
High-Level Server Side Web S
ripting in CurryMi
hael Hanus?Institut f�ur Informatik, Christian-Albre
hts-Universit�at KielD-24098 Kiel, Germany, mh�informatik.uni-kiel.de

Springer-VerlagIn Pro
. of the Third International Symposium on Pra
ti
al Aspe
ts ofDe
larative Languages, PADL'01, Las Vegas.Springer LNCS 1990, pp. 76{92, 2001

Abstra
t. We propose a new approa
h to program web servi
es. Al-though we base our approa
h on the Common Gateway Interfa
e (CGI)to ensure wide appli
ability, we avoid many of the drawba
ks and pitfallsof traditional CGI programming by providing an additional abstra
tionlayer implemented in the multi-paradigm de
larative language Curry.For instan
e, the synta
ti
al details of HTML and passing values withCGI are hidden by a wrapper that exe
utes abstra
t HTML forms bytranslating them into
on
rete HTML
ode. This leads to a high-level ap-proa
h to server side web servi
e programming where notions like eventhandlers, state variables and
ontrol of intera
tions are available. Thanksto the use of a fun
tional logi
 language, we
an stru
ture our approa
has an embedded domain spe
i�
 language where the fun
tional and logi
programming features of the host language are exploited to abstra
t fromdetails and frequent errors in standard CGI programming.1 MotivationIn the early days of the World Wide Web (in the following
alled the web),most of the do
uments were stati
, i.e., stored in �les whi
h
an be viewed in ani
ely formatted layout. With the introdu
tion of the Common Gateway Inter-fa
e (CGI), more and more do
uments be
ome dynami
, i.e., they are
omputedon the web server at the time they are requested from a
lient. In
ombinationwith input forms spe
i�ed in HTML do
uments, more
omplex forms of intera
-tions be
ome possible so that
lients
an retrieve or store spe
i�
 data via theirweb browsers.An advantage of CGI is that it is supported by most web servers. Thus, theuse of CGI does not need any spe
ial extensions on the server or the
lient side(e.g., no servlets or
ookies), whi
h is a requirement for our development in orderto ensure wide appli
ability. On the other hand, CGI o�ers only a very primi-tive form of intera
tion so that the programming of web servi
es often be
omesawkward. Although general s
ripting languages like Perl provide libraries for de-
oding input form data, they do not support the programmer in the
onstru
tionof
orre
t output data or to
ontrol a sequen
e of intera
tions with the
lient.This demands for spe
ialized languages (e.g., MAWL [12℄, DynDo
 [15℄) or spe-
ialized libraries in existing languages (e.g., [2, 13, 17℄). In this paper we take the? This resear
h has been partially supported by the German Resear
h Coun
il (DFG)under grant Ha 2457/1-2 and by the DAAD under the PROCOPE programme.

latter approa
h. We show how the features of a fun
tional logi
 language (see[3℄ for a survey on this kind of languages)
an be exploited to provide a
exibleand high-level approa
h to programming web servi
es without any language ex-tensions (sin
e our library is
ompletely implemented in Curry). In parti
ular,our approa
h o�ers the following features for implementing web servi
es:{ The HTML do
uments requested by the
lients
an be
exibly generateddepending on the
omputed data.{ The data �lled in a form by the user
an be easily retrieved by an environ-ment model using logi
al variables as referen
es.{ The use of logi
al variables as referen
es (instead of �xed strings as in \raw"CGI) improves the
ompositionality of HTML forms.{ The di�erent a
tions to be taken when a user has
ompleted a form arespe
i�ed by an event handler model.{ The sequen
e (or iterations) of intera
tions with the web server is des
ribedin one s
ript and not distributed over a set of s
ript �les. In parti
ular, aform is des
ribed together with the handler for this form whi
h avoids typi
alCGI programming errors (e.g., unde�ned input �elds).{ State variables whi
h should persist between di�erent intera
tions are di-re
tly supported.{ The CGI intera
tion (usually, by environment variables and value de
oding)is hidden to the user and en
apsulated in a wrapper that translates thehigh-level s
ripts into HTML
ode.This paper is stru
tured as follows. The next se
tion provides a short overview ofthe main features of Curry as relevant for this paper. Se
tions 3 and 4 introdu
eour approa
h for modeling basi
 HTML do
uments and intera
tive forms. Se
-tion 5 dis
usses the use of our programming model by various examples beforewe sket
h in Se
t. 6 the implementation of our library and
on
lude in Se
t. 7with a dis
ussion of related work.2 Basi
 Elements of CurrySin
e we assume familiarity with basi
 HTML and CGI programming, we reviewin this se
tion only those elements of Curry whi
h are ne
essary to understandthe ideas presented in this paper. More details about Curry's
omputation modeland a
omplete des
ription of all language features
an be found in [4, 9℄.Curry is a modern multi-paradigmde
larative language
ombining in a seam-less way features from fun
tional programming (nested expressions, lazy evalua-tion, higher-order fun
tions), logi
 programming (logi
al variables, partial datastru
tures, built-in sear
h), and
on
urrent programming (
on
urrent evalua-tion of expressions with syn
hronization on logi
al variables), and supportsprogramming-in-the-large with spe
i�
 features (types, modules, en
apsulatedsear
h). From a synta
ti
 point of view, a Curry program is a fun
tional pro-2

