
A Needed Narrowing Strategy

Preliminary version. Final version in JACM 47(4):776-822, 2000

SERGIO ANTOY

Portland State University, Portland, Oregon

RACHID ECHAHED

Laboratoire LEIBNIZ, Institut IMAG, Grenoble, France

MICHAEL HANUS

Christian-Albrechts-Universität zu Kiel, Germany

Abstract: The narrowing relation over terms constitutes the basis of the most important op-
erational semantics of languages that integrate functional and logic programming paradigms. It
also plays an important role in the definition of some algorithms of unification modulo equational
theories which are defined by confluent term rewriting systems. Due to the inefficiency of simple
narrowing, many refined narrowing strategies have been proposed in the last decade. This paper
presents a new narrowing strategy which is optimal in several respects. For this purpose we propose
a notion of a needed narrowing step that, for inductively sequential rewrite systems, extends the
Huet and Lévy notion of a needed reduction step. We define a strategy, based on this notion,
that computes only needed narrowing steps. Our strategy is sound and complete for a large class
of rewrite systems, is optimal w.r.t. the cost measure that counts the number of distinct steps of
a derivation, computes only incomparable and disjoint unifiers, and is efficiently implemented by
unification.

Categories and Subject Descriptors: D.1.1 [Programming Techniques]: Applicative (Functional)
Programming; D.1.6 [Programming Techniques]: Logic Programming; D.3.3 [Programming

Languages]: Language Constructs and Features—Control structures; D.3.4 [Programming Lan-

guages]: Processors—Optimization; F.4.2 [Mathematical Logic and Formal Languages]:
Grammars and Other Rewriting Systems; G.2.2 [Discrete Mathematics]: Graph Theory—Trees;
I.1.1 [Algebraic Manipulation]: Expressions and Their Representation—Simplification of expres-
sions.

General Terms: Algorithms, Languages, Performance, Theory.

Additional Key Words: Functional Logic Programming Languages, Rewrite Systems, Narrowing
Strategies, Call-By-Need.

A preliminary version of this paper appeared in the Proceedings of the 21st ACM Symposium on Principles of Pro-

gramming Languages, pages 268–279, Portland, Oregon, January 1994.

The Oregon Center for Advanced Technology Education (OCATE) supported in part the collaborative efforts that
lead to the writing of this paper.

Sergio Antoy was supported in part by the National Science Foundation grants CCR-9406751.

Michael Hanus was supported in part by the German Ministry for Research and Technology (BMFT) under grant
ITS 9103, by the ESPRIT Basic Research Working Group 6028 (Construction of Computational Logics), and by the
German Research Council (DFG) under grant Ha 2457/1-1.

Authors’ addresses: Sergio Antoy, Department of Computer Science, Portland State University, P.O. Box 751, Port-
land, OR 97207, U.S.A., antoy@cs.pdx.edu; Rachid Echahed, IMAG-Leibniz, CNRS, 46, avenue Félix Viallet, F-
38031 Grenoble, France, echahed@imag.fr; Michael Hanus, Institut für Informatik und Praktische Mathematik,
Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany, mh@informatik.uni-kiel.de.

1 Introduction

Declarative programs are more abstract than equivalent imperative programs. Declarative lan-
guages replace pointers with algebraic data types, split complex computations into small, easily
parameterizable units and avoid the manipulation of an explicit state through assignments. These
features promise to ease some difficult essential tasks of software development. For example, they
simplify reasoning about programs (verification of non-executable specifications), promote freedom
of implementation (use of parallel architectures), and reduce both development time and main-
tenance efforts (code is compact and easier to read and understand). All these advantages stem
from various factors—the most important being the solid mathematical foundations of declarative
computing paradigms.

Currently, the field of declarative programming is split into two main paradigms based on dif-
ferent mathematical formalisms: functional programming (lambda calculus) and logic programming
(predicate logic). This situation has a negative impact on teaching, research and applications.
Usually there are different courses on functional programming and logic programming, and stu-
dents do not perceive the similarities between them. In terms of research, each field has its own
community, conferences, and journals, and sometimes similar solutions are developed twice. Each
field also has its own application areas and some effort has been devoted to show that one paradigm
can cover applications of the other paradigm [71] instead of showing the advantages of declarative
programming in various application fields.

Each paradigm, of course, has its own advantages. Functional programming offers nested ex-
pressions, efficient evaluation by deterministic (often lazy) evaluation, and higher-order functions.
Logic programming offers existentially quantified variables, partial data structures, and built-in
search. On the other hand, functional and logic languages have a common core and can be seen as
different facets of a single idea. Consequently, the interest in integrating functional and logic pro-
gramming has grown over the last decade and resulted in various proposals of integrated functional
logic languages that combine the advantages of both paradigms (see [31] for a survey). Functional
logic languages extend both functional languages and logic languages. Functional languages are
extended with facilities such as function inversion, partial data structures, and logic variables [65].
Logic languages are extended with nested expressions, a more efficient operational behavior [30],
and less need for impure control features such as the Prolog “cut.”

This paper concerns narrowing. Narrowing is a computation model of considerable importance
both for declarative programming in general and for functional logic languages in particular. We
explain why using an example.

Example 1 Consider the following rules defining the concatenation of lists (as an infix operator
++) where we use the Prolog syntax for lists, i.e., [] denotes the empty list and [E|R] denotes a
non-empty list consisting of a first element E and a remaining list R:

[] ++L → L
[E|R] ++L → [E|R ++L]

In a functional language, this definition is used to concatenate two lists, e.g., [a, b] ++[c, d] evaluates
to the list [a, b, c, d]. It is understood that (the value of) the arguments of ++ must be known
in order to apply a rule. Narrowing extends the use of ++ without altering its definition in a
remarkable way. Even if all or part of either argument of ++ is unknown, (i.e., is an uninstantiated
variable), narrowing keeps computing. In principle, this is not difficult—a value is assigned to the
unknown parts of an argument—but the technical details that make this approach practical (sound,
complete, and as efficient as the best functional computation when the arguments are fully known)

2

are non-trivial and are the central subject of this paper. For the time being, we only want to show
the advantages provided by narrowing in both declarative programming, in general, and functional
logic languages, in particular. We begin with the latter.

A major obstacle in the integration of functional and logic programming is the evaluation of
functional expressions containing logic uninstantiated variables. Narrowing, for its very nature,
is obviously an elegant solution to this problem. An alternative solution is to residuate, i.e., to
delay the evaluation of expressions containing uninstantiated variables until they are more instan-
tiated, but there is no guarantee that these expressions will later become instantiated enough to
be evaluated.

Economy of code, both textual and conceptual, is one of the advantages of narrowing. For
example, any abstraction of a type List which defines the concatenation operation is likely to
define several other functions such as split (a function that given a list L returns two lists X and
Y that concatenated together produce L), isPrefix (a function that given two lists X and L tells
whether there exists a list Y such that X concatenated with Y produces L), and many others.
Narrowing makes (the definitions of) split, isPrefix, and many other functions superfluous. The
advantage for the programmer is not only the time and effort saved during software development
(because many function definitions can be omitted), but also, and perhaps even more so, during
software maintenance.

In any abstraction there are groups of functions, such as ++, split, and isPrefix, that are inti-
mately related, but neither the groups nor the relationships between the functions in a group are
explicit in the code. When a function in a group changes due to maintenance, other functions in
the same groups might have to change accordingly. Without a good understanding of the code, the
programmer cannot know which functions should change or how. In this situation, the potential of
introducing errors that are difficult to find and correct is high. Since narrowing allows us to avoid
defining many related functions, these maintenance errors can no longer occur.

We demonstrate how the definition of related functions becomes superfluous by continuing our
example. The key is the ability to solve equations. The details of this activity will be a central
issue of this paper. For the time being, our discussion is informal and intuitive. The definition
of ++ is used to split a list L into two lists X and Y by solving the equation X ++Y ≈ L. For
instance, solving the equation X ++Y ≈ [a, b] yields the three solutions {X 7→ [], Y 7→ [a, b]},
{X 7→ [a], Y 7→ [b]}, and {X 7→ [a, b], Y 7→ []}. Similarly, we compute a prefix P of a list L (or
check whether P is a prefix of L, if P is instantiated) by solving the equation P ++− ≈ L (−
denotes an anonymous variable). Likewise, the last element E of a list L is computed by solving
the equation − ++[E] ≈ L.

The ability to solve equations over user-defined types is an essential feature in application
programs to describe problems in a declarative and readable manner. For instance, a classic solution
to the 8-queens problem checks whether two queens can capture each other. Within a program,
this task is translated into selecting two distinct elements in a list L and checking whether they
satisfy a given property p. The selection of two distinct elements in a list does not require defining
any additional function beside ++. The entire task is simply coded as

− ++[E] ++− ++[F] ++− ≈ L ∧ p(E,F)

In order to solve equations between expressions containing defined functions, most proposals
for the integration of functional and logic programming languages are based on narrowing, e.g., [10,
22, 24, 29, 55, 65]. Narrowing, introduced in automated theorem proving [67], is a relation over
terms induced by a term rewriting system. For a given term rewriting system R, narrowing is used
to solve equations by computing unifiers with respect to the equational theory defined by R [21].

3

Informally, narrowing unifies a term with the left-hand side of a rewrite rule and fires the rule on
the instantiated term.

Example 2 Consider the following rewrite rules defining the operations “less than or equal to”
and addition for natural numbers represented by terms built with 0 and s:

0 ≤ X → true R1

s(X) ≤ 0 → false R2

s(X) ≤ s(Y) → X ≤ Y R3

0 +X → X R4

s(X) + Y → s(X + Y) R5

The rules defining “≤” will be used in following examples. To narrow the equation Z + s(0) ≈
s(s(0)), rule R5 is applied by instantiating Z to s(X). To narrow the resulting equation, s(X +
s(0)) ≈ s(s(0)), R4 is applied by instantiating X to 0. The resulting equation, s(s(0)) ≈ s(s(0)), is
trivially true. Thus, {Z 7→ s(0)} is the equation’s solution.

To apply the general idea of narrowing to integrated functional logic languages, a functional logic
program is considered as a set of rewrite rules (with some additional restrictions explained later).
A computation is initiated by solving an equation, t ≈ t′, which possibly contains variables. This
includes goal solving, as in logic programming, as well as evaluating expressions as in functional
programming. An expression e can be evaluated by solving the equation X ≈ e so that X is
instantiated to the result of evaluating e.

An important aspect in the design of functional logic languages is the definition of an appropriate
strategy to solve equations. Such a strategy should be sound (i.e., only correct solutions are
computed) and complete (i.e., all solutions or more general representatives of all solutions are
computed). The narrowing relation can be used to define such a strategy, but a brute-force approach
to finding all the solutions of an equation would attempt to unify each rule with each non-variable
subterm of the given equation in every narrowing step. The resulting search space would be huge,
even for small rewrite programs. Therefore, many narrowing strategies for limiting the size of the
search space have been proposed, e.g., basic [42], innermost [22], outermost [17], standard [14, 43,
52, 73], lazy [23, 28, 54, 55, 65], or narrowing with redundancy tests [11]. Each strategy demands
certain conditions of the rewrite relation to ensure the completeness of narrowing (the ability to
compute all the solutions of an equation.)

Example 3 Consider the rewrite rules of Example 2. Although the equation (X+X)+X ≈ 0 has
only one solution, eager narrowing strategies that evaluate argument terms first have an infinite
search space for this equation by always applying rule R5 to the innermost term headed by +.
This infinite derivation can be avoided by a lazy narrowing strategy which evaluates a term only
if it is demanded. The right definition of “demanded” is a subtle point since the “demandedness”
of a term may depend on the instantiation of other variables. For instance, consider the term
X ≤ Y + Y . The evaluation of the second argument Y + Y is not demanded if X is instantiated
to 0, but it is demanded if X is instantiated to s(· · ·). A lazy narrowing strategy where the notion
of “demanded” is independent of variable instantiations is defined in [55]. Thus, this strategy may
perform superfluous steps and computes answers that are too specialized. This fact motivated
various improvements, (e.g., [28, 49, 54, 56]) but none of them could show that the performed
computation steps are really necessary and cannot be avoided.

