
High-Level Server Side Web Sripting in CurryMihael Hanus?Institut f�ur Informatik, Christian-Albrehts-Universit�at KielD-24098 Kiel, Germany, mh�informatik.uni-kiel.de
Springer-VerlagIn Pro. of the Third International Symposium on Pratial Aspets ofDelarative Languages, PADL'01, Las Vegas.Springer LNCS 1990, pp. 76{92, 2001

Abstrat. We propose a new approah to program web servies. Al-though we base our approah on the Common Gateway Interfae (CGI)to ensure wide appliability, we avoid many of the drawbaks and pitfallsof traditional CGI programming by providing an additional abstrationlayer implemented in the multi-paradigm delarative language Curry.For instane, the syntatial details of HTML and passing values withCGI are hidden by a wrapper that exeutes abstrat HTML forms bytranslating them into onrete HTML ode. This leads to a high-level ap-proah to server side web servie programming where notions like eventhandlers, state variables and ontrol of interations are available. Thanksto the use of a funtional logi language, we an struture our approahas an embedded domain spei� language where the funtional and logiprogramming features of the host language are exploited to abstrat fromdetails and frequent errors in standard CGI programming.1 MotivationIn the early days of the World Wide Web (in the following alled the web),most of the douments were stati, i.e., stored in �les whih an be viewed in aniely formatted layout. With the introdution of the Common Gateway Inter-fae (CGI), more and more douments beome dynami, i.e., they are omputedon the web server at the time they are requested from a lient. In ombinationwith input forms spei�ed in HTML douments, more omplex forms of intera-tions beome possible so that lients an retrieve or store spei� data via theirweb browsers.An advantage of CGI is that it is supported by most web servers. Thus, theuse of CGI does not need any speial extensions on the server or the lient side(e.g., no servlets or ookies), whih is a requirement for our development in orderto ensure wide appliability. On the other hand, CGI o�ers only a very primi-tive form of interation so that the programming of web servies often beomesawkward. Although general sripting languages like Perl provide libraries for de-oding input form data, they do not support the programmer in the onstrutionof orret output data or to ontrol a sequene of interations with the lient.This demands for speialized languages (e.g., MAWL [12℄, DynDo [15℄) or spe-ialized libraries in existing languages (e.g., [2, 13, 17℄). In this paper we take the? This researh has been partially supported by the German Researh Counil (DFG)under grant Ha 2457/1-2 and by the DAAD under the PROCOPE programme.

latter approah. We show how the features of a funtional logi language (see[3℄ for a survey on this kind of languages) an be exploited to provide a exibleand high-level approah to programming web servies without any language ex-tensions (sine our library is ompletely implemented in Curry). In partiular,our approah o�ers the following features for implementing web servies:{ The HTML douments requested by the lients an be exibly generateddepending on the omputed data.{ The data �lled in a form by the user an be easily retrieved by an environ-ment model using logial variables as referenes.{ The use of logial variables as referenes (instead of �xed strings as in \raw"CGI) improves the ompositionality of HTML forms.{ The di�erent ations to be taken when a user has ompleted a form arespei�ed by an event handler model.{ The sequene (or iterations) of interations with the web server is desribedin one sript and not distributed over a set of sript �les. In partiular, aform is desribed together with the handler for this form whih avoids typialCGI programming errors (e.g., unde�ned input �elds).{ State variables whih should persist between di�erent interations are di-retly supported.{ The CGI interation (usually, by environment variables and value deoding)is hidden to the user and enapsulated in a wrapper that translates thehigh-level sripts into HTML ode.This paper is strutured as follows. The next setion provides a short overview ofthe main features of Curry as relevant for this paper. Setions 3 and 4 introdueour approah for modeling basi HTML douments and interative forms. Se-tion 5 disusses the use of our programming model by various examples beforewe sketh in Set. 6 the implementation of our library and onlude in Set. 7with a disussion of related work.2 Basi Elements of CurrySine we assume familiarity with basi HTML and CGI programming, we reviewin this setion only those elements of Curry whih are neessary to understandthe ideas presented in this paper. More details about Curry's omputation modeland a omplete desription of all language features an be found in [4, 9℄.Curry is a modern multi-paradigmdelarative language ombining in a seam-less way features from funtional programming (nested expressions, lazy evalua-tion, higher-order funtions), logi programming (logial variables, partial datastrutures, built-in searh), and onurrent programming (onurrent evalua-tion of expressions with synhronization on logial variables), and supportsprogramming-in-the-large with spei� features (types, modules, enapsulatedsearh). From a syntati point of view, a Curry program is a funtional pro-2

