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Abstract. In this work, we develop a partial evaluation technique for
residuating functional logic programs, which generalize the concurrent
computation models for logic programs with delays to functional logic
programs. We show how to lift the nondeterministic choices from run
time to specialization time. We ascertain the conditions under which the
original and the transformed program have the same answer expressions
for the considered class of queries as well as the same floundering beha-
vior. All these results are relevant for program optimization in Curry, a
functional logic language which is intended to become a standard in this
area. Preliminary empirical evaluation of the specialized Curry programs
demonstrates that our technique also works well in practice and leads to
substantial performance improvements. To our knowledge, this work is
the first attempt to formally define and prove correct a general scheme
for the partial evaluation of functional logic programs with delays.

1 Introduction

The last few years have witnessed a maturity in the area of multiparadigm de-
clarative languages in order to combine the most important features of functional
programming (nested expressions, efficient demand-driven functional computa-
tions), logic programming (logical variables, partial data structures, constraints,
built-in search), and concurrent programming (concurrent computations with
synchronization on logical variables). The computation model of such integrated
languages is based on a seamless combination of two different operational prin-
ciples: narrowing and residuation.

The residuation principle is based on the idea of delaying function calls until
they are ready for deterministic evaluation. Residuation preserves the determ-
inistic nature of functions and naturally supports concurrent computations. Un-
fortunately, it is unable to compute solutions if arguments of functions are not
sufficiently instantiated during the computation, though program analysis meth-
ods exist which provide sufficient criteria for the completeness of residuation [11,
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19]. Residuating functional logic languages employ dynamic scheduling similarly
to modern (constraint) logic programming languages, where some calls are dy-
namically delayed until their arguments are sufficiently instantiated to allow the
call to run efficiently. Residuation is the basis for implementing many concurrent
(constraint) programming languages such as Oz [32] and is also used in other
multiparadigm declarative languages such as Escher [25, 26], Le Fun [2], Life [1],
and NUE-Prolog [31].

On the other hand, the narrowing mechanism allows the instantiation of
variables in expressions and then applies reduction steps to the function calls of
the instantiated expression. This instantiation is usually computed by unifying
a subterm of the expression with the left-hand side of some program rule. Nar-
rowing provides completeness in the sense of logic programming —computation
of all solutions— as well as functional programming —computation of values—
(see [18] for a survey). To avoid unnecessary computations and to deal with in-
finite data structures, demand-driven generation of the search space has recently
been advocated by a flurry of outside-in, lazy narrowing strategies (see, e.g., [10,
16, 28, 29]). Due to its optimality properties w.r.t. the length of derivations and
the number of computed solutions, needed narrowing [10] is currently the best
lazy narrowing strategy for functional logic programs.

Curry is a modern multiparadigm declarative language which combines func-
tional, logic and concurrent programming styles by unifying (needed) narrowing
and residuation into a single model [20, 21]. To support coroutining, the model
provides for suspension of function calls if a demanded argument is not suf-
ficiently instantiated. Similarly to recent residuation-based languages like Es-
cher [25] or Oz [32], Curry represents (don’t know) non-deterministic choices
by explicit disjunctions, in contrast to narrowing which is usually defined with
implicit disjunctions as in classical logic programming. The precise mechanism
(narrowing or residuation) for each function is specified by evaluation annota-
tions, which are similar to coroutining declarations in Prolog [30], where the
programmer specifies conditions under which a call is ready for a resolution
step. Deterministic functions are declared rigid (which forces delayed evaluation
by rewriting), while non-deterministic functions are declared flex (which enables
narrowing steps). By default, only predicates (i.e., Boolean functions) are con-
sidered flexible, while all other functions are rigid, but the user can easily provide
different evaluation annotations. The computation domain considers disjunctions
of (answer [] expression) pairs in order to reflect not only the computed values
but also the different variable bindings. The following example illustrates the

integrated model (the computation steps are denoted by
RN
−→ as in [20]).

Example 1. Consider the following rules defining the less-or-equal function “6”
and the addition “+” on natural numbers (built from 0 and s):

0 6 N → true 0 + X → X

s(M) 6 0 → false s(X) + Y → s(X+ Y)
s(M) 6 s(N) → M 6 N



where “6” is rigid and “+” is flexible. Then, the following goal is evaluated by
freezing and awakening the function call to “6” (the subterm evaluated in the
next step is underlined):1

id [] X 6 Y & X+ 0
.
= 0

RN
−→ {X = 0} [] 0 6 Y & 0

.
= 0 ∨ {X = s(Z)} [] s(Z) 6 Y & s(Z+ 0)

.
= 0

RN
−→ {X = 0} [] true & 0

.
= 0 ∨ {X = s(Z)} [] s(Z) 6 Y & s(Z+ 0)

.
= 0

RN
−→ {X = 0} [] true & 0

.
= 0

RN
−→ {X = 0} [] true & true
RN
−→ {X = 0} [] true .

Note that the second disjunction fails since s(Z+ 0)
.
= 0 is unsolvable.

Partial evaluation (PE) has been established as an important research topic
in both the functional [12, 22] and logic programming [15, 27] communities. Al-
though the objectives are similar (typically, the specialization of a given program
w.r.t. part of its input data), the general methods are often different due to the
distinct underlying models and the different perspectives (see [6] for a detailed
comparison). This separation has the negative consequence of duplicated work
since developments are not shared and many similarities are overlooked.

Narrowing-driven PE [6] is the first generic algorithm for the specialization of
functional logic programs. This framework provides the same potential for spe-
cialization as powerful (on-line) PE methods for logic programs (e.g., conjunctive
partial deduction [24]) as well as functional programs (e.g., positive supercompil-
ation [17]). The work in [7] formalizes an instance of the narrowing-driven PE
method for inductively sequential programs based on needed narrowing. It lifts to
the PE level the idea of only evaluating code when it is necessary. An attractive
property of this instance is that it preserves the (inductively sequential) struc-
ture of the original program, and hence the same execution mechanism (namely,
needed narrowing) can be safely used after the specialization. This property does
not generally hold for other instances of the PE framework (see [7]).

