(©Springer-Verlag
In Proc. of the Third International Symposium on Practical Aspects of
Declarative Languages, PADL’01, Las Vegas.
Springer LNCS 1990, pp. 76-92, 2001

High-Level Server Side Web Scripting in Curry

Michael Hanus*

Institut fiir Informatik, Christian-Albrechts-Universitdt Kiel
D-24098 Kiel, Germany, mh@informatik.uni-kiel.de

Abstract. We propose a new approach to program web services. Al-
though we base our approach on the Common Gateway Interface (CGI)
to ensure wide applicability, we avoid many of the drawbacks and pitfalls
of traditional CGI programming by providing an additional abstraction
layer implemented in the multi-paradigm declarative language Curry.
For instance, the syntactical details of HTML and passing values with
CGI are hidden by a wrapper that executes abstract HTML forms by
translating them into concrete HTML code. This leads to a high-level ap-
proach to server side web service programming where notions like event
handlers, state variables and control of interactions are available. Thanks
to the use of a functional logic language, we can structure our approach
as an embedded domain specific language where the functional and logic
programming features of the host language are exploited to abstract from
details and frequent errors in standard CGI programming.

1 Motivation

In the early days of the World Wide Web (in the following called the web),
most of the documents were static, i.e., stored in files which can be viewed in a
nicely formatted layout. With the introduction of the Common Gateway Inter-
face (CGI), more and more documents become dynamic, i.e., they are computed
on the web server at the time they are requested from a client. In combination
with input forms specified in HTML documents, more complex forms of interac-
tions become possible so that clients can retrieve or store specific data via their
web browsers.

An advantage of CGI is that it is supported by most web servers. Thus, the
use of CGI does not need any special extensions on the server or the client side
(e.g., no servlets or cookies), which is a requirement for our development in order
to ensure wide applicability. On the other hand, CGI offers only a very primi-
tive form of interaction so that the programming of web services often becomes
awkward. Although general scripting languages like Perl provide libraries for de-
coding input form data, they do not support the programmer in the construction
of correct output data or to control a sequence of interactions with the client.
This demands for specialized languages (e.g., MAWL [12], DynDoc [15]) or spe-
cialized libraries in existing languages (e.g., [2,13,17]). In this paper we take the

* This research has been partially supported by the German Research Council (DFG)
under grant Ha 2457/1-2 and by the DAAD under the PROCOPE programme.

latter approach. We show how the features of a functional logic language (see
[3] for a survey on this kind of languages) can be exploited to provide a flexible
and high-level approach to programming web services without any language ex-
tensions (since our library is completely implemented in Curry). In particular,
our approach offers the following features for implementing web services:

— The HTML documents requested by the clients can be flexibly generated
depending on the computed data.

— The data filled in a form by the user can be easily retrieved by an environ-
ment model using logical variables as references.

— The use of logical variables as references (instead of fixed strings as in “raw”
CGI) improves the compositionality of HTML forms.

— The different actions to be taken when a user has completed a form are
specified by an event handler model.

— The sequence (or iterations) of interactions with the web server is described
in one script and not distributed over a set of script files. In particular, a
form is described together with the handler for this form which avoids typical
CGI programming errors (e.g., undefined input fields).

— State variables which should persist between different interactions are di-
rectly supported.

— The CGI interaction (usually, by environment variables and value decoding)
is hidden to the user and encapsulated in a wrapper that translates the

high-level scripts into HTML code.

This paper is structured as follows. The next section provides a short overview of
the main features of Curry as relevant for this paper. Sections 3 and 4 introduce
our approach for modeling basic HTML documents and interactive forms. Sec-
tion 5 discusses the use of our programming model by various examples before
we sketch in Sect. 6 the implementation of our library and conclude in Sect. 7
with a discussion of related work.

2 Basic Elements of Curry

Since we assume familiarity with basic HTML and CGI programming, we review
in this section only those elements of Curry which are necessary to understand
the ideas presented in this paper. More details about Curry’s computation model
and a complete description of all language features can be found in [4,9].
Curry is a modern multi-paradigm declarative language combining in a seam-
less way features from functional programming (nested expressions, lazy evalua-
tion, higher-order functions), logic programming (logical variables, partial data
structures, built-in search), and concurrent programming (concurrent evalua-
tion of expressions with synchronization on logical variables), and supports
programming-in-the-large with specific features (types, modules, encapsulated
search). From a syntactic point of view, a Curry program is a functional pro-

gram?® extended by the possible inclusion of free (logical) variables in conditions
and right-hand sides of defining rules. Thus, a Curry program consists of the def-
inition of functions and the data types on which the functions operate. Functions
are evaluated in a lazy manner. To provide the full power of logic programming,
functions can be called with partially instantiated arguments and defined by
conditional equations with constraints in the conditions. The behavior of func-
tion calls with free variables depends on the evaluation annotations of functions
which can be either flexible or rigid. Calls to rigid functions are suspended if a
demanded argument. i.e., an argument whose value is necessary to decide the ap-
plicability of a rule, is uninstantiated (“residuation”). Calls to flexible functions
are evaluated by a possibly non-deterministic instantiation of the demanded ar-
guments to the required values in order to apply a rule (“narrowing”).