gram1 extended by the possible inlusion of free (logial) variables in onditionsand right-hand sides of de�ning rules. Thus, a Curry program onsists of the def-inition of funtions and the data types on whih the funtions operate. Funtionsare evaluated in a lazy manner. To provide the full power of logi programming,funtions an be alled with partially instantiated arguments and de�ned byonditional equations with onstraints in the onditions. The behavior of fun-tion alls with free variables depends on the evaluation annotations of funtionswhih an be either exible or rigid. Calls to rigid funtions are suspended if ademanded argument, i.e., an argument whose value is neessary to deide the ap-pliability of a rule, is uninstantiated (\residuation"). Calls to exible funtionsare evaluated by a possibly non-deterministi instantiation of the demanded ar-guments to the required values in order to apply a rule (\narrowing").Example 1. The following Curry program de�nes the data types of Boolean val-ues and polymorphi lists (�rst two lines) and funtions for omputing the on-atenation of lists and the last element of a list:data Bool = True | Falsedata List a = [℄ | a : List aon :: [a℄ -> [a℄ -> [a℄on eval flexon [℄ ys = yson (x:xs) ys = x : on xs yslast xs | on ys [x℄ =:= xs = x where x,ys freeThe data type delarations de�ne True and False as the Boolean onstants and[℄ (empty list) and : (non-empty list) as the onstrutors for polymorphi lists(a is a type variable ranging over all types and the type \List a" is usuallywritten as [a℄ for onformity with Haskell).The (optional) type delaration (\::") of the funtion on spei�es thaton takes two lists as input and produes an output list, where all list elementsare of the same (unspei�ed) type.2 Sine on is expliitly de�ned as exible3(by \eval flex"), the equation \on ys [x℄ =:= xs" an be solved by in-stantiating the �rst argument ys to the list xs without the last argument, i.e.,the only solution to this equation satis�es that x is the last element of xs.In general, funtions are de�ned by (onditional) rules of the form\l | = e where vs free" where l has the form f t1 : : : tn with f being a fun-tion, t1; : : : ; tn data terms and eah variable ours only one, the ondition is a onstraint, e is a well-formed expression whih may also ontain funtion1 Curry has a Haskell-like syntax [14℄, i.e., (type) variables and funtion names usuallystart with lowerase letters and the names of type and data onstrutors start withan upperase letter. The appliation of f to e is denoted by juxtaposition (\f e").2 Curry uses urried funtion types where �->� denotes the type of all funtionsmapping elements of type � into elements of type �.3 As a default, all funtions exept for onstraints are rigid.3

alls, lambda abstrations et, and vs is the list of free variables that our in and e but not in l (the ondition and the where parts an be omitted if and vsare empty, respetively). The where part an also ontain further loal funtionde�nitions whih are only visible in this rule. A onditional rule an be appliedif its left-hand side mathes the urrent all and its ondition is satis�able. Aonstraint is any expression of the built-in type Suess. Eah Curry systemprovides at least equational onstraints of the form e1 =:= e2 whih are satis�ableif both sides e1 and e2 are reduible to uni�able data terms (i.e., terms with-out de�ned funtion symbols). However, spei� Curry systems an also supportmore powerful onstraint strutures, like arithmeti onstraints on real numbersor �nite domain onstraints, as in the PAKCS implementation [7℄.The operational semantis of Curry, preisely desribed in [4, 9℄, is a onser-vative extension of lazy funtional programming (if no free variables our in theprogram or the initial goal) and (onurrent) logi programming. Due to the useof an optimal evaluation strategy [1℄, Curry an be onsidered as a generaliza-tion of onurrent onstraint programming [16℄ with a lazy (optimal) evaluationstrategy. Due to this generalization, Curry supports a lear separation betweenthe sequential (funtional) parts of a program, whih are evaluated with an ef-�ient and optimal evaluation strategy, and the onurrent parts, based on theonurrent evaluation of onstraints, to oordinate onurrent program units.Monadi I/O: Sine web servie programs usually interat with their environ-ment (e.g., retrieve or store information in �les on the server), some knowledgeabout performing I/O in a delarative manner is required. The I/O onept ofCurry is idential to the monadi I/O onept of Haskell [18℄, i.e., an intera-tive program omputes a sequene of ations whih are applied to the outsideworld. Ations have type \IO �" whih means that they return a result of type� whenever they are applied to (and hange) the outside world. For instane,getChar of type IO Char is an ation whih reads a harater from the standardinput whenever it is exeuted, i.e., applied to a world. Similarly, \readFile f"is an ation whih returns the ontents of �le f in the urrent world. Ationsan only be sequentially omposed. For instane, the ation getChar an beomposed with the ation putChar (whih has type Char -> IO () and writesa harater to the terminal) by the sequential omposition operator >>= (whihhas type IO � -> (� -> IO �) -> IO �), i.e., \getChar >>= putChar" is aomposed ation whih prints the next harater of the input stream on thesreen. Finally, \return e" is the \empty" ation whih simply returns e (see[18℄ for more details).3 Modeling Basi HTMLIn order to avoid ertain syntatial errors (e.g., unbalaned parenthesis) duringthe generation of HTML douments by a web server, the programmer should notbe fored to generate the expliit text of HTML douments (as in CGI sriptswritten in Perl or with the Unix shell). A better approah is the introdutionof an abstration layer where HTML douments are modeled as terms of a4

