In Proc. Fifth International Workshop on Logic Program Synthesis and
Transformation (LOPSTR’95), Utrecht, Springer LNCS 1048, pp. 252266, 1995

Efficient Translation of Lazy Functional Logic
Programs into Prolog

Michael Hanus

Informatik II, RWTH Aachen
D-52056 Aachen, Germany

hanus@informatik.rwth-aachen.de

Abstract. In this paper, we present a high-level implementation of lazy
functional logic programs by transforming them into Prolog programs.
The transformation is controlled by generalized definitional trees which
specify the narrowing strategy to be implemented. Since we consider a
sophisticated narrowing strategy, a direct mapping of functions into pred-
icates is not possible. Therefore, we present new techniques to reduce the
interpretational overhead of the generated Prolog code. This leads to a
portable and efficient implementation of functional logic programs.

1 Introduction

In recent years, a lot of proposals have been made to amalgamate functional and
logic programming languages [15]. Functional logic languages with a sound and
complete operational semantics are based on marrowing, a combination of the
reduction principle of functional languages and the resolution principle of logic
languages. Narrowing, originally introduced in automated theorem proving [26],
is used to solve equations by finding appropriate values for variables occurring
in arguments of functions. A narrowing step instantiates some variables in a goal
and applies a reduction step to a redex of the instantiated goal. The instantiation
of goal variables is usually computed by unifying a subterm of the goal with the
left-hand side of some rule.

Ezample 1. Consider the following rules defining the addition and comparison of
natural numbers which are represented by terms built from 0 and s:

0<z — true (R3)
s(x) <0 = false (R4)
s(z) <s(y) = v<y (Rs)
The equation z + y < 0 & true can be solved by a narrowing step with rule R;

followed by a narrowing step with rule R3 so that = and y are instantiated to 0
and the instantiated equation is reduced to the trivial equation true ~ true:

O+y = y (Ry)
s(x)+y — s(z+y) (Ro)

z+y < 0O=true ~py0y Yy S 0= irue ~yy0) true = true
Hence we have found the solution {z — 0,y — 0} to the given equation. O
Similarly to functional languages, we have to fix the selection of positions for

the next narrowing step in order to reduce the search space. Eager functional
logic languages like ALF [12], eager-BABEL [18], or SLOG [8] apply narrowing

steps at innermost positions. To ensure completeness, they require a terminating
set of rewrite rules which prohibit the application of typical functional program-
ming techniques like infinite data structures. Therefore, we are interested in lazy
narrowing strategies [22, 25] where narrowing steps are applied at outermost po-
sitions in general and at an inner position only if it is demanded and contributes
to some later narrowing step at an outer position. Although such a lazy strategy
can avoid useless computation steps, it has been shown that this is not generally
true if one does not take care of a controlled instantiation of logical variables
[4]. However, for the class of inductively sequential programs, which covers typi-
cal functional programs, there is a strategy, called needed narrowing [4], which is
optimal w.r.t. the length of the narrowing derivations and the number of comput-
ed solutions. Inductively sequential programs do not allow overlapping left-hand
sides of the rewrite rules. However, in some applications, particularly in logic
programming, such overlapping rules are useful. Unfortunately, overlapping rules
may lead to nonterminating computations w.r.t. lazy narrowing strategies [11].
This can be avoided if lazy narrowing is combined with simplification between
narrowing steps [14]. Therefore, we obtain a good lazy narrowing strategy if we
apply needed narrowing on inductively sequential programs and integrate sim-
plification for the remaining programs.

In this paper, we consider the high-level implementation of such a sophisti-
cated narrowing strategy. To avoid a complex direct implementation based on a
new abstract machine (see [15] for a survey on these implementation techniques),
we follow the proposals presented in [2, 6, 17, 19]. We translate lazy functional
logic programs into Prolog programs and obtain by this simple transformation
a portable and efficient implementation of our narrowing strategy. The trans-
lation of eager narrowing strategies into Prolog is straightforward by flattening
nested function calls [5]. However, the translation of lazy narrowing strategies
is a challenging task, in particular, if narrowing is interleaved with simplifica-
tion. Our solution is the first Prolog implementation of a lazy narrowing strategy
which comprises simplification. Nevertheless, we obtain a better run-time be-
havior w.r.t. previous work since we apply partial evaluation techniques to the
translated program.

In the next section, we recall basic notions and introduce our narrowing strat-
egy. In Section 3, we present the translation of inductively sequential programs,
whereas Section 4 contains the translation of arbitrary functional logic programs.
Optimizations obtained by partial evaluation and the implementation of sharing
are discussed in Sections 5 and 6, respectively. Finally, we discuss the efficiency
of our translation techniques by means of some benchmarks.