gram1 extended by the possible in
lusion of free (logi
al) variables in
onditionsand right-hand sides of de�ning rules. Thus, a Curry program
onsists of the def-inition of fun
tions and the data types on whi
h the fun
tions operate. Fun
tionsare evaluated in a lazy manner. To provide the full power of logi
 programming,fun
tions
an be
alled with partially instantiated arguments and de�ned by
onditional equations with
onstraints in the
onditions. The behavior of fun
-tion
alls with free variables depends on the evaluation annotations of fun
tionswhi
h
an be either
exible or rigid. Calls to rigid fun
tions are suspended if ademanded argument, i.e., an argument whose value is ne
essary to de
ide the ap-pli
ability of a rule, is uninstantiated (\residuation"). Calls to
exible fun
tionsare evaluated by a possibly non-deterministi
 instantiation of the demanded ar-guments to the required values in order to apply a rule (\narrowing").Example 1. The following Curry program de�nes the data types of Boolean val-ues and polymorphi
 lists (�rst two lines) and fun
tions for
omputing the
on-
atenation of lists and the last element of a list:data Bool = True | Falsedata List a = [℄ | a : List a
on
 :: [a℄ -> [a℄ -> [a℄
on
 eval flex
on
 [℄ ys = ys
on
 (x:xs) ys = x :
on
 xs yslast xs |
on
 ys [x℄ =:= xs = x where x,ys freeThe data type de
larations de�ne True and False as the Boolean
onstants and[℄ (empty list) and : (non-empty list) as the
onstru
tors for polymorphi
 lists(a is a type variable ranging over all types and the type \List a" is usuallywritten as [a℄ for
onformity with Haskell).The (optional) type de
laration (\::") of the fun
tion
on
 spe
i�es that
on
 takes two lists as input and produ
es an output list, where all list elementsare of the same (unspe
i�ed) type.2 Sin
e
on
 is expli
itly de�ned as
exible3(by \eval flex"), the equation \
on
 ys [x℄ =:= xs"
an be solved by in-stantiating the �rst argument ys to the list xs without the last argument, i.e.,the only solution to this equation satis�es that x is the last element of xs.In general, fun
tions are de�ned by (
onditional) rules of the form\l |
 = e where vs free" where l has the form f t1 : : : tn with f being a fun
-tion, t1; : : : ; tn data terms and ea
h variable o

urs only on
e, the
ondition
is a
onstraint, e is a well-formed expression whi
h may also
ontain fun
tion1 Curry has a Haskell-like syntax [14℄, i.e., (type) variables and fun
tion names usuallystart with lower
ase letters and the names of type and data
onstru
tors start withan upper
ase letter. The appli
ation of f to e is denoted by juxtaposition (\f e").2 Curry uses
urried fun
tion types where �->� denotes the type of all fun
tionsmapping elements of type � into elements of type �.3 As a default, all fun
tions ex
ept for
onstraints are rigid.3

alls, lambda abstra
tions et
, and vs is the list of free variables that o

ur in
and e but not in l (the
ondition and the where parts
an be omitted if
 and vsare empty, respe
tively). The where part
an also
ontain further lo
al fun
tionde�nitions whi
h are only visible in this rule. A
onditional rule
an be appliedif its left-hand side mat
hes the
urrent
all and its
ondition is satis�able. A
onstraint is any expression of the built-in type Su

ess. Ea
h Curry systemprovides at least equational
onstraints of the form e1 =:= e2 whi
h are satis�ableif both sides e1 and e2 are redu
ible to uni�able data terms (i.e., terms with-out de�ned fun
tion symbols). However, spe
i�
 Curry systems
an also supportmore powerful
onstraint stru
tures, like arithmeti

onstraints on real numbersor �nite domain
onstraints, as in the PAKCS implementation [7℄.The operational semanti
s of Curry, pre
isely des
ribed in [4, 9℄, is a
onser-vative extension of lazy fun
tional programming (if no free variables o

ur in theprogram or the initial goal) and (
on
urrent) logi
 programming. Due to the useof an optimal evaluation strategy [1℄, Curry
an be
onsidered as a generaliza-tion of
on
urrent
onstraint programming [16℄ with a lazy (optimal) evaluationstrategy. Due to this generalization, Curry supports a
lear separation betweenthe sequential (fun
tional) parts of a program, whi
h are evaluated with an ef-�
ient and optimal evaluation strategy, and the
on
urrent parts, based on the
on
urrent evaluation of
onstraints, to
oordinate
on
urrent program units.Monadi
 I/O: Sin
e web servi
e programs usually intera
t with their environ-ment (e.g., retrieve or store information in �les on the server), some knowledgeabout performing I/O in a de
larative manner is required. The I/O
on
ept ofCurry is identi
al to the monadi
 I/O
on
ept of Haskell [18℄, i.e., an intera
-tive program
omputes a sequen
e of a
tions whi
h are applied to the outsideworld. A
tions have type \IO �" whi
h means that they return a result of type� whenever they are applied to (and
hange) the outside world. For instan
e,getChar of type IO Char is an a
tion whi
h reads a
hara
ter from the standardinput whenever it is exe
uted, i.e., applied to a world. Similarly, \readFile f"is an a
tion whi
h returns the
ontents of �le f in the
urrent world. A
tions
an only be sequentially
omposed. For instan
e, the a
tion getChar
an be
omposed with the a
tion putChar (whi
h has type Char -> IO () and writesa
hara
ter to the terminal) by the sequential
omposition operator >>= (whi
hhas type IO � -> (� -> IO �) -> IO �), i.e., \getChar >>= putChar" is a
omposed a
tion whi
h prints the next
hara
ter of the input stream on thes
reen. Finally, \return e" is the \empty" a
tion whi
h simply returns e (see[18℄ for more details).3 Modeling Basi
 HTMLIn order to avoid
ertain synta
ti
al errors (e.g., unbalan
ed parenthesis) duringthe generation of HTML do
uments by a web server, the programmer should notbe for
ed to generate the expli
it text of HTML do
uments (as in CGI s
riptswritten in Perl or with the Unix shell). A better approa
h is the introdu
tionof an abstra
tion layer where HTML do
uments are modeled as terms of a4