spei� data type together with a wrapper funtion whih is responsible for theorret textual representation of this data type. Suh an approah an be easilyimplemented in a language supporting algebrai data types (e.g., [13℄). Thus, weintrodue the type of HTML expressions in Curry as follows:data HtmlExp = HtmlText String| HtmlStrut String [(String,String)℄ [HtmlExp℄| HtmlElem String [(String,String)℄Thus, an HTML expression is either a plain string or a struture onsisting ofa tag (e.g., B,EM,H1,H2,. . .), a list of attributes, and a list of HTML expressionsontained in this struture. The translation of suh HTML expressions into theirorresponding textual representation is straightforward: an HtmlText is repre-sented by its argument, and a struture with tag t is enlosed in the brakets<t> and </t> (where the attributes are eventually added to the open braket).Sine there are a few HTML elements without a losing tag (like <HR> or
),we have inluded the alternative HtmElem to represent these elements.Sine writing HTML douments in this form might be tedious, we de�neseveral funtions as useful abbreviations (htmlQuote transforms haraters witha speial meaning in HTML, like <, >, &, ", into their HTML quoted form):htxt s = HtmlText (htmlQuote s) -- plain stringh1 hexps = HtmlStrut "H1" [℄ hexps -- main headerbold hexps = HtmlStrut "B" [℄ hexps -- bold fontitali hexps = HtmlStrut "I" [℄ hexps -- itali fonthrule = HtmlElem "HR" [℄ -- horizontal rule...As a simple example, the following expression de�nes a \Hello World" doumentonsisting of a header and two words in itali and bold font, respetively:[h1 [htxt "Hello World"℄,itali [htxt "Hello"℄, bold [htxt "world!"℄℄4 Input FormsIn order to enable more sophistiated interations between lients using standardbrowsers and a web server, HTML de�nes so-alled FORM elements whih usuallyontains several input elements to be �lled out by the lient. When the lientsubmits suh a form, the data ontained in the input elements is enoded andsent (on the standard input or with the URL) to the server whih starts a CGIprogram to reat to the submission. The ativated program deodes the inputdata and performs some appliation-dependent proessing before it returns anHTML doument on the standard output whih is then sent bak to the lient.In priniple, the type HtmlExp is suÆient to model all kinds of HTML do-uments inluding input elements like text �elds, hek buttons et. For instane,an input �eld to be �lled out with a text string an be modeled asHtmlElem "INPUT" [("TYPE","TEXT"),("NAME",name),("VALUE",ont)℄5

where the string ont de�nes an initial ontents of this �eld and the stringname is used to identify this �eld when the data of the �lled form is sent tothe server. This diret approah is taken in CGI libraries for sripting languageslike Perl or also in the CGI library for Haskell [13℄. In this ase, the programrunning on the web server is an I/O ation that deodes the input data (on-tained in environment variables and the standard input stream) and puts theresulting HTML doument on the output stream. Therefore, CGI programs anbe implemented in any programming language supporting aess to the systemenvironment. However, this basi view results in an awkward programming stylewhen sequenes of interations (i.e., HTML forms) must be modeled where stateshould be passed between di�erent interations. Therefore, we propose a higherabstration level and we will show that the funtional and logi features of Curryan be exploited to provide an appropriate programming infrastruture. Thereare two basi ideas of our programming model:1. The input �elds are not referened by strings but by elements of a spei�abstrat data type. This has the advantage that the names of referenesorrespond to names of program variables so that the ompiler an hekinonsistenies in the naming of referenes.2. The program that is ativated when a form is submitted is implemented to-gether with the program generating the form. This has the advantage thatsequenes of interations an be simply implemented using the ontrol ab-strations of the underlying language and state an be easily passed betweendi�erent interations of a sequene using the referenes mentioned above.For dealing with referenes to input �elds, we use logial variables sine it is wellknown that logial variables are a useful notion to express dependenies insidedata strutures [6, 19℄. To be more preise, we introdue a data typedata CgiRef = CgiRef Stringdenoting the type of all referenes to input elements in HTML forms. This datatype is abstrat, i.e., its onstrutor CgiRef is not exported by our library. Thisis essential sine it avoids the onstrution of wrong referenes. The only way tointrodue suh referenes are logial variables, and the global wrapper funtionis responsible to instantiate these variables with appropriate referenes (i.e.,instantiate eah referene variable to a term of the form CgiRef n where n is aunique name).To inlude referenes in HTML forms, we extend the de�nition of our datatype for HTML expressions by the following alternative:data HtmlExp = ... | HtmlCRef HtmlExp CgiRefA term \HtmlCRef hexp r" denotes an HTML element hexp with a refereneto it. Usually, hexp is one of the input elements de�ned for HTML, like text�elds, text areas, hek boxes et. For instane, a text �eld is de�ned by thefollowing abbreviation in our library:44 Note that this funtion must be exible so that the �rst argument, whih an onlybe a logial variable, is instantiated by the appliation of this funtion.6

