBool 3). Note that the variable with identifier 4 does not occur anywhere
else so that the binding (lazyBind 4 failed) will never be evaluated, as intended.

6 Benchmarks

In this section we evaluate our implementation of equational constraints and func-
tional patterns by some benchmarks. The benchmarks were executed on a Linux ma-
chine running Debian 5.0.7 with an Intel Core 2 Duo (3.0GHz) processor. KiCS2 has
been used with the Glasgow Haskell Compiler (GHC 7.0.4, option -O2) as its backend
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Expression == =:= =:<=
last (map (inc 0) [1..10000]) 2.91 0.05 0.01
simplify 10.30 6.77 7.07
varInExp 2.34 0.24 0.21
fromPeano (half (toPeano 10000)) 26.67 5.95 11.19
palindrome 30.86 14.05 20.26
horseman 3.24 3.31 n/a
grep 1.06 0.10 n/a

Fig. 1. Benchmarks: comparing different representations for equations

and an efficient IDSupply implementation that makes use of IORefs. For a compari-
son with other mature implementations of Curry, we considered PAKCS [18] (version
1.9.2, based on a SICStus-Prolog 4.1.2) and MCC [24] (version 0.9.10). The timings
were performed with the time command measuring the execution time (in seconds)
of a compiled executable for each benchmark as a mean of three runs. The programs
used for the benchmarks, partially taken from [4], are last (compute the last ele-
ment of a list),6 simplify (simplify a symbolic arithmetic expression), varInExp
(non-deterministically return a variable occuring in a symbolic arithmetic expression),
half (compute the half of a Peano number using logic variables), palindrome (check
whether a list is a palindrome), horseman (solving an equation relating heads and feet
of horses and men based on Peano numbers), and grep (string matching based on a
non-deterministic specification of regular expressions [6]).

In Sect. 4 we mentioned that equational constraints could also be solved by genera-
tors without variable bindings, but this technique might increase the search space due to
the possibly superfluous generation of all values. To show the beneficial effects of our
implementation of equational constraints with variable bindings, in Fig. 1 we compare
the results of using equational constraints (=:=) to the results where the Boolean equal-
ity operator (==) is used (which does not perform bindings but enumerate all values).
As expected, in most cases the creation and traversal of a large search space introduced
by “==” is much slower than our presented approach with variable bindings. In addi-
tion, the example last shows that the lazy unification operator (=:<=) improves the
performance when unifying an expression which has to be evaluted only partially. Us-
ing strict unification, all elements of the list are (unnecessarily) evaluated. On the other
hand, lazy unification causes some overhead when the expressions are fully evaluated,
which is shown by the fromPeano and palindrome examples. Thus, it is reasonable
to use it only if its improved computational power is really required, as intended by its
design.

In contrast to the Curry implementations PAKCS and MCC, our implementation of
strict unification is based on an explicit representation of the search space instead of
backtracking and manipulating a global state containing bindings for logic variables.
Nevertheless, the benchmarks in Fig. 2, using equational constraints only, show that
it can compete with or even outperform the other implementations. The results show
that the implementation of unification of MCC performs best. However, in most cases

6 “inc x n” is a naive addition that n times increases its argument x by 1.
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Expression KiCS2 PAKCS MCC
last (map (inc 0) [1..10000]) 0.05 0.40 0.01
simplify 6.77 0.15 0.00
varInExp 0.24 0.89 0.07
fromPeano (half (toPeano 10000)) 5.95 108.88 3.22
palindrome 14.05 32.56 1.07
horseman 3.31 8.70 0.42
grep 0.10 2.88 0.14

Fig. 2. Benchmarks: strict unification in different Curry implementations

Expression KiCS2 PAKCS
last (map (inc 0) [1..10000]) 0.01 0.33
simplify 7.07 0.27
varInExp 0.21 1.87
fromPeano (half (toPeano 10000)) 11.19 ∞
palindrome 20.26 ∞

Fig. 3. Benchmarks: functional patterns in different Curry implementations

our implementation outperforms the Prolog-based PAKCS implementation, except for
some examples. In particular, simplify does not perform well due to expensive bind-
ings of free variables to large arithmetic expressions in unsuccessful branches of the
search. Further investigation and optimization will hopefully lead to a better perfor-
mance in such cases.

As MCC does not support functional patterns, the performance of lazy unification
is compared with PAKCS only (Fig. 3). Again, our compiler performs well against
PAKCS and outperforms it in most cases (“∞” denotes a run time of more than 30
minutes).

7 Conclusions and Related Work

We have presented an implementation of equational constraints and functional patterns
in KiCS2, a purely functional implementation of Curry. In addition to the kernel im-
plementation described in [11], we add binding constraints to computed values which
are processed when values are extracted at the top level of a computation. Since only
new constructors and pattern matching rules for them are added in our implementation,
no overhead is introduced for programs without equational constraints, i.e., our imple-
mentation does not sacrifice the high efficiency of the kernel implementation shown in
[11]. However, if these features are used, they usually lead to a comparably efficient
execution, as demonstrated by our benchmarks. Although the benchmarks were small
in order to evaluate our unification implementation, it should be noted that KiCS2 is
used in larger applications, like the curricula and module information system of our
department7. In these and similar applications, where large parts are purely functional
computations, KiCS2 is 15-20 times faster than PAKCS [18].

7 http://www-ps.informatik.uni-kiel.de/~mh/studiengaenge/
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Other implementations of equational constraints in functional logic languages are
based on side effects. For instance, PAKCS [18] exploits the implementation of logic
variables in Prolog, which are implemented on the primitive level by side effects. MCC
[24] compiles into C where a specific abstract machine implements the handling of logic
variables. We have shown that our implementation is competitive to those. In contrast
to those systems, our implementation supports a variety of “top-level” search strategies,
like iterative deepening, breadth-first or parallel search, as well as user-programmable
search strategies, where the avoidance of side effects is important.

For future work it might be interesting to add further constraint structures to our
implementation, like real arithmetic or finite domain constraints. This might be possi-
ble by extending the kinds of constraints of our implementation and solving them by
functional programming approaches like [30].
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