spe
i�
 data type together with a wrapper fun
tion whi
h is responsible for the
orre
t textual representation of this data type. Su
h an approa
h
an be easilyimplemented in a language supporting algebrai
 data types (e.g., [13℄). Thus, weintrodu
e the type of HTML expressions in Curry as follows:data HtmlExp = HtmlText String| HtmlStru
t String [(String,String)℄ [HtmlExp℄| HtmlElem String [(String,String)℄Thus, an HTML expression is either a plain string or a stru
ture
onsisting ofa tag (e.g., B,EM,H1,H2,. . .), a list of attributes, and a list of HTML expressions
ontained in this stru
ture. The translation of su
h HTML expressions into their
orresponding textual representation is straightforward: an HtmlText is repre-sented by its argument, and a stru
ture with tag t is en
losed in the bra
kets<t> and </t> (where the attributes are eventually added to the open bra
ket).Sin
e there are a few HTML elements without a
losing tag (like <HR> or
),we have in
luded the alternative HtmElem to represent these elements.Sin
e writing HTML do
uments in this form might be tedious, we de�neseveral fun
tions as useful abbreviations (htmlQuote transforms
hara
ters witha spe
ial meaning in HTML, like <, >, &, ", into their HTML quoted form):htxt s = HtmlText (htmlQuote s) -- plain stringh1 hexps = HtmlStru
t "H1" [℄ hexps -- main headerbold hexps = HtmlStru
t "B" [℄ hexps -- bold fontitali
 hexps = HtmlStru
t "I" [℄ hexps -- itali
 fonthrule = HtmlElem "HR" [℄ -- horizontal rule...As a simple example, the following expression de�nes a \Hello World" do
ument
onsisting of a header and two words in itali
 and bold font, respe
tively:[h1 [htxt "Hello World"℄,itali
 [htxt "Hello"℄, bold [htxt "world!"℄℄4 Input FormsIn order to enable more sophisti
ated intera
tions between
lients using standardbrowsers and a web server, HTML de�nes so-
alled FORM elements whi
h usually
ontains several input elements to be �lled out by the
lient. When the
lientsubmits su
h a form, the data
ontained in the input elements is en
oded andsent (on the standard input or with the URL) to the server whi
h starts a CGIprogram to rea
t to the submission. The a
tivated program de
odes the inputdata and performs some appli
ation-dependent pro
essing before it returns anHTML do
ument on the standard output whi
h is then sent ba
k to the
lient.In prin
iple, the type HtmlExp is suÆ
ient to model all kinds of HTML do
-uments in
luding input elements like text �elds,
he
k buttons et
. For instan
e,an input �eld to be �lled out with a text string
an be modeled asHtmlElem "INPUT" [("TYPE","TEXT"),("NAME",name),("VALUE",
ont)℄5

where the string
ont de�nes an initial
ontents of this �eld and the stringname is used to identify this �eld when the data of the �lled form is sent tothe server. This dire
t approa
h is taken in CGI libraries for s
ripting languageslike Perl or also in the CGI library for Haskell [13℄. In this
ase, the programrunning on the web server is an I/O a
tion that de
odes the input data (
on-tained in environment variables and the standard input stream) and puts theresulting HTML do
ument on the output stream. Therefore, CGI programs
anbe implemented in any programming language supporting a

ess to the systemenvironment. However, this basi
 view results in an awkward programming stylewhen sequen
es of intera
tions (i.e., HTML forms) must be modeled where stateshould be passed between di�erent intera
tions. Therefore, we propose a higherabstra
tion level and we will show that the fun
tional and logi
 features of Curry
an be exploited to provide an appropriate programming infrastru
ture. Thereare two basi
 ideas of our programming model:1. The input �elds are not referen
ed by strings but by elements of a spe
i�
abstra
t data type. This has the advantage that the names of referen
es
orrespond to names of program variables so that the
ompiler
an
he
kin
onsisten
ies in the naming of referen
es.2. The program that is a
tivated when a form is submitted is implemented to-gether with the program generating the form. This has the advantage thatsequen
es of intera
tions
an be simply implemented using the
ontrol ab-stra
tions of the underlying language and state
an be easily passed betweendi�erent intera
tions of a sequen
e using the referen
es mentioned above.For dealing with referen
es to input �elds, we use logi
al variables sin
e it is wellknown that logi
al variables are a useful notion to express dependen
ies insidedata stru
tures [6, 19℄. To be more pre
ise, we introdu
e a data typedata CgiRef = CgiRef Stringdenoting the type of all referen
es to input elements in HTML forms. This datatype is abstra
t, i.e., its
onstru
tor CgiRef is not exported by our library. Thisis essential sin
e it avoids the
onstru
tion of wrong referen
es. The only way tointrodu
e su
h referen
es are logi
al variables, and the global wrapper fun
tionis responsible to instantiate these variables with appropriate referen
es (i.e.,instantiate ea
h referen
e variable to a term of the form CgiRef n where n is aunique name).To in
lude referen
es in HTML forms, we extend the de�nition of our datatype for HTML expressions by the following alternative:data HtmlExp = ... | HtmlCRef HtmlExp CgiRefA term \HtmlCRef hexp
r" denotes an HTML element hexp with a referen
eto it. Usually, hexp is one of the input elements de�ned for HTML, like text�elds, text areas,
he
k boxes et
. For instan
e, a text �eld is de�ned by thefollowing abbreviation in our library:44 Note that this fun
tion must be
exible so that the �rst argument, whi
h
an onlybe a logi
al variable, is instantiated by the appli
ation of this fun
tion.6