textfield :: CgiRef -> String -> HtmlExptextfield eval flextextfield (CgiRef ref) ontents =HtmlCRef (HtmlElem "INPUT" [("TYPE","TEXT"),("NAME",ref),("VALUE",ontents)℄)(CgiRef ref)Note that ref is unbound when this funtion is applied but it will be bound toa unique name (string) by the wrapper funtion exeuting the form (see below).A omplete HTML form onsists of a title and a list of HTML expressions tobe displayed by the lient's browser, i.e., we represent HTML forms as expres-sions of the following data type:data HtmlForm = Form String [HtmlExp℄Thus, we an de�ne a form ontaining a single input element (a text �eld) byForm "Form" [h1 [htxt "A Simple Form"℄,htxt "Enter a string:", textfield sref ""℄In order to submit a form to the web server, HTML supports \submit" buttons(we only disuss this submission method here although there are others). Theations to be taken are desribed by CGI programs that deode the submittedvalues of the form before they perform the appropriate ations. To simplify theseations and ombine them with the program generating the form, we proposean event handling model for CGI programming. For this purpose, eah submitbutton is assoiated with an event handler responsible to perform the appropriateations. An event handler is a funtion from a CGI environment into an I/Oation (in order to enable aess to the server environment) that returns a newform to be sent bak to the lient. A CGI environment is simply a mapping fromCGI referenes into strings. When an event handler is exeuted, it is suppliedwith a CGI environment ontaining the values entered by the lient into theform. Thus, event handlers have the typetype EventHandler = (CgiRef -> String) -> IO HtmlFormTo attah an event handler to an HTML element, we �nally extend the de�nitionof our data type for HTML expressions by:data HtmlExp = ... | HtmlEvent HtmlExp EventHandlerA term \HtmlEvent hexp handler" denotes an HTML element hexp (typiallya submit button) with an assoiated event handler. Thus, submit buttons arede�ned as follows:button :: String -> EventHandler -> HtmlExpbutton txt handler =HtmlEvent (HtmlElem "INPUT" [("TYPE","SUBMIT"),("NAME","EVENT"),("VALUE",txt)℄) handler7

Fig. 1. A simple string reverse/dupliation formThe argument txt is the text shown on the button and the attribute NAME islater used to identify the seleted submit button (sine several buttons an ourin one form, see Set. 6).To see a simple but omplete example, we show the spei�ation of a formwhere the user an enter a string and hoose between two ations (reverse ordupliate the string, see Figure 1):5revdup = return $ Form "Question"[htxt "Enter a string: ", textfield tref "", hrule,button "Reverse string" revhandler,button "Dupliate string" duphandler℄wheretref freerevhandler env = return $ Form "Answer"[h1 [htxt ("Reversed input: " ++ reverse (env tref))℄℄duphandler env = return $ Form "Answer"[h1 [htxt ("Dupliated input: " ++ env tref ++ env tref)℄℄Note the simpliity of retrieving values entered into the form: sine the eventhandlers are alled with the appropriate environment ontaining these values,they an easily aess these values by applying the environment to the appro-priate CGI referene, like (env tref). This struture of CGI programming ismade possible by the funtional as well as logi programming features of Curry.Forms are exeuted by a speial wrapper funtion that performs the trans-lation into onrete HTML ode, deoding the entered values and invoking theorret event handler. This wrapper funtion has the following type:rungi :: String -> IO HtmlForm -> IO ()It takes a string (the URL under whih this CGI program is aessible on theserver) and an I/O ation returning a form and returns an I/O ation whih,5 The prede�ned right-assoiative in�x operator f $ e denotes the appliation of f tothe argument e. 8