Ezxample 1. The following Curry program defines the data types of Boolean val-
ues and polymorphic lists (first two lines) and functions for computing the con-
catenation of lists and the last element of a list:

data Bool = True | False
data List a = [] | a : List a
conc :: [a] -> [a] -> [a]

conc eval flex

conc [] ys = ys
conc (x:xs) ys = X : conc Xs ys

last xs | concys [x] =:= xs = x where x,ys free

The data type declarations define True and False as the Boolean constants and
[0 (empty list) and : (non-empty list) as the constructors for polymorphic lists
(a is a type variable ranging over all types and the type “List a” is usually
written as [a] for conformity with Haskell).

The (optional) type declaration (“::”) of the function conc specifies that
conc takes two lists as input and produces an output list, where all list elements
are of the same (unspecified) type.? Since conc is explicitly defined as flexible?
(by “eval flex”), the equation “conc ys [x] =:= xs” can be solved by in-
stantiating the first argument ys to the list xs without the last argument, i.e.,
the only solution to this equation satisfies that x is the last element of xs.

In general, functions are defined by (conditional) rules of the form
“l | ¢ =e where vs free” where [has the form f¢;...¢, with f being a func-
tion, t1,...,t, data terms and each variable occurs only once, the condition c
is a constraint, e is a well-formed ezpression which may also contain function

! Curry has a Haskell-like syntax [14], i.e., (type) variables and function names usually
start with lowercase letters and the names of type and data constructors start with
an uppercase letter. The application of f to e is denoted by juxtaposition (“f e”).

2 Curry uses curried function types where a->3 denotes the type of all functions
mapping elements of type « into elements of type 3.

3 As a default, all functions except for constraints are rigid.

calls, lambda abstractions etc, and vs is the list of free variables that occur in ¢
and e but not in ! (the condition and the where parts can be omitted if ¢ and vs
are empty, respectively). The where part can also contain further local function
definitions which are only visible in this rule. A conditional rule can be applied
if its left-hand side matches the current call and its condition is satisfiable. A
constraint is any expression of the built-in type Success. Each Curry system
provides at least equational constraints of the form e; =:= ey which are satisfiable
if both sides e; and ey are reducible to unifiable data terms (i.e., terms with-
out defined function symbols). However, specific Curry systems can also support
more powerful constraint structures, like arithmetic constraints on real numbers
or finite domain constraints, as in the PAKCS implementation [7].

The operational semantics of Curry, precisely described in [4, 9], is a conser-
vative extension of lazy functional programming (if no free variables occur in the
program or the initial goal) and (concurrent) logic programming. Due to the use
of an optimal evaluation strategy [1], Curry can be considered as a generaliza-
tion of concurrent constraint programming [16] with a lazy (optimal) evaluation
strategy. Due to this generalization, Curry supports a clear separation between
the sequential (functional) parts of a program, which are evaluated with an ef-
ficient and optimal evaluation strategy, and the concurrent parts, based on the
concurrent evaluation of constraints, to coordinate concurrent program units.

Monadic I/0: Since web service programs usually interact with their environ-
ment (e.g., retrieve or store information in files on the server), some knowledge
about performing I/O in a declarative manner is required. The I/O concept of
Curry is identical to the monadic I/O concept of Haskell [18], i.e., an interac-
tive program computes a sequence of actions which are applied to the outside
world. Actions have type “I0 «” which means that they return a result of type
a whenever they are applied to (and change) the outside world. For instance,
getChar of type I0 Char is an action which reads a character from the standard
input whenever it is executed, i.e., applied to a world. Similarly, “readFile £”
is an action which returns the contents of file £ in the current world. Actions
can only be sequentially composed. For instance, the action getChar can be
composed with the action putChar (which has type Char -> I0 () and writes
a character to the terminal) by the sequential composition operator >>= (which
has type I0 o -> (o -> I0) -> I0 f3), i.e., “getChar >>= putChar” is a
composed action which prints the next character of the input stream on the
screen. Finally, “return ¢” is the “empty” action which simply returns e (see
[18] for more details).

