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Abstrat. This paper introdues a novel approah for the speializa-tion of funtional logi languages. We onsider a maximally simpli�edabstrat representation of programs (whih still ontains all the nees-sary information) and de�ne a non-standard semantis for these pro-grams. Both things mixed together allow us to design a simple and on-ise partial evaluation method for modern funtional logi languages,avoiding several limitations of previous approahes. Moreover, sine theselanguages an be automatially translated into the abstrat representa-tion, our tehnique is widely appliable. In order to assess the prati-ality of our approah, we have developed a partial evaluation tool forthe multi-paradigm language Curry. The partial evaluator is written inCurry itself and has been tested on an extensive benhmark suite (evena meta-interpreter). To the best of our knowledge, this is the �rst purelydelarative partial evaluator for a funtional logi language.1 IntrodutionPartial evaluation (PE) is a soure-to-soure program transformation tehniquefor speializing programs w.r.t. parts of their input (hene also alled programspeialization). PE has been studied, among others, in the ontext of funtionalprogramming (e.g., [9, 21℄), logi programming (e.g., [12, 24℄), and funtionallogi programming (e.g., [4, 22℄). While the aim of traditional partial evaluationis to speialize programs w.r.t. some known data, several PE tehniques are ableto go beyond this goal, ahieving more powerful program optimizations. Thisis the ase of a number of PE methods for funtional programs (e.g., positivesuperompilation [27℄), logi programs (e.g., partial dedution [24℄), and fun-tional logi programs (e.g., narrowing-driven PE [4℄). A ommon pattern of thesetehniques is that they are able to ahieve optimizations regardless of whetherknown data are provided (e.g., they an eliminate some intermediate data stru-tures, similarly to Wadler's deforestation [28℄). In some sense, these tehniquesare stronger theorem provers than traditional PE approahes.? This work has been partially supported by CICYT TIC 98-0445-C03-01, by Ai�onIntegrada hispano-alemana HA1997-0073, and by the DFG under grant Ha 2457/1-1.



Reent proposals of multi-paradigm delarative languages amalgamate themost important features of funtional, logi and onurrent programming (see[14℄ for a survey). The operational semantis of these languages is usually basedon a ombination of two di�erent operational priniples: narrowing and residua-tion [15℄. The residuation priniple is based on the idea of delaying funtion allsuntil they are ready for a deterministi evaluation (by rewriting). On the otherhand, the narrowing mehanism allows the instantiation of variables in inputexpressions and, then, applies redution steps to the funtion alls of the instan-tiated expression. Due to its optimality properties w.r.t. the length of derivationsand the number of omputed solutions, needed narrowing [6℄ is urrently the bestnarrowing strategy for funtional logi programs. The formulation of needed nar-rowing is based on the use of de�nitional trees [5℄, whih de�ne a strategy toevaluate funtions by applying narrowing steps.In this work, we are onerned with the PE of funtional logi languages.The �rst approah to this topi was the narrowing-driven PE of [4℄, whih on-sidered funtional logi languages with an operational semantis based solelyon narrowing. Reently, [2℄ introdued an extension of this basi framework inorder to onsider also the residuation priniple. Using the terminology of [13℄,the narrowing-driven PE methods of [2, 4℄ are able to produe both polyvariantand polygeneti speializations, i.e., they an produe di�erent speializations forthe same funtion de�nition and an also ombine distint original funtion def-initions into a omprehensive speialized funtion. This means that narrowing-driven PE has the same potential for speialization as positive superompilation[27℄ and onjuntive partial dedution [10℄ (a omparison an be found in [4℄).Despite its power, the narrowing-driven approah to PE su�ers from severallimitations: (i) Firstly, in the ontext of lazy funtional logi languages, expres-sions in head normal form (i.e., rooted by a onstrutor symbol) annot beevaluated at PE time. This restrition is imposed beause the bakpropagationof bindings to the left-hand sides of residual rules an inorretly restrit thedomain of funtions (see Example 2). (ii) Seondly, if one intends to develop aPE sheme for a realisti multi-paradigm delarative language, several high-levelonstruts have to be onsidered: higher-order funtions, onstraints, programannotations, alls to external funtions, et. A omplex operational alulus isrequired to properly deal with these additional features of modern languages.It is well-known that a partial evaluator normally inludes an interpreter of thelanguage. Therefore, as the operational semantis beomes more elaborated, theassoiated PE tehniques beome (more powerful but) also inreasingly moreomplex. (iii) Finally, an interesting appliation of PE is the generation of om-pilers and ompiler generators [21℄. For this purpose, the partial evaluator mustbe self-appliable, i.e., able to partially evaluate itself. This beomes diÆult inthe presene of high-level onstruts suh as those mentioned in (ii). As advisedin [21℄, it is essential to ut the language down to the bare bones in order toahieve self-appliation.In order to overome the aforementioned problems, a promising approah su-essfully tested in other ontexts (e.g., [7, 25℄) is to onsider programs written in