when exeuted, returns the HTML ode of the form. Thus, the above form isexeuted by the following main funtionmain = rungi "revdup.gi" revdupprovided that the exeutable of this program is stored in revdup.gi.5 Server Side Web SriptingIn this setion we will show by various examples that the omponents for webserver programming introdued so far (i.e., logial variables for CGI referenes,assoiated event handlers depending on CGI environments) are suÆient to solvetypial problems in CGI programming in an appropriate way, like handling se-quenes of interations or holding intermediate states between interations.5.1 Aessing the Web Server EnvironmentFrom the previous example it might be unlear why the event handlers as wellas the wrapper funtion assumes that the form is enapsulated in an I/O ation.Although this is unneessary for appliations where the web server is used asa \omputation server" (where the result depends only on the form inputs), inmany appliations the lients want to aess or manipulate data stored on theserver. In these ases, the web servie program must be able to aess the serverenvironment whih is easily enabled by running it in the I/O monad.As a simple example for suh kinds of appliations, we show the de�nition ofa (not reommendable) form to retrieve the ontents of an arbitrary �le storedat the server:getfile = return $ Form "Question"[htxt "Enter loal file name:", textfield fileref "",button "Get file!" handler℄wherefileref freehandler env = readFile (env fileref) >>= \ontents ->return $ Form "Answer"[h1 [htxt ("Contents of " ++ env fileref)℄,verbatim ontents℄Here it is essential that the event handler is exeuted in the I/O monad, otherwiseit has no possibility to aess the ontents of the loal �le via the I/O ationreadFile before omputing the ontents of the returned form. In a similar way,arbitrary data an be retrieved or stored by the web server while exeuting CGIprograms.5.2 Interation SequenesIn the previous examples the interation between the lient and the web serveris quite simple: the lient sends a request by �lling a form whih is answered9

by the server with an HTML doument ontaining the requested information.In realisti appliations it is often the ase that the interation is not �nishedby sending bak the requested information but the lient requests further (e.g.,more detailed) information based on the reeived results. Thus, one has to dealwith sequenes of longer interations between the lient and the server.Our programming model provides a diret support for interation sequenes.Sine the answer provided by the event handler is an HTML form rather thanan HTML expression, this answer an also ontain further input elements andassoiated event handlers. By nesting event handlers, it is straightforward to im-plement bounded sequenes of interations and, therefore, we omit an example.A more interesting question is whether we an implement other ontrol ab-strations like arbitrary loops. For this purpose, we show the implementation ofa simple number guessing game: the lient has to guess a number known by theserver, and for eah number entered by the lient the server responds whetherthis number is right, smaller or larger than the number to be guessed. If theguess is not right, the answer form ontains an input �eld where the lient anenter the next guess.Due to the underlying delarative language, we implement looping onstrutsby reursion. Thus, the event handler omputing the answer for the lient on-tains a reursive all to the initial form whih implements the interation loop.The entire implementation of this number guessing game is as follows:guessform = return $ Form "Number Guessing" guessinputguessinput =[htxt "Guess a number: ", textfield nref "",button "Chek" (guesshandler nref)℄ where nref freeguesshandler nref env =let nr = readInt (env nref)in return $ Form "Answer"(if nr==42then [htxt "Right!"℄else [htxt (if nr<42 then "Too small!" else "Too large!"),hrule℄ ++ guessinput)guessinput is an HTML expression orresponding to the initial form whihontains an input �eld for entering the lient's guess. guesshandler is the as-soiated event handler where the CGI referene to the input �eld is the �rstargument of the handler. It heks the number entered by the lient (readIntonverts a string into a number) and returns the di�erent answers depending onthe lient's guess. If the guess is not right, the guessinput is appended to theanswer whih implements the reursive all.It should be lear that this general reursion pattern an be extended invarious ways. For instane, ounting the number of guesses made by the lient isquite simple: the only hange to the above program is the addition of a ounterargument to guessinput and guesshandler whih is initialized in the mainfuntion guessform and inremented in eah reursive all.10

5.3 Handling Intermediate StatesA nasty problem in many CGI appliations is the handling of intermediate statesdue to the fat that HTTP is a stateless protool. For instane, in eletroni om-mere appliations, the lients have shopping baskets where the already seleteditems are stored, and the ontents of these baskets must be kept between theinterations. Storing this information on the server side has several drawbaks.For instane, the lient wants to identify himself only after he really orders theitems, i.e., during the seletion phase the server annot uniquely assoiate the se-letions to a lient. Furthermore, the lient might not proeed with his seletionsso that the server does not know whether the basket information an be deleted(whih is neessary at some point to avoid a memory overow). Therefore, it isoften better to store suh lient-dependent information on the lient side. Forthis purpose, one an have HTML forms with input elements of type HIDDENwhih have no visual representation but an be used to pass lient-dependentinformation between interations. \Raw" HTML/CGI programmers must ex-pliitly handle these �elds whih is awkward and a soure of many programmingproblems.Our programming model o�ers a muh simpler solution to this problem. Bynesting event handlers (whih is allowed in languages with lexial soping likeCurry), one an diretly refer to input elements in previous forms. To be moreonrete, we onsider a sequene of HTML forms where the lient enters his �rstname in the �rst form and his last name in the seond form. The omplete nameis returned in the third form. This example an be implemented as follows:nameform = return $ Form "First Name Form"[htxt "Enter your first name: ", textfield first "",button "Continue" fhandler℄where first freefhandler _ =return $ Form "Last Name Form"[htxt "Enter your last name: ", textfield last "",button "Continue" lhandler℄where last freelhandler env = return $ Form "Answer"[htxt ("Hi, " ++ env first ++ " " ++ env last)℄Note that, due to lexial soping, the variable first is visible in the lhandlerwithout expliitly passing it as an argument.5.4 Improving CompositionalityIt is well known that an advantage of funtional programming is the diret sup-port for building appliation-oriented abstrations, thus, inreasing modularity[10℄. Unfortunately, \raw" CGI as well as funtional libraries for CGI program-ming as [13℄ do not support ompositionality in CGI programming due to the11