3 Modeling Basic HTML

In order to avoid certain syntactical errors (e.g., unbalanced parenthesis) during
the generation of HTML documents by a web server, the programmer should not
be forced to generate the explicit text of HTML documents (as in CGI scripts
written in Perl or with the Unix shell). A better approach is the introduction
of an abstraction layer where HTML documents are modeled as terms of a

specific data type together with a wrapper function which is responsible for the
correct textual representation of this data type. Such an approach can be easily
implemented in a language supporting algebraic data types (e.g., [13]). Thus, we
introduce the type of HTML expressions in Curry as follows:

data HtmlExp = HtmlText String
| HtmlStruct String [(String,String)] [HtmlExp]
|

HtmlElem String [(String,String)]

Thus, an HTML expression is either a plain string or a structure consisting of
a tag (e.g., BEEMH1,H2,...), a list of attributes, and a list of HTML expressions
contained in this structure. The translation of such HTML expressions into their
corresponding textual representation is straightforward: an HtmlText is repre-
sented by its argument, and a structure with tag ¢ is enclosed in the brackets
<t> and </t> (where the attributes are eventually added to the open bracket).
Since there are a few HTML elements without a closing tag (like <HR> or
),
we have included the alternative HtmElem to represent these elements.

Since writing HTML documents in this form might be tedious, we define
several functions as useful abbreviations (htmlQuote transforms characters with
a special meaning in HTML, like <, >, &, ", into their HTML quoted form):

htxt s = HtmlText (htmlQuote s) -- plain string
hi hexps = HtmlStruct "H1" [] hexps -- main header
bold hexps = HtmlStruct "B" [] hexps -- bold font
italic hexps = HtmlStruct "I" [] hexps -- italic font
hrule = HtmlElem "HR" [] -- horizontal rule

As a simple example, the following expression defines a “Hello World” document
consisting of a header and two words in italic and bold font, respectively:

[h1 [htxt "Hello World"]l,
italic [htxt "Hello"], bold [htxt "world!''l]

4 Input Forms

In order to enable more sophisticated interactions between clients using standard
browsers and a web server, HTML defines so-called FORM elements which usually
contains several input elements to be filled out by the client. When the client
submits such a form, the data contained in the input elements is encoded and
sent (on the standard input or with the URL) to the server which starts a CGI
program to react to the submission. The activated program decodes the input
data and performs some application-dependent processing before it returns an
HTML document on the standard output which is then sent back to the client.

In principle, the type HtmlExp is sufficient to model all kinds of HTML doc-
uments including input elements like text fields, check buttons etc. For instance,
an input field to be filled out with a text string can be modeled as

HtmlElem "INPUT" [("TYPE","TEXT"), ("NAME",name), ("VALUE",cont)]

where the string cont defines an initial contents of this field and the string
name is used to identify this field when the data of the filled form is sent to
the server. This direct approach is taken in CGI libraries for scripting languages
like Perl or also in the CGI library for Haskell [13]. In this case, the program
running on the web server is an I/O action that decodes the input data (con-
tained in environment variables and the standard input stream) and puts the
resulting HTML document on the output stream. Therefore, CGI programs can
be implemented in any programming language supporting access to the system
environment. However, this basic view results in an awkward programming style
when sequences of interactions (i.e., HTML forms) must be modeled where state
should be passed between different interactions. Therefore, we propose a higher
abstraction level and we will show that the functional and logic features of Curry
can be exploited to provide an appropriate programming infrastructure. There
are two basic ideas of our programming model:

1. The input fields are not referenced by strings but by elements of a specific
abstract data type. This has the advantage that the names of references
correspond to names of program variables so that the compiler can check
inconsistencies in the naming of references.

2. The program that is activated when a form is submitted is implemented to-
gether with the program generating the form. This has the advantage that
sequences of interactions can be simply implemented using the control ab-
stractions of the underlying language and state can be easily passed between
different interactions of a sequence using the references mentioned above.

For dealing with references to input fields, we use logical variables since it is well
known that logical variables are a useful notion to express dependencies inside
data structures [6,19]. To be more precise, we introduce a data type

data CgiRef = CgiRef String

denoting the type of all references to input elements in HTML forms. This data
type is abstract, i.e., its constructor CgiRef is not exported by our library. This
is essential since it avoids the construction of wrong references. The only way to
introduce such references are logical variables, and the global wrapper function
is responsible to instantiate these variables with appropriate references (i.e.,
instantiate each reference variable to a term of the form CgiRef n where n is a
unique name).