Our contribution is a strategy that, for inductively sequential systems [2], preserves the completeness
of narrowing and performs only steps that are “unavoidable” for solving equations. This charac-
terization leads to the optimality of our strategy with respect to the number of “distinct” steps
of a derivation. Advantages of our strategy over existing ones include: the large class of rewrite

4

systems to which it is applicable, both the optimality of the derivations and the incomparability of
the unifiers it computes, and the ease of its implementation.

The notion of an unavoidable step is well-known for rewriting. Orthogonal systems have the
property that in every term t not in normal form, there exists a redex called needed that must
“eventually” be reduced to compute the normal form of t [41, 48, 60]. Furthermore, repeated
rewriting of needed redexes in a term suffices to compute its normal form, if it exists. Loosely
speaking, only needed redexes really matter for rewriting in orthogonal systems. We extend this
fact to narrowing in inductively sequential systems—a subclass of the orthogonal systems.

We also present a second optimality result (which cannot be stated for rewriting derivation)
concerned with the substitution computed by a narrowing derivation. Every derivation of a same
equation computes a set of substitutions. Different derivations compute disjoint sets of substitu-
tions. This property nicely complements the neededness of a step in that the derivations computed
by the strategy are needed in their entirety as well. Any solution computed by a derivation is not
computed by any other derivation; hence, every derivation leading to a solution is needed as well
as any step of the derivation.

Restricting our discussion to inductively sequential systems is not a limitation for the use of
narrowing in programming languages. In fact, inductively sequential systems model the first-order
functional component of programming languages, such as ML and Haskell, that establish priorities
among rules by textual precedence or specificity [45]. Computing a needed redex in a term is an
unsolvable problem. Strongly sequential systems are a large class for which the problem has an
efficient solution. Inductively sequential systems are constructor-based and strongly sequential [2].
It has been shown both that inductively sequential systems are the constructor-based subclass of
strongly sequential systems [34] and that a meaningful notion of needed redex can be formulated
for overlapping inductively sequential systems [4].

After some preliminaries in Section 2, we present our strategy in Section 3. We formulate the
soundness and completeness results in Section 4. We address our strategy’s optimality in Section 5.
Section 6 outlines several recent extensions of our strategy. We compare related work in Section 7.
Our conclusion is in Section 8.

2 Preliminaries

We recall some key notions and notations about rewriting. We are consistent with the conventions
of [15, 47]. First of all, we fix the notations for terms.

Definition 1 A many-sorted signature Σ is a pair (S,Ω) where S is a set of sorts and Ω is a family
of operation sets of the form Ω = (Ωw,s|w ∈ S∗, s ∈ S). Let X = (Xs|s ∈ S) be an S-sorted,
countably infinite set of variables. Then the set T (Σ,X)s of terms of sort s built from Σ and X
is the smallest set containing Xs such that f(t1, . . . , tn) ∈ T (Σ,X)s whenever f ∈ Ω(s1,...,sn),s and
ti ∈ T (Σ,X)si

. If f ∈ Ωε,s, we write f instead of f(). T (Σ,X) denotes the set of all terms. The set
of variables occurring in a term t is denoted by Var(t). A term t is called ground term if Var(t) = ∅.
A term is called linear if it does not contain multiple occurrences of one variable. In the following,
Σ stands for a many-sorted signature.

In practice, most equational logic programs are constructor-based; symbols, called constructors,
that construct data terms are distinguished from those, called defined functions or operations, that
operate on data terms (see, for instance, the Equational Interpreter [61] and the functional logic
languages ALF [29], BABEL [55], K-LEAF [23], LPG [10], SLOG [22]). Hence we define:

5

Definition 2 The set of operations Ω of a signature Σ is partitioned into two disjoint sets C and
D. C is the set of constructors and D is the set of defined operations. The terms in T (C,X) are
called constructor terms. A term f(t1, . . . , tn) (n ≥ 0) is called a pattern if f ∈ D and t1, . . . , tn
are constructor terms. A term f(t1, . . . , tn) (n ≥ 0) is called operation-rooted term (respectively
constructor-rooted term) if f ∈ D (respectively f ∈ C). A constructor-based term rewriting system
R is a set of rewrite rules, l → r, such that l and r have the same sort, l is a pattern, and
Var(r) ⊆ Var(l).

In the rest of this paper we assume that R is a constructor-based term rewriting system. Substitu-
tions are an essential concept to define the notions of rewriting and narrowing.

Definition 3 A substitution is a mapping σ:X → T (Σ,X) with σ(x) ∈ T (Σ,X)s for all variables
x ∈ Xs such that its domain Dom(σ) = {x ∈ X | σ(x) 6= x} is finite. We frequently identify a
substitution σ with the set {x 7→ σ(x) | x ∈ Dom(σ)}. The image of a substitution σ is the set of
variables Im(σ) = {y ∈ Var(σ(x)) | x ∈ Dom(σ)}. Substitutions are extended to morphisms on
T (Σ,X) by σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)) for every term f(t1, . . . , tn). A substitution σ is
called (ground) constructor substitution if σ(x) is a (ground) constructor term for all x ∈ Dom(σ).
The composition of two substitutions σ and τ is defined by (σ ◦ τ)(x) = σ(τ(x)) for all x ∈ X . The
restriction σ|V of a substitution σ to a set V of variables is defined by σ|V (x) = σ(x) if x ∈ V and
σ|V (x) = x if x 6∈ V . A substitution σ is more general than σ′, denoted by σ ≤ σ′, if there is a
substitution τ with σ′ = τ ◦ σ. If V is a set of variables, we write σ = σ′[V] iff σ|V = σ′|V , and we

write σ ≤ σ′[V] iff there is a substitution τ with σ′ = τ ◦ σ[V]. A substitution σ is idempotent iff
σ ◦ σ = σ.

A term t′ is an instance of t if there is a substitution σ with t′ = σ(t). In this case we write
t ≤ t′. A term t′ is a variant of t if t ≤ t′ and t′ ≤ t.

A unifier of two terms s and t is a substitution σ with σ(s) = σ(t). A unifier σ is called most
general (mgu) if σ ≤ σ′ for every other unifier σ′. Most general unifiers are unique up to variable
renaming. By introducing a total ordering on variables we can uniquely choose the most general
unifier of two terms. Hence we denote by mgu(s, t) the most general unifier of s and t.

All the unifiers considered in this paper will be computed from a term and a linear pattern whose set
of variables are disjoint. Under these conditions it is easy to verify that, restricted to the variables
of these terms, only idempotent substitutions are computed. Therefore, we implicitly assume in
our proofs that a unifier is an idempotent substitution and that any variable in the domain of a
unifier is already contained in one of the terms being unified.

We now introduce positions, which are essential to define the notions of rewriting and narrowing.

Definition 4 An occurrence or position is a sequence of positive integers identifying a subterm in
a term. For every term t, the empty sequence denoted by Λ, identifies t itself. For every term of
the form f(t1, . . . , tk), the sequence i · p, where i is a positive integer not greater than k and p is a
position, identifies the subterm of ti at p. The subterm of t at p is denoted by t|p and the result of
replacing t|p with s in t is denoted by t[s]p. If p and q are positions, we write p ≤ q if p is above or
is a prefix of q, and we write p ‖ q if the positions are disjoint (see [15] for details). The expression
p · q denotes the position resulting from the concatenation of the positions p and q, i.e., we overload
the symbol “·.”

We are now ready to define rewriting.

Definition 5 A reduction step is an application of a rewrite rule to a term, i.e., t→p,R s if there
exist a position p, a rewrite rule R = l → r and a substitution σ with t|p = σ(l) and s = t[σ(r)]p.

6

In this case we say t is rewritten (at position p) to s and t|p is a redex of t. We will omit the
subscripts p and R if they are clear from the context. A redex t|p of t is an outermost redex if there

is no redex t|q of t with q < p.
∗
→ denotes the transitive and reflexive closure of →.

∗
↔ denotes the

transitive, reflexive and symmetric closure of →. A term t is reducible to a term s if t
∗
→ s. A term

t is called irreducible or in normal form if there is no term s with t → s. A term s is a normal
form of t if t is reducible to the irreducible term s.

Rewriting is computing, i.e., the value of a functional expression is its normal form obtained by
rewriting. Functional logic programs compute with partial information, i.e., a functional expres-
sion may contain logic variables. The goal is to compute values for these variables such that the
expression is evaluable to a particular normal form, e.g., a constructor term [23, 55]. This is done
by narrowing.

Definition 6 A term t is narrowable to a term s if there exist a non-variable position p in t (i.e.,
t|p 6∈ X), a variant l → r of a rewrite rule in R with Var(t) ∩ Var(l → r) = ∅ and a unifier σ of
t|p and l such that s = σ(t[r]p). In this case we write t ;p, l→r,σ s. If σ is a most general unifier

of t|p and l, the narrowing step is called most general. We write t0
∗
;σ tn if there is a narrowing

derivation t0 ;p1,R1, σ1
t1 ;p2,R2, σ2

· · ·;pn,Rn, σn
tn with σ = σn ◦ · · · ◦ σ2 ◦ σ1.

Since the instantiation of the variables in the rule l→ r by σ is not relevant for the computed result
of a narrowing derivation, we will omit this part of σ in the example derivations in this paper.

Example 4 Referring to Example 2,

A+B ;Λ,R5,{A7→s(0),B 7→0} s(0 + 0)

and

A+B ;Λ,R5,{A7→s(X)} s(X +B)

are narrowing steps of A+B, but only the latter is a most general narrowing step.

Padawitz [62] also distinguishes between narrowing and most general narrowing but, in most papers,
narrowing is intended as most general narrowing (e.g., [42]). Most general narrowing has the
advantage that most general unifiers are uniquely computable, whereas there exist many distinct
unifiers. Dropping the requirement that unifiers be most general is crucial to the definition of a
needed narrowing step since these steps may be impossible with most general unifiers.

Narrowing solves equations, i.e., computes values for the variables in an equation such that the
equation becomes true, where an equation is a pair t ≈ t′ of terms of the same sort. In a constructor-
based setting, it is reasonable to consider only ground constructor terms as values and to require
that an equation holds if both sides have the same value (see also [23] for a more detailed discussion
on this topic). Since we do not require terminating term rewriting systems, normal forms or values
do not exist for each functional expression. Hence, we define the validity of an equation as a strict
equality on terms in the spirit of functional logic languages with a lazy operational semantics such
as K-LEAF [23] and BABEL [55]; an equation is satisfied if both sides are equivalent to a same
ground constructor term. This is formally expressed by the following definition (since we consider
in this paper only confluent rewrite systems).

Definition 7 An equation is a pair t ≈ t′ of terms of the same sort. A substitution σ is a solution
for an equation t ≈ t′ iff σ(t) and σ(t′) are reducible to a same ground constructor term.

7

Our definition of solution is weaker than convertibility, i.e., σ(t)
∗
↔ σ(t′). This is due to the fact

that we are discussing constructor-based, not necessarily terminating rewrite systems.
Equations can also be interpreted as terms by defining the symbol ≈ as a binary operation

symbol, more precisely, one operation symbol for each sort. Therefore, all notions for terms, such
as substitution, rewriting, narrowing etc., will also be used for equations. The semantics of ≈ are
defined by the following rules, where ∧ is assumed to be a right-associative infix symbol and c is a
constructor of arity 0 in the first rule and arity n > 0 in the second rule.

c ≈ c → true
c(X1, . . . , Xn) ≈ c(Y1, . . . , Yn) → (X1 ≈ Y1) ∧ · · · ∧ (Xn ≈ Yn)

true ∧X → X

These are the equality rules of a signature (this encoding of strict equality as rewrite rules is
analogous to the encoding equality by the rule x ≈ x → true in completion-based approaches to
equation solving [16]). It is easy to see that the orthogonality status of a rewrite system (see below)
is not changed by these rules. The same holds true for the inductive sequentiality, which will be
defined shortly. With these rules, a solution of an equation is computed by narrowing it to true—an
approach also taken in K-LEAF [23] and BABEL [55]. The equivalence between the reducibility to
a same ground constructor term and the reducibility to true using the equality rules is addressed
by Proposition 1.