use of �xed strings for identifying form elements. In the following, we will showthat our approah to web servie programming improves ompositionality byexploiting the funtional and logi features of the base language.As an example, onsider that we want to add to eah web page of a set ofdynami web pages a searh �eld where the lient an retrieve some spei�information, e.g., the email address of a person. It is reasonable to de�ne for thispurpose a sequene of HTML elements abstrating suh a searh �eld togetherwith its event handler. In our approah, this an be implemented as follows:emailSearh =[hrule, htxt "Enter a name: ", textfield nref "",button "searh email" lookup, hrule℄where nref freelookup env = ...getEmail (env nref)...The ode for the event handler lookup is not ompletely shown sine this dependson aessing a data base ontaining the email addresses.6 The important point isthat the abstration emailSearh an be used as any other sequene of HTMLelements without taking are of the names of the input �elds sine the �eldidenti�er nref is a loal variable in emailSearh and, thus, not visible outsidethis abstration. For instane, the HTML sequene[..., textfield nref "", ...℄ ++ emailSearh ++ ...auses no name lash between the di�erent �eld identi�ers due to the lexialsoping of the underlying programming language. This is not true in \raw" CGIprogrammingwhere the programmer has to be areful about the seletion of �eldnames to avoid potential name onits (whih an result in nasty programmingerrors).7 This example shows the improved ompositionality by our abstrationlayer for web servie programming.6 ImplementationOur library for web servie programming is ompletely implemented in Curry. Itdoes not require any extension to web servers but uses only the standard featuresof CGI. Sine these are supported by most web servers, our library an be usedwith most web servers (where a Curry system is also installed). In this setion,we disuss the implementation of our programming model with CGI referenesand event handlers on top of the standard CGI features.The entire implementation is performed by the main wrapper funtionrungi whih basially takes a spei�ation of an HTML form and translates itinto the orresponding onrete HTML text. Moreover, it performs the followingtasks:6 For instane, this an be easily done by sending a message to an address server usingthe features for distributed programming in Curry [5℄.7 Although one an use several forms in one HTML doument to avoid name onits,this does not work in general if some input �elds should be shared.12

{ Assigning unique identi�ers (strings) to the CGI referenes ourring in theform spei�ation, i.e., the logial variables in the CGI referenes are instan-tiated to these string identi�ers.{ Assigning unique identi�ers (strings) to eah event handler ourring in theform spei�ation. For instane, eah submit button ontains after this as-signment a name attribute of the form EVENT_s, where s is a string uniquelyidentifying the event handler assoiated to the button that the lient haspressed to submit the form.{ Adding the input values of the previous (enlosing) forms as hidden inputs.If a web server reeives a request to exeute a servie implemented with ourlibrary, it exeutes the wrapper funtion rungi applied to the orrespondingform (ompare end of Set. 4) in the environment of the web server. Thus, rungi�rst heks the environment variables in order to deode the list of input valuesentered by the user (whih might be empty for the initial form). If there is noinput value named EVENT_s, then this is the all of the top-level form and not asubmission of a previous form. In this ase, the top-level form is translated andwritten on the standard output stream so that the web server returns it to thelient. If there is an input value identifying the seleted handler (i.e., the nameEVENT_s is de�ned in the input environment), rungi selets the assoiated eventhandler in the form spei�ation and exeutes it together with the urrent CGIenvironment as an argument.The urrent CGI environment is omputed as follows. First, the list ofname/value pairs passed in a string representation to the CGI program is de-oded and stored in a list of pairs of strings. The seletion of the value assoiatedto a CGI referene in this list is implemented by a simple list lookup funtiongiGetValue :: [(String,String)℄ -> CgiRef -> StringIf env denotes the urrent list of deoded name/value pairs, the or-responding CGI environment an be omputed by the partial appliation(giGetValue env) whih has the required type CgiRef -> String. Althoughthe implementation of environments an be improved by more sophistiated datastrutures (e.g., balaned searh trees), our pratial experiene indiates thatthis simple implementation is suÆient.7 Conlusions and Related WorkIn this paper we have presented a new model for programming web serviesbased on the standard Common Gateway Interfae. Sine this model is puton top of the multi-paradigm language Curry, we ould exploit funtional aswell as logi programming tehniques to provide a high abstration level for ourprogrammingmodel. We have used funtional abstrations for speifying HTMLforms as expressions of a spei� data type so that only well-formed HTMLstrutures an be written. Furthermore, higher-order funtional abstrations areused to attah event handlers to partiular HTML elements like buttons and toprovide a straightforward aess to input values via an environment model. Sine13