To include references in HTML forms, we extend the definition of our data
type for HTML expressions by the following alternative:

data HtmlExp = ... | HtmlCRef HtmlExp CgiRef

A term “HtmlCRef hexp cr” denotes an HTML element hexp with a reference
to it. Usually, hexp is one of the input elements defined for HTML, like text
fields, text areas, check boxes etc. For instance, a text field is defined by the
following abbreviation in our library:*

1 Note that this function must be flexible so that the first argument, which can only
be a logical variable, is instantiated by the application of this function.

textfield :: CgiRef -> String -> HtmlExp
textfield eval flex
textfield (CgiRef ref) contents =
HtmlCRef (HtmlElem "INPUT" [("TYPE","TEXT"),("NAME",ref),
("VALUE",contents)])
(CgiRef ref)

Note that ref is unbound when this function is applied but it will be bound to
a unique name (string) by the wrapper function executing the form (see below).

A complete HTML form counsists of a title and a list of HTML expressions to
be displayed by the client’s browser, i.e., we represent HTML forms as expres-
sions of the following data type:

data HtmlForm = Form String [HtmlExp]
Thus, we can define a form containing a single input element (a text field) by

Form "Form" [hl [htxt "A Simple Form"],
htxt "Enter a string:", textfield sref "'"]

In order to submit a form to the web server, HTML supports “submit” buttons
(we only discuss this submission method here although there are others). The
actions to be taken are described by CGI programs that decode the submitted
values of the form before they perform the appropriate actions. To simplify these
actions and combine them with the program generating the form, we propose
an event handling model for CGI programming. For this purpose, each submit
button is associated with an event handler responsible to perform the appropriate
actions. An event handler is a function from a CGI environment into an I/0
action (in order to enable access to the server environment) that returns a new
form to be sent back to the client. A CGI environment is simply a mapping from
CGI references into strings. When an event handler is executed, it is supplied
with a CGI environment containing the values entered by the client into the
form. Thus, event handlers have the type

type EventHandler = (CgiRef -> String) -> IO HtmlForm

To attach an event handler to an HTML element, we finally extend the definition
of our data type for HTML expressions by:

data HtmlExp = ... | HtmlEvent HtmlExp EventHandler

A term “HtmlEvent hexp handler” denotes an HTML element hexp (typically
a submit button) with an associated event handler. Thus, submit buttons are
defined as follows:

button :: String -> EventHandler -> HtmlExp

button txt handler =

HtmlEvent (HtmlElem "INPUT" [("TYPE","SUBMIT"),("NAME","EVENT"),
("VALUE",txt)]) handler

[#] Metscape: Question

File Edit “iew Go Communicatar Help
A

Ente:fastdng:II J

| Reverse std.ngl ‘ Cuplicate string

= | | 2

Fig. 1. A simple string reverse/duplication form

i
|

i e A EL L

The argument txt is the text shown on the button and the attribute NAME is
later used to identify the selected submit button (since several buttons can occur
in one form, see Sect. 6).

To see a simple but complete example, we show the specification of a form
where the user can enter a string and choose between two actions (reverse or
duplicate the string, see Figure 1):°

revdup = return $ Form '"Question"
[htxt "Enter a string: ", textfield tref "", hrule,
button "Reverse string" revhandler,
button "Duplicate string" duphandler]
where
tref free

revhandler env = return $ Form "Answer"
[h1 [htxt ("Reversed input: ' ++ reverse (env tref))]]

duphandler env = return $ Form "Answer"
[h1 [htxt ("Duplicated input: " ++ env tref ++ env tref)]]

Note the simplicity of retrieving values entered into the form: since the event
handlers are called with the appropriate environment containing these values,
they can easily access these values by applying the environment to the appro-
priate CGI reference, like (env tref). This structure of CGI programming is
made possible by the functional as well as logic programming features of Curry.

Forms are executed by a special wrapper function that performs the trans-
lation into concrete HTML code, decoding the entered values and invoking the
correct event handler. This wrapper function has the following type:

runcgi :: String -> I0 HtmlForm -> I0 ()

It takes a string (the URL under which this CGI program is accessible on the
server) and an I/O action returning a form and returns an I/O action which,

® The predefined right-associative infix operator f $ e denotes the application of f to
the argument e.

when executed, returns the HTML code of the form. Thus, the above form is
executed by the following main function

main = runcgi 'revdup.cgi'" revdup

provided that the executable of this program is stored in revdup.cgi.