a maximally simpli�ed programming language, into whih programs written in ahigher-level language an be automatially translated. Reently, [18℄ introduedan expliit representation of the struture of de�nitional trees (used to guide theneeded narrowing strategy) in the rewrite rules. This provides more expliit on-trol and leads to a alulus simpler than standard needed narrowing. Moreover,soure programs an be automatially translated to the new representation.1 Inthis work, we onsider a very simple abstrat representation of funtional logiprograms whih is based on the one introdued in [18℄. As opposed to [18℄, ourabstrat representation inludes also information about the evaluation type offuntions: exible |whih enables narrowing steps| or rigid |whih fores de-layed evaluation by rewriting. Then, we de�ne a non-standard semantis whihis speially well-suited to perform omputations at PE time. This is a ruial dif-ferene with previous approahes [2, 4℄, where the same mehanism is used bothfor program exeution and for PE. The use of an abstrat representation, to-gether with the new alulus, allows us to design a simple and onise automatiPE method for modern funtional logi languages, breaking the limitations ofprevious approahes.Finally, sine truly lazy funtional logi languages an be automatially trans-lated into the abstrat representation (whih still ontains all the neessary in-formation about programs), our tehnique is widely appliable. Following thissheme, partially evaluated programs will be also written in the abstrat repre-sentation. Sine existing ompilers use a similar representation for intermediateode, this is not a restrition. Rather, our speialization proess an be seen asan optimization phase (transparent to the user) performed during the ompila-tion of the program. In order to assess the pratiality of our approah, we havedeveloped a PE tool for the multi-paradigm language Curry [19℄. The partialevaluator is written in Curry itself and has been tested on an extensive set ofbenhmarks (even a meta-interpreter). To the best of our knowledge, this is the�rst purely delarative partial evaluator for a funtional logi language.The struture of this paper is as follows. After providing some preliminaryde�nitions in Set. 2, we present our approah for the PE of funtional logi lan-guages based on the use of an abstrat representation in Set. 3. We also disussthe limitations of using the standard semantis during PE and, then, introduea more suitable semantis. Setion 4 presents a fully automati PE algorithmbased on the previous ideas, and Set. 5 shows some benhmarks performed withan implementation of the partial evaluator. Finally, Set. 6 onludes and dis-usses some diretions for future work. More details and missing proofs an befound in [3℄.2 PreliminariesIn this setion we reall, for the sake of ompleteness, some basi notions fromterm rewriting [11℄ and funtional logi programming [14℄. We onsider a (many-1 Indeed, it onstitutes the basis of a reent proposal for an standard intermediatelanguage, FlatCurry, for the ompilation of Curry programs [20℄.



sorted) signature � partitioned into a set C of onstrutors and a set F of(de�ned) funtions or operations. We write =n 2 C and f=n 2 F for n-aryonstrutor and operation symbols, respetively. There is at least one sort Boolontaining the onstrutors True and False. The set of terms and onstrutorterms with variables (e.g., x; y; z) from V are denoted by T (C[F ;V) and T (C;V),respetively. The set of variables ourring in a term t is denoted by Var(t). Aterm is linear if it does not ontain multiple ourrenes of any variable. Wewrite on for the sequene of objets o1; : : : ; on. We denote by root(t) the symbolat the root of the term t. A position p in a term t is denoted by a sequene ofnatural numbers. Positions are ordered by: u � v, if 9w suh that u:w = v. Thesubterm of t at position p is denoted by tjp, and t[s℄p is the result of replaingthe subterm tjp by the term s.We denote a substitution � by fx1 7! t1; : : : ; xn 7! tng with �(xi) = ti fori = 1; : : : ; n (where xi 6= xj if i 6= j), and �(x) = x for all other variablesx. By abuse, Dom(�) = fx 2 V j �(x) 6= xg is alled the domain of �. Also,Ran(�) = f�(x) j x 2 Dom(�)g. A substitution � is a onstrutor substitution,if �(x) is a onstrutor term 8x 2 Dom(�). The identity substitution is denotedby f g. Given a substitution � and a set V � V , we denote the substitutionobtained from � by restriting its domain to V by �j�V . We write � = � [V ℄ if�j�V = �j�V , and � � � [V ℄ denotes the existene of a substitution  suh that Æ � = � [V ℄. A term t0 is an instane of t if 9� with t0 = �(t).A set of rewrite rules l = r suh that l 62 V , and Var(r) � Var(l) is alleda term rewriting system (TRS). The terms l and r are alled the left-hand sideand the right-hand side of the rule, respetively. A rewrite step is an appliationof a rewrite rule to a term, i.e., t !p;R s if there exists a position p in t, arewrite rule R = (l = r) and a substitution � with tjp = �(l) and s = t[�(r)℄p.Given a relation !, we denote by !+ the transitive losure of !, and by !�the transitive and reexive losure of !. A (onstrutor) head normal form iseither a variable or a term rooted by a onstrutor symbol. To evaluate termsontaining variables, narrowing nondeterministially instantiates the variablesso that a rewrite step is possible. Formally, t;p;R;� t0 is a narrowing step if p isa non-variable position in t and �(t)!p;R t0. We denote by t0 ;�� tn a sequeneof narrowing steps t0 ;�1 : : : ;�n tn with � = �n Æ � � � Æ �1. (If n = 0 then� = f g.) In funtional programming, one is interested in the omputed valuewhereas logi programming emphasizes the di�erent bindings (answers). In anintegrated setting, given a narrowing derivation t0 ;�� tn, we say that tn is theomputed value and � is the omputed answer for t0.3 Using an Abstrat Representation for PEIn this setion, we present an appropriate abstrat representation for modernfuntional logi languages. We also provide a non-standard operational semantiswhih is speially well-suited to perform omputations during partial evaluation.First, let us briey reall the basis of the narrowing-driven approah to PE of[4℄. Informally speaking, given a partiular narrowing strategy;, the (paramet-



