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Abstract. In this work, we introduce a profiling scheme for modern
functional logic languages covering notions like laziness, sharing, and
non-determinism. Firstly, we instrument a natural (big-step) semantics
in order to associate a symbolic cost to each basic operation (e.g., variable
updates, function unfoldings, case evaluations). While this cost semantics
provides a formal basis to analyze the cost of a computation, the imple-
mentation of a cost-augmented interpreter based on it would introduce
a huge overhead. Therefore, we also introduce a sound transformation
that instruments a program such that its execution—under the standard
semantics—yields not only the corresponding results but also the associ-
ated costs. Finally, we describe a prototype implementation of a profiler
based on the developments in this paper.

1 Introduction

The importance of profiling in improving the performance of programs is widely
recognized. Profiling tools are essential for the programmer to analyze the effects
of different source-to-source program manipulations (e.g., partial evaluation, spe-
cialization, optimization, etc). Despite this, one can find very few profiling tools
for modern declarative languages. This situation is mainly explained by the diffi-
culty to correctly map execution costs to source code, which is much less obvious
than for imperative languages. In this work, we tackle the definition of a profil-
ing scheme for modern functional logic languages covering notions like laziness,
sharing, and non-determinism (like Curry [6] and Toy [13]); currently, there is
no profiling tool practically applicable to such languages.

When profiling the run time of a given program, the results highly depend on
the considered language implementation. However, computing actual run times
is not always the most useful information for the programmer. Run times may
help to detect that some function is expensive but they do not explain why it is
expensive (e.g., is it called many times? Is it heavily non-deterministic?).
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In order to overcome these drawbacks, we introduce a symbolic profiler which
outputs the number of basic operations performed in a computation. For this
purpose, we start from a natural semantics for functional logic programs [1]
and instrument it with the computation of symbolic costs associated to the
basic operations of the semantics: variable lookups, function unfoldings, case
evaluations, etc. These operations are performed, in one form or another, by
likely implementations of modern functional logic languages. Our cost semantics
constitutes a formal model of the attribution of costs in our setting. Therefore,
it is useful not only as a basis to develop profiling tools but also to analyze the
costs of a program computation (e.g., to formally prove the effectiveness of some
program transformation).

Trivially, one can develop a profiler by implementing an instrumented inter-
preter which follows the previous cost semantics. However, this approach is not
useful in practice as it demands a huge overhead, making the profiling of real-
istic programs impossible. Thus, in a second step, we design a source-to-source
transformation that instruments a program such that its execution—under the
standard semantics—outputs not only the corresponding results but also the as-
sociated costs. We formally state the correctness of our transformation (i.e., the
costs computed in a source program w.r.t. the cost semantics are equivalent to
the costs computed in the transformed program w.r.t. the standard semantics).
Finally, we describe a prototype implementation of a profiler for Curry programs
based on the developments in this paper.

The main contributions of this work are the following. Firstly, we introduce
a cost semantics for functional logic programs which covers laziness, sharing and
non-determinism. This contrasts with [14], where logical features are not con-
sidered, and [2], where sharing is not covered (which drastically reduces its ap-
plicability). Secondly, we introduce a program transformation for instrumenting
a program—so that its execution returns also the cost of the computation—and
prove its correctness. We are not aware of any other transformation for lazy
functional (logic) programs that is proved correct w.r.t. an associated cost se-
mantics.

The paper is organized as follows. In the next section, we recall some founda-
tions for understanding the subsequent developments. Section 3 informally intro-
duces our model for profiling functional logic computations. Section 4 formalizes
an instrumented semantics which also computes cost information. Section 5 in-
troduces a transformation instrumenting programs to compute symbolic costs.
Section 6 describes an implementation of a profiler for Curry programs and Sec-
tion 7 illustrates its use by means of an example. Finally, Section 8 includes a
comparison to related work and concludes. An extended version of this paper
(including the proof of Theorem 1) can be found in [5].