We also require orthogonality, which ensures the good-behavior of computations.

Definition 8 A term rewriting system R is orthogonal if for each rule l→ r ∈ R the left-hand side
l is linear (left-linearity) and for each non-variable subterm l|p of l there exists no rule l′ → r′ ∈ R
such that l|p and l′ unify (non-overlapping) (where l′ → r′ is not a variant of l → r in case of
p = Λ).

Our strategy extends to narrowing the rewriting notion of need. The idea, for rewriting, is to
reduce in a term only certain redexes which must be reduced to compute the normal form of t.
In orthogonal term rewriting systems, every term not in normal form has a redex that must be
reduced to compute the term’s normal form. The following definition [41] formalizes this idea.

Definition 9 Let A = t →u, l→r t
′ be a reduction step of some term t into t′ at position u with

rule l→ r. The set of descendants (or residuals) of a position v by A, denoted v \A, is

v \A =







∅ if v = u · p and l|p is not a variable,
{v} if u 6≤ v,
{u · p′ · q such that r|p′ = x} if v = u · p · q and l|p = x, where x is a variable.

The set of descendants of a position v by a reduction sequence B is defined by induction as follows

v \B =











{v} if B is the null derivation,
⋃

w∈v\B′

w \B′′ if B = B′B′′, where B′ is the initial step of B.

A position u of a term t is called needed iff in every reduction sequence of t to a normal form a
descendant of t|u is rewritten at its root.

A position uniquely identifies a subterm of a term. The notion of descendant for terms stems
directly from the corresponding notion for positions.

A more intuitive definition of descendant of a position or term is proposed in [48]. Let t
∗
→ t′

be a reduction sequence and s a subterm of t. The descendants of s in t′ are computed as follows:
underline the root of s and perform the reduction sequence t

∗
→ t′. Then, every subterm of t′ with

an underlined root is a descendant of s.

8

Example 5 Consider the operation that doubles its argument by means of an addition. The rules
of addition are in Example 2.

double(X) → X +X R6

In the following reduction of double(0 + 0) we show, by means of underlining, the descendants of
0 + 0.

double(0 + 0)→Λ,R6
(0 + 0) + (0 + 0)

The set of descendants of position 1 by the above reduction is {1, 2}.

3 Outermost-needed narrowing

An efficient narrowing strategy must limit the search space. No suitable rule can be ignored,
but some positions in a term may be neglected without losing completeness. For instance, Hullot
[42] has introduced basic narrowing, where narrowing is not applied at positions introduced by
substitutions. Fribourg [22] has proposed innermost narrowing, where narrowing is applied only
to a pattern. Hölldobler [39] has combined innermost and basic narrowing. Narrowing only at
outermost positions is complete only if the rewrite system satisfies strong restrictions such as non-
unifiability of subterms of the left-hand sides of rewrite rules [17]. Lazy narrowing [23, 54, 65], akin
to lazy evaluation in functional languages, attempts to avoid unnecessary evaluations of expressions.
A lazy narrowing step is applied at outermost positions with the exception that inner arguments of
a function are evaluated, by narrowing them to their head normal forms, if their values are required
for an outermost narrowing step. Unfortunately, the property “required” depends on the rules tried
in following steps, but looking-ahead is not a viable option.

We want to perform only narrowing steps that are necessary for computing solutions. Naively,
one could say that a narrowing step t ;p, l→r,σ t′ is needed iff p is a position of t, σ is the most
general unifier of t|p and l, and σ(t|p) is a needed redex. Unfortunately, a substantial complication
arises from this simple approach. If t′ is a normal form, the step is trivially needed. However, some
instantiation performed later in the derivation could “undo” this need.

Example 6 Referring to Example 2, consider the term t = X ≤ Y + Z. According to the naive
approach, the following narrowing step of t at position 2

X ≤ Y + Z ;2,R4,{Y 7→0} X ≤ Z

would be needed since X ≤ Z is a normal form. This step is indeed necessary to solve the inequality
if s(x) for some term x is eventually substituted for X, although this claim may not be obvious
without the results presented in this paper. However, the same step becomes unnecessary if 0 is
substituted for X. The following derivation computes a more general solution of the inequation
without ever narrowing any descendant of t at 2.

X ≤ Y + Z ;Λ,R1,{X 7→0} true

Thus, in our definition, we impose a condition strong enough to ensure the necessity of a narrowing
step, no matter which unifiers might be used later in the derivation.

Definition 10 A narrowing step t ;p,R,σ t′ is called needed or outermost-needed iff, for every
η ≥ σ, p is the position of a needed or outermost-needed redex of η(t), respectively. A narrow-
ing derivation is called needed or outermost-needed iff every step of the derivation is needed or
outermost-needed, respectively.

9

Our definition adds, with respect to rewriting, a new dimension to the difficulty of computing needed
narrowing steps. We must take into account any instantiation of a term in addition to any derivation
to normal form. Luckily, as for rewriting, the problem has an efficient solution in inductively
sequential systems. We forgo the requirement that the unifier of a narrowing step be most general.
The instantiation that we demand in addition to that for the most general unification ensures
the need of the position irrespective of future unifiers. It turns out that this extra instantiation
would eventually be performed later in the derivation. Thus, we are only “anticipating” it and
the completeness of narrowing is preserved. This approach, however, complicates the notion of
narrowing strategy.

According to [17, 62], a narrowing strategy is a function from terms into non-variable positions
in these terms so that exactly one position is selected for the next narrowing step. Unfortunately,
this notion of narrowing strategy is inadequate for narrowing with arbitrary unifiers which, as
Example 6 shows, are essential to capture the need of a narrowing step.

Definition 11 A narrowing strategy is a function from terms into sets of triples. If S is a narrowing
strategy, t is a term, and (p, l → r, σ) ∈ S(t), then p is a position of t, l → r is a rewrite rule, and
σ a substitution such that t ;p, l→r,σ σ(t[r]p) is a narrowing step.

We now define a class of rewrite systems for which there exists an efficiently computable needed
narrowing strategy. Systems in this class have the property that the rules defining any operation
can be organized in a hierarchical structure called definitional tree [2], which is used to implement
needed rewriting. This paper generalizes that result to narrowing.

The symbols branch and leaf, used in the next definition, are uninterpreted functions used to
classify the nodes of the tree. A definitional tree can be seen as a partially ordered set of patterns
with some additional constraints.

Definition 12 T is a partial definitional tree, or pdt, with pattern π iff one of the following cases
holds:

T = branch(π, o, T1, . . . , Tk), where π is a pattern, o is the occurrence of a variable of π, the
sort of π|o has constructors c1, . . . , ck, for some k > 0, and for all i in {1, . . . , k}, Ti is a pdt
with pattern π[ci(X1, . . . , Xn)]o, where n is the arity of ci and X1, . . . , Xn are new distinct
variables.

T = leaf(π), where π is a pattern.

We denote by P(Σ) the set of pdts over the signature Σ. Let R be a rewrite system. T is a
definitional tree of an operation f iff T is a pdt whose pattern argument is f(X1, . . . , Xn), where
n is the arity of f and X1, . . . , Xn are new distinct variables, and for every rule l → r of R with
l = f(t1, . . . , tn), there exists a leaf leaf(π) of T such that l is a variant of π, and we say that the
node leaf(π) represents the rule l → r. We call minimal a definitional tree T of an operation f iff
below any branch node of T there is a leaf representing a rule defining f .

We call inductively sequential an operation, f , of a rewrite system, R, iff there exists a def-
initional tree T of f such that each leaf node of T represents at most one rule of R. We call
inductively sequential a rewrite system R iff any operation of R is inductively sequential.

Example 7 We show pictorial representations of definitional trees of the operations defined in
Example 2. A branch node of the picture shows the pattern of a corresponding node of the
definitional tree. Every leaf node represents a rule. We show the right side of each such rule below
the pattern of the leaf which is connected by an arrow. The occurrence argument of a branch node
is shown by emboldening the corresponding subterm in the pattern argument.

10

X1 ≤ X2

0 ≤ X2

true

s(X3) ≤ X2

s(X3) ≤ 0

false

s(X3) ≤ s(X4)

X3 ≤ X4

Y1 + Y2

0 + Y2 s(Y3) + Y2

Y2 s(Y3 + Y2)

Distinguishing whether or not a leaf node of a definitional tree of some operation f represents a
rule defining f is sometimes important in our treatment. We write exempt(π) instead of leaf(π)
to point out that leaf(π) is a pdt that does not represent any rule. Likewise, we abbreviate with
rule(π, σ(l) → σ(r)) the fact that leaf(π) is a pdt representing some rule l → r of the considered
rewrite system, where σ is the renaming substitution such that σ(l) = π. The patterns of a
definitional tree are a finite set partially ordered by the subsumption preordering. The set of the
patterns occurring within the leaves of a definitional tree is complete w.r.t. the set of constructors
in the sense of [40]. Consequently, the defined functions of an inductively sequential term rewriting
system are completely defined over their application domains [26, 69] (i.e., any ground term has a
constructor term as a normal form) if the considered term rewriting system is terminating and the
possible definitional trees do not contain exempt nodes.

We now give an informal account of our strategy. Let t = f(t1, . . . , tk) be a term to narrow. We
unify t with some maximal element of the set of patterns of a definitional tree of f . Let π denote
such a pattern, τ the most general unifier of t and π, and T the pdt in which π occurs. If T is a
rule pdt, then we narrow τ(t) at the root with the rule represented by T . If T is an exempt pdt,
then τ(t) cannot be narrowed to a constructor-rooted term. If T is a branch pdt, then we recur on
τ(t|o), where o is the occurrence contained in T and τ is the anticipated substitution. The result
of the recursive invocation is suitably composed with τ and o. The details of this composition are
in the formal definition presented below.

We derive our outermost-needed strategy from a mapping, λ, that implements the above com-
putation. λ takes an operation-rooted term, t, and a definitional tree, T , of the root of t, and
non-deterministically returns a triple, (p,R, σ), where p is a position of t, R is either a rule l → r
of R or the distinguished symbol “?,” and σ is a substitution. If R = l → r, then our strategy
performs the narrowing step t ;p, l→r,σ σ(t[r]p). If R = ?, then our strategy gives up, since it is
impossible to narrow t to a constructor-rooted term.

In the following, pattern(T) denotes the pattern argument of T , and ≺ denotes the Noetherian
ordering on T (Σ,X) × P(Σ) defined by: (t1, T1) ≺ (t2, T2) if and only if either: (i) t1 has fewer
occurrences of defined operation symbols than t2 or (ii) t1 = t2 and T1 is a proper subtree of T2.

Definition 13 The function λ takes two arguments: an operation-rooted term, t, and a pdt, T ,
such that pattern(T) and t unify. The function λ yields a set of triples of the form (p,R, σ), where
p is a position of t, R is either a rewrite rule or the distinguished symbol “?,” and σ is a unifier of
pattern(T) and t. Thus, let t be a term and T a pdt in the domain of λ. The function λ is defined

11

by induction on ≺ as follows.

λ(t, T) 3











































































(Λ, R,mgu(t, π)) if T = rule(π,R);

(Λ, ?,mgu(t, π)) if T = exempt(π);

(p,R, σ) if T = branch(π, o, T1, . . . , Tk),
t and pattern(Ti) unify, for some i, and
(p,R, σ) ∈ λ(t, Ti);

(o · p,R, σ ◦ τ) if T = branch(π, o, T1, . . . , Tk),
t and pattern(Ti) do not unify, for any i,
τ = mgu(t, π),
T ′ is a definitional tree of the root of τ(t|o), and
(p,R, σ) ∈ λ(τ(t|o), T

′).

The function λ is trivially well-defined in the third case. By the definition of pdt, there exists a
proper subpdt Ti of T such that pattern(Ti) and t unify if t|o is constructor-rooted or a variable.
Similarly, λ is well-defined in the fourth case since this case can only occur if t|o is operation-rooted.
In this case, τ|Var(t) is a constructor substitution since π is a linear pattern. Since t is operation-
rooted and o 6= Λ, τ(t|o) has fewer occurrences of defined operation symbols than t. Since t|o is
operation-rooted, so is τ(t|o). By the definition of pdt, pattern(T ′) ≤ τ(t|o), i.e., pattern(T

′) and
τ(t|o) unify. This implies that λ is well-defined in this case as well.