ri) notions of resultant and partial evaluation are de�ned as follows. A resultantis a program rule of the form: �(s) = t assoiated to a narrowing derivation:s ;+� t. A partial evaluation for a term s in a program R is omputed by on-struting a �nite (possibly inomplete) narrowing tree for this term, and thenextrating the resultants assoiated to the root-to-leaf derivations of the tree.Depending on the onsidered lass of programs (and the assoiated narrowingstrategy), a PE might require a post-proessing of renaming to reover the samelass of programs. An intrinsi feature of the narrowing-driven approah is theuse of the same operational mehanism for both exeution and PE.3.1 The Abstrat RepresentationReent approahes to funtional logi programming onsider indutively sequen-tial systems as programs and a ombination of needed narrowing and residuationas operational semantis [15, 19℄. The preise mehanism (narrowing or residua-tion) for eah funtion is spei�ed by evaluation annotations, whih are similarto oroutining delarations in Prolog, where the programmer spei�es onditionsunder whih a all is ready for a resolution step. Funtions to be evaluated in adeterministi manner are delared as rigid (whih fores deferred evaluation byrewriting), while funtions providing for nondeterministi evaluation steps aredelared as exible (whih enables narrowing steps).Similarly to [18℄, we present an abstrat representation for programs in whihthe de�nitional trees (used to guide the needed narrowing strategy) are madeexpliit by means of ase onstruts. Moreover, here we distinguish two kindsof ase expressions in order to make also expliit the exible/rigid evaluationannotations. In partiular, we assume that all funtions are de�ned by one rulewhose left-hand side ontains only variables as parameters and the right-handside ontains ase expressions for pattern-mathing. Thanks to this new rep-resentation, we an de�ne a simple operational semantis, whih will beomeessential to simplify the de�nition of the assoiated PE sheme. The syntax forprograms in the abstrat representation is summarized as follows:R ::= D1 : : : Dm t ::= v (variable)D ::= f(v1; : : : ; vn) = t j (t1; : : : ; tn) (onstrutor)j f(t1; : : : ; tn) (funtion all)p ::= (v1; : : : ; vn) j ase t0 of fp1 ! t1; : : : ; pn ! tng (rigid ase)j fase t0 of fp1 ! t1; : : : ; pn ! tng (exible ase)where R denotes a program, D a funtion de�nition, p a pattern and t an ar-bitrary expression. A program R onsists of a sequene of funtion de�nitionsD suh that the left-hand side is linear and has only variable arguments, i.e.,pattern mathing is ompiled into ase expressions. The right-hand side of eahfuntion de�nition is a term t omposed by variables, onstrutors, funtion alls,and ase expressions. The form of a ase expression is: (f )ase t of f1(xn1)!t1; : : : ; k(xnk ) ! tkg, where t is a term, 1; : : : ; k are di�erent onstrutors ofthe type of t, and t1; : : : ; tk are terms (possibly ontaining ase expressions).



The variables xni are alled pattern variables and are loal variables whih o-ur only in the orresponding subexpression ti. The di�erene between ase andfase shows up when the argument t is a free variable: ase suspends (whih or-responds to residuation) whereas fase nondeterministially binds this variableto the pattern in a branh of the ase expression (whih orresponds to narrow-ing). Funtions de�ned only by fase (resp. ase) expressions are alled exible(resp. rigid). Thus, exible funtions at as generators (like prediates in logiprogramming) and rigid funtions at as onsumers. Conurreny is expressedby a built-in operator \&" whih evaluates its two arguments onurrently. Thisoperator an be de�ned by the rule: True & True = True and, hene, in thefollowing we simply onsider it as an ordinary funtion symbol.Example 1. Consider the rules de�ning the (rigid) funtion \ 6 ":20 6 n = True(Su m) 6 0 = False(Su m) 6 (Su n) = m 6 nBy using ase expressions, they an be represented by the following rewrite rule:x 6 y = ase x of f0 ! True;(Su x1)! ase y of f0! False;(Su y1)! x1 6 y1g gDue to the presene of fresh pattern variables in the right-hand side of therule, this is not a standard rewrite rule. Nevertheless, the redution of a aseexpression binds these pattern variables so that they disappear during a onreteevaluation (see [18℄).3.2 The Residualizing SemantisAn automati transformation from indutively sequential programs to programsusing ase expressions is introdued in [18℄. They also provide an appropriateoperational semantis for these programs: the LNT alulus (Lazy Narrowingwith de�nitional Trees), whih is equivalent to needed narrowing over indutivelysequential programs. In this work, we onsider funtional logi languages with amore general operational priniple, namely a ombination of (needed) narrowingand residuation. Nevertheless, the translation method of [18℄ ould be easilyextended to over programs ontaining evaluation annotations; namely, exible(resp. rigid) funtions are translated by using only fase (resp. ase) expressions.Moreover, the LNT alulus of [18℄ an be also extended to orretly evaluatease=fase expressions. In the following, we refer to the LNT alulus to mean theLNT alulus of [18℄ extended to ope with ase=fase expressions (the formalde�nition an be found in [3℄).Unfortunately, by using the standard semantis during PE, we would havethe same problems of previous approahes (see Set. 1). In partiular, one of the2 Although we onsider in this work a �rst-order language, we use a urried notationin the examples (as is usual in funtional languages).