2 Lazy Narrowing Strategies

We assume familiarity with basic notions of term rewriting [7]. We consider a
many-sorted signature partitioned into a set C of constructors and a set F of
functions. We write ¢/n € C and f/n € F for n-ary constructor and function
symbols, respectively. The set of terms and constructor terms with variables from

X are denoted by T(CU F,X) and T(C,X). Var(t) denotes the set of variables

occurring in a term ¢. A pattern is a term of the form f(¢1,...,t,) where f/n € F
and t1,...,t, € T(C,X). A head normal form is a variable or a term of the form
e(ti, ..., tn) with ¢/n € C. A position p in a term t is represented by a sequence

of natural numbers, ¢|, denotes the subterm of ¢ at position p, and t[s], denotes
the result of replacing the subterm t|, by the term s (see [7] for details).

A term rewriting system R is a set of rewrite rules [— r where [is a pattern
and Var(r) C Var(l). | and r are called left-hand side and right-hand side,
respectively.! A rewrite rule is called a variant of another rule if it is obtained by
a unique replacement of variables by other variables.

Narrowing is a method to compute solutions to an equation s & t. t ~, t' is
a narrowing step if there are a nonvariable position p in ¢ (i.e., t|, € X), a variant
I — r of a rewrite rule of R with Var(t) N Var(l) = 0, and a unifier? o of ¢|, and
[with t' = o(t[r],).® Since narrowing applies rewrite rules only in one direction,
additional restrictions are necessary for the completeness of narrowing, i.e., we
require the confluence of R. This can be ensured by the following condition: if
ly = r1 and [s — ro are variants of rewrite rules and o is a unifier for Iy and I,
then o(ry1) = o(re) (weak orthogonality).

Since we do not require terminating term rewriting systems, normal forms may
not exist. Therefore, we define the validity of an equation as a strict equality on
terms [10, 22] by the following rules, where A is assumed to be a right-associative
infix symbol.

¢~ e — true Ve/0 € C
(1, n) e, yn) > (@1 R Y1) A A(Tp = yn) Ve/nel
true Nz — x

A solution of an equation t; & to is computed by narrowing it to true with
these rules. Since this simple narrowing procedure (enumerating all narrowing
derivations) is very inefficient, several authors have proposed restrictions on the
admissible narrowing derivations (see [15] for a detailed survey). We are interest-
ed in lazy narrowing [21, 25] which is influenced by the idea of lazy evaluation in
functional programming languages. Lazy narrowing steps are only applied at out-
ermost positions with the exception that arguments are evaluated by narrowing
to their head normal form if their values are required for an outermost narrowing
step. Since the notion of “required arguments” depends on the rule to be applied

! In this paper, we consider only unconditional rewrite rules for the sake of simplicity.
Nevertheless, the presented implementation techniques can be extended to conditional
rules (e.g., as done in [19]) and completeness results for the conditional case can be
found in [16].

2 In most papers, narrowing is defined with most general unifiers. As shown in [4], an
optimal narrowing strategy which avoids superfluous steps can only be obtained if the
restriction to mgu’s is dropped. Therefore, we consider arbitrary unifiers. However,
only a small subset of these unifiers are computed by our narrowing strategy.

% Since the instantiation of the variables in the rule [— r by o is not relevant for the
computed solution of a narrowing derivation, we omit this part of ¢ in the example
derivations in this paper.

and leaves some freedom, different lazy narrowing strategies have been proposed
[4, 17, 19, 21, 22]. We will specify our narrowing strategy by the use of defini-
tional trees, a concept introduced by Antoy [3] to define efficient normalization
strategies.

T is called generalized definitional tree with pattern 7 iff one of the following
cases holds:

T =rule(mr — r), where 7 — r is a variant of a rule in R.

T = branch(m,0,T1,...,Tr), where 7 is a pattern, o is an occurrence of a variable
inm,ei,...,c are different constructors of the sort of |, (k > 0), and, for i =
1,...,k, T; is a generalized definitional tree with pattern «[c;(z1,...,2n)]o,
where n is the arity of ¢; and z1,...,z, are new distinct variables.

T =or(Ti,...,Tt), where Ty,..., T are generalized definitional trees with pat-
tern .

A generalized definitional tree of an n-ary function f is a generalized definitional
tree 7 with pattern f(z1,...,2,), where z1,...,z, are distinct variables, such
that for each rule I — r with [= f(ty,...,t,) there is a node rule(l' = ') in T
with [variant of I'. A definitional tree is a generalized definitional tree without
or-nodes.* For instance, the definitional tree of the function < in Example 1 is
branch(z <y, 1,rule(0 <y — true),
branch(s(z1) < y,2,rule(s(z1) <0 — false),
rule(s(z1) < s(y1) = =1 <))

A function f is called inductively sequential if there exists a definitional tree of
f such that each rule node corresponds to exactly one rule of R. We denote this
property by f/n € IS(R). The term rewriting system R is called inductively
sequential if each function defined by R is inductively sequential.