The aim of this paper is to develop a partial evaluator for (kernel) Curry
programs. Unfortunately, the approach of [7] is not powerful enough, since it
follows the framework of [6] which does not consider the residuation principle.
Hence, we generalize the original framework in order to deal with (inductively
sequential) programs containing evaluation annotations for program functions.
This task is difficult for several reasons. Firstly, a näıve adaptation of [7] in
which floundering computations are simply stopped during PE is not adequate,
since a poor specialization would be obtained in most cases and could even be
unsafe in our setting (see Example 3). Thus, we introduce an extension of the
standard computation model which allows us to ignore evaluation annotations
during PE while still guaranteeing correctness. As a consequence, our method is
less restrictive than many existing methods for (constraint) logic programs with

1 Here & is the concurrent conjunction operator, i.e., the expression e1 & e2 is reduced
by reducing either e1 or e2, and

.
= is the strict equality predicate.



delays, in which suspended expressions cannot be unfolded (e.g., [14]). Secondly,
the inference of safe evaluation annotations for the partially evaluated programs
is far from trivial (see Example 4). In particular, we are forced to split resultants
into several auxiliary (intermediate) functions in some cases to correctly preserve
the answer expressions as well as the floundering behaviour.

The main contributions of this work can be summarized as follows. We
provide (total) correctness results for the transformation, including the equival-
ence between the original and specialized programs w.r.t. floundering-freeness.
This can be used for proving completeness of residuation for the considered
class of goals in the original program by analyzing the floundering behavior of
the resulting program. In particular, proving floundering-freeness for the spe-
cialized program is in many cases trivial (or easier than in the original program)
because partial evaluation can transform a rigid function into a flexible one
(whenever the specialized call is already sufficiently instantiated), but not vice
versa. Moreover, we also prove that the transformation preserves the (inductively
sequential) structure of programs.

The structure of the paper is as follows. After some basic definitions in Sect. 2,
in Sect. 3 we recall the formal definition of needed narrowing and residuation.
A PE scheme for residuating functional logic programs is formalized in Sect. 4,
together with a method to properly synthesize evaluation annotations for spe-
cialized functions. We also provide results about the structure of specialized
programs and the total correctness of the transformation. Section 5 shows the
practical importance of our specialization techniques by means of some examples
and Sect. 6 concludes. More details and proofs of technical results can be found
in [4].

2 Preliminaries

We assume familiarity with basic notions of term rewriting [13] and functional
logic programming [18]. We consider a (many-sorted) signature Σ partitioned
into a set C of constructors and a set F of (defined) functions or operations. We
write c/n ∈ C and f/n ∈ F for n-ary constructor and operation symbols, re-
spectively. There is at least one sort Bool containing the constructors true and
false. The set of terms and constructor terms with variables (e.g., x, y, z) from
X are denoted by T (C ∪ F ,X ) and T (C,X ), respectively. The set of variables
occurring in a term t is denoted by Var(t). A term t is ground if Var(t) = ∅.
A term is linear if it does not contain multiple occurrences of one variable. We
write on for the list of objects o1, . . . , on.

A pattern is a term of the form f(dn) where f/n ∈ F and d1, . . . , dn ∈
T (C,X ). A term is operation-rooted if it has an operation symbol at the root.
root(t) denotes the symbol at the root of the term t. A position p in a term t is
represented by a sequence of natural numbers (Λ denotes the empty sequence,
i.e., the root position). Positions are ordered by the prefix ordering: u ≤ v, if
there exists w such that u.w = v. Given a term t, we let Pos(t) and FPos(t)
denote the set of positions and the set of nonvariable positions of t, respectively.



t|p denotes the subterm of t at position p, and t[s]p denotes the result of replacing
the subterm t|p by the term s (see [13] for details).

We denote by {x1 7→ t1, . . . , xn 7→ tn} the substitution σ with σ(xi) = ti for
i = 1, . . . , n (with xi 6= xj if i 6= j), and σ(x) = x for all other variables x. The
set Dom(σ) = {x ∈ X | σ(x) 6= x} is called the domain of σ. A substitution σ
is (ground) constructor, if σ(x) is (ground) constructor for all x ∈ Dom(σ). The
identity substitution is denoted by id. Given a substitution θ and a set of vari-
ables V ⊆ X , we denote by θ |̀V the substitution obtained from θ by restricting
its domain to V . We write θ = σ [V ] if θ |̀V = σ |̀V , and θ ≤ σ [V ] denotes the
existence of a substitution γ such that γ ◦ θ = σ [V ]. A term t′ is an instance of
t if there is a substitution σ with t′ = σ(t). This implies a subsumption ordering
on terms which is defined by t ≤ t′ iff t′ is an instance of t.

A set of rewrite rules l → r such that l 6∈ X , and Var(r) ⊆ Var(l) is called
a term rewriting system (TRS). The terms l and r are called the left-hand side
(lhs) and the right-hand side (rhs) of the rule, respectively. A TRS R is left-
linear if l is linear for all l → r ∈ R. A TRS is constructor–based (CB) if each
lhs l is a pattern. In the remainder of this paper, a functional logic program is a
left-linear CB-TRS. A rewrite step is an application of a rewrite rule to a term,
i.e., t →p,R s if there exists a position p in t, a rewrite rule R = l → r and a
substitution σ with t|p = σ(l) and s = t[σ(r)]p.

To evaluate terms containing variables, narrowing non-deterministically in-
stantiates the variables such that a rewrite step is possible. Formally, t ;p,R,σ t

′

is a narrowing step if p is a non-variable position in t and σ(t) →p,R t′. We
denote by t0 ;

∗
σ tn a sequence of narrowing steps t0 ;σ1

. . . ;σn
tn with

σ = σn ◦ · · · ◦ σ1. Due to the presence of free variables, an expression may be
reduced to different values after instantiating free variables to different terms.
In functional programming, one is interested in the computed value whereas
logic programming emphasizes the different bindings (answers). Thus, for our
integrated framework we define an answer expression as a pair σ [] e consisting
of a substitution σ (the answer computed so far) and an expression e. An answer
expression σ [] e is solved if e is a constructor term, otherwise it is unsolved. Since
more than one answer may exist for expressions containing free variables, expres-
sions are reduced to disjunctions of answer expressions. A disjunctive expression
is a (multi-)set of answer expressions {σ1 [] e1, . . . , σn [] en}, sometimes written
as (σ1 [] e1)∨ . . .∨ (σn [] en). The set of all disjunctive expressions is denoted by
D.

The evaluation to ground constructor terms (and not to arbitrary expres-
sions) is the intended semantics of functional languages and also of most func-
tional logic languages. In particular, the equality predicate

.
= used in some ex-

amples is defined (as in functional languages) as the strict equality on terms:

c
.
= c→ true % c/0 ∈ C

c(X1, . . . , Xn)
.
= c(Y1, . . . , Yn)→ (X1

.
= Y1) & . . . & (Xn

.
= Yn) % c/n ∈ C

Thus we do not treat the strict equality in any special way, and it is sufficient to
consider it as a Boolean function which must be reduced to the constant true.



3 A Unified Computation Model for FL Programs with

Delays

The definition of needed narrowing [10] and its extension to concurrent program-
ming [20] is based on definitional trees which have been introduced by Antoy [8]
for the specification of efficient rewrite strategies. A definitional tree is a hier-
archical structure containing all rules of a defined function. T is a definitional
tree with pattern π iff the depth of T is finite and one of the following cases
holds:

T = rule(π → r), where π → r is a variant of a rule.
T = branch(π, o, r, T1, . . . , Tk), where o is an occurrence of a variable in π, r ∈

{rigid, flex}, c1, . . . , ck are different constructors of the sort of π|o, for
some k > 0, and, for all i = 1, . . . , k, Ti is a definitional tree with pat-
tern π[ci(x1, . . . , xn)]o, where n is the arity of ci and x1, . . . , xn are new
variables.

A definitional tree of an n-ary function f is a definitional tree T with pattern
f(x1, . . . , xn), where x1, . . . , xn are distinct variables, such that for each rule
l → r with l = f(t1, . . . , tn) there is a node rule(l′ → r′) in T with l variant
of l′. In the following, we write pattern(T ) for the pattern of a definitional tree
T . A defined function is called inductively sequential if it has a definitional tree.
A rewrite system R is called inductively sequential if all its defined functions
are inductively sequential.2 We call a function flexible or rigid if all the branch
nodes in its definitional tree are flex or rigid, respectively.

Example 2. Consider the rules defining the function “6” in Example 1. Then

branch(X 6 Y, 1, rigid,rule(0 6 Y→ true),
branch(s(M) 6 Y, 2, rigid,rule(s(M) 6 0→ false),

rule(s(M) 6 s(N)→ M 6 N)))

is a definitional tree of 6. It is often convenient and simplifies understanding
to provide a graphic representation of definitional trees. Each inner node is
marked with a pattern and the flex/rigid annotation, the inductive position in
branches is surrounded by a box, and the leaves contain the corresponding rules.
For instance, the definitional tree for the function “6” is illustrated in Fig. 1.

The definitional tree of a function determines the precise strategy in order to
evaluate a call to this function. Informally, a rule node requires the application
of this rule and a branch node requires the examination of the subterm of this
function call which is specified by the position in the branch node. To provide
concurrent computation threads, expressions can be combined by the concur-
rent conjunction operator &, i.e., the expression e1 & e2 can be reduced by
reducing either e1 or e2. Note that we obtain the behavior of the needed narrow-
ing strategy [10] if all functions are flexible. Moreover, functional logic languages

2 Curry also supports rules with overlapping left-hand sides by providing or nodes in
definitional trees, but we omit this feature here for simplicity.



0 6 Y → true rigid: s(M) 6 Y

s(M) 6 0 → false s(M) 6 s(N) → M 6 N

rigid: X 6 Y

´
´

´́

Q
Q
QQ

´
´

´́

Q
Q
QQ

Fig. 1. Definitional tree for the function “6”

which are based on residuation, like Life or Escher, where functions are always
deterministically evaluated or suspended and non–determinism is encoded by
predicates, can be modeled with programs where all (non–Boolean) functions
are rigid and all predicates (Boolean functions) are flexible.

For a precise definition of this operational semantics, it is convenient to dis-
tinguish between complete computation steps where one reduction has been per-
formed and incomplete computation steps which are suspended due to some ri-
gid branch.3 Incomplete steps are called degenerate in [9] in the sense that some
variables could have been instantiated but no subsequent reduction has been
performed. We mark a substitution in an answer expression by the superscript
s, i.e., σs ◦ σ′ [] t to denote a suspended answer expression where the reduction
part of the step has not been performed due to a suspension in a rigid branch.
For convenience, we denote by σi a composed substitution with σ = σsn ◦ · · · ◦σ1,
and by σc a composed substitution with σ = σn ◦ · · · ◦σ1 where σ1 does not have
the form ϕs. Marks in substitutions are only a technical artifice to simplify our
formulation and are simply ignored when composing and applying substitutions.
Ds denotes the set of all disjunctive expressions where each disjunct could also
be a suspended answer expression. Then the operational semantics of Curry is
specified by the functions (see Fig. 2):

cs : T (C ∪ F ,X )→ Ds and cst : T (C ∪ F ,X )×DT → Ds

where DT stands for the set of all definitional trees. Moreover, the composi-
tion of substitutions and the replacement of subterms is extended to disjunctive
expressions as follows:

{σ1 [] t1, . . . , σn [] tn} ◦ σ = {σ1 ◦ σ [] t1, . . . , σn ◦ σ [] tn}
t[{σ1 [] t1, . . . , σn [] tn}]o = {σ1 [] σ1(t)[t1]o, . . . , σn [] σn(t)[tn]o}

As in proof procedures for logic programming, we assume that the definitional
trees always contain new variables if they are used in a narrowing step. This
implies that all computed substitutions are idempotent (we will implicitly assume
this property in the following).

3 In [20], this distinction is made by a special constant in the domain of disjunctive
expressions while here we use a special mark at substitutions in answer expressions.
We find this more convenient to formulate the PE method in residuating programs
as will become apparent later.



Computation step for a single operation-rooted term t:

cs(f(t1, . . . , tn)) = cst(f(t1, . . . , tn), T ) if T is a definitional tree for f

cs(t1 & t2) =























true

(t1 & t2)[cs(t1)]1
(t1 & t2)[cs(t2)]2

ids [] t1 & t2

if t1 = t2 = true

if t1 6= true and cs(t1) does not suspend
if t2 6= true, cs(t2) does not suspend,

and cs(t1) suspends
otherwise

cst(t, rule(l → r)) = id [] σ(r) if σ is a substitution with σ(l) = t

cst(t, branch(π, o, r, T1, . . . , Tk))

=























cst(t, Ti) ◦ id if t|o = c(t1, . . . , tn) and pattern(Ti)|o = c(X1, . . . , Xn)
∅ if t|o = c(. . .) and pattern(Ti)|o 6= c(. . .), i = 1, . . . , k
ids [] t if t|o = X and r = rigid

∪k
i=1cst(σi(t), Ti) ◦ σi if t|o = X, r = flex, and σi = {X 7→ pattern(Ti)|o}

t[cs(t|o)]o ◦ id if t|o = f(t1, . . . , tn)

Derivation step for a disjunctive expression:

(σc [] t) ∨D
RN
−→ (σ1 ◦ σ

c [] t1) ∨ . . . ∨ (σn ◦ σc [] tn) ∨D

if t is operation-rooted and cs(t) = σ1 [] t1 ∨ . . . ∨ σn [] tn

Fig. 2. Operational semantics of concurrent functional logic programming

The overall computation strategy is a transformation
RN
−→ on disjunctive

expressions. It takes an operation-rooted term4 t of a non-suspended disjunct.
Then the computation step cs(t) stemming from t is performed, and the selected
disjunct is replaced by the computed disjunction composed with the answer
computed to that point. A single computation step cs(t) applies a rule, if possible
(first case of cst), or checks the subterm corresponding to the inductive position
of the branch (second case of cst): if it is a constructor, we proceed with the
corresponding subtree (if possible); if it is a function, we evaluate it by recursively
applying the strategy to this subterm; if it is a variable, we suspend (in the
case of a rigid branch) or nondeterministically instantiate the variable to the
constructors of all children and proceed. Hence, a concurrent conjunction of two
expressions proceeds by evaluating the conjunct which does not suspend. We say

that a computation D
RN
−→

∗
D′ flounders if every answer expression σi [] t ∈ D′

is suspended. A goal e flounders iff the computation starting from e flounders.
This strategy was first introduced in [20] and differs from lazy functional

languages only in the possible instantiation of free variables and from logic lan-
guages in the lazy evaluation of nested function calls. Moreover, logic programs
with coroutining (i.e., delayed predicates waiting for the instantiation of some
argument) can be modeled by the use of the concurrent conjunction operator &.

Note that, in each recursive step during the computation of cst, we com-
pose the current substitution with the local substitution of this step (which can

4 Here we consider only the evaluation of operation-rooted terms which is sufficient for
functional logic programming where we are interested in reducing strict equalities
to the constant true.



be the identity). Thus, each computation step can be represented as cs(t) =
∨n
i=1 σi,ki

◦ · · · ◦ σi,1 [] ti, where each σi,j is either the identity or the replace-
ment of a single variable computed in each recursive step. This is also called
the canonical representation of a computation step. In contrast to the classical

definition of narrowing (see Sect. 2), the definition of
RN
−→ provides all (don’t

know nondeterministic) derivations at once by deriving an expression into a dis-

junctive expression. In order to relate
RN
−→ to the classical nondeterministic

narrowing relation, we also write t
RN
;σ t

′ if σ [] t′ ∈ cs(t).
The main difference with the needed narrowing strategy as introduced in [10]

is the possibility that function calls may suspend and the special treatment of
the concurrent conjunction & to deal with suspended evaluations. Therefore, we

denote by
NN
−→ and

NN
; the relations defined similarly to

RN
−→ and

RN
; above

but where the definition of cs(t1& t2) is omitted and the case “ids [] t if t|o =
X and r = rigid” is replaced by

cst(t, branch(π, o, r, T1, . . . , Tk)) = ∪ki=1 cst(σi(t), Ti) ◦ σ
s
i

if t|o = X, r = rigid, and σi = {X 7→ pattern(Ti)|o}.

The fact that
NN
−→ also decorates suspended bindings with the superscript s

instead of simply omitting the case “ids [] t if t|o = X and r = rigid” and the
condition “r = flex” in the definition of cst (giving rise to the narrowing strategy
of [10]) will become useful in the next section.

Note that the meaning of the concurrent conjunction & can be defined by the
single rewrite rule true & true→ true which we assume to be implicitly added
to the rewrite system when we consider needed narrowing steps. This function
is inductively sequential and has the two definitional trees

branch(X& Y, 1, rigid, branch(true& Y, 2, rigid, rule(true& true→ true)))

and

branch(X& Y, 2, rigid, branch(X& true, 1, rigid, rule(true& true→ true))).

Now consider a term like t1& t2. It is obvious that a
RN
−→ step where t1 is

evaluated corresponds to a needed narrowing step where the first definitional

tree is taken for the root function &. Similarly, a
RN
−→ step where t2 is evaluated

corresponds to a needed narrowing step with the second definitional tree for &.
Thus, we obtain the following theorem which formalizes the relation between the
two calculi.

Theorem 1. Let R be an inductively sequential program and e a term.

1. If all steps in the derivation e
RN
∗

;σ e
′ are complete, then there exists a needed

narrowing derivation e
NN
∗

;σ e
′ in R.

2. If e
NN
∗

;σ e′ is a needed narrowing derivation for e in R, then there exists a

derivation e
RN
∗

;θ e
′′ such that ∃ϕ. ϕ(e′′)→∗ e′ and σ = ϕ ◦ θ.



4 Partial Evaluation of Residuating Functional Logic

Programs

In this section, we extend the framework of [6] (and, particularly, the instance
introduced in [7]) in order to take into account delayed function calls during
PE. Specialized definitions are basically produced by constructing a set of rules
(called resultants) of the form

σ1(s)→ t1
. . .

σn(s)→ tn

associated to a given (partial) computation

id [] s
RN
−→

+
{σ1 [] t1 ∨ . . . ∨ σn [] tn} .

After that, a renaming transformation is performed in order to ensure that the
specialized definition is inductively sequential and also to guarantee its inde-
pendence (in the sense of [27]).

Informally, the renaming transformation proceeds as follows. First, an in-
dependent renaming ρ for a set of terms S is constructed, which consists of a
mapping from terms to terms such that for all s ∈ S, we have ρ(s) = f(xn),
where xn are the distinct variables in s in the order of their first occurrence and
f is a fresh function symbol. We also let ρ(S) denote the set S ′ = {ρ(s) | s ∈ S}.
While the independent renaming suffices to rename the left-hand sides of result-
ants (since they are constructor instances of the specialized calls), the right-hand
sides are renamed by means of the auxiliary function renρ, which recursively re-
places each call in the given expression by a call to the corresponding renamed
function (according to ρ).

Unfortunately, the framework of PE above cannot simply be transferred to
residuating programs, since a näıve treatment of suspended calls can give rise
to resultants which do not preserve the program’s behavior, as illustrated in the
following examples.

Example 3. Consider again the rules defining the functions “6” and “+” of
Example 1, and assume now that “6” is flexible and “+” is rigid. Given the
expression X 6 Y+ 0, we have the partial computation

id [] X 6 Y+ 0
RN
−→ {X = 0} [] true ∨ {X = s(M)}s [] s(M) 6 Y+ 0

in which the second disjunct corresponds to an incomplete step. The associated
resultants are the following:5

0 6 Y+ 0→ true

s(M) 6 Y+ 0→ s(M) 6 Y+ 0

Obviously, any specialization containing the second rule does not preserve the
semantics of the original program (for the intended goals). Unfortunately, getting
rid of this trivial resultant does not preserve the semantics either.

5 We do not consider the renaming of resultants since it is not relevant here.



The above example reveals the need to relax the standard computation model
during partial evaluation in order to “complete” the suspended steps in some

suitable way. For instance, we could avoid suspensions by simply replacing
RN
−→

with
NN
−→ during PE. This raises the question of whether it is possible to infer

safe evaluation annotations for the specialized definitions, i.e., annotations such
that total correctness is entailed. The following example answers this question
negatively.

Example 4. Reconsider the program and goal of Example 3, but use
NN
−→ to

construct the partial computation

id [] X 6 Y+ 0
NN
−→ {X = 0} [] true ∨ {X = s(M), Y = 0} [] s(M) 6 0

∨ {X = s(M), Y = s(Z)} [] s(M) 6 s(Z+ 0)

whose associated resultants are

0 6 Y+ 0→ true

s(M) 6 0+ 0→ s(M) 6 0

s(M) 6 s(Z) + 0→ s(M) 6 s(Z+ 0)

Then, neither flex nor rigid is a correct annotation for the specialized rules.
If we assume that they are flexible, then a goal of the form s(X) 6 Y+ 0 would
succeed (with answer substitution {Y = 0}) using the specialized rules whereas it
suspends in the original program. On the other hand, declaring the new definition
as rigid does not work either, since a goal X 6 Y+ 0 succeeds in the original
program (with answer {X = 0}), whereas it suspends using the specialized rules.

Informally, the annotation flex for the specialized function is not safe since
the bindings for the variable Y in the lhs of the second and third resultants
have been brought by the evaluation of the rigid function “+”. Similarly, the
annotation rigid does not work since (at runtime) it prevents the considered
call from matching the lhs of the first resultant because the variable X was
instantiated by evaluating (at PE time) the flexible function “6”.

Our proposed solution is essentially as follows. We distinguish between two kinds
of computations: those in which the initial step for the considered expression is
incomplete and those which involve no kind of suspension (because they are

eventually stopped before). In the latter case, we simply use the
RN
−→ computa-

tion model whereas, in the former case, we proceed to complete the degenerate

step by using the relaxed relation
NN
−→ . This allows us to infer safe evaluation

annotations for specialized definitions as follows:

– We annotate as flex the specialized definitions which result from compu-
tations with no suspension. This is justified by the fact that all variable
bindings propagated to the left-hand sides of specialized rules come from
the evaluation of flexible functions (since evaluation of rigid functions causes
no binding for goal variables). Thus, the handling of these specialized func-
tions as flexible (at runtime) cannot introduce undesired bindings.



slist(id) = [ ]
slist(ϕk ◦ · · · ◦ ϕ1) = [θm|slist(ϕk ◦ · · · ◦ ϕj+1)]

where θ = ϕj ◦ · · · ◦ ϕ1,m = eval(ϕ1), and j is the
maximum i ∈ {1, . . . , k} such that ∀p ∈ {1, . . . , i}
eval(ϕp) = eval(ϕ1) and eval(ϕj+1) 6= eval(ϕ1)

eval(ϕ) =

{

rigid if ϕ is marked with the superscript s
flex otherwise

split(l, r, [ϕa]) = {ϕa(l) → renρ(r), with evaluation annotation a}
split(l, r, [ϕa, θb|tail]) = {ϕa(l) → l′, with eval. annotation a} ∪ split(l′, r, [θb|tail])

where l′ = f(x1, . . . , xn), f ∈ Σinter is a fresh function
symbol, and Var(ϕa(l)) = {x1, . . . , xn}.

Fig. 3. Auxiliary functions for partial evaluation

– In case of a suspension, we are constrained to split resultants by introducing
several intermediate functions with befitting evaluation annotations. This is

necessary because the
NN
−→ step can introduce bindings which come both

from flexible and rigid functions (as shown in Example 4) and the splitting
avoids the mixing of bindings of different nature (flex and rigid).

Formally, a partial evaluation based on the
RN
−→ calculus (RNPE for short) is

constructed from a set of terms S together with a set of (partial) computations
for the terms in S. In the following, we denote by Σinter a set of fresh function
symbols. These are the symbols which are used to construct the intermediate
functions associated to the partial evaluation of suspended expressions.

Definition 1 (partial evaluation). Let R be a TRS, S = {s1, . . . , sn} a finite

set of terms, and A1, . . . ,An finite (partial)
RN
−→ computations for s1, . . . , sn

in R of the form:

Ak = id [] sk
RN
−→

+
Dk, k = 1, . . . , n

where all steps are complete, except (possibly) for the initial one. Let ρ be an
independent renaming of S. Then, the set of rewrite rules R′ =

{σc(ρ(sk))→ renρ(r) | σ
c [] r ∈ Dk}

n
k=1 (non-suspension)

⋃

{split(ρ(sk), r, slist(θ ◦ σ)) | θ
i [] θi(sk) ∈ Dk, θ

i(sk)
NN
;σ r}

n
k=1 (suspension)

is a partial evaluation of S in R (under ρ). The evaluation annotation for the
derivations involving no suspension is flex, whereas the resultants (and their
evaluation annotations) for the suspended derivations are computed by means of
the auxiliary functions shown in Fig. 3. 6

6 In the definition of slist(σ) we consider that σ is expressed in its canonical repres-
entation.



Roughly speaking, the resultants associated to (one-step)
NN
−→ computations

are split into a set of “intermediate” rules, one rule associated to each sequence
of consecutive bindings with the same superscript mark (suspended or non-
suspended). This way, the specialized rules mimic the behaviour of the original
functions perfectly. Note that the intermediate rules play no particular role in
the evaluation of expressions, but are only necessary to preserve the flex or rigid
nature of the functions in the initial program. The following example shows the
construction of a RNPE for a suspended expression.

Example 5. Let us consider the following rules:

f(a, b) → c % flex

g(b, c) → b % rigid

h(c) → c % flex

A PE for f(X, g(Y, h(Z))) constructed from the (suspended) derivation

f(X, g(Y, h(Z)))
RN
;{X7→a}s f(a, g(Y, h(Z)))

proceeds as follows (here we assume that ρ(f(X, g(Y, h(Z)))) = f′(X, Y, Z)):

1. First, the
NN
; step f(a, g(Y, h(Z)))

NN
;{Y7→b,Z7→c} f(a, g(b, c)) is computed.

2. Then, the call slist({X 7→ a, Y 7→ b, Z 7→ c}) is undertaken, which returns the
set of substitutions [{X 7→ a}flex, {Y 7→ b}rigid, {Z 7→ c}flex].

3. Finally, the computation of split proceeds as follows:

split(f′(X, Y, Z), f(a, g(b, c)), [{X 7→ a}flex, {Y 7→ b}rigid, {Z 7→ c}flex])
= {f′(a, Y, Z) → f′1(Y, Z)}

∪ split(f′1(Y, Z), f(a, g(b, c)), [{Y 7→ b}rigid, {Z 7→ c}flex])
= {f′(a, Y, Z) → f′1(Y, Z),

f′1(b, Z) → f′2(Z)}
∪ split(f′2(Z), f(a, g(b, c)), [{Z 7→ c}flex])

= {f′(a, Y, Z) → f′1(Y, Z),
f′1(b, Z) → f′2(Z),
f′2(c) → renρ(f(a, g(b, c)))}

where “f′” and “f′2” are flexible, and “f′1” is rigid.

A general requirement in the partial evaluation of lazy functional logic programs
is that no constructor-rooted expression can be evaluated during PE [5, 7]. This
is also true in our context, although we did not make this condition explicit in
Def. 1 since the computation model is only defined for operation-rooted terms. If
we consider the more general setting in which the operational semantics is also
defined for constructor-rooted terms, then this condition must appear explicitly.

For the correctness of partial evaluation, a closedness condition is commonly
required which ensures that all calls which might occur during the execution
of the specialized program are covered by some program rule. The following is
an easy extension of the closedness condition of [6] to the case of residuating
programs. Informally, an operation-rooted term t is closed w.r.t. a set of calls S
if it is an instance of a term in S and the terms in the matching substitution are
recursively closed by S.



Definition 2 (closedness). Let S be a finite set of terms. We say that a term t
is S-closed if closed(S, t) holds, where the predicate closed is defined inductively
as follows:

closed(S, t) ⇔























true if t ∈ X
∧

i=1,...,n

closed(S, ti) if t = c(tn), c ∈ (C ∪ {
.
=,&} ∪Σinter)

∧

x7→t′∈θ

closed(S, t′) if ∃θ,∃s ∈ S such that θ(s) = t

We say that a set of terms T is S-closed, written closed(S, T ), if closed(S, t)
holds for all t ∈ T , and we say that a TRS R is S-closed if closed(S,Rcalls)
holds. Here we denote the set of the rhs’s of the rules in R by Rcalls.

Note that expressions rooted by an “intermediate” function symbol in Σinter
are S-closed by definition, independently of the considered set S. This is motiv-
ated by the fact that intermediate functions are not “visible” in the specialized
program (i.e., they do not belong to the set of specialized calls), but are only
intended as a mechanism to preserve the floundering behaviour.

The following theorem states an important property of RNPE: if the input
program is inductively sequential, then the specialized program is also induct-
ively sequential.

Theorem 2. Let R be an inductively sequential program and S a finite set of
operation-rooted terms. Then each RNPE of R w.r.t. S is inductively sequential.

The following result establishes the precise relation between partial evaluations
based on needed narrowing (without residuation, as defined in [7]), which we call
NNPE for short, and partial evaluations as defined here. Intuitively, any RNPE
R′ can be transformed into an equivalent program R′′ (w.r.t. needed narrowing)
by replacing each set of rules

σ(ρ(s)) → f1(xm1
)

ϕ1(f1(xm1
)) → f2(xm2

)
. . .

ϕk(fk(xmk
)) → renρ(r)

associated to a suspended expression, by the new rule

θ(ρ(s))→ renρ(r), with θ = ϕk ◦ · · · ◦ ϕ1 ◦ σ

and ignoring all the evaluation annotations. The program constructed in this
way is a correct NNPE of R w.r.t. S (under ρ), as formalized in the following.

Theorem 3. Let R be an inductively sequential program. Let S be a finite set
of operation-rooted terms and ρ an independent renaming of S. If R′ is a RNPE
of R w.r.t. S (under ρ), then there exists a NNPE R′′ of R w.r.t. S (under ρ)

such that, for all goals e, we have e
NN
∗

;σ true in R
′ iff e

NN
∗

;σ true in R
′′.



Now, we state the partial correctness of RNPE, which amounts to the full com-
putational equivalence between the original and specialized programs when the
considered goal does not flounder.

Theorem 4 (partial correctness). Let R be an inductively sequential pro-
gram. Let e be an equation, V ⊇ Var(e) a finite set of variables, S a finite set of
operation-rooted terms, and ρ an independent renaming of S. Let R′ be a RNPE
of R w.r.t. S (under ρ) such that R′ ∪ {e′} is S′-closed, where e′ = renρ(e) and
S′ = ρ(S).

1. If e
RN
∗

;σ′ true in R′, then e
RN
∗

;σ t and ϕ(t)→
∗ true in R with σ′ = ϕ◦σ [V ].

2. If e
RN
∗

;σ true in R, then e
RN
∗

;σ′ t and ϕ(t′)→∗ true in R′ with σ = ϕ◦σ′ [V ].

Loosely speaking, the previous result establishes that, if evaluation annotations
are not considered (that is, no function calls are delayed), then the specialized
program R′ is able to produce the same answers (computed by needed nar-
rowing) as the original one R (and vice versa). The preservation of floundering-
freeness (i.e., absence of floundering) for the intended goals is needed to establish
the total correctness of the transformation. On the other hand, it ensures that
the transformation does not introduce additional floundering points, which is of
crucial importance when we are using the transformation for optimizing a pro-
gram. Moreover, this feature may allow us to use the transformation as a tool
for proving floundering-freeness of the original program (see Example 7). In fact,
if after the transformation we can state that R′ ∪ {e′} does not flounder, then
we are also sure that R∪ {e} does not flounder either, where e′ = renρ(e).

Unfortunately, the recursive notion of closedness introduced in Def. 2 is too
weak (generous) to preserve the floundering behaviour, as illustrated by the
following example.

Example 6. Let us consider the following set of rules:

f(X, a) → g(X) % flex h(a) → b % rigid

g(b) → c % flex

A RNPE of {f(X, Y), h(X)} under ρ = {f(X, Y) 7→ f′(X, Y), h(X) 7→ h′(X)} is

f′(b, a) → c % flex

h′(a) → b % rigid

Now, the S-closed expression f(h(X), X) has the following successful computation
in the original program

id [] f(h(X), X)
RN
−→ {X 7→ a} [] g(h(a))

RN
−→ {X 7→ a} [] g(b)

RN
−→ {X 7→ a} [] c

whereas ρ(f(h(X), X)) = f′(h′(X), X) may suspend in the specialized program, e.g.,
by considering the following definitional tree

branch(f′(X, Y), 1,f lex,
branch(f′(b, Y), 2,f lex,

rule(f′(b, a)→ c)))

for the specialized function f′.



Informally, the problem is that the recursive notion of closedness only works
when the considered operational model is compositional, as it essentially exploits
the fact that the meaning of a complex expression f(h(X), X) can be retrieved
from the semantics of its “unnested” constituents f(Y, X) and h(X) [6]. However,

the
RN
−→ calculus is not compositional due to the presence of delayed function

calls, and hence the meaning of the call f(h(X), X) (which does not flounder)
cannot be obtained from the meaning of the calls f(Y, X) and h(X) since the
second one flounders. Thus, we consider in the following a restricted notion of
closedness (called basic closedness in [6], in symbols closed−) which is defined
as the recursive closedness of Def. 2 except for the case

closed(S, t) =
∧

x7→t′∈θ

closed(S, t′) if ∃θ,∃s ∈ S such that θ(s) = t

which is replaced by the more simple condition

closed−(S, t) = true if ∃θ,∃s ∈ S such that θ(s) = t and θ is constructor.

The following result states the equivalence between the original and specialized
programs w.r.t. floundering-freeness.

Theorem 5 (floundering-freeness). Let R be an inductively sequential pro-
gram, e an equation, S a finite set of operation-rooted terms, and ρ an inde-
pendent renaming of S. Let R′ be a RNPE of R w.r.t. S (under ρ) such that
R′ ∪ {e′} is S′-closed−, where e′ = renρ(e) and S

′ = ρ(S). Then, e flounders in
R iff e′ flounders in R′.

As a corollary of Theorems 4 and 5, we can establish the total correctness of the
transformation.

Theorem 6 (total correctness). Let R be an inductively sequential program.
Let e be an equation, V ⊇ Var(e) a finite set of variables, S a finite set of
operation-rooted terms, and ρ an independent renaming of S. Let R′ be a RNPE
of R w.r.t. S (under ρ) such that R′ ∪ {e′} is S′-closed−, where e′ = renρ(e)
and S′ = ρ(S).

1. If e′
RN
∗

;σ′ true in R′, then e
RN
∗

;σ true in R where σ′ = σ [V ] (soundness)

2. If e
RN
∗

;σ true in R, then e′
RN
∗

;σ′ true in R′ where σ′ = σ [V ] (completeness)

5 Some Experiments

The Indy system v1.8 is a rather concise implementation of a partial evaluator
for functional logic programs (a detailed description of the system can be found
in [3]). The partial evaluator described in Sect. 4 has been implemented in the
Indy system and used to conduct some experiments (extracted from the Curry
library7) which illustrate the advantages of the RNPE method in the context of
residuating functional logic programs as well as the practicality of our approach.

7 Available from URL: http://www-i2.informatik.rwth-aachen.de/~hanus/curry.



{Y 7→ 0, Z 7→ 0} {Y 7→ s(Y′),

Z 7→ s(Z′)}

{Y 7→ s(Y′),
Z 7→ s(Z′)}

{Y 7→ 0,
Z 7→ 0}

{X 7→ s(X′)}{X 7→ 0}

{Z 7→ s(Z′)}
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.
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true & true X′ + Y
.
= Z′ & isNat(X′)

s(X′ + Y)
.
= Z & isNat(X′)Y

.
= Z & true

s(X′) + Y
.
= Z & isNat(X′)0+ Y

.
= Z & true

X+ Y
.
= Z & isNat(X)

Fig. 4. Partial computations for X+ Y
.
= Z & isNat(X) and Y

.
= Z & true

Let us introduce an example which shows that RNPE can be used for proving
floundering-freeness of a class of goals in a given program.

Example 7. Consider the following program which defines the arithmetic addi-
tion and the predicate isNat, which returns true when the argument is a natural
number:

0+ Y→ Y isNat(0)→ true

s(X) + Y→ s(X+ Y) isNat(s(X))→ isNat(X)

where “+” is rigid and “isNat” is flexible. Let S = {X+ Y
.
= Z& isNat(X), Y

.
=

Z& true} and consider the independent renaming ρ = {X+ Y
.
= Z& isNat(X) 7→

and3(X, Y, Z), Y
.
= Z& true 7→ and2(Y, Z)}. Now, by considering the partial com-

putations depicted in Fig. 4,8 the following RNPE of the program w.r.t. S (under
ρ) is constructed:

and3(0, 0, 0)→ true and2(0, 0)→ true

and3(0, s(Y), s(Z))→ and2(Y, Z) and2(s(X), s(Y))→ and2(X, Y)
and3(s(X), Y, s(Z))→ and3(X, Y, Z)

where both and3 and and2 are flexible functions. Then, for proving floundering-
freeness it is sufficient to check that no operation symbol of the resulting partially
evaluated program has a rigid annotation. For instance, one can easily see that
the goal X+ Y = Z& isNat(X) is floundering-free in the residual program (hence
in the original), since the program has no rigid functions, while in the original
program this is not immediate.

In the next example, we intend to show that RNPE can be also used to simplify
the dynamic behavior of a program, thus allowing us to achieve a significant
optimization.

8 Here we assume that the strict equality
.
= is flexible.



Example 8. Consider the classical map coloring program which assigns a color to
each of four countries such that countries with a common border have different
colors:

isColor(red) → true

isColor(yellow) → true

isColor(green) → true

coloring(l1, l2, l3, l4)→ isColor(l1) & isColor(l2)

& isColor(l3) & isColor(l4)
correct(l1, l2, l3, l4) → diff(l1, l2) & diff(l1, l3)

& diff(l2, l4)& diff(l3, l4)

where the predefined function diff is the only rigid function (it makes use of the
strict equality predicate in order to check whether its arguments are different).
Now, we consider the specialization of the expression correct(l1, l2, l3, l4) &
coloring(l1, l2, l3, l4), which gives the following specialized program:

and4(red, yellow, green, red) → true

and4(red, green, yellow, red) → true

and4(yellow, red, green, yellow)→ true

and4(yellow, green, red, yellow)→ true

and4(green, red, yellow, green) → true

and4(green, yellow, red, green) → true

where some potential colorings have been discarded, thus simplifying the dy-
namic behavior of the program and achieving a significant speedup (actually it
runs 23 times faster).

Our preliminary experiments show that RNPE is able to produce significant
speed-up’s on several typical concurrent Curry programs. Moreover, it is a con-
servative extension of the previous Indy system based on needed narrowing,
since RNPE boils down to NNPE when all program functions are flexible.

6 Conclusions

We have presented a general partial evaluation framework for Curry, a truly
lazy functional logic language whose development is an international initiative
intended to provide a standard for the area. The framework derives from that
of [7] and extends it to the combination of needed narrowing and residuation.
The extended framework allows us to safely deal with the evaluation annota-
tions, which is crucial for controlling unfolding during PE as well as for correctly
synthesizing evaluation annotations for the specialized functions.

Despite the practical importance of logic programs with dynamic scheduling,
there has been surprisingly little work devoted to their specialization. The only
transformation framework that we are aware of for logic languages with delays is
that of Etalle and Gabbrielli [14], which is based on the fold/unfold approach to
program transformation. It differs from our methodology, since our framework is
based on the (automatic) PE approach and applies to logic languages with lazy



functions. Moreover, we allow unfolding of suspended expressions at PE time,
which is not the case of [14].

An interesting prospect for future work is to extend the framework to en-
compass the PE of non-deterministic (i.e., non-confluent) functions, which is
ahead of the state of the art as we know it even for pure functional program-
ming languages [23]. We are also considering how to discover slices of code in
the residual program which are “semantically dead”, according to the considered
operational principle of functional logic programs with delays, since they can be
safely removed without influencing the intended result.
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