As in proof procedures for logic programming, we have to apply variants of the rewrite rules with
fresh variables to the current term. Therefore, we assume in the following that the definitional
trees contain new variables if they are used in a narrowing step.

The computation of λ(t, T) may entail a non-deterministic choice when T is a branch pdt—the
integer i when t|o is a variable. The substitution τ , when t|o is operation-rooted, is the anticipated
substitution guaranteeing the need of the computed position. It is pushed down in the recursive call
to λ to ensure the consistency of the computation when t is non-linear. The anticipated substitution
is neglected when t|o is not operation-rooted since the pattern in Ti is an instance of π. Hence, σ
extends the anticipated substitution.

Example 8 We trace the computation of λ for the initial step of a derivation of X ≤ Y + Z as
discussed in Example 6.

λ(X ≤ Y + Z, branch(X1 ≤ X2, 1, . . .))
λ(X ≤ Y + Z, branch(s(X3) ≤ X2, 2, . . .))

λ(Y + Z, branch(Y1 + Y2, 1, . . .))
λ(Y + Z, rule(0 + Y2,R4))
(Λ,R4, {Y 7→ 0, Y2 7→ Z})

(Λ,R4, {Y 7→ 0, Y2 7→ Z})
(2,R4, {X 7→ s(X3), X2 7→ 0 + Z, Y 7→ 0, Y2 7→ Z})

(2,R4, {X 7→ s(X3), X2 7→ 0 + Z, Y 7→ 0, Y2 7→ Z})

Note that we consider narrowing of operation-rooted terms. This limitation shortens our discussion
and suffices for solving equations (see proof of Theorem 4). Extending our results to constructor-
rooted terms is straightforward. To compute an outermost-needed narrowing step of a constructor-
rooted term, it suffices to compute an outermost-needed narrowing step of any of its maximal
operation-rooted subterms.

We prove two simple technical lemmas concerning the mutual relationships between the patterns
of the pdts of a definitional tree:

12

Lemma 1 Let T be a pdt, p and q two positions of T , and πp and πq the patterns of the pdts at
the positions p and q of T respectively. If p ≤ q, then πp ≤ πq.

Proof If p ≤ q, then there exists a position, r, such that q = p ·r. The proof is by induction on the
length of r. Base case: r = Λ implies p = q and consequently πp = πq. Induction step: r = i · r′, for
some positive integer i and position r′. Let Tp be the pdt of T at p. Tp = branch(πp, o, Tp1, . . . , Tpk),
for some position o, and pdts Tp1, . . . , Tpk, for some k ≥ i. Let πpi be the pattern in Tpi. Since πp is
linear and πpi is obtained by instantiating with a constructor term the variable of πp at o, πp < πpi.
By construction, πq is equal to the pattern of the pdt of Tpi at r

′. By the induction hypothesis,
πpi ≤ πq. By the transitivity of “≤,” πp < πq. 2

Lemma 2 The patterns of the pdts at two disjoint positions of a pdt T do not unify.

Proof The proof is by structural induction on the pdt T .

Base case: T = leaf(π), for some pattern π.

There are no disjoint positions in T and the claim vacuously holds.

Induction step: T = branch(π, o, T1, . . . , Tk), for some pattern π, position o, and pdts T1, . . . , Tk,
for some k > 0.

Let p and q be two disjoint positions in T . Both p and q differ from Λ; hence, there exist
integers i and j in {1, . . . , k}, and positions p′ and q′ such that p = i · p′ and q = j · q′. If
i = j, then p′ and q′ are disjoint positions of Ti. The patterns of T at p and q are equal to the
patterns of Ti at p

′ and q′, respectively. The latter do not unify by the induction hypothesis.
If i 6= j then, by Lemma 1, the patterns of T at p and q are instances of the root patterns of
Ti and Tj , respectively. The latter do not unify since they have a different symbol at position
o; thus, the former do not unify either. 2

Lemma 3 If R is an inductively sequential rewrite system, then R is orthogonal.

Proof Let f be any operation of R. By definition of inductive sequentiality, there exists a
definitional tree of f , T , such that every rule defining f is represented by one leaf of T . Thus, the
left-hand sides of the rules defining f are linear since all patterns of a definitional tree are linear
by definition. They are also non-overlapping by Lemma 2. Finally, since the left-hand sides are
patterns, the rules of different operations do not overlap. Hence, R is orthogonal. 2

We are interested only in narrowing derivations that end in a constructor term. Our key result is
that if λ, on input of a term t, computes a position p and a substitution σ and η extends σ, then
η(t) must “eventually” be narrowed at p to obtain a constructor term. “Eventually” is formalized
by the notion of descendant which, initially proposed for rewriting [41], is extended to narrowing
simply by replacing →u, l→r with ;u, l→r,σ in Definition 9.

Theorem 1 Let R be an inductively sequential rewrite system, t an operation-rooted term, and T
a definitional tree of the root of t. Let (p,R, σ) ∈ λ(t, T) and η extend σ, i.e., η ≥ σ.

1. In any narrowing derivation of η(t) to a constructor-rooted term a descendant of η(t|p) is
narrowed to a constructor-rooted term.

2. If R = l→ r, then t ;p,R,σ σ(t[r]p) is an outermost-needed narrowing step.

3. If R = ?, then η(t) cannot be narrowed to a constructor-rooted term.

13

Proof We prove by Noetherian induction on ≺ the claim generalized by considering T a subtree
of a definitional tree of the root of t such that pattern(T) and t unify. We consider the cases of the
definition of λ.

Base case: consider (t, T) where t is an operation-rooted term and T = leaf(π), for some pattern
π. We consider the two subcases of the definition of λ for leaf nodes:

T = rule(π,R′), for some pattern π and rule R′.

In this case (p,R, σ) = (Λ, R′,mgu(t, π)). Since η(t) is operation-rooted and is a descen-
dant of itself, claim number 1 trivially holds. Let R′ = l→ r, for some terms l and r. By
the definition of a definitional tree, π = l; hence, σ(l) = σ(t|p). Thus, t ;p,R,σ σ(t[r]p)
is a narrowing step. Since R is orthogonal (by Lemma 3), its redex schemes do not
overlap; consequently, R keeps matching any descendant of η(t) obtained by reductions
strictly below Λ. Thus, η(t) is a needed redex of itself and it is obviously outermost.
Claim number 3 vacuously holds.

T = exempt(π), for some pattern π.

In this case (p,R, σ) = (Λ, ?,mgu(t, π)). Since η ≥ σ, η also unifies π and t. We could
extend R by changing the exempt node into a rule node in which the left-hand side of
the rule is obviously π and the right-hand side is arbitrary. Thus, similar to the previous
case, π would keep unifying with any descendant of η(t) obtained by reductions strictly
below the root. Thus, by Lemma 2, there exists no rule in R that would unify with
η(t). Thus, η(t) cannot be narrowed to a constructor-rooted term which implies claim
number 3 and, trivially, claim number 1. Claim number 2 vacuously holds.

Induction step: consider (t, T) where t is an operation-rooted
term and T = branch(π, o, T1, . . . , Tk), for some pattern π, position o, and pdts T1, . . . , Tk, for
some k > 0. We consider the two subcases of the definition of λ for branch nodes.

t|o is either constructor-rooted or is a variable.

By the definition of pdt, there exists some i in {1, . . . , k} such that pattern(Ti) and t
unify. By the definition of λ, λ(t, T) = λ(t, Ti). By the induction hypothesis, all the
claims hold already for λ(t, Ti) and they are independent of Ti.

t|o is operation-rooted.

By the hypothesis, π and t unify. Let τ = mgu(t, π). Since t|o is operation-rooted, so is
τ(t|o). Let T ′ be a definitional tree of the root of τ(t|o). Let (p′, R′, σ′) ∈ λ(τ(t|o), T

′)
such that (p,R, σ) = (o · p′, R′, σ′ ◦ τ), where p′ is a position of t|o, R

′ is either a rule
or “?,” and σ′ is a substitution. In this case (t|o)|p′ = t|o·p′ = t|p. By Lemma 2, any
rule whose left-hand side might unify with t is represented by a leaf of Ti. If l → r
is a rule represented by a leaf of Ti then, by Lemma 1, pattern(Ti) ≤ l. Thus, by the
definition of definitional tree, l has a constructor symbol at position o. However, the
case being considered assumes that t has an operation symbol at position o. Hence,
in any narrowing derivation of η(t) that includes a step at the root, a descendant of
η(t|o) must be narrowed to a constructor-rooted term. Since t is operation-rooted, η(t)
is also operation-rooted. In any narrowing derivation of η(t) to a constructor-rooted
term a descendant of η(t) is narrowed at the root and, consequently, a descendant of
η(t|o) is narrowed to a constructor-rooted term. By the definition of λ, τ(t|o) has fewer
occurrences of operation symbols than t. Thus, by the induction hypothesis, for any η ′ ≥
σ′, in any narrowing derivation of η′(τ(t|o)) to a constructor-rooted term a descendant

14

of η′(τ(t|p)) is narrowed to a constructor-rooted term. Since η ≥ σ, η = φ ◦ σ for some
substitution φ. Let η′ = φ◦σ′ ≥ σ′, which implies η′(τ(t)) = η(t) since σ = σ′◦τ . Hence,
in any narrowing derivation of η(t|o) to a constructor-rooted term, a descendant of η(t|p)
is narrowed to a constructor-rooted term. Thus, claim number 1 holds by transitivity.

We consider the two cases for R′.

R′ is a rule.

By the induction hypothesis, τ(t|o) ;p′,R,σ′ σ′(τ(t|o)[r]p′) is an outermost-needed
narrowing step; hence, t ;p,R,σ σ(t[r]p) is a narrowing step. The need of η(t|p) with
respect to η(t) is an immediate consequence of claim number 1. By the hypothesis,
π and t unify and, by the definition of definitional tree, π is a pattern and o is a
position of π. These conditions imply that there is only one operation symbol in
σ(t) above o: the root of σ(t). In constructor-based systems, redexes occur only
at positions of operation symbols. We have proved above that η(t) is not a redex.
Thus, there are no redexes in η(t) above o and, by the induction hypothesis, the
redex η(t|p) is outermost in η(t) too. Claim number 3 vacuously holds.

R′ = ?.

We have proved above that, in any narrowing derivation of η(t) to a constructor-
rooted term, a descendant of η(t|o) is narrowed to a constructor-rooted term. By the
induction hypothesis, for any η′ ≥ σ′, η′(τ(t|o)) cannot be narrowed to a constructor-
rooted term. Since η ≥ σ, η = φ◦σ for some substitution φ. Let η′ = φ◦σ′ ≥ σ′ which
implies η = η′ ◦ τ since σ = σ′ ◦ τ . Thus, η(t|o) = η′(τ(t|o)) cannot be narrowed to
a constructor-rooted term. Hence, η(t) cannot be narrowed to a constructor-rooted
term. Claim number 2 vacuously holds. 2

We say that a narrowing derivation is computed by λ iff for each step t ;p,R,σ t
′ of the derivation,

(p,R, σ) belongs to λ(t, T). The function λ implements our narrowing strategy as discussed next.
The theorem shows (claim 2) that our strategy λ computes only outermost-needed narrowing
steps. The theorem, however, does not show that the computation succeeds, i.e., a narrowing step
is computed for any operation-rooted, hence expectedly narrowable, term. This requirement may
seem essential, since to narrow a term “all the way” a strategy should compute a narrowing step,
when one exists. Indeed, in incomplete rewrite systems, λ may fail to compute any narrowing step
even when some step could be computed.

Example 9 Consider an incompletely defined operation, f , taking and returning a natural number.

f(0)→ 0

The term t = f(s(f(0))) can be narrowed (actually rewritten, since it is ground) to its normal
form, f(s(0)). The only redex position of t is 1 · 1, but λ on a minimal definitional tree of f returns
the set {(1, ?, {})}.