A generalized definitional tree defines a strategy to apply narrowing steps.® To
narrow a term ¢, we consider the generalized definitional tree T of the outermost
function symbol of ¢ (note that, by definition of strict equality, the outermost
symbol is always a function if we narrow equations):

T =rule(mr — r): Apply rule 7 — r to ¢ (note that ¢ is always an instance of).
T = branch(m,0,T1,...,Tr): Consider the subterm ¢|,.
1. If t|, has a function symbol at the top, we narrow this subterm (to a head
normal form) by recursively applying our strategy to ¢|,.
2. If ¢|, has a constructor symbol at the top, we narrow ¢ with 7;, where
the pattern of 7; unifies with ¢, otherwise (if no pattern unifies) we fail.
3. If t|, is a variable, we nondeterministically select a subtree 7;, unify ¢
with the pattern of 7; (i.e., t|, is instantiated to the constructor of the
pattern of 7; at position o), and narrow this instance of ¢ with 7;.
T =or(Ti,...,Tt): Nondeterministically select a subtree 7; and proceed nar-
rowing ¢ with 7;.

* This corresponds to Antoy’s notion [3] except that we ignore ezempt nodes.
® Due to lack of space, we omit a precise definition which can be found in [4] for
inductively sequential systems and in [19] for generalized definitional trees.

For definitional trees (i.e., without or nodes), this strategy is called needed nar-
rowing [4] which is the currently best narrowing strategy due to its optimality
w.r.t. the length of derivations (if terms are shared, compare Section 6) and the
number of computed solutions. For instance, the rewrite system of Example 1 is
inductively sequential and the successful derivation is a needed narrowing deriva-
tion. There is only one further needed narrowing derivation for this goal, which
is not successful:

r+y <0ORtrue ~(ps0,)) (@1 +y) <0xtrue ~p false = true

Note that the equivalent Prolog program obtained by flattening [5] has an infinite
search space, since the first literal of the goal “add(X,Y,Z),1leq(Z,0,true)” has
infinitely many solutions (which can be avoided by additional delay declarations
[23]; however, this may cause the loss of completeness).

We consider generalized definitional trees as a part of the program since they
specify the concrete evaluation strategy (like when/wait declarations in Prolog
systems). However, the user can also omit the trees since there are various meth-
ods to construct them (e.g., [19]).

3 Translation of Inductively Sequential Programs

In this section, we assume that R is inductively sequential. For this class of pro-
grams, it is shown in [4] that needed narrowing, i.e., narrowing with definitional
trees, is an optimal strategy. To implement this strategy, we define three kinds
of predicates in Prolog;:

1. A === Bis satisfied if A and B are strictly equal, i.e., A and B are reducible to
a same ground constructor term. This predicate is implemented by repeated
narrowing of A and B to head normal forms and comparing the outermost
constructors (note that lazy narrowing reduces terms to head normal form
and not to normal form).

2. hnf (T,H) is satisfied if H is a head normal form of T. If T is not in head normal
form, T is narrowed using the strategy described above.

3. fp(t1,...,tn,H) is satisfied if H is a head normal form of f(t1,...,t,), where
the subterms of f(¢,...,t,) at the positions in the set p are already in head
normal form.

The clauses to define strict equality are straightforward:

A === :— hnf(A,HA), hnf(B,HB), seq(HA,HB).

seq(c(Xl, Ce ,Xn) ,C(Yl, . ,Yn)) = X===Y1,...,X,===Y,. VC/TL eC
The clauses to define hnf are also a straightforward translation of the definition
of head normal form:

hnf(T,T) :- var(T), !.

hnf (f (X1,..,Xp),H) = !, fo(Xy,..., X ,H). Vf/neF

hnf (T,T). % T is constructor-headed due to the previous clauses.
The definition of the clauses for the predicates f,(X1,...,X,,H) is slightly more
complicated but also an obvious translation of our previously described strategy.

We specify the generation of these clauses by a translation function ¢rans which
takes a definitional tree 7 with pattern = and a set p of already evaluated posi-
tions of 7 as input and yields a set of Prolog clauses. Each function f is translated
by trans(T,0) if T is a definitional tree of f.

trans(rule(f(ty,...,tn) = 7),p) :=
‘fp(tl,...,tn,H) - hnf(r,H).‘
trans(branch(m,0,T1, ..., Tx),p) :=
‘fp(tl,...,tn,H) :- hnf(z,Y), fpu{o}(t’l,...,t’n,H).‘
trans(Ti,p U {o})

trans(Ty,p U {o})

where m = f(t1,...,tn), 7o =2, 7[Y]o = f(,...,1))
In these and all subsequent translation schemes, all unspecified variables occur-
ring in the rules are new (here: H and Y are new variables). It is obvious that
this translation scheme implements the narrowing strategy described above. To
distinguish the different predicates corresponding to different nodes of T, the
predicate names are indexed by p. A rule node is translated into a clause which
applies this rule by computing the head normal form of the right-hand side. For
a branch node, the requested subterm is evaluated to head normal form followed
by a call to the predicate corresponding to the immediate subtrees.

If we translate all rules of Example 1 by this scheme (the generated clauses

are shown in Appendix A), we can compute solutions to the equation z + s(0) ~
5(s(0)) by proving the Prolog goal “?-Z+s(0)===5(s(0)).”

4 Translation of Lazy Narrowing with Simplification

Inductively sequential systems do not allow or nodes in the definitional trees, in
particular, overlapping rules are not permitted. Nevertheless, overlapping rules
sometimes occur in programs written in a logic programming style. Therefore, we
consider in this section a term rewriting system R which may not be inductively
sequential. Our translation scheme could be simply extended to such programs
by defining the following additional rule to translate or nodes:

trans(or(Ti,..., Ty),p) =
trans(Ti,p) -+ trans(Ty,p)

This means that the different alternatives represented by an or node are translat-
ed into alternative clauses (this is identical to the translation scheme in [19]), and
we obtain the behavior of (simple) lazy narrowing [21, 22, 25]. However, in the
presence of overlapping rules, simple lazy narrowing has a high risk to run into
infinite loops by selecting the “wrong” rule and evaluating the “wrong” argument,
to head normal form.

Ezample 2. Consider the following rules defining arithmetic operations:
Oxz — 0 (Ry) one(0) — s(0) (R3)
zx0 — 0 (Ry) one(s(z)) — omne(r) (Ry)

To compute a solution to the equation one(z)*0 ~ 0, we could choose rule R; to
evaluate the left-hand side. Rule R; demands the evaluation of one(z) to a head
normal form. Unfortunately, there are infinitely many possibilities to evaluate
one(x), in particular, there is an infinite derivation using R4 in each step:
one(z) ¥ 0= 0 ~(pss(ar)) 0ne(T1) ¥x0 R0 ~ppiss(es))

This infinite loop can be avoided if the goal is simplified before a narrowing step
is performed. Simplification is similar to narrowing but does not instantiate goal
variables and is, therefore, a deterministic evaluation process. Since the term
one(zx) * 0 can be simplified to 0 by rule Ra, lazy narrowing with simplification
[14] has a finite search space in this example. O

Lazy narrowing with simplification reduces the search space and is sound and
complete if the set of rules used for simplification is terminating [14]. Moreover,
simplification must be performed with the same strategy as narrowing (of course,
without instantiating goal variables). Thus, we can define a similar translation
scheme for simplification and call the predicates performing simplification before
each narrowing step. However, simplification has no effect for inductively sequen-
tial systems due to the optimality of needed narrowing (see [14] for more details).
Therefore, simplification should be applied only if a function f/n ¢ IS(R) occurs
at run time. This leads to the following implementation scheme:

1. We generate the narrowing scheme of Section 3 for inductively sequential
functions.

2. We generate a simplification scheme similar to the narrowing scheme. Howev-
er, there are some important differences since simplification always succeeds
and returns a simplified term which is not necessarily in head normal form.

The clauses of the predicate hnf are defined by the following modified scheme:

hnf(T,T) :- var(T), !.
hnf (f (X, X0) L H) t= 0, fo(Xy,...,Xn,H) . Vf/n e IS(R)
hnf (f (Xy,...,X,),H) = !, simp(f(Xy,...,X),T),
nstep(T,R,_), hnf(R,H). Vf/n¢&IS(R)
hnf (T,T) .

simp simplifies a term using the same strategy as narrowing, and nstep performs
a single narrowing step on the simplified term. Due to the similarity of the strate-
gies for simplification and narrowing, we implement simplification by a scheme
similar to narrowing presented above. Thus, the predicate simp corresponds to
the predicate hnf but with the difference that simp does not fail and always
returns a simplified term (which may not be in head normal form if simplication
rules are not applicable due to the insufficient instantiation of variables).

simp(T,T) :- var(T), !.

simp (f (X1,...,X,),T) := !, simpsg(Xy,...,X,,T). Vf/neF

simp(T,T) .
simp is called if a term T should be reduced to head normal form in order to
apply a simplification step. The following translation scheme is similar to trans.
It generates for each generalized definitional tree of a function f the clauses for
simplifying a function call f(---):

simptrans(rule(f(t1,...,tn) = 1),p) =
‘simpfm(tl,...,tn,R) =1, simp(r,R.).‘

simptrans(branch(m,0,T1,...,Tx),p) :=
simpf,(t1,...,t5,R) = !, simp(2,Y),

(nonvar(Y) -> simpy ,u(0}(ty,..-,%,,R) 5 R=f(#],..., 1)).
simptrans(T1,pU {o})

simptrans(T,p U {o})

‘ SimPy pugo) (ts - ey tns F(E1s ey tn)). ‘

where m = f(t1,...,tn), 7o =z, 7[Y], = f(t},...,t))
The cuts in the generated rules emphasize the deterministic behavior of the sim-
plification process. The final clause generated for each branch node is necessary
to return the current term instead of causing a failure if no simplification rule
is applicable. The condition nonvar(Y) in the translation of branch nodes is
necessary to ensure that the goal variable Y is not instantiated in subsequent
simplification rules (recall that this is the basic difference between simplifica-
tion and narrowing). If Y is an unbound variable, then no simplification rules of
the subtrees T, ..., T are applicable. Hence, the simplified term f(¢],...,t.) is
returned instead of applying further simplification rules.

Additionally, a node or(7y, ..., T;) is processed by simptrans® by translating
each 7; into separate Prolog predicates. However, the translation scheme for
T; is slightly changed for j = 1,...,k — 1. Instead of constructing the term
f(t1,...,t,) if no rule is applicable, the simplification predicates corresponding to
the generalized definitional tree 711 are called since 7;41 may contain alternative
simplification rules (see Appendix B for the translation of the overlapping *-rules
of Example 2).

The predicate nstep is responsible to perform a single narrowing step. For this
purpose, an additional argument C is used which is instantiated iff a narrowing
step has been applied. Therefore, we generate the clauses

nstep(T,T,C) :- var(T), !.
nstep(f (¥y,...,%X,),T,C) = ', f_stepy(¥Xy,...,X,,T,C). Vf/neF
nstep(T,T,C). % T is constructor-headed due to the previous clauses.

and clauses for each generalized definitional tree by the following scheme, which
is a slightly modified translation scheme for narrowing rules:

steptrans(rule(f(t1,...,tn) = 1),p) =

‘ f_step,(t1,...,ty,r,step). ‘ % instantiate control variable to step

steptrans(branch(n,0,T1,...,Te),p) :=
f_step,(t1,...,ty,R,C) :- nstep(z,Y,C),

(var(C) —> f_step,ufoy (th,...,t,,R,C) 5 R=f(t,...,1)).
steptrans(Ti,pU {o})

5 Due to space limitations, we do not show the formal definition.

steptrans(Tr,p U {o})

where © = f(t1,...,tn), 7o =2, 7[Y]o = f(,...,1))
steptrans(or(Ti, ..., T),p) :=

steptrans(T1,p)

steptrans(T, p)

Due to the condition var(C)->--- in clauses corresponding to branch nodes, the
predicate f_step, may not return a head normal form but performs only one
narrowing step. All clauses generated by our scheme for Example 2 are shown
in Appendix B. The size of the translated programs is approximately doubled in
comparison to the translation without the simplification scheme. This is due to
the fact that each rule can be applied in a “narrowing mode” and a “simplification
mode” which requires different implementations.

Since the rewrite rules are separately translated into clauses for narrowing
and simplification, we can also choose different rewrite rules for narrowing and
simplification. Actually, the programmer has to specify a terminating subset of
R which is used for simplification in order to ensure completeness (see [14]).
Moreover, it has been argued in [8] that it is sensible to use additionally inductive
consequences or CWA-valid rules for simplification. All this is supported by our
separate translation of narrowing and simplification rules.

5 Optimization by Partial Evaluation

It is not surprising that our general translation scheme contains many opportuni-
ties for optimization. Therefore, we add the following useful optimizations which
are standard in the partial evaluation of logic programs [9]:

Delete redundant constructors: In a generalized definitional tree, the pat-
terns of subtrees are instances of the patterns of ancestor nodes. Therefore,
the generated clauses often contain redundant constructors, i.e., there are
predicates p where all calls to p are of the form p(...,c(t),...) and all left-
hand sides have the same structure. In this case, we delete c.

Swap arguments for better indexing: Most Prolog implementations use
first argument indexing [1]. In order to provide a portable and efficient im-
plementation, we swap arguments so that the case distinction in left-hand
sides is always made on the first argument (note that the branch nodes in a
tree clearly indicate the indexed argument).

Unfold deterministic literals: The translation scheme for lazy narrowing
with simplification often generates chains of predicate calls where at most
one clause is applicable (see, for instance, predicates hnf, simp, nstep). To
improve the execution time of the generated code, we unfold such determin-
istic predicate calls.

The optimized clauses corresponding to Example 1 can be found in Appendix C.

6 Implementation of Sharing

It is well-known that lazy evaluation strategies require the sharing of terms in
order to avoid potential reevaluations of identical expressions. For instance, con-

sider the rule
double(x) — z+x

and the term double(t) which is immediately rewritten to ¢ + ¢. Thus, without
sharing, t is evaluated twice. To avoid this problem, we have to share the result of
evaluating t among the different occurrences of ¢. This can be implemented in Pro-
log by representing each function call f(¢1,...,t,) by the term f(S,¢1,...,t,,H)
where S is an unbound variable until the call f(¢1,...,%,) will be evaluated (to
the head normal form H).” Therefore, we only have to change the definition of
the predicates which triggers the computation of a head normal form (e.g., hnf
in Section 3) so that a term £(S,...,H) will be evaluated to the head normal
form H only if S is an unbound variable, otherwise H already contains the result.
Thus, the new definition of hnf to implement sharing is

hnf (T,T) :- var(T), !.
hnf (f(S,Xy,...,X,,H),H) = !, (var(S) —-> S=eval, fy(Xq,...,X,,H)
hnf (T,T). ; true). Vf/neF

7 Experimental Results

We have implemented the translation scheme as a compiler from lazy functional
logic programs into Prolog. If all functions are inductively sequential, the scheme
of Section 3 is used, otherwise the scheme presented in Section 4.

First we consider inductively sequential programs. The following table con-
tains a comparison of our translation method w.r.t. the methods proposed in
[2, 6, 17, 19]. Remember that natural numbers are implemented by 0/s-terms.
The translated programs are executed with Sicstus-Prolog 2.1 on a Sparc-10. The
run times are in seconds for computing the first solution (an entry “?” denotes a
run time of more than 1000 seconds).

Goal: [2] | [6] |[17]|[19]|trans|sharing|Babel|direct
10000 < 10000 + 10000 =~ true |0.39/6.110.7(0.32| 0.25| 0.39 | 0.16 | 0.10
1000 < z + z ~ true 3.2|86.6| 7 |2.7| 1.9 1.8 43 | 1.2

4004+ 2 < (2 +200) + z = true |48 7 | ? |2.2] 1.7 2.3 41| 0.6
2000 < 1000 + (z + z) ~ true |3.3(83.1] ? |2.7| 1.9 1.8 42 | 53
double(double(one(100000))) ~ z| 2.8 [36.1/2.9(3.5| 2.8 09 |0.35]|0.17

The column trans contains the execution times of our translation scheme (with
the optimizations of Section 5) and column sharing the timings of our scheme

" This is nearly identical to the technique proposed in [6]. Jiménez-Martin et al. [17]
proposed a similar technique, but it does not really implement sharing since they
omitted the evaluation flag S.

10

with sharing (Section 6). In many cases sharing has no advantage but causes an
overhead (note that [2, 19] do not implement sharing). Since [6, 17] are based on
narrowing strategies different from needed narrowing, the results clearly show the
superiority of the needed narrowing strategy. [2] uses only one predicate to imple-
ment all rewrite rules, and Loogen et al. [19] do not perform any optimizations
on the generated clauses. This explains the worse execution times in comparison
to our approach.

The column “Babel” shows the execution time of needed narrowing imple-
mented in the functional logic language Babel based on the compilation into a
low-level abstract machine [11]. It is interesting to note that our high-level imple-
mentation is faster for typical search problems. The column direct shows the run
times of a direct definition of the predicates in Prolog which is often more efficient
since term structures with nested functions calls are not generated (note that
direct corresponds to a call-by-value strategy which can be implemented more
efficiently). However, there is also an example where needed narrowing is much
faster since it avoids the superfluous computation of some subterms. Moreover,
needed narrowing allows the computation with infinite data structures and may
terminate where logic programs have an infinite search space (see, for instance,
Example 1). In order to make a fair comparison between our implementation of
needed narrowing and Prolog, we have omitted such examples.

The direct implementation has a good behavior on this example since cur-
rent Prolog implementations are tailored towards the efficient implementation of
“functional-like” programs. However, there is an interesting class of programs,
namely “generate-and-test” programs, where it has been shown that narrowing
with simplification can dramatically reduce the search space [8, 13]. A typical
example for such programs is the “permutation sort” program, where a list is
sorted by enumerating all permutations and checking whether they are sorted. In
the Prolog version of this program [27, p. 55], all permutations are enumerated
and checked. However, if we execute the same program by lazy narrowing with
simplification (in this case predicates are considered as Boolean functions, see [8,
p. 182]), then the simplification process cuts some parts of the search space so
that not all permutations are completely enumerated. Therefore, we obtain the
following execution times in seconds to sort the list [n,...,2,1] for different
values of n:

Length n | Prolog| Lazy |Lazy+Simp
5 0.01| 0.06 0.06
6 0.05 0.4 0.2
7 0.4 2.8 0.4
8 3.0| 229 1.0
9 27.3| 212.2 2.1
10 281.3(2188.2 4.7

The column “Lazy+Simp” contains the execution times for lazy narrowing with
simplification implemented as shown in this paper, the column “Lazy” the times
for pure lazy narrowing without simplification (implemented as proposed in the
beginning of Section 4), and the column “Prolog” the times for the direct im-

11

plementation of permutation sort in Prolog. The search spaces of “Prolog” and
“Lazy” are essentially the same. However, the last column shows that the over-
head of the lazy narrowing implementation can be compensated by the search
space reduction due to the simplification process.

8 Conclusions

We have presented a high-level implementation of lazy functional logic languages
by a transformation into Prolog. For the operational semantics, we have consid-
ered needed narrowing for inductively sequential programs and lazy narrowing
with simplification for programs with overlapping left-hand sides. We have in-
troduced generalized definitional trees in order to specify the concrete narrow-
ing strategy. We have shown that generalized definitional trees are also useful
to specify and implement the transformation of functional logic programs into
Prolog. Our implementation of needed narrowing is faster compared to previous
approaches, whereas the implementation of lazy narrowing with simplification
is a completely new approach. We have demonstrated the advanced operational
behavior of the latter strategy in comparison to Prolog for a typical class of logic
programs.

Our transformation yields a portable and efficient implementation of lazy
functional logic programs. Since the transformation is strongly based on the for-
mal definition of a narrowing strategy for which soundness and completeness
results are known [4, 14], the implementation is also sound and complete (mod-
ulo incompleteness problems of Prolog implementations due to the backtracking
strategy). This is in contrast to other, possibly more efficient implementations of
functional logic programs in Prolog with coroutining [20, 24] that do not enjoy
completeness due to floundering (i.e., unevaluable delayed literals).

References

1. H. Ait-Kaci. Warren’s Abstract Machine. MIT Press, 1991.

2. S. Antoy. Non-Determinism and Lazy Evaluation in Logic Programming. In Proc.
Int. Workshop on Logic Program Synthesis and Transformation (LOPSTR’91), pp.
318-331. Springer Workshops in Computing, 1991.

3. S. Antoy. Definitional Trees. In Proc. of the 3rd Int. Conference on Algebraic and
Logic Programming, pp. 143-157. Springer LNCS 632, 1992.

4. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. In Proc. 21st
ACM Symp. on Principles of Programming Languages, pp- 268-279, Portland, 1994.

5. P.G. Bosco, E. Giovannetti, and C. Moiso. Narrowing vs. SLD-Resolution. Theo-
retical Computer Science 59, pp. 3—23, 1988.

6. P.H. Cheong and L. Fribourg. Implementation of Narrowing: The Prolog-Based
Approach. In Logic programming languages: constraints, functions, and objects,
pp- 1-20. MIT Press, 1993.

7. N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Vol. B, pp. 243-320. Elsevier, 1990.

8. L. Fribourg. SLOG: A Logic Programming Language Interpreter Based on Clausal
Superposition and Rewriting. In Proc. IEEE Int. Symposium on Logic Program-
ming, pp. 172-184, Boston, 1985.

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.
24.

25.

26.

27

J.P. Gallagher. Tutorial on Specialisation of Logic Programs. In Proceedings of the
ACM SIGPLAN Symposium on Partial Evaluation and Semantics Based Program
Manipulation (PEPM’93), pp. 88-98. ACM Press, 1993.

E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logic plus
Functional Language. Journal of Computer and System Sciences, Vol. 42, No. 2,
pp. 139-185, 1991.

W. Hans, R. Loogen, and S. Winkler. On the Interaction of Lazy Evaluation and
Backtracking. In Proc. of the 4th Int. Symposium on Programming Language Im-
plementation and Logic Programming, pp. 355-369. Springer LNCS 631, 1992.

M. Hanus. Compiling Logic Programs with Equality. In Proc. of the 2nd Int.
Workshop on Programming Language Implementation and Logic Programming, pp.
387-401. Springer LNCS 456, 1990.

M. Hanus. Improving Control of Logic Programs by Using Functional Logic Lan-
guages. In Proc. of the 4th International Symposium on Programming Language
Implementation and Logic Programming, pp. 1-23. Springer LNCS 631, 1992.

M. Hanus. Combining Lazy Narrowing and Simplification. In Proc. of the 6th In-
ternational Symposium on Programming Language Implementation and Logic Pro-
gramming, pp. 370-384. Springer LNCS 844, 1994.

M. Hanus. The Integration of Functions into Logic Programming: From Theory to
Practice. Journal of Logic Programming, Vol. 19&20, pp. 583-628, 1994.

M. Hanus. On Extra Variables in (Equational) Logic Programming. In Proc. In-
ternational Conference on Logic Programming, pp. 665-679. MIT Press, 1995.
J.A. Jiménez-Martin, J. Marino-Carballo, and J.J. Moreno-Navarro. Efficient Com-
pilation of Lazy Narrowing into Prolog. In Proc. Int. Workshop on Logic Program
Synthesis and Transformation (LOPSTR’92), pp. 253-270. Springer, 1992

H. Kuchen, R. Loogen, J.J. Moreno-Navarro, and M. Rodriguez-Artalejo. Graph-
based Implementation of a Functional Logic Language. In Proc. ESOP 90, pp.
271-290. Springer LNCS 432, 1990.

R. Loogen, F. Lopez Fraguas, and M. Rodriguez Artalejo. A Demand Driven Com-
putation Strategy for Lazy Narrowing. In Proc. of the 5th Int. Symp. on Pro-
gramming Language Implementation and Logic Programming, pp. 184-200. Springer
LNCS 714, 1993.

T. Mogensen. Personal Communication. 1995

J.J. Moreno-Navarro, H. Kuchen, R. Loogen, and M. Rodriguez-Artalejo. Lazy
Narrowing in a Graph Machine. In Proc. Second International Conference on Al-
gebraic and Logic Programming, pp. 298-317. Springer LNCS 463, 1990.

J.J. Moreno-Navarro and M. Rodriguez-Artalejo. Logic Programming with Func-
tions and Predicates: The Language BABEL. Journal of Logic Programming,
Vol. 12, pp. 191-223, 1992.

L. Naish. Negation and Control in Prolog. Springer LNCS 238, 1987.

L. Naish. Adding equations to NU-Prolog. In Proc. of the 3rd Int. Symposium
on Programming Language Implementation and Logic Programming, pp. 15-26.
Springer LNCS 528, 1991.

U.S. Reddy. Narrowing as the Operational Semantics of Functional Languages. In
Proc. IEEE Int. Symposium on Logic Programming, pp. 138-151, Boston, 1985.
J.R. Slagle. Automated Theorem-Proving for Theories with Simplifiers, Commu-
tativity, and Associativity. Journal of the ACM, Vol. 21, No. 4, pp. 622-642, 1974.
. L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

13

A Generated Prolog Clauses for Example 1

The program of Example 1 is inductively sequential where both functions have a unique
definitional tree. Therefore, our transformation scheme of Section 3 generates the fol-
lowing Prolog program.

A===B :- hnf(A,HA), hnf(B,HB), seq(HA,HB).
seq(0,0).

seq(s(A),s(B)) :- A===B.

seq(false,false).

seq(true,true).

hnf (T,T) :- var(T), !.

hnf (A+B,H) :- !, +(A,B,H).
hnf (leq(A,B) ,H) :- !, leq(A,B,H).
hnf (T,T).

+(A,B,R) :- hnf(A,HA), ’+_1’(HA,B,R).
’+_1°(0,B,R) :- hnf(B,R).

’+_1’(s(A),B,R) :- hnf(s(A+B),R).

leq(A,B,R) :- hnf(A,HA), leq_1(HA,B,R).
leq_1(0,B,R) :- hnf(true,R).

leq_1(s(A),B,R) :- hnf(B,HB), leq_1_2(s(A),HB,R).
leq_1_2(s(4),0,R) :- hnf(false,R).
leq_1_2(s(A),s(B),R) :- hnf(leq(4,B),R).

B Generated Prolog Clauses for Example 2

Since the program of Example 2 is not inductively sequential, we have to translate it
by the transformation scheme of Section 4 which yields the following Prolog program.

A===B :- hnf(A,HA), hnf(B,HB), seq(HA,HB).
seq(0,0).
seq(s(A),s(B)) :- A===B.

hnf (T,T) :- var(T), !.

hnf (A*B,H) :- !, simp(A*B,T), nstep(T,R,_), hnf(R,H).
hnf (one(A) ,H) :- !, one(A,H).
hnf (T,T).

one(A,R) :- hnf(A,HA), one_1(HA,R).
one_1(0,R) :- hnf(s(0),R).
one_1(s(A),R) :- hnf(one(A),R).

simp(T,T) :- var(T), !.

simp (A*B,T) :- !, ’simp_%’(4,B,T).
simp(one(A),T) :- !, simp_one(A,T).
simp(T,T).
’simp_*’(A,B,R) :- !, simp(A,SA),

(nonvar (SA) -> ’simp_*_1’(SA,B,R) ; ’simp_#*_or’(SA,B,R)).
’simp_*_1’(0,A,R) :- !, simp(O,R). % first alternative of *
’simp_*_1’(A,B,R) :- ’simp_*_or’(A,B,R).

14

’simp_*_or’ (A,B,R) :- !, simp(B,SB),

(nonvar(SB) -> ’simp_*_or_2’(A,SB,R) ; R=A*SB).
’simp_*_or_2’(A,0,R) :- !, simp(O,R). % second alternative of *
’simp_*_or_2’ (A,B,A*B).

simp_one(A,R) :- !, simp(A,SA),

(nonvar(SA) -> simp_one_1(SA,R) ; R=one(SA)).
simp_one_1(0,R) :- !, simp(s(0),R).
simp_one_1(s(A),R) :- !, simp(one(4),R).

simp_one_1(A,one(A)).

nstep(T,T,C) :- var(T), !.
nstep(A*B,T,C) :- !, ’*_step’(A,B,T,C).
nstep(one(d) ,T,C) :- !, one_step(A,T,C).
nstep(T,T,C).

’%_step’(A,B,R,C) :- nstep(A,NA,C),

(var(C) -> ’*_step_1’(NA,B,R,C) ; R=NA*B).
>+_step’(A,B,R,C) :- nstep(B,NB,C),

(var(C) -> ’*_step_2’(A,NB,R,C) ; R=A*NB).
’*_step_1’(0,A,0,step).
’*_step_2’(4,0,0,step).
one_step(A,R,C) :- nstep(A,NA,C),

(var(C) -> one_step_1(NA,R,C) ; R=one(NA)).
one_step_1(0,s(0),step).
one_step_1(s(A) ,one(A),step).

C Optimized Prolog Program for Example 1

If we apply the optimization techniques discussed in Section 5 to the program of Ap-
pendix A, we obtain the following optimized Prolog program (where superfluous clauses
are deleted).

A===B :- hnf(A,HA), hnf(B,HB), seq(HA,HB).
seq(0,0).

seq(s(A),s(B)) :- hnf(A,HA), hnf(B,HB), seq(HA,HB).
seq(false,false).

seq(true,true).

hnf (T,T) :- var(T), !.

hnf (A+B,H) :- !, hnf(A,HA), °+_1°’ (HA,B,H).
hnf (leq(A,B) ,H) :- !, hnf(A,HA), leq_1(HA,B,H).
hnf (T,T).

’+_1°(0,B,R) :- hnf(B,R).

’+_1’(s(A),B,s(A+B)).

leq_1(0,B,true).

leq_1(s(A),B,R) :- hnf(B,HB), leq_1s_2(HB,A,R).
leq_1s_2(0,A,false).

leq_1s_2(s(B),A,R) :- hnf(A,HA), leq_1(HA,B,R).

15