2 Flat Programs

In this work we consider flat programs [9], a convenient standard representation
of functional logic programs which makes explicit the pattern matching strategy



P ::= D1 . . . Dm (program) Domains
D ::= f(x1, . . . , xn) = e (function definition)
e ::= x (variable) P1, P2, . . . ∈ Prog (Programs)
| c(x1, . . . , xn) (constructor call) x, y, z, . . . ∈ Var (Variables)
| f(x1, . . . , xn) (function call) a, b, c, . . . ∈ C (Constructors)
| let x = e1 in e2 (let binding) f, g, h, . . . ∈ F (Functions)
| e1 or e2 (disjunction) p1, p2, . . . ∈ Pat (Patterns)
| case x of {pk → ek} (rigid case)
| fcase x of {pk → ek} (flexible case)

p ::= c(x1, . . . , xn) (pattern)

Fig. 1. Syntax for normalized flat programs

by case expressions. This flat representation constitutes the kernel of modern
functional logic languages like Curry [8, 6] or Toy [13]. We assume that flat pro-
grams are normalized, i.e., let constructs are used to ensure that the arguments
of function and constructor calls are always variables (not necessarily pairwise
different). As in [12], this is essential to express sharing without the use of com-
plex graph structures. A normalization algorithm can be found in [1]. Basically,
normalization introduces one new let construct for each non-variable argument,
e.g., f(e) is transformed into “let x = e in f(x).”

The syntax for normalized flat programs is shown in Figure 1, where we write
on for the sequence of objects o1, . . . , on. A program consists of a sequence of
function definitions such that the left-hand side has pairwise different variable
arguments. The right-hand side is an expression composed by variables, data
constructors, function calls, let bindings (where the local variable x is only visible
in e1, e2), disjunctions (e.g., to represent non-deterministic operations), and case
expressions of the following form (we write (f)case for either fcase or case):

(f )case x of {c1(xn1)→ e1; . . . ; ck(xnk
)→ ek}

where x is a variable, c1, . . . , ck are different constructors, and e1, . . . , ek are
expressions. The pattern variables xni

are locally introduced and bind the cor-
responding variables of the subexpression ei. The difference between case and
fcase only shows up when the argument x evaluates (at run time) to a free vari-
able: case suspends whereas fcase non-deterministically binds this variable to
the pattern in a branch of the case expression.

Laziness of computations will show up in the description of the behavior
of function calls and case expressions. In a function call, parameters are not
evaluated but directly passed to the body of the function. In a case expression,
only the outermost symbol of the case argument is required. Therefore, the
case argument should be evaluated to head normal form [4] (i.e., a variable or
an expression with a constructor at the outermost position). Consequently, our
operational semantics will describe the evaluation of expressions only to head
normal form. This is not a restriction since the evaluation to normal form or
the solving of equations can be reduced to head normal form computations (see,
e.g., [9]).



Extra variables are those variables in a rule which do not occur in the left-
hand side. Such extra variables are intended to be instantiated by flexible case
expressions. In the following, we assume that all extra variables x are explicitly
introduced in flat programs by a direct circular let binding of the form “let x =
x in e”. We call such variables which are bound to themselves logical variables.

In the remainder of this paper, we assume that computations always start
from the distinguished function main which has no arguments.

3 A Run-Time Profiling Scheme

Traditionally, profiling tools attribute execution costs to the functions or proce-
dures of the considered program. Following [2, 14], in this work we take a more
flexible approach which allows us to associate a cost center with any expres-
sion of interest. This allows the programmer to choose an appropriate granu-
larity for profiling, ranging from whole program phases to single subexpressions
in a function. Nevertheless, our approach can easily be adapted to work with
automatically instrumented cost centers; for instance, if one wants to use the
traditional approach in which all functions are profiled, each function can be au-
tomatically annotated by introducing a cost center for the entire right-hand side.
Cost centers are marked with the (built-in) function scc (for set cost center).

Intuitively speaking, given an expression “scc(cc, e)”, the costs attributed to
cost center cc are the entire costs of evaluating e as far as the enclosing context
demands it, including the cost of

– evaluating any function called by the evaluation of the expression e,

but excluding the cost of

– evaluating the free variables of e (i.e., those variables which are not intro-
duced by a let binding in e) and

– evaluating any scc-expressions within e or within any function which is
called from e.