The inability of λ to compute certain outermost-needed narrowing steps is a blessing in disguise.
The theorem (claim 3) justifies giving up a narrowing attempt as soon as the failure to find a rule
occurs—without further attempts to narrow t at other positions with the hope that a different rule
might be found after other narrowing steps or that the position might be deleted [12] by another
narrowing step. If (p, ?, σ) ∈ λ(t, T), no equation having σ(t) as one side can be solved. This is an
opportunity for optimization. In fact σ(t) may be narrowable at other positions different from p
and an equation with σ(t) as a side may even have an infinite search space. However, any amount
of work applied toward finding a solution would be wasted.

15

Example 10 Consider the following term rewriting system for subtraction:

X − 0 → X R1

s(X)− s(Y) → X − Y R2

This term rewriting system is inductively sequential and a definitional tree, T , of the operation
“−” has an exempt node for the pattern 0 − s(X), i.e., the system is incomplete and (Λ, ?, {}) ∈
λ(0−s(X), T). Therefore we can immediately stop the needed narrowing derivation of the equation
0 − s(X) ≈ Y − Z although there exist infinitely many narrowing derivations for the right-hand
side of this equation.

The definition of our outermost-needed narrowing strategy does not determine the computation
space for a given inductively sequential rewrite system in a unique way. The concrete strategy
depends on the definitional trees, and there is some freedom to construct these. For a discussion on
how to compute definitional trees from rewrite rules and the implications of some non-deterministic
choices of this computation see [2]. As we will show in Section 5, this does not affect the optimality
of our strategy w.r.t. computed solutions. But in case of failing derivations, a definitional tree
which is “unnecessarily large” could result in unnecessary derivation steps.

E.g., a minimal definitional tree of the operation “−” in Example 10 has an exempt node for
the pattern 0 − s(X). However, Definition 12 also allows a definitional tree with a branch node
for the pattern 0− s(X) which has exempt nodes for the patterns 0− s(0) and 0− s(s(X1)). Our
strategy would perform some unnecessary steps if this definitional tree were used for narrowing
the term 0− s(t), where t is an operation-rooted term. These unnecessary steps are avoided if all
branch nodes in a definitional tree are useful, i.e., the tree is minimal.

However, the non-determinism of the trees of certain operations makes it possible that some
work may be wasted when a narrowing derivation computed by λ terminates with a non-constructor
term. The problem seems inevitable and is due to the inherent parallelism of certain operations,
such as ≈ (this issue is discussed in some depth in [2, Display (8)]). The problem occurs only in
terms with two or more outermost-needed narrowing positions, one of which cannot be narrowed
to a constructor-rooted term.

4 Soundness and completeness

Outermost-needed narrowing is a sound and complete procedure to solve equations if we add the
equality rules to narrow equations to true. The following proposition shows the equivalence between
the reducibility to a same ground constructor term and the reducibility to true using the equality
rules.

Proposition 1 Let R be a term rewriting system without rules for ≈ and ∧. Let R′ be the system
obtained by adding the equality rules to R. The following propositions are equivalent for all terms
t and t′:

1. t and t′ are reducible in R to a same ground constructor term.

2. t ≈ t′ is reducible in R′ to ‘true’.

Proof To show that claim 1 implies claim 2, consider a ground constructor term u such that
t

∗
→ u and t′

∗
→ u using rules from R. Hence, t ≈ t′

∗
→ u ≈ u using rules from R′. To show claim 2,

it is sufficient to show u ≈ u
∗
→ true using the equality rules. This is done by induction on the

16

structure of u. Base case: If u is a 0-ary constructor, say c, then u ≈ u can be directly reduced to
true using the equality rule c ≈ c→ true. Induction step: Let u = c(t1, . . . , tn). Then

u ≈ u → (t1 ≈ t1) ∧ · · · ∧ (tn ≈ tn)

is a reduction step using the equality rule for the n-ary constructor c. By the induction hypothesis,
ti ≈ ti

∗
→ true using the equality rules (i = 1, . . . , n). Moreover, true ∧ · · · ∧ true can be reduced to

true using the equality rule for ∧.
To show that claim 2 implies claim 1, consider a reduction sequence t ≈ t′

∗
→ true using rules

from R′. We show the existence of a ground constructor term, u, such that t
∗
→ u and t′

∗
→ u using

rules from R by induction on the number, say k, of ≈-rule applications in this reduction sequence.
Base case (k = 1): There is exactly one application of a ≈-rule:

t ≈ t′
∗
→ s ≈ s′ → r

∗
→ true

r cannot have the symbol ∧ at the root; otherwise, there must be further applications of a ≈-rule
in the derivation r

∗
→ true. Hence, the applied ≈-rule is of the form c ≈ c → true which implies

claim 1. Induction step (k > 1): Then there is a first application of a ≈-rule:

t ≈ t′
∗
→ s ≈ s′ → r

∗
→ true

r 6= true; otherwise, there are no further applications of a ≈-rule in r
∗
→ true. Therefore, s =

c(t1, . . . , tn), s
′ = c(t′1, . . . , t

′
n), and r = (t1 ≈ t′1) ∧ · · · ∧ (tn ≈ t′n). Since r

∗
→ true, an ∧-rule must

be applied to the root in this sequence, i.e., r
∗
→ true ∧ r′

∗
→ true. Thus, t1 ≈ t′1

∗
→ true with at

most k−1 ≈-rule applications. By the induction hypothesis, there is a ground constructor term u1

such that t1
∗
→ u1 and t′1

∗
→ u1 using rules from R. By a further induction on the arguments ti, t

′
i,

we can show the existence of ground constructor terms u1, . . . , un such that ti
∗
→ ui and t′i

∗
→ ui

using rules from R. Altogether, we obtain the derivations

t
∗
→ c(t1, . . . , tn)

∗
→ c(u1, . . . , un)

t′
∗
→ c(t′1, . . . , t

′
n)

∗
→ c(u1, . . . , un)

using rules from R. This implies claim 1. 2

The soundness of outermost-needed narrowing is easy to prove since outermost-needed narrowing
is a special case of general narrowing.

Theorem 2 (Soundness of outermost-needed narrowing) Let R be an inductively sequential rewrite

system extended by the equality rules. If t ≈ t′
∗
;σ true is an outermost-needed narrowing deriva-

tion, then σ is a solution for t ≈ t′.

Proof If t ≈ t′
∗
;σ true, there exists a derivation

t ≈ t′ ;p1,R1, σ1
t1 ;p2,R2, σ2

· · ·;pn,Rn, σn
tn

such that tn = true and σ = σn ◦ · · · ◦ σ1. By induction on the number n of narrowing steps, it is
easy to prove that σ(t ≈ t′)

∗
→ true. By Proposition 1, this implies that σ(t) and σ(t′) are reducible

to a same ground constructor term without using the equality rules. By Definition 7, σ is a solution
for t ≈ t′. 2

17

In order to prove completeness of the outermost-needed narrowing strategy, we lift the completeness
result for the corresponding rewrite strategy [2] to narrowing derivations. For this purpose, we recall
the definition of the outermost-needed rewrite strategy for inductively sequential systems. Similarly
to λ, this rewrite strategy is implemented by a function, ϕ, that takes two arguments: an operation-
rooted term, t, and a definitional tree, T , of the root of t (the definition of ϕ is a slightly modified
version of the definition given in [2] extended to non-ground terms). Throughout an interleaved
descent down both t and T , ϕ computes a position p and, whenever possible, a rule R such that
the rewriting of t at p by means of R is outermost-needed.

Definition 14 The function ϕ takes two arguments, an operation-rooted term t and a pdt T such
that pattern(T) ≤ t. The function ϕ yields a pair, (p,R), where p is a position of t and R is either
a rewrite rule or the distinguished symbol “?.” Thus, let t be a term and T be a pdt in the domain
of ϕ. The function ϕ is defined by structural induction on t with a nested structural induction on
T as follows.

ϕ(t, T) =



























































(Λ, R) if T = rule(π,R);

(Λ, ?) if T = exempt(π);

ϕ(t, Ti) if T = branch(π, o, T1, . . . , Tk) and pattern(Ti) ≤ t, for some i;

(o · p,R) if T = branch(π, o, T1, . . . , Tk),
t|o is operation-rooted,
T ′ is a definitional tree of the root of t|o, and
ϕ(t|o, T

′) = (p,R).

(o, ?) if T = branch(π, o, T1, . . . , Tk) and t|o is a variable

The function ϕ is well-defined in the third case since, by the definition of pdt, a proper subpdt Ti of
T with pattern(Ti) ≤ t must uniquely exist iff t|o is constructor-rooted. Similarly, ϕ is well-defined
in the fourth case since t|o is a proper subterm of t and pattern(T ′) ≤ t|o by the definition of pdt.

The following theorem, which compacts various results of [2], shows that the function ϕ computes
outermost-needed redexes. The proof parallels that of Theorem 1.

Theorem 3 Let R be an inductively sequential rewrite system, t an operation-rooted term, T a
definitional tree of the root of t, and ϕ(t, T) = (p,R).

1. In any reduction sequence of t to a constructor-rooted term, a descendant of t|p is reduced to
a constructor-rooted term.

2. If R is a rule of R, then t|p is an outermost-needed redex of t matched by R.

3. If R = ?, then t cannot be reduced to a constructor-rooted term.

Proof We prove by Noetherian induction on ≺ the claim generalized by considering T a subtree of
a definitional tree of the root of t such that pattern(T) ≤ t. We consider the cases of the definition
of ϕ.

Base case: consider (t, T) where t is an operation-rooted term and T = leaf(π) for some pattern π.
We consider the two subcases of the definition of ϕ for leaf nodes:

T = rule(π,R′), for some pattern π and rule R′.

In this case, (p,R) = (Λ, R′). Since t is operation-rooted and is a descendant of itself,

18

claim number 1 trivially holds. By the hypothesis, π ≤ t. By the definition of definitional
tree, R is a rule whose left-hand side is equal to π. Thus, t is a redex, it is matched
by R, and it is obviously outermost. Since R is orthogonal (by Lemma 3), its redex
schemes do not overlap; consequently, R keeps matching any descendant of t obtained
by reductions strictly below Λ. Thus, t is a needed redex. Claim number 3 vacuously
holds.

T = exempt(π), for some pattern π.

In this case, (p,R) = (Λ, ?). By the hypothesis, π ≤ t. We could extend R by changing
the exempt node into a rule node in which the left-hand side of the rule is obviously π
and the right-hand side is arbitrary. Thus, similar to the previous case, π keeps matching
any descendant of t obtained by reductions strictly below the root. Thus, by Lemma 2,
there exists no rule in R for a reduction of t at the root. Thus, t cannot be reduced to
a constructor-rooted term which implies claim number 3 and, trivially, claim number 1.
Claim number 2 vacuously holds.

Induction step: consider (t, T) where t is an operation-rooted
term and T = branch(π, o, T1, . . . , Tk), for some pattern π, position o, and pdts T1, . . . , Tk, for
some k > 0. We consider three exhaustive (and mutually exclusive) cases for t|o:

t|o is constructor-rooted.

By the definition of pdt, there exists some i in {1, . . . , k} such that pattern(Ti) ≤ t. By
the definition of ϕ, ϕ(t, T) = ϕ(t, Ti). By the induction hypothesis, all the claims hold
already for ϕ(t, Ti) and they are independent of Ti.

t|o is operation-rooted.

Let T ′ be a definitional tree of the root of t|o. Let ϕ(t|o, T
′) = (p′, R′), where p′ is

a position of t|o and R′ is either a rule or “?.” In this case, (p,R) = (o · p′, R′) and
(t|o)|p′ = t|o·p′ = t|p. By the hypothesis, π ≤ t. By Lemma 2, any rule that might reduce
t at the root is represented by a leaf of some Ti with 1 ≤ i ≤ k since the left-hand side of
any other rule does not unify with π. If l→ r is a rule represented by a leaf of Ti then, by
Lemma 1, pattern(Ti) ≤ l. Thus, by the definition of definitional tree, l has a constructor
symbol at position o. However, the case being considered assumes that t does not have a
constructor symbol at position o. Hence, in any reduction sequence of t that includes a
reduction at the root a descendant of t|o must be reduced to a constructor-rooted term.
Since t is operation-rooted, in any reduction sequence of t to a constructor-rooted term,
a descendant of t is reduced at the root. Consequently, a descendant of t|o is reduced to
a constructor-rooted term. By the induction hypothesis, in any reduction sequence of
t|o to a constructor-rooted term, a descendant of t|p is reduced to a constructor-rooted
term. Thus, claim number 1 holds by transitivity.