5 Server Side Web Scripting

In this section we will show by various examples that the components for web
server programiing introduced so far (i.e., logical variables for CGI references,
associated event handlers depending on CGI environments) are sufficient to solve
typical problems in CGI programming in an appropriate way, like handling se-
quences of interactions or holding intermediate states between interactions.

5.1 Accessing the Web Server Environment

From the previous example it might be unclear why the event handlers as well
as the wrapper function assumes that the form is encapsulated in an I/O action.
Although this is unnecessary for applications where the web server is used as
a “computation server” (where the result depends only on the form inputs), in
many applications the clients want to access or manipulate data stored on the
server. In these cases, the web service program must be able to access the server
environment which is easily enabled by running it in the I/O monad.

As a simple example for such kinds of applications, we show the definition of
a (not recommendable) form to retrieve the contents of an arbitrary file stored
at the server:

getfile = return $ Form "Question"
[htxt "Enter local file name:'", textfield fileref "',
button "Get file!" handler]
where
fileref free

handler env = readFile (env fileref) >>= \contents ->
return $ Form '"Answer"
[h1 [htxt ("Contents of " ++ env fileref)],
verbatim contents]

Here it is essential that the event handler is executed in the I/O monad, otherwise
it has no possibility to access the contents of the local file via the I/O action
readFile before computing the contents of the returned form. In a similar way,
arbitrary data can be retrieved or stored by the web server while executing CGI
programs.

5.2 Interaction Sequences

In the previous examples the interaction between the client and the web server
is quite simple: the client sends a request by filling a form which is answered

by the server with an HTML document containing the requested information.
In realistic applications it is often the case that the interaction is not finished
by sending back the requested information but the client requests further (e.g.,
more detailed) information based on the received results. Thus, one has to deal
with sequences of longer interactions between the client and the server.

Our programming model provides a direct support for interaction sequences.
Since the answer provided by the event handler is an HTML form rather than
an HTML expression, this answer can also contain further input elements and
associated event handlers. By nesting event handlers, it is straightforward to im-
plement bounded sequences of interactions and, therefore, we omit an example.

A more interesting question is whether we can implement other control ab-
stractions like arbitrary loops. For this purpose, we show the implementation of
a simple number guessing game: the client has to guess a number known by the
server, and for each number entered by the client the server responds whether
this number is right, smaller or larger than the number to be guessed. If the
guess is not right, the answer form contains an input field where the client can
enter the next guess.

Due to the underlying declarative language, we implement looping constructs
by recursion. Thus, the event handler computing the answer for the client con-
tains a recursive call to the initial form which implements the interaction loop.
The entire implementation of this number guessing game is as follows:

guessform = return $ Form "Number Guessing' guessinput

guessinput =
[htxt "Guess a number: ", textfield nref "",
button "Check" (guesshandler nref)] where nref free

guesshandler nref env =
let nr = readInt (env nref)
in return $ Form "Answer"
(if nr==42
then [htxt "Right!"]
else [htxt (if nr<42 then "Too small!" else "Too large!"),
hrule] ++ guessinput)

guessinput is an HTML expression corresponding to the initial form which
contains an input field for entering the client’s guess. guesshandler is the as-
sociated event handler where the CGI reference to the input field is the first
argument of the handler. It checks the number entered by the client (readInt
converts a string into a number) and returns the different answers depending on
the client’s guess. If the guess is not right, the guessinput is appended to the
answer which implements the recursive call.

It should be clear that this general recursion pattern can be extended in
various ways. For instance, counting the number of guesses made by the client is
quite simple: the only change to the above program is the addition of a counter
arguiment to guessinput and guesshandler which is initialized in the main
function guessform and incremented in each recursive call.

10

5.3 Handling Intermediate States

A nasty problem in many CGI applications is the handling of intermediate states
due to the fact that HTTP is a stateless protocol. For instance, in electronic com-
merce applications, the clients have shopping baskets where the already selected
items are stored, and the contents of these baskets must be kept between the
interactions. Storing this information on the server side has several drawbacks.
For instance, the client wants to identify himself only after he really orders the
items, i.e., during the selection phase the server cannot uniquely associate the se-
lections to a client. Furthermore, the client might not proceed with his selections
so that the server does not know whether the basket information can be deleted
(which is necessary at some point to avoid a memory overflow). Therefore, it is
often better to store such client-dependent information on the client side. For
this purpose, one can have HTML forms with input elements of type HIDDEN
which have no visual representation but can be used to pass client-dependent
information between interactions. “Raw” HTML/CGI programmers must ex-
plicitly handle these fields which is awkward and a source of many programming
problems.

Our programming model offers a much simpler solution to this problem. By
nesting event handlers (which is allowed in languages with lexical scoping like
Curry), one can directly refer to input elements in previous forms. To be more
concrete, we consider a sequence of HTML forms where the client enters his first
name in the first form and his last name in the second form. The complete name
is returned in the third form. This example can be implemented as follows:

nameform = return $ Form "First Name Form"
[htxt "Enter your first name: ", textfield first "",
button "Continue'" fhandler]

where first free

fhandler _ =
return $ Form "Last Name Form"
[htxt "Enter your last name: ", textfield last "",
button "Continue" lhandler]

where last free

lhandler env = return $ Form "Answer"
[htxt ("Hi, " ++ env first ++ " " ++ env last)]

Note that, due to lexical scoping, the variable first is visible in the lhandler
without explicitly passing it as an argument.

5.4 TImproving Compositionality

It is well known that an advantage of functional programming is the direct sup-
port for building application-oriented abstractions, thus, increasing modularity
[10]. Unfortunately, “raw” CGI as well as functional libraries for CGI program-
ming as [13] do not support compositionality in CGI programming due to the

11

use of fixed strings for identifying form elements. In the following, we will show
that our approach to web service programming improves compositionality by
exploiting the functional and logic features of the base language.

As an example, consider that we want to add to each web page of a set of
dynamic web pages a search field where the client can retrieve some specific
information, e.g., the email address of a person. It is reasonable to define for this
purpose a sequence of HTML elements abstracting such a search field together
with its event handler. In our approach, this can be implemented as follows:

emailSearch =
[hrule, htxt "Enter a name: ", textfield nref "",
button "search email" lookup, hrule]

where nref free
lookup env = ...getEmail (env nref)...

The code for the event handler lookup is not completely shown since this depends
on accessing a data base containing the email addresses.® The important point is
that the abstraction emailSearch can be used as any other sequence of HTML
elements without taking care of the names of the input fields since the field
identifier nref is a local variable in emailSearch and, thus, not visible outside
this abstraction. For instance, the HTML sequence

[..., textfield nref "", ...] ++ emailSearch ++

causes no name clash between the different field identifiers due to the lexical
scoping of the underlying programming language. This is not true in “raw” CGI
programming where the programmer has to be careful about the selection of field
names to avoid potential name conflicts (which can result in nasty programming
errors).” This example shows the improved compositionality by our abstraction
layer for web service programming.

6 Implementation

Our library for web service programming is completely implemented in Curry. It
does not require any extension to web servers but uses only the standard features
of CGI. Since these are supported by most web servers, our library can be used
with most web servers (where a Curry system is also installed). In this section,
we discuss the implementation of our programming model with CGI references
and event handlers on top of the standard CGI features.

The entire implementation is performed by the main wrapper function
runcgi which basically takes a specification of an HTML form and translates it
into the corresponding concrete HTML text. Moreover, it performs the following
tasks:

% For instance, this can be easily done by sending a message to an address server using
the features for distributed programming in Curry [5].

7 Although one can use several forms in one HTML document to avoid name conflicts,
this does not work in general if some input fields should be shared.

12

— Assigning unique identifiers (strings) to the CGI references occurring in the
form specification, i.e., the logical variables in the CGI references are instan-
tiated to these string identifiers.

— Assigning unique identifiers (strings) to each event handler occurring in the
form specification. For instance, each submit button contains after this as-
signment a name attribute of the form EVENT_s, where s is a string uniquely
identifying the event handler associated to the button that the client has
pressed to submit the form.

— Adding the input values of the previous (enclosing) forms as hidden inputs.

If a web server receives a request to execute a service implemented with our
library, it executes the wrapper function runcgi applied to the corresponding
form (compare end of Sect. 4) in the environment of the web server. Thus, runcgi
first checks the environment variables in order to decode the list of input values
entered by the user (which might be empty for the initial form). If there is no
input value named EVENT_s, then this is the call of the top-level form and not a
submission of a previous form. In this case, the top-level form is translated and
written on the standard output stream so that the web server returns it to the
client. If there is an input value identifying the selected handler (i.e., the name
EVENT_s is defined in the input environment), runcgi selects the associated event
handler in the form specification and executes it together with the current CGI
environment as an argument.

The current CGI environment is computed as follows. First, the list of
name/value pairs passed in a string representation to the CGI program is de-
coded and stored in a list of pairs of strings. The selection of the value associated
to a CGI reference in this list is implemented by a simple list lookup function

cgiGetValue :: [(String,String)] -> CgiRef -> String

If cenv denotes the current list of decoded name/value pairs, the cor-
responding CGI environment can be computed by the partial application
(cgiGetValue cenv) which has the required type CgiRef -> String. Although
the implementation of environments can be improved by more sophisticated data
structures (e.g., balanced search trees), our practical experience indicates that
this simple implementation is sufficient.

7 Conclusions and Related Work

In this paper we have presented a new model for programming web services
based on the standard Common Gateway Interface. Since this model is put
on top of the multi-paradigm language Curry, we could exploit functional as
well as logic programming techniques to provide a high abstraction level for our
programming model. We have used functional abstractions for specifying HTML
forms as expressions of a specific data type so that only well-formed HTML
structures can be written. Furthermore, higher-order functional abstractions are
used to attach event handlers to particular HTML elements like buttons and to
provide a straightforward access to input values via an environment model. Since

13

event handlers can be nested, we have a direct support to define sequences (or
sessions) of interactions between the client and the server where states or input
values of previous forms are available in subsequent interactions. This overcomes
the stateless nature of HI'TP. On the other hand, the logical features of Curry
are used to deal with references to input values in HT'ML forms. Since a form
can have an arbitrary number of input values, we consider them as “holes” in an
HTML expression which are filled by the user so that event handlers can access
these values through an environment. Using logical variables to refer to input
values is more appropriate than the use of strings as in raw HTML since some
errors (e.g., mispelled names) are detected at compile time and HTML forms
can be composed without name clashes.

Since Curry has more features than used in the examples of this paper, we
shortly discuss the advantages of using them. Curry subsumes logic program-
ming, i.e., it offers not only logical variables but also built-in search facilities
and constraint solving. Thus, one can easily provide web services where con-
straint solving and search is involved (e.g., web services with a natural language
interface), as shown in the (purely logic-based) PiLLoW library [2]. Since event
handlers must be deterministic functions, the encapsulation of search in Curry
[8] becomes quite useful for such kinds of applications. Furthermore, Curry ex-
ploits the logic programming features to support concurrent and distributed
programming by the use of port constraints [5]. This can be used to retrieve
information from other Internet servers (as done in the web pages for Curry to
generate the members of the Curry mailing list® where the web server interacts
with a database server).

Finally, we compare our approach with some other proposals for providing a
higher level for web programming than the raw CGI. MAWL [12] is a domain-
specific language for programming web services. In order to allow the checking
of well-formedness of HTML documents, in MAWL documents are written in
HTML with some gaps that are filled by the server before sending the document
to the client. Since these gaps are filled only with simple values, the generation of
documents whose structure depends on some computed data is largely restricted.
To overcome this restriction, MAWL offers special iteration gaps which can be
filled with list values but more complex structures, like unbounded hierarchical
structures, are not supported in contrast to our approach. On the positive side,
MAWTL has a special (imperative) language to support the handling of sequences
of interactions with traditional imperative control structures and the manage-
ment of state variables. However, the programming model is different than ours.
In MAWL the presentation of an HTML document is considered as a remote
procedure call in the sequence of interaction statements. Therefore, there is ex-
actly one program point to continue the handling of the client’s answer where
our model allows several event handlers that can be called inside one document
(see the form revdup in Sect. 4).

The restrictions of MAWL to create dynamic documents have been weakened
in DynDoc [15] that supports higher-order document templates, i.e., the gaps

8 http://www.informatik.uni-kiel.de/"curry

14

in a document can be filled with other documents that can also contain gaps.
Thus, unbounded hierarchically structured documents can be easily created. In
contrast to our approach, DynDoc is based on a specific language for writing
dynamic web services while we exploit the features of the existing high-level
language Curry for the same task so that we can immediately use all features
and libraries for Curry to write web applications, like higher-order functions,
constraints, ports for distributed programming etc.

Similarly to our library-based approach, there are also libraries to support
HTML and CGI programming in other functional and logic languages. Meijer
[13] has developed a CGI library for Haskell that defines a data type for HTML
expressions together with a wrapper function that translates such expressions
into a textual HTML representation. However, it does not offer any abstrac-
tion for programming sequences of interactions. These must be implemented
in the traditional way by choosing strings for identifying input fields, passing
states as hidden input fields etc. Similarly, the representation of HTML doc-
uments in Haskell proposed by Thiemann [17] concentrates only on ensuring
the well-formedness of documents and do not support the programming of in-
teractions. Nevertheless, his approach is interesting since it demonstrates how
a sophisticated type system can be exploited to include more static checks on
the document structure, in particular, to check the validity of the attributes
assigned to HTML elements. Hughes [11] proposes a generalization of monads,
called arrows, to deal with sequences of interactions and passing state in CGI
programming but, in contrast to our approach, his proposal does not contain
specific features for dealing with references to input fields. The PiLLoW library
[2] is an HTML/CGI library for Prolog. Due to the untyped nature of Prolog,
static checks on the form of HTML documents are not supported. Furthermore,
there is no higher-level support for sequences of interactions.

Since the programming model proposed in this paper needs no specific exten-
sion to Curry, it provides appropriate support to implement web-based interfaces
to existing Curry applications. Moreover, it can be considered as a domain-
specific language for writing web service scripts. Thus, this demonstrates that a
multi-paradigm declarative language like Curry can also be used as a scripting
language for server side web applications. We have shown that the functional as
well as the logic features provide a good infrastructure to design such a domain-
specific language. The implementation of this library is freely available with
our Curry development system PAKCS [7]. All examples in this paper are ex-
ecutable with this implementation. Furthermore, the library is currently used
to dynamically create parts of the web pages for Curry?, to handle the submis-

sion information for the Journal of Functional and Logic Programming'©

, and
for correcting the student’s home assignments in the introductory programming
lecture in our department (among others).

Although our programming model and its implementation works well in all

these applications, it might be interesting for future work to provide alternative

® http://www.informatik.uni-kiel.de/"curry
' http://danae.uni-muenster.de/lehre/kuchen/JFLP/

15

implementations with specialized infrastructures (e.g., servlets, security layers
etc) for the same programming model.

References

1.

2.

10.

11.

12.

13.

14.

15.

18.

19.

S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of
the ACM, Vol. 47, No. 4, pp. 776 822, 2000.

D. Cabeza and M. Hermenegildo. Internet and WWW Programming using Com-
putational Logic Systems. In Workshop on Logic Programming and the Internet,
1996. See also http://www.clip.dia.fi.upm.es/miscdocs/pillow/pillow.html.

. M. Hanus. The Integration of Functions into Logic Programming: From Theory to

Practice. Journal of Logic Programming, Vol. 19&20, pp. 583628, 1994.

. M. Hanus. A Unified Computation Model for Functional and Logic Programming.

In Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pp. 80-93, 1997.

. M. Hanus. Distributed Programming in a Multi-Paradigm Declarative Language.

In Proc. of the International Conference on Principles and Practice of Declarative

Programming (PPDP’99), pp. 376 395. Springer LNCS 1702, 1999.

. M. Hanus. A Functional Logic Programming Approach to Graphical User Inter-

faces. In International Workshop on Practical Aspects of Declarative Languages

(PADL’00), pp. 47-62. Springer LNCS 1753, 2000.

. M. Hanus, S. Antoy, J. Koj, P. Niederau, R. Sadre, and F. Steiner.

PAKCS: The Portland Aachen Kiel Curry System. Available at
http://www.informatik.uni-kiel.de/ pakcs/, 2000.

. M. Hanus and F. Steiner. Controlling Search in Declarative Programs. In

Principles of Declarative Programming (Proc. Joint International Symposium

PLILP/ALP98), pp. 374-390. Springer LNCS 1490, 1998.

. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.7.1).

Available at http://www.informatik.uni-kiel.de/ curry, 2000.

J. Hughes. Why Functional Programming Matters. In D.A. Turner, editor, Re-
search Topics in Functional Programming, pp. 17-42. Addison Wesley, 1990.

J. Hughes. Generalising Monads to Arrows. Submitted for publication, 1998.
D.A. Ladd and J.C. Ramming. Programming the Web: An Application-Oriented
Language for Hypermedia Services. In 4th International World Wide Web Con-
Jerence, 1995.

E. Meijer. Server Side Web Scripting in Haskell. Journal of Functional Program-
ming, Vol. 10, No. 1, pp. 1-18, 2000.

J. Peterson et al. Haskell: A Non-strict, Purely Functional Language (Version 1.4).
Technical Report, Yale University, 1997.

A. Sandholm and M.l. Schwartzbach. A Type System for Dynamic Web Doc-
uments. In Proc. of the 27th ACM Symposium on Principles of Programming
Languages, pp. 290-301, 2000.

. V.A. Saraswat. Concurrent Constraint Programming. MIT Press, 1993.
. P.Thiemann. Modelling HI'ML in Haskell. In International Workshop on Practical

Aspects of Declarative Languages (PADL’00), pp. 263-277. Springer LNCS 1753,
2000.

P. Wadler. How to Declare an lmperative. ACM Computing Surveys, Vol. 29,
No. 3, pp. 240-263, 1997.

D.H.D. Warren. Logic Programming and Compiler Writing. Software - Practice
and Fzperience, Vol. 10, pp. 97-125, 1980.

16