textfield :: CgiRef -> String -> HtmlExptextfield eval flextextfield (CgiRef ref)
ontents =HtmlCRef (HtmlElem "INPUT" [("TYPE","TEXT"),("NAME",ref),("VALUE",
ontents)℄)(CgiRef ref)Note that ref is unbound when this fun
tion is applied but it will be bound toa unique name (string) by the wrapper fun
tion exe
uting the form (see below).A
omplete HTML form
onsists of a title and a list of HTML expressions tobe displayed by the
lient's browser, i.e., we represent HTML forms as expres-sions of the following data type:data HtmlForm = Form String [HtmlExp℄Thus, we
an de�ne a form
ontaining a single input element (a text �eld) byForm "Form" [h1 [htxt "A Simple Form"℄,htxt "Enter a string:", textfield sref ""℄In order to submit a form to the web server, HTML supports \submit" buttons(we only dis
uss this submission method here although there are others). Thea
tions to be taken are des
ribed by CGI programs that de
ode the submittedvalues of the form before they perform the appropriate a
tions. To simplify thesea
tions and
ombine them with the program generating the form, we proposean event handling model for CGI programming. For this purpose, ea
h submitbutton is asso
iated with an event handler responsible to perform the appropriatea
tions. An event handler is a fun
tion from a CGI environment into an I/Oa
tion (in order to enable a

ess to the server environment) that returns a newform to be sent ba
k to the
lient. A CGI environment is simply a mapping fromCGI referen
es into strings. When an event handler is exe
uted, it is suppliedwith a CGI environment
ontaining the values entered by the
lient into theform. Thus, event handlers have the typetype EventHandler = (CgiRef -> String) -> IO HtmlFormTo atta
h an event handler to an HTML element, we �nally extend the de�nitionof our data type for HTML expressions by:data HtmlExp = ... | HtmlEvent HtmlExp EventHandlerA term \HtmlEvent hexp handler" denotes an HTML element hexp (typi
allya submit button) with an asso
iated event handler. Thus, submit buttons arede�ned as follows:button :: String -> EventHandler -> HtmlExpbutton txt handler =HtmlEvent (HtmlElem "INPUT" [("TYPE","SUBMIT"),("NAME","EVENT"),("VALUE",txt)℄) handler7

Fig. 1. A simple string reverse/dupli
ation formThe argument txt is the text shown on the button and the attribute NAME islater used to identify the sele
ted submit button (sin
e several buttons
an o

urin one form, see Se
t. 6).To see a simple but
omplete example, we show the spe
i�
ation of a formwhere the user
an enter a string and
hoose between two a
tions (reverse ordupli
ate the string, see Figure 1):5revdup = return $ Form "Question"[htxt "Enter a string: ", textfield tref "", hrule,button "Reverse string" revhandler,button "Dupli
ate string" duphandler℄wheretref freerevhandler env = return $ Form "Answer"[h1 [htxt ("Reversed input: " ++ reverse (env tref))℄℄duphandler env = return $ Form "Answer"[h1 [htxt ("Dupli
ated input: " ++ env tref ++ env tref)℄℄Note the simpli
ity of retrieving values entered into the form: sin
e the eventhandlers are
alled with the appropriate environment
ontaining these values,they
an easily a

ess these values by applying the environment to the appro-priate CGI referen
e, like (env tref). This stru
ture of CGI programming ismade possible by the fun
tional as well as logi
 programming features of Curry.Forms are exe
uted by a spe
ial wrapper fun
tion that performs the trans-lation into
on
rete HTML
ode, de
oding the entered values and invoking the
orre
t event handler. This wrapper fun
tion has the following type:run
gi :: String -> IO HtmlForm -> IO ()It takes a string (the URL under whi
h this CGI program is a

essible on theserver) and an I/O a
tion returning a form and returns an I/O a
tion whi
h,5 The prede�ned right-asso
iative in�x operator f $ e denotes the appli
ation of f tothe argument e. 8

when exe
uted, returns the HTML
ode of the form. Thus, the above form isexe
uted by the following main fun
tionmain = run
gi "revdup.
gi" revdupprovided that the exe
utable of this program is stored in revdup.
gi.5 Server Side Web S
riptingIn this se
tion we will show by various examples that the
omponents for webserver programming introdu
ed so far (i.e., logi
al variables for CGI referen
es,asso
iated event handlers depending on CGI environments) are suÆ
ient to solvetypi
al problems in CGI programming in an appropriate way, like handling se-quen
es of intera
tions or holding intermediate states between intera
tions.5.1 A

