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Abstra
t. In this paper, we present a high-level implementation of lazy

fun
tional logi
 programs by transforming them into Prolog programs.

The transformation is 
ontrolled by generalized de�nitional trees whi
h

spe
ify the narrowing strategy to be implemented. Sin
e we 
onsider a

sophisti
ated narrowing strategy, a dire
t mapping of fun
tions into pred-

i
ates is not possible. Therefore, we present new te
hniques to redu
e the

interpretational overhead of the generated Prolog 
ode. This leads to a

portable and eÆ
ient implementation of fun
tional logi
 programs.

1 Introdu
tion

In re
ent years, a lot of proposals have been made to amalgamate fun
tional and

logi
 programming languages [15℄. Fun
tional logi
 languages with a sound and


omplete operational semanti
s are based on narrowing, a 
ombination of the

redu
tion prin
iple of fun
tional languages and the resolution prin
iple of logi


languages. Narrowing, originally introdu
ed in automated theorem proving [26℄,

is used to solve equations by �nding appropriate values for variables o

urring

in arguments of fun
tions. A narrowing step instantiates some variables in a goal

and applies a redu
tion step to a redex of the instantiated goal. The instantiation

of goal variables is usually 
omputed by unifying a subterm of the goal with the

left-hand side of some rule.

Example 1. Consider the following rules de�ning the addition and 
omparison of

natural numbers whi
h are represented by terms built from 0 and s:

0 + y ! y (R

1

)

s(x) + y ! s(x+ y) (R

2

)

0 � x ! true (R

3

)

s(x) � 0 ! false (R

4

)

s(x) � s(y) ! x � y (R

5

)

The equation x + y � 0 � true 
an be solved by a narrowing step with rule R

1

followed by a narrowing step with rule R

3

so that x and y are instantiated to 0

and the instantiated equation is redu
ed to the trivial equation true � true:

x+ y � 0 � true ;

fx 7!0g

y � 0 � true ;

fy 7!0g

true � true

Hen
e we have found the solution fx 7! 0; y 7! 0g to the given equation. 2

Similarly to fun
tional languages, we have to �x the sele
tion of positions for

the next narrowing step in order to redu
e the sear
h spa
e. Eager fun
tional

logi
 languages like ALF [12℄, eager-BABEL [18℄, or SLOG [8℄ apply narrowing



steps at innermost positions. To ensure 
ompleteness, they require a terminating

set of rewrite rules whi
h prohibit the appli
ation of typi
al fun
tional program-

ming te
hniques like in�nite data stru
tures. Therefore, we are interested in lazy

narrowing strategies [22, 25℄ where narrowing steps are applied at outermost po-

sitions in general and at an inner position only if it is demanded and 
ontributes

to some later narrowing step at an outer position. Although su
h a lazy strategy


an avoid useless 
omputation steps, it has been shown that this is not generally

true if one does not take 
are of a 
ontrolled instantiation of logi
al variables

[4℄. However, for the 
lass of indu
tively sequential programs, whi
h 
overs typi-


al fun
tional programs, there is a strategy, 
alled needed narrowing [4℄, whi
h is

optimal w.r.t. the length of the narrowing derivations and the number of 
omput-

ed solutions. Indu
tively sequential programs do not allow overlapping left-hand

sides of the rewrite rules. However, in some appli
ations, parti
ularly in logi


programming, su
h overlapping rules are useful. Unfortunately, overlapping rules

may lead to nonterminating 
omputations w.r.t. lazy narrowing strategies [11℄.

This 
an be avoided if lazy narrowing is 
ombined with simpli�
ation between

narrowing steps [14℄. Therefore, we obtain a good lazy narrowing strategy if we

apply needed narrowing on indu
tively sequential programs and integrate sim-

pli�
ation for the remaining programs.

In this paper, we 
onsider the high-level implementation of su
h a sophisti-


ated narrowing strategy. To avoid a 
omplex dire
t implementation based on a

new abstra
t ma
hine (see [15℄ for a survey on these implementation te
hniques),

we follow the proposals presented in [2, 6, 17, 19℄. We translate lazy fun
tional

logi
 programs into Prolog programs and obtain by this simple transformation

a portable and eÆ
ient implementation of our narrowing strategy. The trans-

lation of eager narrowing strategies into Prolog is straightforward by 
attening

nested fun
tion 
alls [5℄. However, the translation of lazy narrowing strategies

is a 
hallenging task, in parti
ular, if narrowing is interleaved with simpli�
a-

tion. Our solution is the �rst Prolog implementation of a lazy narrowing strategy

whi
h 
omprises simpli�
ation. Nevertheless, we obtain a better run-time be-

havior w.r.t. previous work sin
e we apply partial evaluation te
hniques to the

translated program.

In the next se
tion, we re
all basi
 notions and introdu
e our narrowing strat-

egy. In Se
tion 3, we present the translation of indu
tively sequential programs,

whereas Se
tion 4 
ontains the translation of arbitrary fun
tional logi
 programs.

Optimizations obtained by partial evaluation and the implementation of sharing

are dis
ussed in Se
tions 5 and 6, respe
tively. Finally, we dis
uss the eÆ
ien
y

of our translation te
hniques by means of some ben
hmarks.

2 Lazy Narrowing Strategies

We assume familiarity with basi
 notions of term rewriting [7℄. We 
onsider a

many-sorted signature partitioned into a set C of 
onstru
tors and a set F of

fun
tions. We write 
=n 2 C and f=n 2 F for n-ary 
onstru
tor and fun
tion

symbols, respe
tively. The set of terms and 
onstru
tor terms with variables from

2



X are denoted by T (C [ F ;X ) and T (C;X ). Var(t) denotes the set of variables

o

urring in a term t. A pattern is a term of the form f(t

1

; : : : ; t

n

) where f=n 2 F

and t

1

; : : : ; t

n

2 T (C;X ). A head normal form is a variable or a term of the form


(t

1

; : : : ; t

n

) with 
=n 2 C. A position p in a term t is represented by a sequen
e

of natural numbers, tj

p

denotes the subterm of t at position p, and t[s℄

p

denotes

the result of repla
ing the subterm tj

p

by the term s (see [7℄ for details).

A term rewriting system R is a set of rewrite rules l ! r where l is a pattern

and Var(r) � Var(l). l and r are 
alled left-hand side and right-hand side,

respe
tively.

1

A rewrite rule is 
alled a variant of another rule if it is obtained by

a unique repla
ement of variables by other variables.

Narrowing is a method to 
ompute solutions to an equation s � t. t;

�

t

0

is

a narrowing step if there are a nonvariable position p in t (i.e., tj

p

62 X ), a variant

l ! r of a rewrite rule of R with Var(t)\ Var(l) = ;, and a uni�er

2

� of tj

p

and

l with t

0

= �(t[r℄

p

).

3

Sin
e narrowing applies rewrite rules only in one dire
tion,

additional restri
tions are ne
essary for the 
ompleteness of narrowing, i.e., we

require the 
on
uen
e of R. This 
an be ensured by the following 
ondition: if

l

1

! r

1

and l

2

! r

2

are variants of rewrite rules and � is a uni�er for l

1

and l

2

,

then �(r

1

) = �(r

2

) (weak orthogonality).

Sin
e we do not require terminating term rewriting systems, normal forms may

not exist. Therefore, we de�ne the validity of an equation as a stri
t equality on

terms [10, 22℄ by the following rules, where ^ is assumed to be a right-asso
iative

in�x symbol.


 � 
! true 8
=0 2 C


(x

1

; : : : ; x

n

) � 
(y

1

; : : : ; y

n

)! (x

1

� y

1

) ^ � � � ^ (x

n

� y

n

) 8
=n 2 C

true ^ x ! x

A solution of an equation t

1

� t

2

is 
omputed by narrowing it to true with

these rules. Sin
e this simple narrowing pro
edure (enumerating all narrowing

derivations) is very ineÆ
ient, several authors have proposed restri
tions on the

admissible narrowing derivations (see [15℄ for a detailed survey). We are interest-

ed in lazy narrowing [21, 25℄ whi
h is in
uen
ed by the idea of lazy evaluation in

fun
tional programming languages. Lazy narrowing steps are only applied at out-

ermost positions with the ex
eption that arguments are evaluated by narrowing

to their head normal form if their values are required for an outermost narrowing

step. Sin
e the notion of \required arguments" depends on the rule to be applied

1

In this paper, we 
onsider only un
onditional rewrite rules for the sake of simpli
ity.

Nevertheless, the presented implementation te
hniques 
an be extended to 
onditional

rules (e.g., as done in [19℄) and 
ompleteness results for the 
onditional 
ase 
an be

found in [16℄.

2

In most papers, narrowing is de�ned with most general uni�ers. As shown in [4℄, an

optimal narrowing strategy whi
h avoids super
uous steps 
an only be obtained if the

restri
tion to mgu's is dropped. Therefore, we 
onsider arbitrary uni�ers. However,

only a small subset of these uni�ers are 
omputed by our narrowing strategy.

3

Sin
e the instantiation of the variables in the rule l ! r by � is not relevant for the


omputed solution of a narrowing derivation, we omit this part of � in the example

derivations in this paper.

3



and leaves some freedom, di�erent lazy narrowing strategies have been proposed

[4, 17, 19, 21, 22℄. We will spe
ify our narrowing strategy by the use of de�ni-

tional trees, a 
on
ept introdu
ed by Antoy [3℄ to de�ne eÆ
ient normalization

strategies.

T is 
alled generalized de�nitional tree with pattern � i� one of the following


ases holds:

T = rule(� ! r), where � ! r is a variant of a rule in R.

T = bran
h(�; o; T

1

; : : : ; T

k

), where � is a pattern, o is an o

urren
e of a variable

in �, 


1

; : : : ; 


k

are di�erent 
onstru
tors of the sort of �j

o

(k > 0), and, for i =

1; : : : ; k, T

i

is a generalized de�nitional tree with pattern �[


i

(x

1

; : : : ; x

n

)℄

o

,

where n is the arity of 


i

and x

1

; : : : ; x

n

are new distin
t variables.

T = or(T

1

; : : : ; T

k

), where T

1

; : : : ; T

k

are generalized de�nitional trees with pat-

tern �.

A generalized de�nitional tree of an n-ary fun
tion f is a generalized de�nitional

tree T with pattern f(x

1

; : : : ; x

n

), where x

1

; : : : ; x

n

are distin
t variables, su
h

that for ea
h rule l ! r with l = f(t

1

; : : : ; t

n

) there is a node rule(l

0

! r

0

) in T

with l variant of l

0

. A de�nitional tree is a generalized de�nitional tree without

or-nodes.

4

For instan
e, the de�nitional tree of the fun
tion � in Example 1 is

bran
h(x � y; 1; rule(0 � y ! true);

bran
h(s(x

1

) � y; 2; rule(s(x

1

) � 0! false);

rule(s(x

1

) � s(y

1

)! x

1

� y

1

)))

A fun
tion f is 
alled indu
tively sequential if there exists a de�nitional tree of

f su
h that ea
h rule node 
orresponds to exa
tly one rule of R. We denote this

property by f=n 2 IS(R). The term rewriting system R is 
alled indu
tively

sequential if ea
h fun
tion de�ned by R is indu
tively sequential.

A generalized de�nitional tree de�nes a strategy to apply narrowing steps.

5

To

narrow a term t, we 
onsider the generalized de�nitional tree T of the outermost

fun
tion symbol of t (note that, by de�nition of stri
t equality, the outermost

symbol is always a fun
tion if we narrow equations):

T = rule(� ! r): Apply rule � ! r to t (note that t is always an instan
e of �).

T = bran
h(�; o; T

1

; : : : ; T

k

): Consider the subterm tj

o

.

1. If tj

o

has a fun
tion symbol at the top, we narrow this subterm (to a head

normal form) by re
ursively applying our strategy to tj

o

.

2. If tj

o

has a 
onstru
tor symbol at the top, we narrow t with T

j

, where

the pattern of T

j

uni�es with t, otherwise (if no pattern uni�es) we fail.

3. If tj

o

is a variable, we nondeterministi
ally sele
t a subtree T

j

, unify t

with the pattern of T

j

(i.e., tj

o

is instantiated to the 
onstru
tor of the

pattern of T

j

at position o), and narrow this instan
e of t with T

j

.

T = or(T

1

; : : : ; T

k

): Nondeterministi
ally sele
t a subtree T

j

and pro
eed nar-

rowing t with T

j

.

4

This 
orresponds to Antoy's notion [3℄ ex
ept that we ignore exempt nodes.

5

Due to la
k of spa
e, we omit a pre
ise de�nition whi
h 
an be found in [4℄ for

indu
tively sequential systems and in [19℄ for generalized de�nitional trees.

4



For de�nitional trees (i.e., without or nodes), this strategy is 
alled needed nar-

rowing [4℄ whi
h is the 
urrently best narrowing strategy due to its optimality

w.r.t. the length of derivations (if terms are shared, 
ompare Se
tion 6) and the

number of 
omputed solutions. For instan
e, the rewrite system of Example 1 is

indu
tively sequential and the su

essful derivation is a needed narrowing deriva-

tion. There is only one further needed narrowing derivation for this goal, whi
h

is not su

essful:

x+ y � 0 � true ;

fx 7!s(x

1

)g

s(x

1

+ y) � 0 � true ;

fg

false � true

Note that the equivalent Prolog program obtained by 
attening [5℄ has an in�nite

sear
h spa
e, sin
e the �rst literal of the goal \add(X,Y,Z),leq(Z,0,true)" has

in�nitely many solutions (whi
h 
an be avoided by additional delay de
larations

[23℄; however, this may 
ause the loss of 
ompleteness).

We 
onsider generalized de�nitional trees as a part of the program sin
e they

spe
ify the 
on
rete evaluation strategy (like when/wait de
larations in Prolog

systems). However, the user 
an also omit the trees sin
e there are various meth-

ods to 
onstru
t them (e.g., [19℄).

3 Translation of Indu
tively Sequential Programs

In this se
tion, we assume that R is indu
tively sequential. For this 
lass of pro-

grams, it is shown in [4℄ that needed narrowing, i.e., narrowing with de�nitional

trees, is an optimal strategy. To implement this strategy, we de�ne three kinds

of predi
ates in Prolog:

1. A === B is satis�ed if A and B are stri
tly equal, i.e., A and B are redu
ible to

a same ground 
onstru
tor term. This predi
ate is implemented by repeated

narrowing of A and B to head normal forms and 
omparing the outermost


onstru
tors (note that lazy narrowing redu
es terms to head normal form

and not to normal form).

2. hnf(T,H) is satis�ed if H is a head normal form of T. If T is not in head normal

form, T is narrowed using the strategy des
ribed above.

3. f

p

(t

1

; : : : ; t

n

;H) is satis�ed if H is a head normal form of f(t

1

; : : : ; t

n

), where

the subterms of f(t

1

; : : : ; t

n

) at the positions in the set p are already in head

normal form.

The 
lauses to de�ne stri
t equality are straightforward:

A === B :- hnf(A,HA), hnf(B,HB), seq(HA,HB).

seq(
(X

1

; : : : ; X

n

),
(Y

1

; : : : ; Y

n

)) :- X

1

===Y

1

,...,X

n

===Y

n

. 8
=n 2 C

The 
lauses to de�ne hnf are also a straightforward translation of the de�nition

of head normal form:

hnf(T,T) :- var(T), !.

hnf(f(X

1

; : : : ; X

n

),H) :- !, f

;

(X

1

; : : : ; X

n

,H). 8f=n 2 F

hnf(T,T). % T is 
onstru
tor-headed due to the previous 
lauses.

The de�nition of the 
lauses for the predi
ates f

p

(X

1

; : : : ; X

n

;H) is slightly more


ompli
ated but also an obvious translation of our previously des
ribed strategy.

5



We spe
ify the generation of these 
lauses by a translation fun
tion trans whi
h

takes a de�nitional tree T with pattern � and a set p of already evaluated posi-

tions of � as input and yields a set of Prolog 
lauses. Ea
h fun
tion f is translated

by trans(T ; ;) if T is a de�nitional tree of f .

trans(rule(f(t

1

; : : : ; t

n

)! r); p) : =

f

p

(t

1

; : : : ; t

n

,H) :- hnf(r,H).

trans(bran
h(�; o; T

1

; : : : ; T

k

); p) : =

f

p

(t

1

; : : : ; t

n

,H) :- hnf(x,Y), f

p[fog

(t

0

1

; : : : ; t

0

n

,H).

trans(T

1

; p [ fog)

...

trans(T

k

; p [ fog)

where � = f(t

1

; : : : ; t

n

); �j

o

= x; �[Y℄

o

= f(t

0

1

; : : : ; t

0

n

)

In these and all subsequent translation s
hemes, all unspe
i�ed variables o

ur-

ring in the rules are new (here: H and Y are new variables). It is obvious that

this translation s
heme implements the narrowing strategy des
ribed above. To

distinguish the di�erent predi
ates 
orresponding to di�erent nodes of T , the

predi
ate names are indexed by p. A rule node is translated into a 
lause whi
h

applies this rule by 
omputing the head normal form of the right-hand side. For

a bran
h node, the requested subterm is evaluated to head normal form followed

by a 
all to the predi
ate 
orresponding to the immediate subtrees.

If we translate all rules of Example 1 by this s
heme (the generated 
lauses

are shown in Appendix A), we 
an 
ompute solutions to the equation z+ s(0) �

s(s(0)) by proving the Prolog goal \?- Z+s(0)===s(s(0))."

4 Translation of Lazy Narrowing with Simpli�
ation

Indu
tively sequential systems do not allow or nodes in the de�nitional trees, in

parti
ular, overlapping rules are not permitted. Nevertheless, overlapping rules

sometimes o

ur in programs written in a logi
 programming style. Therefore, we


onsider in this se
tion a term rewriting system R whi
h may not be indu
tively

sequential. Our translation s
heme 
ould be simply extended to su
h programs

by de�ning the following additional rule to translate or nodes:

trans(or(T

1

; : : : ; T

k

); p) : =

trans(T

1

; p) � � � trans(T

k

; p)

This means that the di�erent alternatives represented by an or node are translat-

ed into alternative 
lauses (this is identi
al to the translation s
heme in [19℄), and

we obtain the behavior of (simple) lazy narrowing [21, 22, 25℄. However, in the

presen
e of overlapping rules, simple lazy narrowing has a high risk to run into

in�nite loops by sele
ting the \wrong" rule and evaluating the \wrong" argument

to head normal form.

Example 2. Consider the following rules de�ning arithmeti
 operations:

0 � x ! 0 (R

1

)

x � 0 ! 0 (R

2

)

one(0) ! s(0) (R

3

)

one(s(x)) ! one(x) (R

4

)

6



To 
ompute a solution to the equation one(x)�0 � 0, we 
ould 
hoose rule R

1

to

evaluate the left-hand side. Rule R

1

demands the evaluation of one(x) to a head

normal form. Unfortunately, there are in�nitely many possibilities to evaluate

one(x), in parti
ular, there is an in�nite derivation using R

4

in ea
h step:

one(x) � 0 � 0 ;

fx 7!s(x

1

)g

one(x

1

) � 0 � 0 ;

fx

1

7!s(x

2

)g

� � �

This in�nite loop 
an be avoided if the goal is simpli�ed before a narrowing step

is performed. Simpli�
ation is similar to narrowing but does not instantiate goal

variables and is, therefore, a deterministi
 evaluation pro
ess. Sin
e the term

one(x) � 0 
an be simpli�ed to 0 by rule R

2

, lazy narrowing with simpli�
ation

[14℄ has a �nite sear
h spa
e in this example. 2

Lazy narrowing with simpli�
ation redu
es the sear
h spa
e and is sound and


omplete if the set of rules used for simpli�
ation is terminating [14℄. Moreover,

simpli�
ation must be performed with the same strategy as narrowing (of 
ourse,

without instantiating goal variables). Thus, we 
an de�ne a similar translation

s
heme for simpli�
ation and 
all the predi
ates performing simpli�
ation before

ea
h narrowing step. However, simpli�
ation has no e�e
t for indu
tively sequen-

tial systems due to the optimality of needed narrowing (see [14℄ for more details).

Therefore, simpli�
ation should be applied only if a fun
tion f=n 62 IS(R) o

urs

at run time. This leads to the following implementation s
heme:

1. We generate the narrowing s
heme of Se
tion 3 for indu
tively sequential

fun
tions.

2. We generate a simpli�
ation s
heme similar to the narrowing s
heme. Howev-

er, there are some important di�eren
es sin
e simpli�
ation always su

eeds

and returns a simpli�ed term whi
h is not ne
essarily in head normal form.

The 
lauses of the predi
ate hnf are de�ned by the following modi�ed s
heme:

hnf(T,T) :- var(T), !.

hnf(f(X

1

; : : : ; X

n

),H) :- !, f

;

(X

1

; : : : ; X

n

,H). 8f=n 2 IS(R)

hnf(f(X

1

; : : : ; X

n

),H) :- !, simp(f(X

1

; : : : ; X

n

),T),

nstep(T,R,_), hnf(R,H). 8f=n 62 IS(R)

hnf(T,T).

simp simpli�es a term using the same strategy as narrowing, and nstep performs

a single narrowing step on the simpli�ed term. Due to the similarity of the strate-

gies for simpli�
ation and narrowing, we implement simpli�
ation by a s
heme

similar to narrowing presented above. Thus, the predi
ate simp 
orresponds to

the predi
ate hnf but with the di�eren
e that simp does not fail and always

returns a simpli�ed term (whi
h may not be in head normal form if simpli
ation

rules are not appli
able due to the insuÆ
ient instantiation of variables).

simp(T,T) :- var(T), !.

simp(f(X

1

; : : : ; X

n

),T) :- !, simp

f;;

(X

1

; : : : ; X

n

,T). 8f=n 2 F

simp(T,T).

simp is 
alled if a term T should be redu
ed to head normal form in order to

apply a simpli�
ation step. The following translation s
heme is similar to trans.

It generates for ea
h generalized de�nitional tree of a fun
tion f the 
lauses for

simplifying a fun
tion 
all f(� � �):

7



simptrans(rule(f(t

1

; : : : ; t

n

)! r); p) : =

simp

f;p

(t

1

; : : : ; t

n

,R) :- !, simp(r,R).

simptrans(bran
h(�; o; T

1

; : : : ; T

k

); p) : =

simp

f;p

(t

1

; : : : ; t

n

,R) :- !, simp(x,Y),

(nonvar(Y) -> simp

f;p[fog

(t

0

1

; : : : ; t

0

n

,R) ; R=f(t

0

1

; : : : ; t

0

n

) ).

simptrans(T

1

; p [ fog)

...

simptrans(T

k

; p [ fog)

simp

f;p[fog

(t

1

; : : : ; t

n

,f(t

1

; : : : ; t

n

)).

where � = f(t

1

; : : : ; t

n

); �j

o

= x; �[Y℄

o

= f(t

0

1

; : : : ; t

0

n

)

The 
uts in the generated rules emphasize the deterministi
 behavior of the sim-

pli�
ation pro
ess. The �nal 
lause generated for ea
h bran
h node is ne
essary

to return the 
urrent term instead of 
ausing a failure if no simpli�
ation rule

is appli
able. The 
ondition nonvar(Y) in the translation of bran
h nodes is

ne
essary to ensure that the goal variable Y is not instantiated in subsequent

simpli�
ation rules (re
all that this is the basi
 di�eren
e between simpli�
a-

tion and narrowing). If Y is an unbound variable, then no simpli�
ation rules of

the subtrees T

1

; : : : ; T

k

are appli
able. Hen
e, the simpli�ed term f(t

0

1

; : : : ; t

0

n

) is

returned instead of applying further simpli�
ation rules.

Additionally, a node or(T

1

; : : : ; T

k

) is pro
essed by simptrans

6

by translating

ea
h T

j

into separate Prolog predi
ates. However, the translation s
heme for

T

j

is slightly 
hanged for j = 1; : : : ; k � 1. Instead of 
onstru
ting the term

f(t

1

; : : : ; t

n

) if no rule is appli
able, the simpli�
ation predi
ates 
orresponding to

the generalized de�nitional tree T

j+1

are 
alled sin
e T

j+1

may 
ontain alternative

simpli�
ation rules (see Appendix B for the translation of the overlapping *-rules

of Example 2).

The predi
ate nstep is responsible to perform a single narrowing step. For this

purpose, an additional argument C is used whi
h is instantiated i� a narrowing

step has been applied. Therefore, we generate the 
lauses

nstep(T,T,C) :- var(T), !.

nstep(f(X

1

; : : : ; X

n

),T,C) :- !, f_step

;

(X

1

; : : : ; X

n

,T,C). 8f=n 2 F

nstep(T,T,C). % T is 
onstru
tor-headed due to the previous 
lauses.

and 
lauses for ea
h generalized de�nitional tree by the following s
heme, whi
h

is a slightly modi�ed translation s
heme for narrowing rules:

steptrans(rule(f(t

1

; : : : ; t

n

)! r); p) : =

f_step

p

(t

1

; : : : ; t

n

,r,step). % instantiate 
ontrol variable to step

steptrans(bran
h(�; o; T

1

; : : : ; T

k

); p) : =

f_step

p

(t

1

; : : : ; t

n

,R,C) :- nstep(x,Y,C),

(var(C) -> f_step

p[fog

(t

0

1

; : : : ; t

0

n

,R,C) ; R=f(t

0

1

; : : : ; t

0

n

) ).

steptrans(T

1

; p [ fog)

...

6

Due to spa
e limitations, we do not show the formal de�nition.

8



steptrans(T

k

; p [ fog)

where � = f(t

1

; : : : ; t

n

); �j

o

= x; �[Y℄

o

= f(t

0

1

; : : : ; t

0

n

)

steptrans(or(T

1

; : : : ; T

k

); p) : =

steptrans(T

1

; p)

...

steptrans(T

k

; p)

Due to the 
ondition var(C)->� � � in 
lauses 
orresponding to bran
h nodes, the

predi
ate f_step

p

may not return a head normal form but performs only one

narrowing step. All 
lauses generated by our s
heme for Example 2 are shown

in Appendix B. The size of the translated programs is approximately doubled in


omparison to the translation without the simpli�
ation s
heme. This is due to

the fa
t that ea
h rule 
an be applied in a \narrowing mode" and a \simpli�
ation

mode" whi
h requires di�erent implementations.

Sin
e the rewrite rules are separately translated into 
lauses for narrowing

and simpli�
ation, we 
an also 
hoose di�erent rewrite rules for narrowing and

simpli�
ation. A
tually, the programmer has to spe
ify a terminating subset of

R whi
h is used for simpli�
ation in order to ensure 
ompleteness (see [14℄).

Moreover, it has been argued in [8℄ that it is sensible to use additionally indu
tive


onsequen
es or CWA-valid rules for simpli�
ation. All this is supported by our

separate translation of narrowing and simpli�
ation rules.

5 Optimization by Partial Evaluation

It is not surprising that our general translation s
heme 
ontains many opportuni-

ties for optimization. Therefore, we add the following useful optimizations whi
h

are standard in the partial evaluation of logi
 programs [9℄:

Delete redundant 
onstru
tors: In a generalized de�nitional tree, the pat-

terns of subtrees are instan
es of the patterns of an
estor nodes. Therefore,

the generated 
lauses often 
ontain redundant 
onstru
tors, i.e., there are

predi
ates p where all 
alls to p are of the form p(: : : ; 
(t); : : :) and all left-

hand sides have the same stru
ture. In this 
ase, we delete 
.

Swap arguments for better indexing: Most Prolog implementations use

�rst argument indexing [1℄. In order to provide a portable and eÆ
ient im-

plementation, we swap arguments so that the 
ase distin
tion in left-hand

sides is always made on the �rst argument (note that the bran
h nodes in a

tree 
learly indi
ate the indexed argument).

Unfold deterministi
 literals: The translation s
heme for lazy narrowing

with simpli�
ation often generates 
hains of predi
ate 
alls where at most

one 
lause is appli
able (see, for instan
e, predi
ates hnf, simp, nstep). To

improve the exe
ution time of the generated 
ode, we unfold su
h determin-

isti
 predi
ate 
alls.

The optimized 
lauses 
orresponding to Example 1 
an be found in Appendix C.
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6 Implementation of Sharing

It is well-known that lazy evaluation strategies require the sharing of terms in

order to avoid potential reevaluations of identi
al expressions. For instan
e, 
on-

sider the rule

double(x) ! x+ x

and the term double(t) whi
h is immediately rewritten to t + t. Thus, without

sharing, t is evaluated twi
e. To avoid this problem, we have to share the result of

evaluating t among the di�erent o

urren
es of t. This 
an be implemented in Pro-

log by representing ea
h fun
tion 
all f(t

1

; : : : ; t

n

) by the term f(S; t

1

; : : : ; t

n

; H)

where S is an unbound variable until the 
all f(t

1

; : : : ; t

n

) will be evaluated (to

the head normal form H).

7

Therefore, we only have to 
hange the de�nition of

the predi
ates whi
h triggers the 
omputation of a head normal form (e.g., hnf

in Se
tion 3) so that a term f(S,...,H) will be evaluated to the head normal

form H only if S is an unbound variable, otherwise H already 
ontains the result.

Thus, the new de�nition of hnf to implement sharing is

hnf(T,T) :- var(T), !.

hnf(f(S,X

1

; : : : ; X

n

,H),H) :- !, (var(S) -> S=eval, f

;

(X

1

; : : : ; X

n

,H)

; true ). 8f=n 2 F

hnf(T,T).

7 Experimental Results

We have implemented the translation s
heme as a 
ompiler from lazy fun
tional

logi
 programs into Prolog. If all fun
tions are indu
tively sequential, the s
heme

of Se
tion 3 is used, otherwise the s
heme presented in Se
tion 4.

First we 
onsider indu
tively sequential programs. The following table 
on-

tains a 
omparison of our translation method w.r.t. the methods proposed in

[2, 6, 17, 19℄. Remember that natural numbers are implemented by 0=s-terms.

The translated programs are exe
uted with Si
stus-Prolog 2.1 on a Spar
-10. The

run times are in se
onds for 
omputing the �rst solution (an entry \?" denotes a

run time of more than 1000 se
onds).

Goal: [2℄ [6℄ [17℄ [19℄ trans sharing Babel dire
t

10000 � 10000+ 10000 � true 0.39 6.1 0.7 0.32 0.25 0.39 0.16 0.10

1000 � x+ x � true 3.2 86.6 ? 2.7 1.9 1.8 4.3 1.2

400 + x � (x+ 200) + x � true 4.8 ? ? 2.2 1.7 2.3 4.1 0.6

2000 � 1000+ (x+ x) � true 3.3 83.1 ? 2.7 1.9 1.8 4.2 5.3

double(double(one(100000)))� x 2.8 36.1 2.9 3.5 2.8 0.9 0.35 0.17

The 
olumn trans 
ontains the exe
ution times of our translation s
heme (with

the optimizations of Se
tion 5) and 
olumn sharing the timings of our s
heme

7

This is nearly identi
al to the te
hnique proposed in [6℄. Jim�enez-Martin et al. [17℄

proposed a similar te
hnique, but it does not really implement sharing sin
e they

omitted the evaluation 
ag S.
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with sharing (Se
tion 6). In many 
ases sharing has no advantage but 
auses an

overhead (note that [2, 19℄ do not implement sharing). Sin
e [6, 17℄ are based on

narrowing strategies di�erent from needed narrowing, the results 
learly show the

superiority of the needed narrowing strategy. [2℄ uses only one predi
ate to imple-

ment all rewrite rules, and Loogen et al. [19℄ do not perform any optimizations

on the generated 
lauses. This explains the worse exe
ution times in 
omparison

to our approa
h.

The 
olumn \Babel" shows the exe
ution time of needed narrowing imple-

mented in the fun
tional logi
 language Babel based on the 
ompilation into a

low-level abstra
t ma
hine [11℄. It is interesting to note that our high-level imple-

mentation is faster for typi
al sear
h problems. The 
olumn dire
t shows the run

times of a dire
t de�nition of the predi
ates in Prolog whi
h is often more eÆ
ient

sin
e term stru
tures with nested fun
tions 
alls are not generated (note that

dire
t 
orresponds to a 
all-by-value strategy whi
h 
an be implemented more

eÆ
iently). However, there is also an example where needed narrowing is mu
h

faster sin
e it avoids the super
uous 
omputation of some subterms. Moreover,

needed narrowing allows the 
omputation with in�nite data stru
tures and may

terminate where logi
 programs have an in�nite sear
h spa
e (see, for instan
e,

Example 1). In order to make a fair 
omparison between our implementation of

needed narrowing and Prolog, we have omitted su
h examples.

The dire
t implementation has a good behavior on this example sin
e 
ur-

rent Prolog implementations are tailored towards the eÆ
ient implementation of

\fun
tional-like" programs. However, there is an interesting 
lass of programs,

namely \generate-and-test" programs, where it has been shown that narrowing

with simpli�
ation 
an dramati
ally redu
e the sear
h spa
e [8, 13℄. A typi
al

example for su
h programs is the \permutation sort" program, where a list is

sorted by enumerating all permutations and 
he
king whether they are sorted. In

the Prolog version of this program [27, p. 55℄, all permutations are enumerated

and 
he
ked. However, if we exe
ute the same program by lazy narrowing with

simpli�
ation (in this 
ase predi
ates are 
onsidered as Boolean fun
tions, see [8,

p. 182℄), then the simpli�
ation pro
ess 
uts some parts of the sear
h spa
e so

that not all permutations are 
ompletely enumerated. Therefore, we obtain the

following exe
ution times in se
onds to sort the list [n,...,2,1℄ for di�erent

values of n:

Length n Prolog Lazy Lazy+Simp

5 0.01 0.06 0.06

6 0.05 0.4 0.2

7 0.4 2.8 0.4

8 3.0 22.9 1.0

9 27.3 212.2 2.1

10 281.3 2188.2 4.7

The 
olumn \Lazy+Simp" 
ontains the exe
ution times for lazy narrowing with

simpli�
ation implemented as shown in this paper, the 
olumn \Lazy" the times

for pure lazy narrowing without simpli�
ation (implemented as proposed in the

beginning of Se
tion 4), and the 
olumn \Prolog" the times for the dire
t im-

11



plementation of permutation sort in Prolog. The sear
h spa
es of \Prolog" and

\Lazy" are essentially the same. However, the last 
olumn shows that the over-

head of the lazy narrowing implementation 
an be 
ompensated by the sear
h

spa
e redu
tion due to the simpli�
ation pro
ess.

8 Con
lusions

We have presented a high-level implementation of lazy fun
tional logi
 languages

by a transformation into Prolog. For the operational semanti
s, we have 
onsid-

ered needed narrowing for indu
tively sequential programs and lazy narrowing

with simpli�
ation for programs with overlapping left-hand sides. We have in-

trodu
ed generalized de�nitional trees in order to spe
ify the 
on
rete narrow-

ing strategy. We have shown that generalized de�nitional trees are also useful

to spe
ify and implement the transformation of fun
tional logi
 programs into

Prolog. Our implementation of needed narrowing is faster 
ompared to previous

approa
hes, whereas the implementation of lazy narrowing with simpli�
ation

is a 
ompletely new approa
h. We have demonstrated the advan
ed operational

behavior of the latter strategy in 
omparison to Prolog for a typi
al 
lass of logi


programs.

Our transformation yields a portable and eÆ
ient implementation of lazy

fun
tional logi
 programs. Sin
e the transformation is strongly based on the for-

mal de�nition of a narrowing strategy for whi
h soundness and 
ompleteness

results are known [4, 14℄, the implementation is also sound and 
omplete (mod-

ulo in
ompleteness problems of Prolog implementations due to the ba
ktra
king

strategy). This is in 
ontrast to other, possibly more eÆ
ient implementations of

fun
tional logi
 programs in Prolog with 
oroutining [20, 24℄ that do not enjoy


ompleteness due to 
oundering (i.e., unevaluable delayed literals).
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A Generated Prolog Clauses for Example 1

The program of Example 1 is indu
tively sequential where both fun
tions have a unique

de�nitional tree. Therefore, our transformation s
heme of Se
tion 3 generates the fol-

lowing Prolog program.

A===B :- hnf(A,HA), hnf(B,HB), seq(HA,HB).

seq(0,0).

seq(s(A),s(B)) :- A===B.

seq(false,false).

seq(true,true).

hnf(T,T) :- var(T), !.

hnf(A+B,H) :- !, +(A,B,H).

hnf(leq(A,B),H) :- !, leq(A,B,H).

hnf(T,T).

+(A,B,R) :- hnf(A,HA), '+_1'(HA,B,R).

'+_1'(0,B,R) :- hnf(B,R).

'+_1'(s(A),B,R) :- hnf(s(A+B),R).

leq(A,B,R) :- hnf(A,HA), leq_1(HA,B,R).

leq_1(0,B,R) :- hnf(true,R).

leq_1(s(A),B,R) :- hnf(B,HB), leq_1_2(s(A),HB,R).

leq_1_2(s(A),0,R) :- hnf(false,R).

leq_1_2(s(A),s(B),R) :- hnf(leq(A,B),R).

B Generated Prolog Clauses for Example 2

Sin
e the program of Example 2 is not indu
tively sequential, we have to translate it

by the transformation s
heme of Se
tion 4 whi
h yields the following Prolog program.

A===B :- hnf(A,HA), hnf(B,HB), seq(HA,HB).

seq(0,0).

seq(s(A),s(B)) :- A===B.

hnf(T,T) :- var(T), !.

hnf(A*B,H) :- !, simp(A*B,T), nstep(T,R,_), hnf(R,H).

hnf(one(A),H) :- !, one(A,H).

hnf(T,T).

one(A,R) :- hnf(A,HA), one_1(HA,R).

one_1(0,R) :- hnf(s(0),R).

one_1(s(A),R) :- hnf(one(A),R).

simp(T,T) :- var(T), !.

simp(A*B,T) :- !, 'simp_*'(A,B,T).

simp(one(A),T) :- !, simp_one(A,T).

simp(T,T).

'simp_*'(A,B,R) :- !, simp(A,SA),

(nonvar(SA) -> 'simp_*_1'(SA,B,R) ; 'simp_*_or'(SA,B,R)).

'simp_*_1'(0,A,R) :- !, simp(0,R). % �rst alternative of *

'simp_*_1'(A,B,R) :- 'simp_*_or'(A,B,R).

14



'simp_*_or'(A,B,R) :- !, simp(B,SB),

(nonvar(SB) -> 'simp_*_or_2'(A,SB,R) ; R=A*SB).

'simp_*_or_2'(A,0,R) :- !, simp(0,R). % se
ond alternative of *

'simp_*_or_2'(A,B,A*B).

simp_one(A,R) :- !, simp(A,SA),

(nonvar(SA) -> simp_one_1(SA,R) ; R=one(SA)).

simp_one_1(0,R) :- !, simp(s(0),R).

simp_one_1(s(A),R) :- !, simp(one(A),R).

simp_one_1(A,one(A)).

nstep(T,T,C) :- var(T), !.

nstep(A*B,T,C) :- !, '*_step'(A,B,T,C).

nstep(one(A),T,C) :- !, one_step(A,T,C).

nstep(T,T,C).

'*_step'(A,B,R,C) :- nstep(A,NA,C),

(var(C) -> '*_step_1'(NA,B,R,C) ; R=NA*B).

'*_step'(A,B,R,C) :- nstep(B,NB,C),

(var(C) -> '*_step_2'(A,NB,R,C) ; R=A*NB).

'*_step_1'(0,A,0,step).

'*_step_2'(A,0,0,step).

one_step(A,R,C) :- nstep(A,NA,C),

(var(C) -> one_step_1(NA,R,C) ; R=one(NA)).

one_step_1(0,s(0),step).

one_step_1(s(A),one(A),step).

C Optimized Prolog Program for Example 1

If we apply the optimization te
hniques dis
ussed in Se
tion 5 to the program of Ap-

pendix A, we obtain the following optimized Prolog program (where super
uous 
lauses

are deleted).

A===B :- hnf(A,HA), hnf(B,HB), seq(HA,HB).

seq(0,0).

seq(s(A),s(B)) :- hnf(A,HA), hnf(B,HB), seq(HA,HB).

seq(false,false).

seq(true,true).

hnf(T,T) :- var(T), !.

hnf(A+B,H) :- !, hnf(A,HA), '+_1'(HA,B,H).

hnf(leq(A,B),H) :- !, hnf(A,HA), leq_1(HA,B,H).

hnf(T,T).

'+_1'(0,B,R) :- hnf(B,R).

'+_1'(s(A),B,s(A+B)).

leq_1(0,B,true).

leq_1(s(A),B,R) :- hnf(B,HB), leq_1s_2(HB,A,R).

leq_1s_2(0,A,false).

leq_1s_2(s(B),A,R) :- hnf(A,HA), leq_1(HA,B,R).

15