The following program contains two versions of a function to compute the length
of a list (for readability, we show the non-normalized version of function main):

len(x) = fcase x of { [] → 0
; (y:ys) → let z = 1, w = len(ys) in z + w }

len2s(x) = fcase x of { [] → 0
; (y:ys) → fcase ys of

{ [] → 1
; (z:zs) → let w = 2,

v = len2s(zs)
in w + v } }

main = let list = scc("list",[1..5000])
in scc("len",len(list)) + scc("len2s",len2s(list))



Table 1. Basic costs

Cost criteria Symbol Cost criteria Symbol Cost criteria Symbol
Function unfolding F Allocating a heap object H Case evaluation C
Variable update U Non-deterministic choice N Variable lookup V
Entering an scc E Binding a logical variable B

Here, main computes twice the length of the list [1..5000], which is a standard
predefined way to define the list [1,2,3,...,4999,5000]. Each computation of
the length uses a different function, len and len2s, respectively. In principle,
len2s could seem more efficient than len because it performs half the number of
function calls (indeed, len2s has been obtained by unfolding function len). This
is difficult to check with traditional profilers because the overhead introduced
to build the list hides the differences between len and len2s. For instance, the
computed run times in the PAKCS environment [10] for Curry are 9980 ms and
9990 ms for len([1..5000]) and len2s([1..5000]), respectively.1

From these figures, should one conclude that len and len2s are equally
efficient? In order to answer this question, a profiler based on cost centers can
be very useful. In particular, by including the three cost centers shown in the
program above (function main), the costs of len, len2s, and the construction
of the input list can be clearly distinguished. With our execution profiler which
distributes the execution time to different cost centers (its implementation is
discussed in Section 6.1), we have measured the following run times:

cost center main list len len2s
run times 17710 7668966 1110 790

Here, run times are expressed in a number of “ticks” (an artificial time unit
provided by the SICStus Prolog profiling facilities [7]). Thanks to the use of
cost centers, we can easily check that len2s is slightly more efficient than len.
However, what is the reason for these different run times? We introduce symbolic
costs—associated with the basic operations of the language semantics—so that
a deeper analysis can be made. The considered kinds of costs are shown in
Table 1. For the example above, our symbolic profiler returns the following cost
attributions (only the most relevant costs for this example are shown):

main list len len2s
H 5000 61700 5100 5100
V 5100 280400 5100 5100
C 5100 280400 5100 5100
F 5300 168100 5100 2600

From this information, we observe that only function unfoldings (F ) are halved,
while the remaining costs are equal for both len and len2s. Therefore, we can

1 The slow execution is due to the fact that experiments were performed with a version
of the above program where a symbolic (Peano) representation of natural numbers
is used.



conclude that, in this example, unfolding function len with no input data only
improves cost F (which has a small impact on current compilers, as has been
shown before).

4 Cost Semantics

In this section, we instrument a natural (big-step) semantics for functional logic
languages (defined in [1]) with the computation of symbolic costs. Figure 2 shows
the cost-augmented semantics. A heap, denoted by Γ,∆, or Θ, is a partial map-
ping from variables to expressions (the empty heap is denoted by [ ]). The value
associated to variable x in heap Γ is denoted by Γ [x]. Γ [x cc7→ e] denotes a heap
with Γ [x] = e and associated cost center cc; we use this notation either as a con-
dition on a heap Γ or as a modification of Γ . A logical variable x is represented
by a circular binding of the form Γ [x] = x. A value v is a constructor-rooted
term c(en) (i.e., a term whose outermost function symbol is a constructor sym-
bol) or a logical variable (w.r.t. the associated heap). We use judgements of the
form “cc, Γ : e ⇓θ ∆ : v, ccv” which are interpreted as “in the context of heap
Γ and cost center cc, the expression e evaluates to value v with associated cost
θ, producing a new heap ∆ and cost center ccv”.

In order to evaluate a variable which is bound to a constructor-rooted term
in the heap, rule VarCons reduces the variable to this term. Here, cost V is
attributed to the current cost center cc to account for the variable lookup (this
attribution is denoted by {cc← V } and similarly for the other cost symbols).

Rule VarExp achieves the effect of sharing. If the variable to be evaluated is
bound to some expression in the heap, then the expression is evaluated and the
heap is updated with the computed value; finally, we return this value as the
result. In addition to counting the cost θ of evaluating expression e, both V and
U are attributed to cost centers cc and ccv, respectively.

For the evaluation of a value, rule Val returns it without modifying the heap.
No costs are attributed in this rule since actual implementations have no coun-
terpart for this action.

Rule Fun corresponds to the unfolding of a function call. The result is ob-
tained by reducing the right-hand side of the corresponding rule (we assume
that the considered program P is a global parameter of the calculus). Cost F is
attributed to the current cost center cc to account for the function unfolding.