We consider the two cases for R′:

R′ is a rule.

By the induction hypothesis, t|p is an outermost-needed redex of t|o matched by
R′; hence, t|p is a redex of t matched by R′. The need of t|p with respect to t is
an immediate consequence of claim number 1. By the hypothesis, π ≤ t, and by
the definition of definitional tree, π is a pattern and o is a position of π. These
conditions imply that there is only one operation symbol in t above o: the root of t.
In constructor-based systems, redexes occur only at positions of operation symbols.

19

We have just proved that t is not a redex. Thus, there are no redexes in t above o
and, by the induction hypothesis, the redex t|p is outermost in t too.

R′ = ?.

By claim number 1, in any reduction sequence of t to a constructor-rooted term, a
descendant of t|p is reduced to a constructor-rooted term. By the induction hypoth-
esis, t|p cannot be reduced to a constructor-rooted term. Thus, t cannot be reduced
to a constructor-rooted term.

t|o is a variable.

In this case, (p,R) = (o, ?). The proofs of claims number 1 and 3 are similar to those of
the previous case, but do not require induction hypotheses. Claim number 2 vacuously
holds. 2

The following proposition shows that the strategy λ behaves as ϕ on ground terms.

Proposition 2 Let R be an inductively sequential rewrite system. Let t be a ground operation-
rooted term, T be a definitional tree of the root of t. Then, there exists a substitution σ such that
λ(t, T) = {(p,R, σ)} and ϕ(t, T) = (p,R), where p is some position, R is some rewrite rule or the
distinguished symbol “?,” and σ is some substitution.

Proof We prove by Noetherian induction on ≺ the claim generalized by considering T a subtree
of a definitional tree of the root of t satisfying the condition pattern(T) ≤ t. We consider the cases
of the definitions of λ and ϕ:

Base case: consider (t, T) where t is an operation-rooted term and T = leaf(π), for some pattern
π. We consider the two subcases of the definitions of λ and ϕ for leaf nodes.

T = rule(π,R′), for some pattern π and rule R′.

In this case, ϕ(t, T) = (Λ, R′) = (p,R) and λ(t, T) = {(Λ, R′,mgu(t, π))} = {(p,R, σ)}.

T = exempt(π), for some pattern π.

In this case ϕ(t, T) = (Λ, ?) = (p,R) and λ(t, T) = {(Λ, ?,mgu(t, π))} = {(p,R, σ)}.
Thus the claim holds.

Induction step: consider (t, T) where t is an operation-rooted
term and T = branch(π, o, T1, . . . , Tk), for some pattern π, position o, and pdts T1, . . . , Tk, for
some k > 0. We consider three exhaustive (and mutually exclusive) cases for t|o:

t|o is constructor-rooted.

By definition of pdt, there exists some i in {1, . . . , k} such that pattern(Ti) and t unify.
Since t is ground, we have pattern(Ti) ≤ t and for all j in {1, . . . , k} such that j 6= i,
pattern(Tj) and t do not unify. Therefore, by the definition of ϕ, ϕ(t, T) = ϕ(t, Ti) and
by the definition of λ, λ(t, T) = λ(t, Ti). Thus, by the induction hypothesis the claim
holds.

t|o is operation-rooted.

By the hypothesis, π ≤ t. Hence, t and π unify. Let τ = mgu(t, π). Since t is ground,
τ(t) = t. By the definition of pdt, t and pattern(Ti) do not unify for each i in {1, . . . , k}
since t|o is operation-rooted, whereas pattern(Ti) has a constructor symbol at position
o. Let T ′ be a definitional tree of the root of t|o. By the definition of ϕ, ϕ(t, T) =
(o · p′, R′) where (p′, R′) = ϕ(t|o, T

′). Likewise, by the definition of λ, λ(t, T) = {(o ·

20

p′′, R′′, σ′′ ◦ τ) | (p′′, R′′, σ′′) ∈ λ(τ(t|o), T
′)}. Since t|o contains fewer operation symbols

than t, we deduce by induction hypotheses that there exists a substitution σ ′′ such that
λ(τ(t|o), T

′) = λ(t|o, T
′) = {(p′, R′, σ′′)}. Thus, λ(t, T) = {(o · p′, R′, σ′′ ◦ τ)} and the

claim holds.

t|o is a variable: This case cannot occur since t is ground. 2

The following lemma shows the close ties between ϕ and λ, which are instrumental to lift outermost-
needed reduction sequences to corresponding narrowing derivations. This will allow us to prove the
completeness of the outermost-needed narrowing strategy.

Lemma 4 Let R be an inductively sequential rewrite system. Let t be an operation-rooted term,
T be a definitional tree of the root of t, and σ be a constructor substitution. If σ(t) →p,R t′ with
(p,R) = ϕ(σ(t), T), then there exists a substitution θ such that

1. (p,R, θ) ∈ λ(t, T)

2. θ ≤ σ[Var(t)]

Proof We prove by Noetherian induction on ≺ the claim generalized by considering T a subtree
of a definitional tree of the root of t. We consider the cases of the definition of ϕ:

Base case: consider (t, T) where t is an operation-rooted term and T = leaf(π), for some pattern
π. We consider the two subcases of the definition of ϕ for leaf nodes.

T = rule(π,R′), for some pattern π and rule R′.

In this case, (p,R) = (Λ, R′) and π ≤ σ(t). This implies the existence of a substitution
φ with φ(π) = σ(t). Hence, π and t are unifiable (we assume that π and t are variable
disjoint. Otherwise, take a new variant of the definitional tree) and there exists a most
general unifier θ of π and t with θ ≤ σ[Var(t)]. By the definition of λ, (p,R, θ) ∈ λ(t, T).

T = exempt(π): This case cannot occur since R 6= ?.

Induction step: consider (t, T) where t is an operation-rooted
term and T = branch(π, o, T1, . . . , Tk), for some pattern π, position o, and pdts T1, . . . , Tk, for
some k > 0. We consider three exhaustive (and mutually exclusive) cases for t|o:

σ(t)|o is constructor-rooted.

By the definition of pdt, there exists some i in {1, . . . , k} such that pattern(Ti) ≤ σ(t).
By the definition of ϕ, ϕ(σ(t), T) = ϕ(σ(t), Ti). By the induction hypothesis, (p,R, θ) ∈
λ(t, Ti) and θ ≤ σ[Var(t)]. By the definition of λ (note that pattern(Ti) and t unify),
(p,R, θ) ∈ λ(t, T).

σ(t)|o is operation-rooted.

By the definition of ϕ, π ≤ σ(t). σ(t) and pattern(Ti) do not unify for each i in {1, . . . , k}
since σ(t)|o is operation-rooted, but pattern(Ti) has a constructor symbol at position o.
Let T ′ be a definitional tree of the root of σ(t)|o and ϕ(σ(t)|o, T

′) = (p′, R′). By the
definition of ϕ, (p,R) = (o · p′, R′). Since π ≤ σ(t), there exists a most general unifier τ
of π and σ(t) with τ ≤ σ[Var(t)] (we assume that π and t are variable disjoint, otherwise
take a new variant of the definitional tree). τ|Var(t) is a constructor substitution since
π is a linear pattern and t is operation-rooted. Let σ′ be a constructor substitution
such that σ′ ◦ τ = σ[Var(t)]. Since σ is a constructor substitution, o is a position of t,

21

and t|o is operation-rooted. Moreover, σ(t) →p,R t′ implies σ′(τ(t|o)) →p′,R′ t′|o. Since
o is different from the root position, t is operation-rooted, and τ|Var(t) is a constructor
substitution, τ(t|o) has fewer occurrences of defined operation symbols than t. Hence,
by induction hypothesis applied to (τ(t|o), T

′) and σ′, there exists a substitution θ′

such that (p′, R′, θ′) ∈ λ(τ(t|o), T
′) and θ′ ≤ σ′[Var(τ(t|o))]. By the definition of λ,

(o · p′, R′, θ′ ◦ τ) ∈ λ(t, T), i.e., (p,R, θ′ ◦ τ) ∈ λ(t, T). θ′ ≤ σ′[Var(τ(t|o))] implies
θ′ ≤ σ′[Var(τ(t))] since θ′ instantiates only variables from τ(t|o) and new variables of
the definitional tree. Hence, θ′◦τ ≤ σ′◦τ [Var(t)] which is equivalent to θ′◦τ ≤ σ[Var(t)].

σ(t)|o is a variable: This case cannot occur since R 6= ?. 2

The following lemma shows how to lift an outermost-needed reduction step to an outermost-needed
narrowing step.

Lemma 5 Let R be an inductively sequential rewrite system. Let σ be a constructor substitution,
V be a finite set of variables, t be an operation-rooted term with Var(t) ⊆ V , and T be a definitional
tree of the root of t. If σ(t)→p,R s with (p,R) = ϕ(σ(t), T), then there exist an outermost-needed
narrowing step t ;p,R,θ t′ and a substitution σ′ such that (p,R, θ) ∈ λ(t, T), σ′(t′) = s and
σ′ ◦ θ = σ[V].

Proof Let R be l→ r. By Lemma 4, there is a triple (p,R, θ) ∈ λ(t, T) with θ ≤ σ[Var(t)]. Then
there exists σ′ such that σ′ ◦ θ = σ[V] (since θ instantiates only variables occurring in t and in the
definitional trees, we assume that θ(x) = x for all x ∈ V −Var(t) by taking appropriate variants of
the definitional trees). By claim 2 of Theorem 1, t ;p,R,θ t

′ is an outermost-needed narrowing step
and θ(t)|p = θ(l). Hence σ(t)|p = σ′(θ(t))|p = σ′(θ(l)) which implies σ(t)[σ′(θ(r))]p = s. Finally,
σ′(t′) = σ′(θ(t[r]p)) = σ′(θ(t))[σ′(θ(r))]p = σ(t)[σ′(θ(r))]p = s. 2

Outermost-needed narrowing instantiates variables to constructor terms. Thus, we only show that
outermost-needed narrowing is complete for constructor substitutions as solutions of equations.
This is not a limitation in practice, since more general solutions would contain unevaluated or
undefined expressions. This is not a limitation with respect to related work, since most general
narrowing is known to be complete only for normalizable solutions [51] (which can be seen as
semantically equivalent to irreducible solutions), and lazy narrowing is complete only for constructor
substitutions [23, 55]. Incidentally, we also believe that needed narrowing is complete for the
entire class of the orthogonal rewrite systems w.r.t. irreducible substitutions, although neither
needed rewriting nor needed narrowing steps are computable for this class of rewrite systems. The
following theorem shows the completeness of our strategy, λ, and consequently of outermost-needed
narrowing, for inductively sequential rewrite systems:

Theorem 4 (Completeness of outermost-needed narrowing) Let R be an inductively sequential
rewrite system extended by the equality rules. Let σ be a constructor substitution that is a solution
of an equation t ≈ t′ and V be a finite set of variables containing Var(t)∪Var(t′). Then there exists

a derivation t ≈ t′
∗
;σ′ true computed by λ such that σ′ ≤ σ[V].

Proof By Definition 7, there exists a ground constructor term, say u, such that σ(t ≈ t′)
∗
→ u ≈ u.

Since R is extended by the equality rules, σ(t ≈ t′)
∗
→ true by Proposition 1. Consider the following

reduction sequence

s0 →p1,R1
s1 →p2,R2

s2 →p3,R3
· · ·

22

where s0 = σ(t ≈ t′), (pi+1, Ri+1) = ϕ(si, Ti) and Ti is a definitional tree of the root of si for
i = 0, 1, 2, The following claims are easy to show by induction on the derivation steps in this
sequence:

1. si has a constructor-rooted normal form (true).

2. If si 6= true, then the root of si is the operation symbol ∧ or ≈ (by the definition of equality
rules).

3. If si 6= true, then Ri+1 6= ? (claim 3 of Theorem 3) and si|pi+1
is an outermost-needed redex

(claim 2 of Theorem 3).