event handlers an be nested, we have a diret support to de�ne sequenes (orsessions) of interations between the lient and the server where states or inputvalues of previous forms are available in subsequent interations. This overomesthe stateless nature of HTTP. On the other hand, the logial features of Curryare used to deal with referenes to input values in HTML forms. Sine a forman have an arbitrary number of input values, we onsider them as \holes" in anHTML expression whih are �lled by the user so that event handlers an aessthese values through an environment. Using logial variables to refer to inputvalues is more appropriate than the use of strings as in raw HTML sine someerrors (e.g., mispelled names) are deteted at ompile time and HTML formsan be omposed without name lashes.Sine Curry has more features than used in the examples of this paper, weshortly disuss the advantages of using them. Curry subsumes logi program-ming, i.e., it o�ers not only logial variables but also built-in searh failitiesand onstraint solving. Thus, one an easily provide web servies where on-straint solving and searh is involved (e.g., web servies with a natural languageinterfae), as shown in the (purely logi-based) PiLLoW library [2℄. Sine eventhandlers must be deterministi funtions, the enapsulation of searh in Curry[8℄ beomes quite useful for suh kinds of appliations. Furthermore, Curry ex-ploits the logi programming features to support onurrent and distributedprogramming by the use of port onstraints [5℄. This an be used to retrieveinformation from other Internet servers (as done in the web pages for Curry togenerate the members of the Curry mailing list8 where the web server interatswith a database server).Finally, we ompare our approah with some other proposals for providing ahigher level for web programming than the raw CGI. MAWL [12℄ is a domain-spei� language for programming web servies. In order to allow the hekingof well-formedness of HTML douments, in MAWL douments are written inHTML with some gaps that are �lled by the server before sending the doumentto the lient. Sine these gaps are �lled only with simple values, the generation ofdouments whose struture depends on some omputed data is largely restrited.To overome this restrition, MAWL o�ers speial iteration gaps whih an be�lled with list values but more omplex strutures, like unbounded hierarhialstrutures, are not supported in ontrast to our approah. On the positive side,MAWL has a speial (imperative) language to support the handling of sequenesof interations with traditional imperative ontrol strutures and the manage-ment of state variables. However, the programming model is di�erent than ours.In MAWL the presentation of an HTML doument is onsidered as a remoteproedure all in the sequene of interation statements. Therefore, there is ex-atly one program point to ontinue the handling of the lient's answer whereour model allows several event handlers that an be alled inside one doument(see the form revdup in Set. 4).The restritions of MAWL to reate dynami douments have been weakenedin DynDo [15℄ that supports higher-order doument templates, i.e., the gaps8 http://www.informatik.uni-kiel.de/~urry14

in a doument an be �lled with other douments that an also ontain gaps.Thus, unbounded hierarhially strutured douments an be easily reated. Inontrast to our approah, DynDo is based on a spei� language for writingdynami web servies while we exploit the features of the existing high-levellanguage Curry for the same task so that we an immediately use all featuresand libraries for Curry to write web appliations, like higher-order funtions,onstraints, ports for distributed programming et.Similarly to our library-based approah, there are also libraries to supportHTML and CGI programming in other funtional and logi languages. Meijer[13℄ has developed a CGI library for Haskell that de�nes a data type for HTMLexpressions together with a wrapper funtion that translates suh expressionsinto a textual HTML representation. However, it does not o�er any abstra-tion for programming sequenes of interations. These must be implementedin the traditional way by hoosing strings for identifying input �elds, passingstates as hidden input �elds et. Similarly, the representation of HTML do-uments in Haskell proposed by Thiemann [17℄ onentrates only on ensuringthe well-formedness of douments and do not support the programming of in-terations. Nevertheless, his approah is interesting sine it demonstrates howa sophistiated type system an be exploited to inlude more stati heks onthe doument struture, in partiular, to hek the validity of the attributesassigned to HTML elements. Hughes [11℄ proposes a generalization of monads,alled arrows, to deal with sequenes of interations and passing state in CGIprogramming but, in ontrast to our approah, his proposal does not ontainspei� features for dealing with referenes to input �elds. The PiLLoW library[2℄ is an HTML/CGI library for Prolog. Due to the untyped nature of Prolog,stati heks on the form of HTML douments are not supported. Furthermore,there is no higher-level support for sequenes of interations.Sine the programmingmodel proposed in this paper needs no spei� exten-sion to Curry, it provides appropriate support to implement web-based interfaesto existing Curry appliations. Moreover, it an be onsidered as a domain-spei� language for writing web servie sripts. Thus, this demonstrates that amulti-paradigm delarative language like Curry an also be used as a sriptinglanguage for server side web appliations. We have shown that the funtional aswell as the logi features provide a good infrastruture to design suh a domain-spei� language. The implementation of this library is freely available withour Curry development system PAKCS [7℄. All examples in this paper are ex-eutable with this implementation. Furthermore, the library is urrently usedto dynamially reate parts of the web pages for Curry9, to handle the submis-sion information for the Journal of Funtional and Logi Programming10, andfor orreting the student's home assignments in the introdutory programmingleture in our department (among others).Although our programming model and its implementation works well in allthese appliations, it might be interesting for future work to provide alternative9 http://www.informatik.uni-kiel.de/~urry10 http://danae.uni-muenster.de/lehre/kuhen/JFLP/15

implementations with speialized infrastrutures (e.g., servlets, seurity layerset) for the same programming model.Referenes1. S. Antoy, R. Ehahed, and M. Hanus. A Needed Narrowing Strategy. Journal ofthe ACM, Vol. 47, No. 4, pp. 776{822, 2000.2. D. Cabeza and M. Hermenegildo. Internet and WWW Programming using Com-putational Logi Systems. In Workshop on Logi Programming and the Internet,1996. See also http://www.lip.dia.fi.upm.es/misdos/pillow/pillow.html.3. M. Hanus. The Integration of Funtions into Logi Programming: From Theory toPratie. Journal of Logi Programming, Vol. 19&20, pp. 583{628, 1994.4. M. Hanus. A Uni�ed Computation Model for Funtional and Logi Programming.In Pro. of the 24th ACM Symposium on Priniples of Programming Languages(Paris), pp. 80{93, 1997.5. M. Hanus. Distributed Programming in a Multi-Paradigm Delarative Language.In Pro. of the International Conferene on Priniples and Pratie of DelarativeProgramming (PPDP'99), pp. 376{395. Springer LNCS 1702, 1999.6. M. Hanus. A Funtional Logi Programming Approah to Graphial User Inter-faes. In International Workshop on Pratial Aspets of Delarative Languages(PADL'00), pp. 47{62. Springer LNCS 1753, 2000.7. M. Hanus, S. Antoy, J. Koj, P. Niederau, R. Sadre, and F. Steiner.PAKCS: The Portland Aahen Kiel Curry System. Available athttp://www.informatik.uni-kiel.de/~paks/, 2000.8. M. Hanus and F. Steiner. Controlling Searh in Delarative Programs. InPriniples of Delarative Programming (Pro. Joint International SymposiumPLILP/ALP'98), pp. 374{390. Springer LNCS 1490, 1998.9. M. Hanus (ed.). Curry: An Integrated Funtional Logi Language (Vers. 0.7.1).Available at http://www.informatik.uni-kiel.de/~urry, 2000.10. J. Hughes. Why Funtional Programming Matters. In D.A. Turner, editor, Re-searh Topis in Funtional Programming, pp. 17{42. Addison Wesley, 1990.11. J. Hughes. Generalising Monads to Arrows. Submitted for publiation, 1998.12. D.A. Ladd and J.C. Ramming. Programming the Web: An Appliation-OrientedLanguage for Hypermedia Servies. In 4th International World Wide Web Con-ferene, 1995.13. E. Meijer. Server Side Web Sripting in Haskell. Journal of Funtional Program-ming, Vol. 10, No. 1, pp. 1{18, 2000.14. J. Peterson et al. Haskell: A Non-strit, Purely Funtional Language (Version 1.4).Tehnial Report, Yale University, 1997.15. A. Sandholm and M.I. Shwartzbah. A Type System for Dynami Web Do-uments. In Pro. of the 27th ACM Symposium on Priniples of ProgrammingLanguages, pp. 290{301, 2000.16. V.A. Saraswat. Conurrent Constraint Programming. MIT Press, 1993.17. P. Thiemann. Modelling HTML in Haskell. In International Workshop on PratialAspets of Delarative Languages (PADL'00), pp. 263{277. Springer LNCS 1753,2000.18. P. Wadler. How to Delare an Imperative. ACM Computing Surveys, Vol. 29,No. 3, pp. 240{263, 1997.19. D.H.D. Warren. Logi Programming and Compiler Writing. Software - Pratieand Experiene, Vol. 10, pp. 97{125, 1980.16