Rule Let adds its associated binding to the heap and proceeds with the eval-
uation of its main argument. Note that we give the introduced variable a fresh
name in order to avoid variable name clashes. In this case, cost H is added to
the current cost center cc.

Rule Or non-deterministically reduces an or expression to either the first or
the second argument. N is attributed to the current cost center to account for
a non-deterministic step.

Rule Select corresponds to the evaluation of a case expression whose argument
reduces to a constructor-rooted term. In this case, we select the appropriate
branch and, then, proceed with the evaluation of the expression in this branch



(VarCons) cc, Γ [x
ccc7−→ c(xn)] : x ⇓{cc←V } Γ [x

ccc7−→ c(xn)] : c(xn), ccc

(VarExp)
cce, Γ : e ⇓θ ∆ : v, ccv

cc, Γ [x
cce7−→ e] : x ⇓{cc←V }+θ+{ccv←U} ∆[x

ccv7−→ v] : v, ccv

(where e is
not a value)

(Val) cc, Γ : v ⇓{ } Γ : v, cc (where v is a value)

(Fun)
cc, Γ : ρ(e) ⇓θ ∆ : v, ccv

cc, Γ : f(xn) ⇓{cc←F}+θ ∆ : v, ccv

(where f(yn) = e ∈ P
and ρ = {yn 7→ xn})

(Let)
cc, Γ [y

cc7−→ ρ(e′)] : ρ(e) ⇓θ ∆ : v, ccv

cc, Γ : let x = e′ in e ⇓{cc←H}+θ ∆ : v, ccv

(where ρ = {x 7→ y}
and y is fresh)

(Or)
cc, Γ : ei ⇓θ ∆ : v, ccv

cc, Γ : e1 or e2 ⇓{cc←N}+θ ∆ : v, ccv
(where i ∈ {1, 2})

(Select)
cc, Γ : x ⇓θ1 ∆ : c(yn), ccc cc, ∆ : ρ(ei) ⇓θ2 Θ : v, ccv

cc, Γ : (f )case x of {pk → ek} ⇓θ1+{cc←C}+θ2 Θ : v, ccv

(where pi = c(xn) and ρ = {xn 7→ yn})

(Guess)
cc, Γ : x ⇓θ1 ∆ : y, ccy cc, ∆[y

cc7→ ρ(pi), yn
cc7→ yn] : ρ(ei) ⇓θ2 Θ : v, ccv

cc, Γ : fcase x of {pk → ek} ⇓θ1+{cc←V,cc←U,cc←B,cc←n∗H}+θN +θ2 Θ : v, ccv

(where pi = c(xn), ρ = {xn 7→ yn}, yn are fresh variables,
and θN = {cc← N} if k > 1 and θN = { } if k = 1)

(SCC)
cc′, Γ : e ⇓θ ∆ : v, ccv

cc, Γ : scc(cc′, e) ⇓θ+{cc′←E} ∆ : v, ccv

Fig. 2. Rules of the cost semantics

by applying the corresponding matching substitution. In addition to the costs
of evaluating the case argument, θ1, and the selected branch, θ2, we add cost C
to the current cost center cc to account for the pattern matching.

Rule Guess applies when the argument of a flexible case expression reduces
to a logical variable. It binds this variable to one of the patterns and proceeds
by evaluating the corresponding branch. If there is more than one branch, one of
them is chosen non-deterministically. Renaming the pattern variables is neces-
sary to avoid variable name clashes. We also update the heap with the (renamed)
logical variables of the pattern. In addition to counting the costs of evaluating
the case argument, θ1, and the selected branch, θ2, we attribute to the current
cost center cc costs V (for determining that y is a logical variable), U (for updat-
ing the heap from y 7→ y to y 7→ ρ(pi)), B (for binding a logical variable), n ∗H
(for adding n new bindings into the heap) and, if there is more than one branch,
N (for performing a non-deterministic step). Note that no cost C is attributed
to cost center cc (indeed, cost B is alternative to cost C).



Finally, rule SCC evaluates an scc-expression by reducing the expression e
in the context of the new cost center cc′. Accordingly, cost E is added to cost
center cc′.

A proof of a judgement corresponds to a derivation sequence using the rules of
Figure 2. Given a program P , the initial configuration has the form “ccmain, [ ] :
main”, where ccmain is a distinguished cost center. If the judgement

ccmain, [ ] : main ⇓θ Γ : v, ccv

holds, we say that main evaluates to value v with associated cost θ. The com-
puted answer can be extracted from the final heap Γ by a simple process of
dereferencing.

Obviously, the cost semantics is a conservative extension of the original big-
step semantics of [1], since the computation of cost information imposes no
restriction on the application of the rules of the semantics.

5 Cost Instrumentation

As mentioned before, implementing an interpreter for the cost semantics of Fig-
ure 2 is impracticable. It would involve too much overhead to profile any realistic
program. Thus, we introduce a transformation to instrument programs in order
to compute the symbolic costs:

Definition 1 (cost transformation). Given a program P , its cost instru-
mented version cost(P ) is obtained as follows: for each program rule

f(x1, . . . , xn) = e

cost(P ) includes, for each cost center cc in P , one rule of the form

fcc(x1, . . . , xn) = Fcc([[e]]cc)

where Fcc(e) is the identity function on e. Counting the calls to Fcc in the proof
tree corresponds to the number of F ’s accumulated in cost center cc. Function [[ ]]
(shown in Figure 3) is used to instrument program expressions; similarly to Fcc,
functions Vcc, Ucc, Hcc, Ncc, Ccc, Bcc, and Ecc are also defined as the identity
function on their argument.

Observe that the transformed program contains as many variants of each func-
tion of the original program as different cost centers. Semantically, all these
variants are equivalent; the only difference is that we obtain the costs of the
computation by counting the calls to the different cost center identity functions
(like Fcc).

Program instrumentation is mainly performed by function [[ ]]cc, where cc
denotes the current cost center. We informally explain how the transformation
proceeds by a case distinction on the expression, e, in a call of the form [[e]]cc:

– If e is a variable, a call to function Vcc is added to attribute cost V to cost
center cc.



[[x]]cc = Vcc(x)

[[c(x1, . . . , xn)]]cc = c(cc, x1, . . . , xn)

[[f(x1, . . . , xn)]]cc = fcc(x1, . . . , xn)

[[let x = e′ in e]]cc = Hcc

0@ let x = x in [[e]]cc) if e′ = x
let x = [[e′]]cc in [[e]]cc if e′ = c(yn)
let x = update([[e′]]cc) in [[e]]cc otherwise

1A
[[e1 or e2]]cc = Ncc([[e1]]cc or [[e2]]cc)

[[case x of {pk → ek}]]cc = case [[x]]cc of {p′k → Ccc([[ek]]cc)}
where p′i = c(cc′, yn) for all pi = c(yn)

[[fcase x of {pk → ek}]]cc

= if isVar(x)

then Vcc(Ucc(Bcc(θN (fcase [[x]]cc of {p′k → |pk| ∗Hcc([[ek]]cc)}))))
else fcase [[x]]cc of {p′k → Ccc([[ek]]cc)}

where p′i = c(cc, yn) for all pi = c(yn) and θN (e) =


e if k = 1
Ncc(e) if k > 1

[[scc(cc′, e)]]cc = Ecc′([[e]]cc′)

Here, |p| denotes the arity of pattern p, i.e., |p| = n if p = c(xn), and the auxiliary
function update is used to attribute cost U to the cost center of the computed value:

update(x) = case x of {ck(cck, xnk )→ Ucck (ck(cck, xnk ))}
where c1, . . . , ck are the program constructors.

Fig. 3. Cost transformation [[ ]]cc for instrumenting expressions

– If e = c(xn) is a constructor-rooted term, we add a new argument to store the
current cost center. This is necessary to attribute cost U to the appropriate
cost center (i.e., to the cost center of the computed value, see Figure 2).

– A call to a function f(xn) is translated to a call to the function variant
corresponding to cost center cc.

– If e = (let x = e1 in e2) is a let expression, a call to function Hcc is always
added to attribute cost H to cost center cc. Additionally, if the binding is
neither a logical variable nor a constructor-rooted term, the cost center cci,
1 ≤ i ≤ k, of the computed value is determined (by means of an auxiliary
function update, see Figure 3) and a call to Ucci

is added to attribute cost
U to that cost center.

– If e = (e1 or e2) is a disjunction, a call to Ncc is added to attribute N to
cost center cc.

– If e = case x of {pk → ek} is a rigid case expression, we recursively transform
both the case argument and the expression of each branch, where a call to
Ccc is added to attribute cost C to cost center cc. Observe that the cost
center, cc′, of the patterns is not used (it is only needed in the auxiliary
function update).

– If e = fcase x of {pk → ek} is a flexible case expression, a run-time test
(function isVar) is needed to determine whether the argument evaluates to



a logical variable or not. This function can be found, e.g., in the library
Unsafe of PAKCS. If it does not evaluate to a logical variable, we proceed
as in the previous case. Otherwise, we add calls to functions Vcc, Ucc, Bcc,
and Ncc (if k > 1). Also, in each case branch, calls to Hcc are added to
attribute the size of the pattern to cost center cc. Here, we use n ∗ Hcc as
a shorthand for writing n nested calls to Hcc (in particular, 0 ∗Hcc means
that no call to Hcc is written).

– Finally, if e = scc(cc′, e′) is an scc-expression, a call to function Ecc′ is added.
More importantly, we update the current cost center to cc′ in the recursive
transformation of e′.

Derivations with the standard semantics (i.e., without cost centers) are denoted
by ([ ] : main ⇓ Γc : v). Given a heap Γ , we denote by Γc the set of bindings
x 7→ e′ such that x

cc7−→ e belongs to Γ , where e′ = e if e is a logical variable,
e′ = [[e]]cc if e = c(xn), or e′ = update([[e]]cc) otherwise. Also, in order to make
explicit the output of the instrumented program with the standard semantics,
we write ([ ] : main ⇓θ Γc : v), where θ records the set of calls to cost functions
(e.g., Hcc, Fcc).

The correctness of our program instrumentation is stated as follows (the
proof can be found in [5]):

Theorem 1 (correctness). Let P be a program and cost(P ) be its cost instru-
mented version. Then,

(ccmain, [ ] : main ⇓θ Γ : v, cc) in P iff ([ ] : mainccmain
⇓θ Γc : v′) in cost(P )

where v = v′ (if they are variables) or v = c(xn) and v′ = c(cc, xn).

As an alternative to the transformation presented in this section, we could also
instrument programs by partial evaluation [11], i.e., the partial evaluation of
the cost semantics of Section 4 w.r.t. a source program P should return an
instrumented program which is equivalent to cost(P ). However, this approach
requires both an implementation of the instrumented semantics as well as an
optimal partial evaluator for the considered language (in order to obtain a rea-
sonable instrumented program, rather than a slight specialization of the cost
semantics). Thus, we preferred to introduce a direct transformation.

Now, we illustrate our cost transformation by means of a simple example.
Consider, for instance, the following definition for function len:

len(x) = fcase x of { Nil → Z
; Cons(y,ys) → let w = scc("b",len(ys))

in S(w) }
Then, the corresponding instrumented definition for the cost center "a" is the
following:

lena(x) =
Fa(if isVar(x)

then Va(Ua(Ba(Na(fcase Va(x) of



{ Nil(cc) → Z(a)
; Cons(cc,y,ys) → Ha(Ha(Ha(let w = update(lenb(ys))

in S(a,w))))
} ))))

else fcase Va(x) of
{ Nil(cc) → Z(a)
; Cons(cc,y,ys) → Ca(Ha(let w = update(lenb(ys))

in S(a,w)))
}

)

where the auxiliary function update is defined as follows:

update(x) = case x of { Z(cc) → Ucc(Z(cc))
; S(cc,x) → Ucc(S(cc,x)) }

6 Implementation

The main purpose of profiling programs is to increase run-time efficiency. How-
ever, in practice, it is important to obtain symbolic profiling information as well
as measuring run times. As discussed before, we want to provide cost centers for
both kinds of profiling in order to be able to analyze arbitrary sub-computations
independently of the defined functions. For the formal introduction of costs and
correctness proofs, symbolic costs are the appropriate means. Therefore, we in-
troduced a program transformation dealing with symbolic costs. However, the
presented program transformation can easily be extended for measuring run
times and distribute them through cost centers. In this section, we first present
our approach to measure run times and function calls (Sect. 6.1) and, then,
describe the extensions to obtain symbolic profiling (Sect. 6.2).

6.1 Measuring Run Times

When trying to measure actual run times, the crucial point is to alter the run
time behavior of the examined program as little as possible. If the program
instrumented for profiling runs 50% slower or worse, one profiles the process of
profiling rather than the program execution. Because of this, measuring actual
run times is a matter of low-level programming and, thus, highly depending on
the actual language implementation.

Our approach is specific to the Curry implementation PAKCS [10]. In this
programming environment, Curry programs are compiled by transforming flat
programs (cf. Section 2) to SICStus Prolog (see [3] for details about this trans-
formation). Note, however, that in contrast to Section 2 the programs are not
necessarily normalized. In order to provide low-level profiling for PAKCS, we
instrument the program with the profiling mechanisms offered by SICStus Pro-
log. Fortunately, SICStus Prolog features low-level profiling instruments which



create an overhead of approximately 22%. The Prolog tools provide precise mea-
suring of the number of predicate and clause calls. For measuring run time, a
number of synthetic units is given which is computed according to [7].

The main challenge was to introduce the cost centers into Prolog profiling.
Luckily, we found a way to do this without further slowing down the execution of
the program being profiled. The only overhead we introduce is code duplication,
since we introduce a different version of each function for each cost center, as in
the program transformation described above. Thus, for the program

main = SCC "len" (length (SCC "list" (enumFromTo 1 10)))

function main does not call a function length but a variant with the name
“length{len}” and also a function named “enumFromTo{list}”. Gathering all
run times for functions with the attachment {cc}, one gets the run time belonging
to that cost center. An obvious optimization is to eliminate unreachable functions
like length{list} in the example.

6.2 Extension for Symbolic Profiling

Our approach to symbolic profiling exactly represents the idea described in Sec-
tion 5 above. For each cost, we introduce a new function, e.g., var lookup for
cost V . There are variations of these functions for the different cost centers, e.g.,
var lookup{list} like in Section 6.1. After the execution of the transformed
program, we simply count each call to var lookup{list} to get the sum of
costs V attributed to the cost center list.

The advantage of this method is its simplicity. The demands to use our trans-
formation for profiling with any implementation of Curry are not very high. The
run-time system must only be able to count the number of calls to a certain func-
tion which is easy to implement. The disadvantage is the considerable (but still
reasonable) slowdown as we are not only introducing new functions but also new
function calls. Nevertheless, this overhead does not influence the computation of
symbolic costs.

The overhead introduced by the additional function calls is also the reason
why our profiler generates different programs for run-time profiling and symbolic
profiling. Since the program transformed for symbolic profiling is more than a
magnitude slower than the original program, measuring run times in the program
transformed for symbolic profiling would lead to results that are not strictly
related to the performance of the original program.

It is worthwhile to note that, although the program transformation of Fig. 3
is equivalent to the cost semantics of Fig. 2 for particular computations (as stated
in Theorem 1), there is one important difference:

While the cost semantics is don’t-care non-deterministic, the instru-
mented programs accumulate all costs according to the search strategy.

For instance, the cost for a failing derivation is also accumulated in the cost of
the results computed afterwards. Furthermore, completely failing computations



also have an associated cost while no proof tree (and thus no costs) can be
constructed in the big-step semantics. From a practical point of view, this is an
advantage of the program transformation over the cost semantics, since the cost
of failing derivations is relevant in the presence of non-deterministic functions.

7 Using the Profiler

In this section we present how our profiler can be used to improve the runtime
of Curry programs by means of a larger example. We want to implement an
algorithm solving the following problem:

An alphabet is given by the algebraic datatype

data Letter = A | B | ... | Y | Z
type Word = [Letter]
type Alphabet = [Letter]

Words are defined as sequences of letters and (sub-)alphabets as sets
(implemented as lists) of letters. Define a function sameUsedAlphabet
that takes two words as input and, if both words use the same sub-
alphabet, yields this sub-alphabet as its result.

The basic idea of an algorithm for solving this problem could be the following:

– Extract the sub-alphabets used by each string by means of removing double
occurrences of letters (rmDups).

– Check whether the two sub-alphabets are permutations of each other (isPerm),
otherwise fail.

– Return the sub-alphabet of the first word.

A possible implementation of these functions in Curry could be the following:

rmDups [] = []
rmDups (x:xs) = if elem x (rmDups xs) then rmDups xs

else x:rmDups xs

Thus, an element is kept in the list if it is not an element of the remaining list.

isPerm [] [] = success
isPerm (x:xs) ys | eqWord (zs++[x]++us) ys = isPerm xs (zs++us)

where zs,us free

eqWord [] [] = success
eqWord (x:xs) (y:ys) | eqLetter x y = eqWord xs ys

eqLetter A A = success
...
eqLetter Z Z = success



In the implementation of isPerm, we exploit the logical features of Curry. The
function isPerm is applied to two lists. We successively delete the elements of the
first list from the second list until both lists are empty. For deleting an element
from the second list, we use the append function (++) as a relation by applying
it to logical variables. When the expression (zs++[x]++us) is compared with
ys by the function eqWord, the logical variable zs is bound to the part of ys in
front of x and us to the part behind x. The list not containing x is zs++us which
is recursively compared with xs.

The functions eqWord and eqLetter define unification for letters and words.
In Curry this unification is generalized to arbitrary data types by means of strict
equality (=:=) [6]. Our implementation also provides profiling information for
this extension. For simplicity, we do not present the technically expensive details
of this extension in this paper and define specific functions for the unification of
words and letters in this example.

Finally, we combine all these functions to solve the problem by means of the
function sameUsedAlphabet:

sameUsedAlphabet :: [Letter] -> [Letter] -> [Letter]
sameUsedAlphabet str1 str2

| isPerm (rmDups str1) (rmDups str2) = rmDups str1

Testing sameUsedAlphabet for short words is reasonably efficient. Unfortunately,
our algorithm does not scale well for longer words. For instance, the application
of sameUsedAlphabet to a word containing all letters of the alphabet does not
terminate within one hour.

To find the source of this inefficiency, we use our profiler. We add two cost
centers "perm" and "rmDups" as follows:

rmDups xs = SCC "rmDups" (rmDups’ xs)
rmDups’ [] = []
rmDups’ (x:xs) = if elem x (rmDups’ xs) then rmDups’ xs

else x:rmDups’ xs

sameUsedAlphabet :: Word -> Word -> Alphabet
sameUsedAlphabet str1 str2
| SCC "perm" (isPerm (rmDups str1) (rmDups str2)) = rmDups str1

Profiling some applications of sameUsedAlphabet, we obtain the following mea-
surements for function unfoldings and heap allocations (we do not present the
other kinds of costs since they do not provide more information here):

sameUsedAlphabet "perm" "rmDups"
applied to F H F H
[A,B] [B,A] 39 18 148 159
[A,B,C,D,E,F] [F,E,D,C,B,A] 237 166 3881 3924
[A,B,C,D,E,F] [F,E,D,C,B,A,F,E,D,C,B,A] 237 166 127643 128316

An analysis of this profiling results yields the following conclusions:



– The costs for rmDups are much higher than the costs for perm.
– The costs for perm only depend on the sub-alphabet of the words, not on

the size of the word.
– The costs for rmDups grow exponentially in the size of the word.

Without using the profiler, we might have blamed the inefficiency to the logical
part of the program (i.e., the use of the potentially inefficient constraint isPerm).
However, thanks to the information gathered by the profiler, we know that we
should focus on the code of rmDups to optimize our program. In fact, during
the recursion of rmDups we compute the result of rmDups xs twice, which yields
exponential runtime. By simply introducing a let binding for this result, we
obtain a much more efficient version of rmDups:

rmDups [] = []
rmDups (x:xs) = let ys = rmDups xs in

if elem x ys then ys else x:ys

8 Related Work and Conclusions

The approaches closest to our work are [14] and [2]. On the one hand, [14]
presents a formal specification of the attribution of execution costs to cost cen-
ters by means of an appropriate cost-augmented semantics in the context of lazy
functional programs. A significant difference from our work is that our flat rep-
resentation of programs provides for logical features (like non-determinism) and
that we also present a formal transformation to instrument source programs. On
the other hand, [2] introduces a symbolic profiling scheme for functional logic
languages. However, the approach of [2] does not consider sharing (an essential
component of lazy languages) and, thus, it is not an appropriate basis for the de-
velopment of profiling tools for current implementations of lazy functional logic
languages. Furthermore, we introduced a program transformation that allows us
to compute symbolic costs with a reasonable overhead. Finally, in the context
of the PAKCS environment for Curry, we showed how actual run times can also
be computed by reusing the SICStus Prolog profiler.
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