Hence, the reduction sequence is well-defined and outermost-needed (as long as si 6= true). Since
repeated rewriting of needed redexes in a term computes the term’s normal form, if it exists [41],
the sequence is finite and sn = true is the final term for some n > 0. We will show by induction on
n that there exists a corresponding outermost-needed narrowing derivation

t ≈ t′ ;p1,R1, σ1
t1 ;p2,R2, σ2

· · ·;pn,Rn, σn
tn

such that tn = true and σn ◦ · · · ◦ σ1 ≤ σ[V].

n = 1: If we apply Lemma 5 to the reduction step s0 →p1,R1
s1, we obtain an outermost-needed

narrowing step t ≈ t′ ;p1,R1, σ1
t1 and a substitution σ′ such that σ′ ◦ σ1 = σ[V] and

σ′(t1) = s1 = true. Hence, σ1 ≤ σ[V] and t1 = true by the definition of equality rules.

n > 1: By Lemma 5 applied to the first reduction step, there exist an outermost-needed narrowing
step t ≈ t′ ;p1,R1, σ1

t1 and a substitution σ′ such that σ′ ◦ σ1 = σ[V] and σ′(t1) = s1. Let
V1 = {y ∈ Var(σ1(x)) | x ∈ V } (note that Var(t1) ⊆ V1). Applying the induction hypothesis
to V1, σ

′ (note that σ′|V1
is a constructor substitution since σ is a constructor substitution)

and the derivation

s1 →p2,R2
· · · →pn,Rn

sn

yields an outermost-needed narrowing derivation

t1 ;p2,R2, σ2
· · ·;pn,Rn, σn

tn

with tn = true and σn ◦ · · · ◦ σ2 ≤ σ′[V1]. Combining that with the first narrowing step, we
obtain the required outermost-needed narrowing derivation with σn ◦ · · · ◦ σ1 ≤ σ[V] since
σ′ ◦ σ1 = σ[V]. 2

The theorem justifies our earlier remark on the relationship between completeness and anticipated
substitutions. Any anticipated substitution of a needed narrowing step is irrelevant or would
eventually be done later in the derivation; thus, it does not affect the completeness. Anticipating
substitutions is appealing even without the benefits related to the need of a step, since less general
substitutions are likely to yield a smaller search space to compute the same set of solutions.

23

5 Optimality

In Section 3, we showed that our strategy computes only necessary steps. We now strengthen this
characterization by showing that our strategy computes only necessary derivations of minimum
cost. First of all, we show that no redundant derivation is computed by λ. For this purpose, we
need some technical definitions and results that we give below.

Definition 15 Let R be a term rewriting system. Let t and s be two terms. We write t =R s
iff t

∗
↔ s. Let σ1 and σ2 be two substitutions and V a set of variables. We write σ1 =R σ2[V]

iff σ1(x) =R σ2(x) for all x ∈ V , and likewise we write σ1 6=R σ2[V] iff σ1(x) 6=R σ2(x) for some
x ∈ V . We write σ1 ≤R σ2[V] iff there exists a substitution θ such that θ ◦ σ1 =R σ2[V]. We say
that σ1 and σ2 are incomparable on V iff neither σ1 ≤R σ2[V] nor σ2 ≤R σ1[V]. σ1 and σ2 are
called disjoint on V iff θ1 ◦ σ1 6=R θ2 ◦ σ2[V] for all substitutions θ1 and θ2.

The incomparability of substitutions has been used in unification theory [64] in order to char-
acterize minimal sets of solutions. When they exist, such minimal sets are unique (up to =R).
Nevertheless, incomparable substitutions might have a common instance and, therefore, they do
not describe disjoint regions of the solution space. For instance, the substitutions {x 7→ 0} and
{y 7→ 0} are incomparable on {x, y} but the substitution {x 7→ 0, y 7→ 0} is described by both
substitutions. However, this is not the case for disjoint substitutions since, by definition, they
describe independent regions of the solution space. Thus, disjointness is a stronger notion than
incomparability and we will show that the solutions computed by our strategy, λ, are disjoint. First
we show that the property of disjointness is indeed stronger than incomparability.

Proposition 3 Let σ1 and σ2 be two substitutions and V a set of variables. If σ1 and σ2 are
disjoint on V , then σ1 and σ2 are incomparable on V .

Proof Assume that σ1 and σ2 are not incomparable on V . That is to say, either σ1 ≤R σ2[V] or
σ2 ≤R σ1[V]. Suppose without loss of generality that σ1 ≤R σ2[V]. By definition of the preordering
≤R, there exists a substitution θ1 such that θ1 ◦ σ1 =R σ2[V]. Thus, by Definition 15, σ1 and σ2

are not disjoint on V . 2

The two following technical propositions are used in subsequent proofs.

Proposition 4 Let R be an inductively sequential rewrite system. Let c1 and c2 be two constructor
symbols. If c1(t1, . . . , tn) =R c2(u1, . . . , um), where n,m ≥ 0 and ti and uj are terms for i = 1, . . . , n
and j = 1, . . . ,m, then c1 = c2 (and thus, n = m) and ti =R ui, for i = 1, . . . , n.

Proof Since inductively sequential rewrite systems are orthogonal (cf. Lemma 3), they are
confluent and Church-Russer (a TRS R is Church-Russer iff for all terms t1 and t2, t1 =R t2
implies the existence of a term t3 with t1

∗
→ t3 and t2

∗
→ t3). From the Church-Russer property

of R and the statement c1(t1, . . . , tn) =R c2(u1, . . . , um), we infer the existence of a term T such

that c1(t1, . . . , tn)
∗
→ T and c2(u1, . . . , um)

∗
→ T . Since inductively sequential rewrite systems are

constructor-based, no descendants of the terms c1(t1, . . . , tn) and c2(u1, . . . , um) can be rewritten
at the root. Therefore, c1 = c2 (and thus n = m) and the term T is of the form T = c1(w1, . . . , wn)

such that for all i = 1, . . . , n, ti
∗
→ wi and ui

∗
→ wi. The last statement shows that for all

i = 1, . . . , n, ti =R ui. 2

24

Proposition 5 Let R be an inductively sequential rewrite system. Let t be a constructor term and
σ1 and σ2 arbitrary substitutions. Then

σ1(t) =R σ2(t) (1)

implies for all variables y ∈ Var(t),

σ1(y) =R σ2(y) (2)

Proof The proof is by structural induction on t. Base case: t is either a constant or a variable.
In the first subcase, (2) is vacuously true, in the second subcase, (2) is a direct consequence of (1).
Induction step: Let t = c(t1, . . . , tn), for some constructor symbol c and constructor terms t1, . . . , tn.
By definition of substitution, c(σ1(t1), . . . , σ1(tn)) = σ1(t) and c(σ2(t1), . . . , σ2(tn)) = σ2(t). From
Proposition 4 and c(σ1(t1), . . . , σ1(tn)) =R c(σ2(t1), . . . , σ2(tn)), we deduce that σ1(ti) =R σ2(ti)
for i = 1, . . . , n. Thus, the claim is immediate from the induction hypothesis. 2

Proposition 6 Let R be an inductively sequential rewrite system extended by the equality rules, e
an equation to solve and V = Var(e). Let e

+

;σ e
′ be a derivation computed by λ. Then, σ|V is a

constructor substitution.

Proof The proof is by induction on the length n of e
+

;σ e′. Base case: n = 1. In this
case e ;p, l→r,σ e′ with (p, l → r, σ) ∈ λ(e, T), where T is a definitional tree of the root of e.
Since the patterns of definitional trees are linear patterns with fresh variables, σ|V is a constructor

substitution. Induction step: Consider now the derivation e ;p, l→r,σ1
e1

+

;σ e
′. By the induction

hypothesis, σ|Var(e1) and σ1|V are constructor substitutions. Thus (σ ◦ σ1)|V is a constructor
substitution. 2

Proposition 7 Let t0 ;p1, l1→r1, σ1
t1 . . . ;pn, ln→rn, σn

tn be a narrowing derivation. Then, ∀x ∈
Var(tn), ∃ y ∈ Var(t0) such that x ∈ Var(σn ◦ . . . ◦ σ1(y)).

Proof Note that σn ◦ . . . ◦ σ1(t0)
∗
→ tn (compare proof of Theorem 2). Since reduction steps do

not introduce new variables, x ∈ Var(σn ◦ . . . ◦ σ1(t0)) for all x ∈ Var(tn) which implies the claim.
2

Proposition 8 Let R be an inductively sequential rewrite system. Let t be an operation-rooted
term, V = Var(t) and (p1, R1, σ1) and (p2, R2, σ2) two distinct triples in λ(t, T). Then, σ1 and σ2

are disjoint on V .

Proof The proof is by Noetherian induction on ≺. We consider the cases of the definition of λ.

Base case: consider (t, T) where t is an operation-rooted term and T = leaf(π), for some pattern
π. There are no distinct triples in λ(t, T) and the claim vacuously holds.

Induction step: consider (t, T) where t is an operation-rooted
term and T = branch(π, o, T1, . . . , Tk), for some pattern π, position o, and pdts T1, . . . , Tk, for
some k > 0. We consider three exhaustive (and mutually exclusive) cases for t|o:

t|o is a variable, say x.

In this case t and pattern(Ti) unify for all i = 1, . . . , k. By the induction hypothesis,
for every i, the substitutions of distinct triples in λ(t, Ti) are disjoint on V . Moreover,
if (pi, Ri, σi) ∈ λ(t, Ti) and (pj , Rj , σj) ∈ λ(t, Tj) with i 6= j, then by definition of λ the

25

roots of σi(x) and σj(x) are different constructors. So, for all substitutions θ1 and θ2, the
roots of θ1(σi(x)) and θ2(σj(x)) are different constructors too. Hence by Proposition 4
we have θ1(σi(x)) 6=R θ2(σj(x)) which shows that the substitutions σi and σj are disjoint
on V . Thus, the claim holds.

t|o is a constructor-rooted.

By the definition of pdt, there exists one i in {1, . . . , k} such that pattern(Ti) and t unify.
By the definition of λ, λ(t, T) = λ(t, Ti). By the induction hypothesis, the claim holds
for λ(t, Ti) and thus for λ(t, T) too.

t|o is operation-rooted.

By the definition of λ, π and t unify. Let τ = mgu(t, π). Since t|o is operation-rooted,
so is τ(t|o). Let T

′ be a definitional tree of the root of τ(t|o). τ|V is a constructor substi-
tution since the patterns of definitional trees are linear patterns. Thus, τ(t|o) contains
fewer defined operation symbols than t. Therefore, if t|o is a ground subterm, by Propo-
sition 2, there are no distinct triples in λ(t, T) and the claim vacuously holds. Otherwise,
t|o is not ground and by the induction hypothesis if (p1, R1, σ1) and (p2, R2, σ2) are dis-
tinct triples in λ(τ(t|o), T

′), then σ1 and σ2 are disjoint on Var(τ(t|o)). Let us show by
contradiction that σ1 ◦ τ and σ2 ◦ τ are disjoint on V . Assume the opposite, i.e., there
exist substitutions θ1 and θ2 such that θ1 ◦σ1 ◦ τ =R θ2 ◦σ2 ◦ τ [V]. Let v be any variable
in Var(τ(t|o)). Then, there exists a variable z ∈ Var(t|o) such that v ∈ Var(τ(z)) and
θ1◦σ1◦τ(z) =R θ2◦σ2◦τ(z). Since τ|V is a constructor substitution, τ(z) is a constructor
term. Thus, Proposition 5 implies that θ1 ◦ σ1(v) =R θ2 ◦ σ2(v). Consequently, σ1 and
σ2 are not disjoint on Var(τ(t|o)) contrary to the induction hypothesis. Thus, σ1 ◦ τ and
σ2 ◦ τ are disjoint on V . Hence, the claim holds. 2

The next theorem claims that no redundant derivation is computed by λ.

Theorem 5 (Disjointness of solutions) Let R be an inductively sequential rewrite system extended

by the equality rules, e an equation to solve and V = Var(e). Let e
+

;σ true and e
+

;σ′ true be two
distinct derivations computed by λ. Then, σ and σ′ are disjoint on V .

Proof First, we prove the claim when the initial steps of e
+

;σ true and e
+

;σ′ true differ. By
our assumption, the derivations that we are considering are of the forms e ;σ1

e1
∗
;σ2

true and

e ;σ3
e′1

∗
;σ4

true. This implies that σ1 and σ3 belong to distinct triples in λ(e, T), where T is a
definitional tree of ≈. Notice that, by Proposition 2, equation e is not ground. By Proposition 8, the
substitutions σ1 and σ3 are disjoint on V . By definition of disjoint substitutions, for all substitutions
θ1 and θ3, θ1 ◦ σ1 6=R θ3 ◦ σ3[V]. Since σ = σ2 ◦ σ1 and σ′ = σ4 ◦ σ3, we deduce that σ and σ′ are
disjoint on V .
Now, we consider the general case. By our assumption, the derivations that we are considering
are of the forms e

+

;σ1
ei

+

;σ2
true and e

+

;σ1
ei

+

;σ3
true, for some i > 1. The sub-derivations

computed by λ, ei
+

;σ2
true and ei

+

;σ3
true, start from the same equation ei and their initial

steps differ. Thus, by Proposition 2, equation ei is not ground. We have proved that in this case
σ2 and σ3 are disjoint on Var(ei). Hence, by definition of disjoint substitutions we have

θ2 ◦ σ2 6=R θ3 ◦ σ3[Var(ei)] for all substitutions θ2 and θ3. (3)

We prove by contradiction that the substitutions σ2 ◦ σ1 and σ3 ◦ σ1 are disjoint on V . So, we
assume the opposite, i.e., there exist two substitutions β2 and β3 with

β2 ◦ σ2 ◦ σ1 =R β3 ◦ σ3 ◦ σ1[V] (4)

26

Let y be a variable in Var(ei). By Proposition 7, we know that ∃ z ∈ V such that y ∈ Var(σ1(z)).
Since σ1(z) is a constructor term (by Proposition 6) and y ∈ Var(σ1(z)), from Proposition 5, we
deduce that

β2 ◦ σ2(y) =R β3 ◦ σ3(y) (5)

and consequently that σ2 and σ3 are not disjoint on Var(ei), which contradicts (3). Thus the
assumption (4) is false. Hence, the claim holds. 2

We now discuss the cost and length of a derivation computed by our strategy. Our results are for
the most part an extension of similar results for rewriting. We begin by extending to narrowing
the notions of narrowing multistep, family of redexes, and complete step.

If p is a needed position of some term t, then in any narrowing derivation of t to a constructor
term there is at least one step associated with p. If this step is delayed and p is not outermost, then
several descendants of p may be created and several steps may become necessary to narrow this set
of descendants (see Example 5). However, from a practical standpoint, if terms are appropriately
represented, the cost of narrowing t at (some descendant of) p is largely independent of where the
step occurs in the derivation of t. We formalize this viewpoint, which leads to another optimality
result for our strategy.

It is well known [41] that, under appropriate conditions, a set of redexes can be reduced simul-
taneously. This notion can be extended to narrowing steps.

Definition 16 Let t ;pi, li→ri, σi ti, for i in some set of indices I = {1, . . . , n}, be a narrowing step
such that for any distinct i and j in I, pi and pj are disjoint and σi◦σj = σj◦σi. We say that t is nar-
rowable to t′ in a multistep, denoted t ;〈pi,li→ri,σi〉i∈I

t′, iff t′ = ◦ i∈I σ
i(((t[r1]p1)[r

2]p2) . . . [r
n]pn),

where ◦ i∈I σ
i denotes the composition σn ◦ . . . ◦ σ2 ◦ σ1 (the order is irrelevant).

When we want to emphasize the difference between a step as defined in Definition 6 and a multistep,
we refer to the former as elementary. Otherwise, we identify an elementary step with a multistep
in which the set of narrowed positions has just one element. A narrowing multistep can be thought
of as a set of elementary steps performed in parallel. In fact, the conditions that we impose on
the positions and substitutions of each elementary step from which a multistep is defined imply
that, in a multistep, the order in which substitutions are composed and positions are narrowed is
irrelevant.

The notion of multistep is essential for defining the cost of a derivation. As expected, the cost
of a derivation is the total cost of its steps and an elementary step has unit cost. However, it does
not seem appropriate, for practical reasons, to set the cost of a multistep equal to the number of
positions narrowed in the step. A justification of this choice will be given after the definition of
cost. The notions of family of redexes, cost of a derivation, and complete narrowing step defined
next extend those for rewriting [9, 41, 50].

For any set I and equivalence relation ∼ on I, |I| denotes the cardinality of I, and I/∼ denotes
the quotient of I modulo ∼.

Definition 17 Let α = t0 ;〈pi
1
,Ri

1
, σi

1
〉i∈I1

t1;〈pi
2
,Ri

2
, σi

2
〉i∈I2

· · · be a narrowing (multi)derivation.

Let σn be a shorthand for ◦ k∈Inσ
k
n. The symbol ∼n denotes the equivalence relation on In defined

as follows: for any i and j in In, i∼n j iff the subterms identified by these indices have a common
ancestor, more precisely, there exists some m, less than n, such that for some position q in tm, both
tn|pi

n+1
and tn|pj

n+1

are descendants of σn ◦ σn−1 · · ·σm+1(tm|q).

27

We call a family of In any set of ∼n-equivalent indices, and a family of tn any set of redexes
whose corresponding indices are ∼n-equivalent.

The cost of the n-th step of α is the number of families in In, i.e., |In/∼n|. The cost of α,
denoted cost(α), is the total cost of the steps of α.

We say that a family is complete iff it cannot be enlarged, and we say that a step is complete
iff it contracts only complete families, more precisely, In is complete iff if i is in In, then for any
position q of tn−1 such that pin and q have a common ancestor in some term of α, there exists some
j in In such that q = pjn. We say that a derivation is complete iff all its steps are complete.

We say that a narrowing multistep t ;〈pi,Ri,σi〉i∈I
u is needed (respectively outermost-needed) iff

each family of I contains a needed (respectively outermost-needed) narrowing position. A derivation
is needed (respectively outermost-needed) iff all its steps are needed (respectively outermost-needed).

Example 11 Consider the rule for double in Example 5. Then

double(X +X) ;〈Λ,R6,{}〉 (X +X) + (X +X)

;〈1,R4,{X 7→0}〉〈2,R4,{X 7→0}〉 0 + 0

;〈Λ,R4,{}〉 0

is a narrowing multiderivation where all steps are complete and have cost 1.

If I is the set of indices of a narrowing step and i and j belong to I, then i∼ j iff pi and pj are, using
an anthropomorphic metaphor, blood related. A complete derivation is characterized by narrowing
complete “families,” i.e., sets containing all the pairwise blood related subterms of a term. Note
that the blood related subterms of a term are all equal and that their positions are pairwise disjoint;
thus, all of them can be included in a multistep. Our choice of cost measure is suggested by the
observation that if t ;p,R,σ t

′ and p and q are blood related positions, then narrowing t at q “when
t is being narrowed at p” involves no additional computation of a substitution and/or a rule and,
consequently, no additional computation of a substituting term (the instantiation of the right-hand
side of a rule) since the reducts of blood related subterms are all equal, too.

We show that complete, outermost-needed narrowing derivations have minimum cost and min-
imum length. The proof relies on the analogous result for orthogonal systems formulated for
reduction sequences only [41, 50]. Formally, we must give a meaning to the notion of need when a
non-elementary step is computed. To achieve optimality, we require multisteps only as far as blood
related terms are concerned. Thus, it suffices to consider multisteps in which only one complete
family is narrowed. These steps are quite similar to elementary steps when, in the representation
of a term, blood related subterms are fully “shared.”

The framework of term graph rewriting [68] offers a formal model that leads to a simple and
efficient implementation of our strategy. We consider only finite term and acyclic graphs. The
computation of a complete needed narrowing step in a term graph, g, proceeds as follows: we
unravel g, thus obtaining a “regular” term t; we compute an outermost-needed narrowing step of
t using λ as described earlier; we map back the computed step to g; and finally we perform the
narrowing step on g. The adequacy of this approach for the rewrite systems and the terms that
we are considering is discussed in [7, 46]. In practice, the computation of a step is simple and
efficient. Since λ computes a narrowing step by unification, the unraveling of a term graph g is
achieved simply by traversing the representation of g as if it were a tree during the unification
phase, and no map-back operation is actually required. In the following, we use the notion of
reduction multisteps—narrowing multisteps where the step’s unification is limited to a matching
(cf. Definition 17).

28

Definition 18 Let α = t0 ;〈pi
1
,Ri

1
, σi

1
〉i∈I1

t1;〈pi
2
,Ri

2
, σi

2
〉i∈I2

· · ·;〈pi
q ,R

i
q , σ

i
q〉i∈Iq

tq be a narrowing mul-

tiderivation. Let θj = ◦ k∈Iqσ
k
q ◦ · · ·◦ k∈Ijσ

k
j . We say that A = θ1(t0)

∗
→ tq is the reduction sequence

canonically associated to α iff for every n > 0, if tn−1 ;〈pi
n,R

i
n, σ

i
n〉i∈In

tn is the n-th step of α, then

θn(tn−1)→〈pi
n,R

i
n〉i∈In

θn+1(tn) is the n-th step of A.

Loosely speaking, α and A compute the same steps.

Lemma 6 Let R be an inductively sequential rewrite system, α =
t0 ;〈pi

1
,Ri

1
, σi

1
〉i∈I1

t1;〈pi
2
,Ri

2
, σi

2
〉i∈I2

· · ·;〈pi
q ,R

i
q , σ

i
q〉i∈Iq

tq a narrowing multiderivation and A the

reduction sequence canonically associated to α. If α is needed, then A is needed, too.

Proof Suppose that α is not null and that tn−1 ;〈pi
n,R

i
n, σ

i
n〉i∈In

tn is the n-th step of α, for some

n > 0. The n-th step of A is θn(tn−1)→〈pi
n,R

i
n〉i∈In

θn+1(tn). For each family in In, there exists an

index l such that the narrowing position pln is needed. Since ◦ k∈Inσ
k
n ≤ θn, by Definition 10, the

position pln is also needed in A. 2

Lemma 7 Let R be an inductively sequential rewrite system, α =
t0 ;〈pi

1
,Ri

1
, σi

1
〉i∈I1

t1;〈pi
2
,Ri

2
, σi

2
〉i∈I2

· · ·;〈pi
q ,R

i
q , σ

i
q〉i∈Iq

tq and A the reduction sequence canonically

associated to α. If α is complete, then A is also complete.

Proof We prove that if A is incomplete, then so is α. Suppose that α is not null and that
tn−1;〈pi

n,R
i
n, σ

i
n〉i∈In

tn, for some n > 0, is the first step of α such that the corresponding step of

A, θn(tn−1) →〈pi
n,R

i
n〉i∈In

θn+1(tn), is incomplete. There exists a position q of tn−1 such that for

no i ∈ In, q = pin, and for some j ∈ In, q and pjn are blood related. In other words, the family of
In to which pjn belongs is not complete. Since q and pjn are blood related, they have a common
ancestor. Since the first incomplete step occurs at tn−1, the common ancestor occurs in some
preceding term tl with l ≤ n− 2. Hence, there exists a position r in θl+1(tl) such that both q and
pjn are (rewriting) descendants of r. Since the θi’s are constructor substitutions and the root of tl|r
is a defined operation, r is a position of tl as well. Thus, both q and p

j
n are (narrowing) descendants

of r in tn−1 and the n-th step of α is also incomplete. 2

Corollary 1 If α = t
∗
;σ u is a complete and needed narrowing multiderivation of a term t into

a constructor term u, then α has minimum cost. I.e., for any multiderivation β = t
∗
;σ′ u with

σ = σ′[Var(t)], cost(α) ≤ cost(β).

Proof Let A and B be the reduction sequences canonically associated with the narrowing deriva-
tions α and β, respectively. By Definition 18, σ = σ′[Var(t)] implies that the initial and final
terms of A and B are pairwise identical. By Lemmas 6 and 7, A is a complete and needed re-
duction sequence. Thus, cost(A) ