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Abstract. Unintended failures during a computation are painful but
frequent during software development. Failures due to external reasons
(e.g., missing files, no permissions) can be caught by exception handlers.
Programming failures, such as calling a partially defined operation with
unintended arguments, are often not caught due to the assumption that
the software is correct. This paper presents an approach to verify such
assumptions. For this purpose, non-failure conditions for operations are
inferred and then checked in all uses of partially defined operations. In
the positive case, the absence of such failures is ensured. In the negative
case, the programmer could adapt the program to handle possibly failing
situations and check the program again. Our method is fully automatic
and can be applied to larger declarative programs. The results of an
implementation for functional logic Curry programs are presented.

1 Introduction

The occurrence of failures during a program execution is painful but still frequent
when developing software systems. The two main reasons for such failures are

– external, i.e., outside the control of the program, like missing files or access
rights, unexpected formats of external data, etc.

– internal, i.e., programming errors like calling a partially defined operation
with unintended arguments.

External failures can be caught by exception handlers to avoid a crash of the
entire software system. Internal failures are often not caught since they should
not occur in a correct software system. In practice, however, they occur during
software development and even in deployed systems which results in expensive
debugging tasks. For instance, a typical internal failure in imperative programs
is dereferencing a pointer variable whose current value is the null pointer (due to
this often occurring failure, Tony Hoare called the introduction of null pointers
his “billion dollare mistake”1).

Although null pointer failures cannot occur in declarative programs, such
programs might contain other typical programming errors, like failures due to
1 http://qconlondon.com/london-2009/speaker/Tony+Hoare
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incomplete pattern matching. For instance, consider the following operations
(shown in Haskell syntax) which compute the first element and the tail of a list:
head :: [a] → a tail :: [a] → [a]
head (x:xs) = x tail (x:xs) = xs

In a correct program, it must be ensured that head and tail are not evaluated
on empty lists. If we are not sure about the data provided at run time, we can
check the arguments of partial operations before the application. For instance,
the following code snipped defines an operation to read a command together with
some arguments from standard input (the operation words breaks a string into a
list of words separated by white spaces) and calls an operation processCommand
with the input data:
readCommand = do

putStr "Input a command:"
s <- getLine
let ws = words s
case null ws of True → readCommand

False → processCommand (head ws) (tail ws)

By using the predicate null to check the emptiness of a list, it is ensured that
head and tail are not applied to an empty list in the False branch of the case
expression.

In this work we present a fully automatic tool which can verify the non-failure
of this program. Our technique is based on analyzing the types of arguments and
results of operations in order to ensure that partially defined operations are called
with arguments of appropriate types. The principle idea to use type information
for this purpose is not new. For instance, with dependent types, as in Agda
[8], Coq [1], or Idris [2], or refinement types, as in LiquidHaskell [10,11], one can
express restrictions on arguments of operations. Since one has to prove that these
restrictions hold during the construction of programs, the development of such
programs becomes harder [9]. Another alternative, proposed in [4], is to annotate
operations with non-fail conditions and verify that these conditions hold at each
call site by an external tool, e.g., an SMT solver [3]. In this way, the verification
is fully automatic but requires user-defined annotations and, in some cases, also
the verification of post-conditions or contracts to state properties about result
values of operations [5].

The main idea of this work is to infer the non-fail conditions of operations.
Since the inference of precise conditions is undecidable in general, we approx-
imate them by abstract types, i.e., finite representations of sets of values. In
particular, our methods performs the following steps:

1. We define a call type for each operation. If the actual arguments belong to
the call type, the operation is reducible with some rule.

2. We define in/out types for each operation to approximate the input/output
behavior of the operation.

3. For each call to an operation g occurring in a rule defining operation f , we
check, by considering the call structure and in/out types, whether the call
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type of g is satisfied. If this is not the case, the call type of f is refined and
we repeat the checks with the refined call type.

At the end of this process, each operation has some correct call type which
ensures that it does not fail on arguments belonging to its call type. Note that the
call type might be empty on always failing operations. To avoid such situations,
one can modify the program to encapsulate possibly failing computations so that
a different action can be taken in case of a failure.

To sketch an example application of our method, consider the example above.
Since in most cases declarative programs are defined by case distinctions on data
constructors, we use as abstract types the set of top-level data constructors,
where ⊤ denotes the set of all constructors. This domain is finite and can be
order by set inclusion. For instance, the abstract type {:} denotes all terms
having the list constructor “:” at the top, i.e., all non-empty lists. Therefore, the
call types of the operations head and tail can be characterized by the abstract
type {:}. This call type is easy to derive from the left-hand sides of the rules
defining head and tail. The call type states that, if the argument to head and
tail is a non-empty list, the application is reducible.

Next we approximate the input/output behavior of operations by in/out
types. These are basically disjunctions of abstract types for the input and the
associated output. For instance, the operation null is defined by
null :: [a] → Bool
null [] = True
null (_:_) = False

so that the in/out type of null is

{{[]} ↪→ {True}, {:} ↪→ {False}}

(where the disjunction is represented as a set). The in/out types can also be
computed from the structure of the program with a fixpoint computation for
recursive operations.

Now we want to verify the non-failure of readCommand. Since its definition
contains calls to the partially defined operations head and tail, we have to show
that the call types of these operations are satisfied at their call sites. This can
be deduced by analyzing the case expression

case null ws of True → readCommand
False → processCommand (head ws) (tail ws)

In the branch containing the calls to head and tail, we know that the result of
null ws is False. From the in/out type of null, we can infer that this is only the
case of the argument ws is a non-empty list. Thus, the call types of head and
tail are satisfied by the argument ws at the call site.

In order to make our approach accessible to various declarative languages, we
formulate and implement it in the declarative multi-paradigm language Curry
[7]. Since Curry extends Haskell by logic programming features and there are
also methods to transform logic programs into Curry programs [6], our approach
can also be applied to purely functional or logic programs. A consequence of
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using Curry is the fact that programs might compute with failures, i.e., it is
not an immediate programming error to apply head and tail to possibly empty
lists. However, subcomputations involving such possibly failing calls must be
encapsulated so that it can be checked whether such a computation has no
result (this corresponds to exception handling in deterministic languages). If
this is done, one can ensure that the overall computation does not fail even in
the presence of encapsulated logic (non-deterministic) subcomputations.
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