essing the Web Server EnvironmentFrom the previous example it might be un
lear why the event handlers as wellas the wrapper fun
tion assumes that the form is en
apsulated in an I/O a
tion.Although this is unne
essary for appli
ations where the web server is used asa \
omputation server" (where the result depends only on the form inputs), inmany appli
ations the
lients want to a

ess or manipulate data stored on theserver. In these
ases, the web servi
e program must be able to a

ess the serverenvironment whi
h is easily enabled by running it in the I/O monad.As a simple example for su
h kinds of appli
ations, we show the de�nition ofa (not re
ommendable) form to retrieve the
ontents of an arbitrary �le storedat the server:getfile = return $ Form "Question"[htxt "Enter lo
al file name:", textfield fileref "",button "Get file!" handler℄wherefileref freehandler env = readFile (env fileref) >>= \
ontents ->return $ Form "Answer"[h1 [htxt ("Contents of " ++ env fileref)℄,verbatim
ontents℄Here it is essential that the event handler is exe
uted in the I/O monad, otherwiseit has no possibility to a

ess the
ontents of the lo
al �le via the I/O a
tionreadFile before
omputing the
ontents of the returned form. In a similar way,arbitrary data
an be retrieved or stored by the web server while exe
uting CGIprograms.5.2 Intera
tion Sequen
esIn the previous examples the intera
tion between the
lient and the web serveris quite simple: the
lient sends a request by �lling a form whi
h is answered9

by the server with an HTML do
ument
ontaining the requested information.In realisti
 appli
ations it is often the
ase that the intera
tion is not �nishedby sending ba
k the requested information but the
lient requests further (e.g.,more detailed) information based on the re
eived results. Thus, one has to dealwith sequen
es of longer intera
tions between the
lient and the server.Our programming model provides a dire
t support for intera
tion sequen
es.Sin
e the answer provided by the event handler is an HTML form rather thanan HTML expression, this answer
an also
ontain further input elements andasso
iated event handlers. By nesting event handlers, it is straightforward to im-plement bounded sequen
es of intera
tions and, therefore, we omit an example.A more interesting question is whether we
an implement other
ontrol ab-stra
tions like arbitrary loops. For this purpose, we show the implementation ofa simple number guessing game: the
lient has to guess a number known by theserver, and for ea
h number entered by the
lient the server responds whetherthis number is right, smaller or larger than the number to be guessed. If theguess is not right, the answer form
ontains an input �eld where the
lient
anenter the next guess.Due to the underlying de
larative language, we implement looping
onstru
tsby re
ursion. Thus, the event handler
omputing the answer for the
lient
on-tains a re
ursive
all to the initial form whi
h implements the intera
tion loop.The entire implementation of this number guessing game is as follows:guessform = return $ Form "Number Guessing" guessinputguessinput =[htxt "Guess a number: ", textfield nref "",button "Che
k" (guesshandler nref)℄ where nref freeguesshandler nref env =let nr = readInt (env nref)in return $ Form "Answer"(if nr==42then [htxt "Right!"℄else [htxt (if nr<42 then "Too small!" else "Too large!"),hrule℄ ++ guessinput)guessinput is an HTML expression
orresponding to the initial form whi
h
ontains an input �eld for entering the
lient's guess. guesshandler is the as-so
iated event handler where the CGI referen
e to the input �eld is the �rstargument of the handler. It
he
ks the number entered by the
lient (readInt
onverts a string into a number) and returns the di�erent answers depending onthe
lient's guess. If the guess is not right, the guessinput is appended to theanswer whi
h implements the re
ursive
all.It should be
lear that this general re
ursion pattern
an be extended invarious ways. For instan
e,
ounting the number of guesses made by the
lient isquite simple: the only
hange to the above program is the addition of a
ounterargument to guessinput and guesshandler whi
h is initialized in the mainfun
tion guessform and in
remented in ea
h re
ursive
all.10

5.3 Handling Intermediate StatesA nasty problem in many CGI appli
ations is the handling of intermediate statesdue to the fa
t that HTTP is a stateless proto
ol. For instan
e, in ele
troni

om-mer
e appli
ations, the
lients have shopping baskets where the already sele
teditems are stored, and the
ontents of these baskets must be kept between theintera
tions. Storing this information on the server side has several drawba
ks.For instan
e, the
lient wants to identify himself only after he really orders theitems, i.e., during the sele
tion phase the server
annot uniquely asso
iate the se-le
tions to a
lient. Furthermore, the
lient might not pro
eed with his sele
tionsso that the server does not know whether the basket information
an be deleted(whi
h is ne
essary at some point to avoid a memory over
ow). Therefore, it isoften better to store su
h
lient-dependent information on the
lient side. Forthis purpose, one
an have HTML forms with input elements of type HIDDENwhi
h have no visual representation but
an be used to pass
lient-dependentinformation between intera
tions. \Raw" HTML/CGI programmers must ex-pli
itly handle these �elds whi
h is awkward and a sour
e of many programmingproblems.Our programming model o�ers a mu
h simpler solution to this problem. Bynesting event handlers (whi
h is allowed in languages with lexi
al s
oping likeCurry), one
an dire
tly refer to input elements in previous forms. To be more
on
rete, we
onsider a sequen
e of HTML forms where the
lient enters his �rstname in the �rst form and his last name in the se
ond form. The
omplete nameis returned in the third form. This example
an be implemented as follows:nameform = return $ Form "First Name Form"[htxt "Enter your first name: ", textfield first "",button "Continue" fhandler℄where first freefhandler _ =return $ Form "Last Name Form"[htxt "Enter your last name: ", textfield last "",button "Continue" lhandler℄where last freelhandler env = return $ Form "Answer"[htxt ("Hi, " ++ env first ++ " " ++ env last)℄Note that, due to lexi
al s
oping, the variable first is visible in the lhandlerwithout expli
itly passing it as an argument.5.4 Improving CompositionalityIt is well known that an advantage of fun
tional programming is the dire
t sup-port for building appli
ation-oriented abstra
tions, thus, in
reasing modularity[10℄. Unfortunately, \raw" CGI as well as fun
tional libraries for CGI program-ming as [13℄ do not support
ompositionality in CGI programming due to the11

use of �xed strings for identifying form elements. In the following, we will showthat our approa
h to web servi
e programming improves
ompositionality byexploiting the fun
tional and logi
 features of the base language.As an example,
onsider that we want to add to ea
h web page of a set ofdynami
 web pages a sear
h �eld where the
lient
an retrieve some spe
i�
information, e.g., the email address of a person. It is reasonable to de�ne for thispurpose a sequen
e of HTML elements abstra
ting su
h a sear
h �eld togetherwith its event handler. In our approa
h, this
an be implemented as follows:emailSear
h =[hrule, htxt "Enter a name: ", textfield nref "",button "sear
h email" lookup, hrule℄where nref freelookup env = ...getEmail (env nref)...The
ode for the event handler lookup is not
ompletely shown sin
e this dependson a

essing a data base
ontaining the email addresses.6 The important point isthat the abstra
tion emailSear
h
an be used as any other sequen
e of HTMLelements without taking
are of the names of the input �elds sin
e the �eldidenti�er nref is a lo
al variable in emailSear
h and, thus, not visible outsidethis abstra
tion. For instan
e, the HTML sequen
e[..., textfield nref "", ...℄ ++ emailSear
h ++ ...
auses no name
lash between the di�erent �eld identi�ers due to the lexi
als
oping of the underlying programming language. This is not true in \raw" CGIprogrammingwhere the programmer has to be
areful about the sele
tion of �eldnames to avoid potential name
on
i
ts (whi
h
an result in nasty programmingerrors).7 This example shows the improved
ompositionality by our abstra
tionlayer for web servi
e programming.6 ImplementationOur library for web servi
e programming is
ompletely implemented in Curry. Itdoes not require any extension to web servers but uses only the standard featuresof CGI. Sin
e these are supported by most web servers, our library
an be usedwith most web servers (where a Curry system is also installed). In this se
tion,we dis
uss the implementation of our programming model with CGI referen
esand event handlers on top of the standard CGI features.The entire implementation is performed by the main wrapper fun
tionrun
gi whi
h basi
ally takes a spe
i�
ation of an HTML form and translates itinto the
orresponding
on
rete HTML text. Moreover, it performs the followingtasks:6 For instan
e, this
an be easily done by sending a message to an address server usingthe features for distributed programming in Curry [5℄.7 Although one
an use several forms in one HTML do
ument to avoid name
on
i
ts,this does not work in general if some input �elds should be shared.12

{ Assigning unique identi�ers (strings) to the CGI referen
es o

urring in theform spe
i�
ation, i.e., the logi
al variables in the CGI referen
es are instan-tiated to these string identi�ers.{ Assigning unique identi�ers (strings) to ea
h event handler o

urring in theform spe
i�
ation. For instan
e, ea
h submit button
ontains after this as-signment a name attribute of the form EVENT_s, where s is a string uniquelyidentifying the event handler asso
iated to the button that the
lient haspressed to submit the form.{ Adding the input values of the previous (en
losing) forms as hidden inputs.If a web server re
eives a request to exe
ute a servi
e implemented with ourlibrary, it exe
utes the wrapper fun
tion run
gi applied to the
orrespondingform (
ompare end of Se
t. 4) in the environment of the web server. Thus, run
gi�rst
he
ks the environment variables in order to de
ode the list of input valuesentered by the user (whi
h might be empty for the initial form). If there is noinput value named EVENT_s, then this is the
all of the top-level form and not asubmission of a previous form. In this
ase, the top-level form is translated andwritten on the standard output stream so that the web server returns it to the
lient. If there is an input value identifying the sele
ted handler (i.e., the nameEVENT_s is de�ned in the input environment), run
gi sele
ts the asso
iated eventhandler in the form spe
i�
ation and exe
utes it together with the
urrent CGIenvironment as an argument.The
urrent CGI environment is
omputed as follows. First, the list ofname/value pairs passed in a string representation to the CGI program is de-
oded and stored in a list of pairs of strings. The sele
tion of the value asso
iatedto a CGI referen
e in this list is implemented by a simple list lookup fun
tion
giGetValue :: [(String,String)℄ -> CgiRef -> StringIf
env denotes the
urrent list of de
oded name/value pairs, the
or-responding CGI environment
an be
omputed by the partial appli
ation(
giGetValue
env) whi
h has the required type CgiRef -> String. Althoughthe implementation of environments
an be improved by more sophisti
ated datastru
tures (e.g., balan
ed sear
h trees), our pra
ti
al experien
e indi
ates thatthis simple implementation is suÆ
ient.7 Con
lusions and Related WorkIn this paper we have presented a new model for programming web servi
esbased on the standard Common Gateway Interfa
e. Sin
e this model is puton top of the multi-paradigm language Curry, we
ould exploit fun
tional aswell as logi
 programming te
hniques to provide a high abstra
tion level for ourprogrammingmodel. We have used fun
tional abstra
tions for spe
ifying HTMLforms as expressions of a spe
i�
 data type so that only well-formed HTMLstru
tures
an be written. Furthermore, higher-order fun
tional abstra
tions areused to atta
h event handlers to parti
ular HTML elements like buttons and toprovide a straightforward a

ess to input values via an environment model. Sin
e13

event handlers
an be nested, we have a dire
t support to de�ne sequen
es (orsessions) of intera
tions between the
lient and the server where states or inputvalues of previous forms are available in subsequent intera
tions. This over
omesthe stateless nature of HTTP. On the other hand, the logi
al features of Curryare used to deal with referen
es to input values in HTML forms. Sin
e a form
an have an arbitrary number of input values, we
onsider them as \holes" in anHTML expression whi
h are �lled by the user so that event handlers
an a

essthese values through an environment. Using logi
al variables to refer to inputvalues is more appropriate than the use of strings as in raw HTML sin
e someerrors (e.g., mispelled names) are dete
ted at
ompile time and HTML forms
an be
omposed without name
lashes.Sin
e Curry has more features than used in the examples of this paper, weshortly dis
uss the advantages of using them. Curry subsumes logi
 program-ming, i.e., it o�ers not only logi
al variables but also built-in sear
h fa
ilitiesand
onstraint solving. Thus, one
an easily provide web servi
es where
on-straint solving and sear
h is involved (e.g., web servi
es with a natural languageinterfa
e), as shown in the (purely logi
-based) PiLLoW library [2℄. Sin
e eventhandlers must be deterministi
 fun
tions, the en
apsulation of sear
h in Curry[8℄ be
omes quite useful for su
h kinds of appli
ations. Furthermore, Curry ex-ploits the logi
 programming features to support
on
urrent and distributedprogramming by the use of port
onstraints [5℄. This
an be used to retrieveinformation from other Internet servers (as done in the web pages for Curry togenerate the members of the Curry mailing list8 where the web server intera
tswith a database server).Finally, we
ompare our approa
h with some other proposals for providing ahigher level for web programming than the raw CGI. MAWL [12℄ is a domain-spe
i�
 language for programming web servi
es. In order to allow the
he
kingof well-formedness of HTML do
uments, in MAWL do
uments are written inHTML with some gaps that are �lled by the server before sending the do
umentto the
lient. Sin
e these gaps are �lled only with simple values, the generation ofdo
uments whose stru
ture depends on some
omputed data is largely restri
ted.To over
ome this restri
tion, MAWL o�ers spe
ial iteration gaps whi
h
an be�lled with list values but more
omplex stru
tures, like unbounded hierar
hi
alstru
tures, are not supported in
ontrast to our approa
h. On the positive side,MAWL has a spe
ial (imperative) language to support the handling of sequen
esof intera
tions with traditional imperative
ontrol stru
tures and the manage-ment of state variables. However, the programming model is di�erent than ours.In MAWL the presentation of an HTML do
ument is
onsidered as a remotepro
edure
all in the sequen
e of intera
tion statements. Therefore, there is ex-a
tly one program point to
ontinue the handling of the
lient's answer whereour model allows several event handlers that
an be
alled inside one do
ument(see the form revdup in Se
t. 4).The restri
tions of MAWL to
reate dynami
 do
uments have been weakenedin DynDo
 [15℄ that supports higher-order do
ument templates, i.e., the gaps8 http://www.informatik.uni-kiel.de/~
urry14

in a do
ument
an be �lled with other do
uments that
an also
ontain gaps.Thus, unbounded hierar
hi
ally stru
tured do
uments
an be easily
reated. In
ontrast to our approa
h, DynDo
 is based on a spe
i�
 language for writingdynami
 web servi
es while we exploit the features of the existing high-levellanguage Curry for the same task so that we
an immediately use all featuresand libraries for Curry to write web appli
ations, like higher-order fun
tions,
onstraints, ports for distributed programming et
.Similarly to our library-based approa
h, there are also libraries to supportHTML and CGI programming in other fun
tional and logi
 languages. Meijer[13℄ has developed a CGI library for Haskell that de�nes a data type for HTMLexpressions together with a wrapper fun
tion that translates su
h expressionsinto a textual HTML representation. However, it does not o�er any abstra
-tion for programming sequen
es of intera
tions. These must be implementedin the traditional way by
hoosing strings for identifying input �elds, passingstates as hidden input �elds et
. Similarly, the representation of HTML do
-uments in Haskell proposed by Thiemann [17℄
on
entrates only on ensuringthe well-formedness of do
uments and do not support the programming of in-tera
tions. Nevertheless, his approa
h is interesting sin
e it demonstrates howa sophisti
ated type system
an be exploited to in
lude more stati

he
ks onthe do
ument stru
ture, in parti
ular, to
he
k the validity of the attributesassigned to HTML elements. Hughes [11℄ proposes a generalization of monads,
alled arrows, to deal with sequen
es of intera
tions and passing state in CGIprogramming but, in
ontrast to our approa
h, his proposal does not
ontainspe
i�
 features for dealing with referen
es to input �elds. The PiLLoW library[2℄ is an HTML/CGI library for Prolog. Due to the untyped nature of Prolog,stati

he
ks on the form of HTML do
uments are not supported. Furthermore,there is no higher-level support for sequen
es of intera
tions.Sin
e the programmingmodel proposed in this paper needs no spe
i�
 exten-sion to Curry, it provides appropriate support to implement web-based interfa
esto existing Curry appli
ations. Moreover, it
an be
onsidered as a domain-spe
i�
 language for writing web servi
e s
ripts. Thus, this demonstrates that amulti-paradigm de
larative language like Curry
an also be used as a s
riptinglanguage for server side web appli
ations. We have shown that the fun
tional aswell as the logi
 features provide a good infrastru
ture to design su
h a domain-spe
i�
 language. The implementation of this library is freely available withour Curry development system PAKCS [7℄. All examples in this paper are ex-e
utable with this implementation. Furthermore, the library is
urrently usedto dynami
ally
reate parts of the web pages for Curry9, to handle the submis-sion information for the Journal of Fun
tional and Logi
 Programming10, andfor
orre
ting the student's home assignments in the introdu
tory programmingle
ture in our department (among others).Although our programming model and its implementation works well in allthese appli
ations, it might be interesting for future work to provide alternative9 http://www.informatik.uni-kiel.de/~
urry10 http://danae.uni-muenster.de/lehre/ku
hen/JFLP/15

implementations with spe
ialized infrastru
tures (e.g., servlets, se
urity layerset
) for the same programming model.Referen
es1. S. Antoy, R. E
hahed, and M. Hanus. A Needed Narrowing Strategy. Journal ofthe ACM, Vol. 47, No. 4, pp. 776{822, 2000.2. D. Cabeza and M. Hermenegildo. Internet and WWW Programming using Com-putational Logi
 Systems. In Workshop on Logi
 Programming and the Internet,1996. See also http://www.
lip.dia.fi.upm.es/mis
do
s/pillow/pillow.html.3. M. Hanus. The Integration of Fun
tions into Logi
 Programming: From Theory toPra
ti
e. Journal of Logi
 Programming, Vol. 19&20, pp. 583{628, 1994.4. M. Hanus. A Uni�ed Computation Model for Fun
tional and Logi
 Programming.In Pro
. of the 24th ACM Symposium on Prin
iples of Programming Languages(Paris), pp. 80{93, 1997.5. M. Hanus. Distributed Programming in a Multi-Paradigm De
larative Language.In Pro
. of the International Conferen
e on Prin
iples and Pra
ti
e of De
larativeProgramming (PPDP'99), pp. 376{395. Springer LNCS 1702, 1999.6. M. Hanus. A Fun
tional Logi
 Programming Approa
h to Graphi
al User Inter-fa
es. In International Workshop on Pra
ti
al Aspe
ts of De
larative Languages(PADL'00), pp. 47{62. Springer LNCS 1753, 2000.7. M. Hanus, S. Antoy, J. Koj, P. Niederau, R. Sadre, and F. Steiner.PAKCS: The Portland Aa
hen Kiel Curry System. Available athttp://www.informatik.uni-kiel.de/~pak
s/, 2000.8. M. Hanus and F. Steiner. Controlling Sear
h in De
larative Programs. InPrin
iples of De
larative Programming (Pro
. Joint International SymposiumPLILP/ALP'98), pp. 374{390. Springer LNCS 1490, 1998.9. M. Hanus (ed.). Curry: An Integrated Fun
tional Logi
 Language (Vers. 0.7.1).Available at http://www.informatik.uni-kiel.de/~
urry, 2000.10. J. Hughes. Why Fun
tional Programming Matters. In D.A. Turner, editor, Re-sear
h Topi
s in Fun
tional Programming, pp. 17{42. Addison Wesley, 1990.11. J. Hughes. Generalising Monads to Arrows. Submitted for publi
ation, 1998.12. D.A. Ladd and J.C. Ramming. Programming the Web: An Appli
ation-OrientedLanguage for Hypermedia Servi
es. In 4th International World Wide Web Con-feren
e, 1995.13. E. Meijer. Server Side Web S
ripting in Haskell. Journal of Fun
tional Program-ming, Vol. 10, No. 1, pp. 1{18, 2000.14. J. Peterson et al. Haskell: A Non-stri
t, Purely Fun
tional Language (Version 1.4).Te
hni
al Report, Yale University, 1997.15. A. Sandholm and M.I. S
hwartzba
h. A Type System for Dynami
 Web Do
-uments. In Pro
. of the 27th ACM Symposium on Prin
iples of ProgrammingLanguages, pp. 290{301, 2000.16. V.A. Saraswat. Con
urrent Constraint Programming. MIT Press, 1993.17. P. Thiemann. Modelling HTML in Haskell. In International Workshop on Pra
ti
alAspe
ts of De
larative Languages (PADL'00), pp. 263{277. Springer LNCS 1753,2000.18. P. Wadler. How to De
lare an Imperative. ACM Computing Surveys, Vol. 29,No. 3, pp. 240{263, 1997.19. D.H.D. Warren. Logi
 Programming and Compiler Writing. Software - Pra
ti
eand Experien
e, Vol. 10, pp. 97{125, 1980.16