main problems omes from the bakpropagation of variable bindings to the left-hand sides of residual rules. In the ontext of lazy (all-by-name) funtional logilanguages, this an provoke an inorret restrition on the domain of funtions(regarding the ability to ompute head normal forms) and, thus, the loss oforretness for the transformation whenever some term in head normal form isevaluated during PE. The following example illustrates this point.Example 2. Consider the following program:isZero 0 = TruenonEmptyList (x : xs) = Truefoo x = isZero x : [℄Here we use \[℄" and \:" as onstrutors of lists, and \0" and \Su" to de�nenatural numbers. Then, given the (unique) omputation for foo y:foo y ;fg (isZero y) : [℄ ;fy7!0g True : [℄where (isZero y) : [℄ is in head normal form, we get the residual rule:foo 0 = True : [℄However, the expression nonEmptyList (foo (Su 0)) an be evaluated to Truein the original program (redued funtions are underlined):nonEmptyList (foo (Su 0)) ;fg nonEmptyList (isZero (Su 0) : [℄);fg Truewhereas it is not possible if the residual rule for foo is used (together with theoriginal de�nitions for isZero and nonEmptyList).The restrition on forbidding the evaluation of head normal forms an drastiallyredue the optimization power of the transformation in some ases. Therefore, wepropose a residualizing version of the LNT alulus whih allows us to avoid thisrestrition. In the new alulus, variable bindings are enoded by ase expressions(and are onsidered \residual" ode). The inferene rules of the new alulus,RLNT (Residualizing LNT), an be seen in Fig. 1. Let us explain the inferenerules de�ning the one-step relation ). We note that the symbols \[[" and \℄℄"in an expression like [[t℄℄ are purely syntatial (i.e., they do not denote \thevalue of t"). Indeed, they are only used to guide the inferene rules and, mostimportantly, to mark whih part of an expression an be still evaluated (withinthe square brakets) and whih part must be de�nitively residualized (not withinthe square brakets). Let us briey desribe the rules of the alulus:HNF. The HNF (Head Normal Form) rules are used to evaluate terms in headnormal form. If the expression is a variable or a onstrutor onstant, thesquare brakets are removed and the evaluation proess stops. Otherwise,the evaluation proeeds with the arguments. This evaluation an be madein a don't are nondeterministi manner. Note, though, that this soure ofnondeterminism an be easily avoided by onsidering a �xed seletion rule,e.g., by seleting the leftmost argument whih is not a onstrutor term.



HNF [[t℄℄ ) t if t 2 V or t = () with =0 2 C[[(t1; : : : ; tn)℄℄ ) ([[t1℄℄; : : : ; [[tn℄℄)Case-of-Case[[(f )ase ((f )ase t of fpk ! tkg) of fp0j ! t0jg℄℄) [[(f )ase t of fpk ! (f )ase tk of fp0j ! t0jgg℄℄Case Funtion[[(f )ase g(tn) of fpk ! t0kg℄℄ ) [[(f )ase �(r) of fpk ! t0kg℄℄if g(xn) = r 2 R is a rule with fresh variablesand � = fxn 7! tngCase Selet[[(f )ase (tn) of fpk ! t0kg℄℄ ) [[�(t0i)℄℄ if pi = (xn);  2 C; � = fxn 7! tngCase Guess[[(f )ase x of fpk ! tkg℄℄ ) (f )ase x of fpk ! [[�k(tk)℄℄gif �i = fx 7! pig, i = 1; : : : ; kFuntion Eval [[g(tn)℄℄ ) [[�(r)℄℄ if g(xn) = r 2 R is a rule with freshvariables and � = fxn 7! tngFig. 1. RLNT CalulusCase-of-Case. This rule moves the outer ase inside the branhes of the innerone. Rigorously speaking, this rule an be expanded into four rules (withthe di�erent ombinations for ase and fase expressions), but we keep theabove (less formal) presentation for simpliity. Observe that the outer aseexpression may be dupliated several times, but eah opy is now (possibly)srutinizing a known value, and so the Case Selet rule an be applied toeliminate some ase onstruts.Case Funtion. This rule an be only applied when the argument of the ase isoperation-rooted. In this ase, it allows the unfolding of the funtion all.Case Guess. It represents the main di�erene w.r.t. the standard LNT alulus.In order to imitate the instantiation of variables in needed narrowing steps,this rule is de�ned in the standard LNT alulus as follows:[[fase x of fpk ! tkg℄℄ )� [[�(ti)℄℄ if � = fx 7! pig; i = 1; : : : ; kHowever, in this ase, we would inherit the limitations of previous approahes.Therefore, it has been modi�ed in order not to bakpropagate the bindingsof variables. In partiular, we \residualize" the ase struture and ontinuewith the evaluation of the di�erent branhes (by applying the orrespondingsubstitution in order to propagate bindings forward in the omputation).Note that, due to this modi�ation, no distintion between exible and rigidase expressions is needed in the RLNT alulus.Funtion Eval. This rule performs the unfolding of a funtion all. As in proofproedures for logi programming, we assume that we take a program rulewith fresh variables in eah suh evaluation step.



In ontrast to the standard LNT alulus, the inferene system of Fig. 1 isompletely deterministi, i.e., there is no don't know nondeterminism involvedin the omputations. This means that only one derivation an be issued from agiven term (thus, there is no need to introdue a notion of RLNT \tree").Example 3. Consider the well-known funtion app to onatenate two lists:app x y = ase x of f [℄ ! y ;(a : b)! a : (app b y) gGiven the all app (app x y) z to onatenate three lists, we have the following(partial) derivation using the rules of the RLNT alulus:[[app (app x y) z℄℄) [[ase (app x y) of f[℄! z; (a : b)! (a : app b z)g℄℄) [[ase (ase x of f[℄ ! y; (a0 : b0)! (a0 : app b0 y)g)of f[℄ ! z; (a : b)! (a : app b z)g℄℄) [[ase x of f [℄ ! ase y of f[℄! z; (a : b)! (a : app b z)g;(a0 : b0) ! ase (a0 : app b0 y) of f[℄ : z; (a : b)! (a : app b z)g℄℄) ase x of f [℄ ! [[ase y of f[℄! z; (a : b)! (a : app b z)g℄℄;(a0 : b0) ! [[ase (a0 : app b0 y) of f[℄! z; (a : b)! (a : app b z)g℄℄)� ase x of f [℄ ! ase y of f[℄! z; (a : b)! (a : [[app b z)℄℄g;(a0 : b0) ! [[ase (a0 : app b0 y) of f[℄! z; (a : b)! (a : app b z)g℄℄)� ase x of f [℄ ! ase y of f[℄! z; (a : b)! (a : [[app b z℄℄)g;(a0 : b0) ! (a0 : [[app (app b0 y) z℄℄)gThe resulting RLNT alulus shares many similarities with the driving meha-nism of [27℄ and Wadler's deforestation [28℄ (although we obtained it indepen-dently by re�ning the original LNT alulus to avoid the bakpropagation ofbindings). The main di�erenes w.r.t. the driving mehanism are that we in-lude the Case-of-Case rule and that driving is de�ned also for if then elseonstruts (whih an be expressed in our representation by means of ase ex-pressions). The main di�erene w.r.t. deforestation is revealed in the Case Guessrule, where the patterns pi are substituted in the di�erent branhes, like in thedriving transformation. Although it may seem only a slight di�erene, situationsmay arise during transformation in whih our alulus (as well as the drivingmehanism) takes advantage of the sharing between di�erent arguments whiledeforestation may not (see [27℄).A ommon restrition in related program transformations is to forbid theunfolding of funtion alls using program rules whose right-hand side is not lin-ear. This avoids the dupliation of alls under an eager (all-by-value) semantisor under a lazy (all-by-name) semantis implementing the sharing of ommonvariables. Sine our omputation model is based on a lazy semantis, whih doesnot onsider the sharing of variables, we annot inur into the risk of dupliatedomputations. Nevertheless, if sharing is onsidered (as in, e.g., the languageCurry), this restrition an be implemented by requiring right-linear programrules to apply the Case Funtion and Funtion Eval rules.



Regarding the PE of programs with exible/rigid evaluation annotations,[2℄ introdued a speial treatment in order to orretly infer the evaluation an-notations for residual de�nitions. Within this approah, one is fored to splitresultants by introduing several intermediate funtions in order not to mixbindings whih ome from the evaluation of exible and rigid funtions. More-over, to avoid the reation of a large number of intermediate funtions, only theomputation of a single needed narrowing step for suspended expressions is al-lowed. Now, by using ase expressions (instead of funtions de�ned by patternsas in [2℄), we are able to proeed the speialization of suspended expressions be-yond a single needed narrowing step without being fored to split the assoiatedresultant (and hene without inreasing the size of the residual program). Thisis justi�ed by the fat that ase onstruts preserve the rigid or exible natureof the funtions whih instantiate the variables.3 The following example is takenfrom [2℄ and illustrates that the use of ase onstruts to represent funtionde�nitions simpli�es the residual program.Example 4. Consider a program and its PE for the term f x (g y (h z)), aordingto the tehnique introdued in [2℄:f 0 (Su 0) = 0 % flex f0 0 Y Z = f01 Y Z % flexg 0 0 = (Su 0) % rigid f01 (Su 0) Z = f02 Z % rigidh 0 = 0 % flex f02 0 = f03 % flexf03 = 0 % flexwhere f x (g y (h z)) is renamed as f0 x y z. The original program an betranslated to our abstrat representation as follows:f x y = fase x of f0! fase y of f(Su 0)! 0ggg x y = ase x of f0! ase y of f0! (Su 0)ggh x = fase x of f0! 0gThe following PE for f x (g y (h z)), onstruted by using the rules of the RLNTalulus, avoids the introdution of three intermediate rules and, thus, is notablysimpli�ed:f0 x y z = fase x of f0! ase y of f(Su 0)! fase z of f0! 0gggThe next result establishes a preise equivalene between the standard semantis(the LNT alulus) and its residualizing version. In the following, we denote by)Guess the appliation of the following rule from the standard semantis:[[fase x of fpk ! tkg℄℄ )�Guess [[�(ti)℄℄ if � = fx 7! pig; i = 1; : : : ; kFurthermore, we denote by delsq (t) the expression whih results from t by delet-ing all the ourrenes of \[[" and \℄℄" (if any).Theorem 1. Let t be a term, V � Var(t) a �nite set of variables, d a on-strutor term, and R a program in the abstrat representation. For eah LNT3 Indeed, the treatment for ase=fase expressions is the same in the RLNT alulus.



derivation [[t℄℄ �) � d for t w.r.t. R omputing the answer �, there exists aRLNT derivation [[t℄℄ )� t0 for t w.r.t. R suh that there is a �nite sequene[[delsq (t0)℄℄)�1Guess : : :)�nGuess d, where �n Æ : : : Æ �1 = � [V ℄, and vie versa.Roughly speaking, for eah (suessful) LNT derivation from t to a onstrutorterm d omputing �, there is a orresponding RLNT derivation from t to t0 inwhih the omputed substitution � is enoded in t0 by ase expressions and anbe obtained by a (�nite) sequene of )Guess steps (deriving the same value d).4 Control Issues for Partial EvaluationFollowing [12℄, a simple on-line PE algorithm an proeed as follows. Givena term t and a program R, we ompute a �nite (possibly inomplete) RLNTderivation t )+ s for t w.r.t. R.4 Then, this proess is iteratively repeated forany subterm whih ours in the expression s and whih is not losed w.r.t. theset of terms already evaluated. Informally, the losedness ondition guaranteesthat eah all whih might our during the exeution of the residual programis overed by some program rule. If this proess terminates, it omputes a set ofpartially evaluated terms S suh that the losedness ondition is satis�ed and,moreover, it uniquely determines the assoiated residual program.First, we formalize the notion of losedness adjusted to our abstrat repre-sentation.De�nition 1. Let S be a set of terms and t be a term. We say that t is S-losedif losed (S; t) holds, where the relation \losed" is de�ned indutively as follows:losed (S; t) = 8>>><>>>: true if t 2 Vlosed (S; t1) ^ : : : ^ losed (S; tn) if t = (t1; : : : ; tn);  2 Closed (t0) ^ Vi2f1;:::;kg losed (ti) if t = (f )ase t0 of fpk ! tkgVt02Ran(�) losed(S; t0) if 9s 2 S suh that t = �(s)A set of terms T is S-losed, written losed (S; T ), if losed (S; t) holds for allt 2 T .Aording to this de�nition, variables are always losed, while an operation-rooted term is S-losed if it is an instane of some term in S and the termsin the mathing substitution are reursively S-losed. On the other hand, foronstrutor-rooted terms and for ase expressions, we have two nondetermin-isti ways to proeed: either by heking the losedness of their arguments orby proeeding as in the ase of an operation-rooted term. For instane, a aseexpression suh as ase t of fp1 ! t1; : : : ; pk ! tkg an be proved losed w.r.t.S either by heking that the set ft; t1; : : : ; tkg is S-losed5 or by testing whetherthe whole ase expression is an instane of some term in S.4 Note that, sine the RLNT alulus is deterministi, there is no branhing. Thus,only a single derivation an be omputed from a term.5 Patterns are not onsidered here sine they are onstrutor terms and hene losedby de�nition.



Example 5. Let us onsider the following set of terms:S = fapp a b; ase (app a b) of f[℄! z; (x : y)! (app y z)g g :The following expression ase (app a0 b0) of f[℄ ! z0; (x0 : y0) ! (app y0 z0)gan be proved S-losed using the �rst element of the set (by heking that thesubterms app a0 b0 and app y0 z0 are instanes of app a b) or by testing that thewhole expression is an instane of the seond element of the set.The PE algorithm outlined above involves two ontrol issues: the so-alled loalontrol, whih onerns the omputation of partial evaluations for single terms,and the global ontrol, whih ensures the termination of the iterative proess butstill guaranteeing that the losedness ondition is eventually reahed. Following[12℄, we present a PE proedure whih is parameterized by:{ An unfolding rule U (loal ontrol), whih determines how to stop RLNTderivations. Formally, U is a (total) funtion from terms to terms suh that,whenever U(s) = t, then there exists a �nite RLNT derivation [[s℄℄)+ t.{ An abstration operator abstrat (global ontrol), whih keeps the set ofpartially evaluated terms �nite. It takes two sets of terms S and T (whihrepresent the urrent partially evaluated terms and the terms to be addedto this set, respetively) and returns a safe approximation of S [ T . Here,by \safe" we mean that eah term in S [ T is losed w.r.t. the result ofabstrat(S; T ).De�nition 2. Let R be a program and T a �nite set of expressions. We de�nethe PE funtion P as follows:P(R; T ) = S if abstrat(fg; T ) 7�!�P S and S 7�!P Swhere 7�!P is de�ned as the smallest relation satisfyingS0 = fs0 j s 2 S ^ U(s) = s0gS 7�!P abstrat(S; S0)We note that the funtion P does not ompute a partially evaluated program,but a set of terms S from whih a S-losed PE an be uniquely onstrutedusing the unfolding rule U . To be preise, for eah term s 2 S with U(s) = t,we produe a residual rule s = t. Moreover, in order to ensure that the residualprogram ful�lls the syntax of our abstrat representation, a renaming of thepartially evaluated alls is neessary. This an be done by applying a standardpost-proessing renaming transformation. We do not present the details of thistransformation here but refer to [3℄.As for loal ontrol, a number of well-known tehniques an be applied forensuring the �niteness of RLNT derivations, e.g., depth-bounds, loop-heks,well-founded (or well-quasi) orderings (see, e.g., [8, 23, 26℄). For instane, an un-folding rule based on the use of the homeomorphi embedding ordering has beenproposed in [4℄.As for global ontrol, an abstration operator should essentially distinguishthe same ases as in the losedness de�nition. Intuitively, the reason is that the



abstration operator must �rst hek whether a term is losed and, if not, tryto add this term (or some of its subterms) to the set. Therefore, given a allabstrat(S; ftg), an abstration operator usually distinguishes three main asesdepending on t:{ if t is onstrutor-rooted, it tries to add the arguments of t;{ if it is operation-rooted and is an instane of some term in S, it tries to addthe terms in the mathing substitution;{ otherwise (an operation-rooted term whih is not an instane of any term inS), it is simply added to S (or generalized in order to keep the set S �nite).Our partiular abstration operator uses a quasi-ordering, namely the homeo-morphi embedding relation E (see, e.g., [23℄), to ensure termination and gen-eralizes those alls whih do not satisfy this ordering by using the msg (mostspei� generalization) between terms.6As opposed to previous abstration operators [4℄, here we need to give a spe-ial treatment to ase expressions. Of ourse, if one onsiders the ase symbol asan ordinary onstrutor symbol, the extension would be straightforward. Unfor-tunately, this will often provoke a serious loss of speialization, as the followingexample illustrates.Example 6. Let us onsider again the program app and the RLNT derivation ofExample 3:[[app (app x y) z℄℄)� [[ase (ase x of f[℄ ! y; (a0 : b0)! (a0 : app b0 y)g)of f[℄ ! z; (a : b)! (a : app b z)g℄℄)� ase x of f [℄ ! ase y of f[℄! z; (a : b)! (a : [[app b z℄℄)g;(a0 : b0) ! (a0 : [[app (app b0 y) z℄℄)gIf one onsiders an unfolding rule whih stops the derivation at the interme-diate ase expression, then the abstration operator will attempt to add onlythe operation-rooted subterms app b0 y and app b y to the set of terms to bespeialized. This will prevent us from obtaining an eÆient (reursive) residualfuntion for the original term, sine we will never reah again an expressionontaining app (app x y) z (see Example 7).On the other hand, by treating ase expressions as operation-rooted terms, theproblem is not solved. For instane, if we onsider that the unfolding rule returnsthe last term of the above derivation, then it is not onvenient to add the wholeterm to the urrent set. Here, the best hoie would be to treat the ase symbolas a onstrutor symbol. Moreover, a similar situation arises when onsideringonstrutor-rooted terms, sine the RLNT alulus has no restritions to evaluateterms in head normal form.6 A generalization of the set of terms S = ft1; : : : ; tng is a pair ht; f�1; : : : ; �ngi suhthat, 8i 2 f1; : : : ; ng; �i(t) = ti. The pair ht; f�1; : : : ; �ngi is the most spei� gen-eralization of S, written msg(S), if ht; f�1; : : : ; �ngi is a generalization and for everyother generalization ht0; f�01; : : : ; �0ngi of S, t0 is more general than t.



Lukily, the RLNT alulus gives us some leeway. The key idea is to takeinto aount the position of the square brakets of the alulus: an expressionwithin square brakets should be added to the set of partially evaluated terms(if possible), while expressions whih are not within square brakets should bede�nitively residualized (i.e., ignored by the abstration operator, exept foroperation-rooted terms).De�nition 3. Given two �nite sets of terms, T and S, we de�ne:7abstrat(S; T ) = �S if T = ?abs(: : : abs(S; t1); : : : ; tn) if T = ft1; : : : ; tng; n � 1The funtion abs(S; t) distinguishes the following ases:abs(S; t) = 8>>>><>>>>:S if t 2 Vabstrat(S; ft1; : : : ; tng) if t = (t1; : : : ; tn);  2 Cabstrat(S; ft0; t1; : : : ; tng) if t = (f )ase t0 of fpn ! tngtry add (S; t) if t = f(t1; : : : ; tn); f 2 Ftry add (S; t0) if t = [[t0℄℄Finally, the funtion try add (S; t) is de�ned as follows:try add (S; t) = 8>><>>:abstrat(S n fsg; fs0g [ Ran(�1) [Ran(�2))if 9s 2 S: root(s) = root(t) and s E t;where hs0; f�1; �2gi = msg(fs; tg)S [ ftg otherwiseLet us informally explain this de�nition. Given a set of terms S, in order to adda new term t, the abstration operator abs distinguishes the following ases:{ variables are disregarded;{ if t is rooted by a onstrutor symbol or by a ase symbol, then it reursivelyinspets the arguments;{ if t is rooted by a de�ned funtion symbol or it is enlosed within squarebrakets, then the abstration operator tries to add it to S with try add(even if it is onstrutor-rooted or a ase expression). Now, if t does notembed any omparable (i.e., with the same root symbol) term in S, then tis simply added to S. Otherwise, if t embeds some omparable term of S,say s, then the msg of s and t is omputed, say hs0; f�1; �2gi, and it �nallyattempts to add s0 as well as the terms in �1 and �2 to the set resulting fromremoving s from S.Let us onsider an example to illustrate the omplete PE proess.Example 7. Consider the program Rapp whih ontains the rule de�ning thefuntion app. In order to ompute P(Rapp; fapp (app x y) zg), we start with:S0 = abstrat(fg; fapp (app x y) zg) = fapp (app x y) zg7 The partiular order in whih the elements of T are added to S by abstrat annota�et orretness but an degrade the e�etiveness of the algorithm. A more preisetreatment an be easily given by using sequenes instead of sets of terms.



For the �rst iteration, we assume that:U(app (app x y) z) =ase x of f [℄ ! ase y of f[℄! z; (a : b)! (a : [[app b z℄℄)g;(a0 : b0)! (a0 : [[app (app b0 y) z℄℄)g(see derivation in Example 3). Then, we ompute:S1 = abstrat(S0; fU(app (app x y) z)g) = fapp (app x y) z); app b zgFor the next iteration, we assume that:U(app b z) = ase b of f[℄! z; ( : d)!  : [[app d z℄℄ gTherefore, abstrat(S1; fU(app b z)g) = S1 and the proess �nishes. The assoi-ated residual rules are (after renaming the original expression by dapp x y z):dapp x y z = ase x of f [℄ ! ase y of f[℄! z;(a : b)! (a : app b z)g;(a0 : b0)! (a0 : dapp b0 y z)gapp b z = ase b of f [℄ ! z; ( : d)! ( : app d z)gNote that the optimized funtion dapp is able to onatenate three lists bytraversing the �rst list only one, whih is not possible in the original program.The following proposition states that the operator abstrat of Def. 3 is safe.Proposition 1. Given two �nite sets of terms, T and S, if S0 = abstrat(S; T ),then for all t 2 (S [ T ), t is losed with respet to S0.Finally, we establish the termination of the omplete PE proess:Theorem 2. Let R be a program and S a �nite set of terms. The omputationof P(R; S) terminates using a �nite unfolding rule and the abstration operatorof Def. 3.5 Experimental EvaluationIn order to assess the pratiality of the ideas presented in this work, the im-plementation of a partial evaluator for the multi-paradigm delarative languageCurry has been undertaken.8 Curry [19℄ integrates features from logi (logi vari-ables, partial data strutures, built-in searh), funtional (higher-order funtions,demand-driven evaluation) and onurrent programming (onurrent evaluationof onstraints with synhronization on logial variables). Furthermore, Curry isa omplete programming language whih is able to implement distributed appli-ations (e.g. Internet servers [16℄) or graphial user interfaes at a high-level [17℄.In order to develop an e�etive PE tool for Curry, one has to extend the basiPE sheme to over all high-level features. This extension beomes impratial8 It is publily available at http://www.dsi.upv.es/users/elp/soft.html.



Benhmark mix original speialized speedupallones 470 430 290 1.48double app 510 370 320 1.16double flip 750 550 400 1.37kmp 1440 730 35 20.9length app 690 310 290 1.07Table 1. Benhmark resultswithin previous frameworks for the PE of funtional logi languages due to theomplexity of the resulting semantis. By using an abstrat representation andtranslating high-level programs to this notation (see [20℄), the extension beomessimple and e�etive. A detailed desription of the onrete manner in whih eahfeature is treated an be found in [3℄. Moreover, as opposed to previous partialevaluators for Curry (e.g., Indy [1℄), it is ompletely written in Curry. To thebest of our knowledge, this is the �rst purely delarative partial evaluator for afuntional logi language.Firstly, we have benhmarked several examples whih are typial from par-tial dedution and from the literature of funtional program transformations.Table 1 shows the results obtained from some seleted benhmarks (a ompletedesription an be found, e.g., in [4℄). For eah benhmark, we show the spe-ialization time inluding the reading and writing of programs (olumn mix),the timings for the original and speialized programs (olumns original and spe-ialized), and the speedups ahieved (olumn speedup). Times are expressed inmilliseonds and are the average of 10 exeutions on a Sun Ultra-10. Runtimeinput goals were hosen to give a reasonably long overall time. All benhmarkshave been speialized w.r.t. funtion alls ontaining no stati data, exept forthe kmp example (what explains the larger speedup produed). Speedups aresimilar to those obtained by previous partial evaluators, e.g., Indy [1℄. Indeed,these benhmarks were used in [4℄ to illustrate the power of the narrowing-drivenapproah (and are not a�eted by the disussed limitations). This indiates thatour new sheme for PE is a onservative extension of previous approahes onomparable examples. Note, though, that our partial evaluator is appliable toa wider lass of programs (inluding higher-order, onstraints, several built-in's,et), while Indy is not.Seondly, we have onsidered the PE of the olletion of programs in theCurry library (see http://www.informatik.uni-kiel.de/~urry). Here, ourinterest was to hek the ability of the partial evaluator to deal with realistiprograms whih make extensive use of all the features of the Curry language.Our partial evaluator has been suessfully applied to all the examples produingin some ases signi�ant improvements. We refer to [3℄ for the soure ode ofsome benhmarks. Finally, we have also onsidered the PE of a meta-interpreterw.r.t. a soure program. Although the partial evaluator suessfully speializedit, regarding improvement in eÆieny, the results were not so satisfatory. Toimprove this situation, we plan to develop a binding-time analysis to determine,



for eah expression, whether it an be de�nitively evaluated at PE time (hene, itshould not be generalized by the abstration operator) or whether this deisionmust be taken online. This kind of (o�-line) analysis would be also useful toredue speialization times.Altogether, the experimental evaluation is enouraging and gives a good im-pression of the speialization ahieved by our partial evaluator.6 ConlusionsIn this work, we introdue a novel approah for the PE of truly lazy funtionallogi languages. The new sheme is arefully designed for an abstrat represen-tation in whih high-level programs an be automatially translated. We haveshown how a non-standard (residualizing) semantis an avoid several limitationsof previous frameworks. The implementation of a fully automati PE tool forthe language Curry has been undertaken and tested on an extensive benhmarksuite. To the best of our knowledge, this is the �rst purely delarative partialevaluator for a funtional logi language. Moreover, sine Curry is an extensionof both logi and (lazy) funtional languages, we think that our PE sheme anbe easily adapted to other delarative languages.From the experimental results, we onlude that our partial evaluator isindeed suitable for \real" Curry programs. Anyway, there is still room for furtherimprovements. For instane, although self-appliation is already (theoretially)possible, the de�nition of a preise binding-time analysis seems mandatory toahieve an e�etive self-appliable partial evaluator. On the other hand, we havenot onsidered a formal treatment to measuring the e�etiveness of our partialevaluator. Another promising diretion for future work is the development ofabstrat riteria to formally measure the potential bene�t of our PE algorithm.Referenes1. E. Albert, M. Alpuente, M. Falashi, and G. Vidal. Indy User's Manual. Tehnialreport, UPV, 1998. Available from URL:http://www.dsi.upv.es/users/elp/papers.html.2. E. Albert, M. Alpuente, M. Hanus, and G. Vidal. A Partial Evaluation Frameworkfor Curry Programs. In Pro. of the 6th Int'l Conf. on Logi for Programming andAutomated Reasoning, LPAR'99, pages 376{395. Springer LNAI 1705, 1999.3. E. Albert, M. Hanus, and G. Vidal. Using an Abstrat Representation to SpeializeFuntional Logi Programs. Tehnial report, UPV, 2000. Available from URL:http://www.dsi.upv.es/users/elp/papers.html.4. M. Alpuente, M. Falashi, and G. Vidal. Partial Evaluation of Funtional LogiPrograms. ACM Transations on Programming Languages and Systems, 20(4):768{844, 1998.5. S. Antoy. De�nitional trees. In Pro. of the 3rd Int'l Conferene on Algebrai andLogi Programming, ALP'92, pages 143{157. Springer LNCS 632, 1992.6. S. Antoy, R. Ehahed, and M. Hanus. A Needed Narrowing Strategy. Journal ofthe ACM, 2000 (to appear). Previous version in Pro. of POPL'94, pages 268{279.
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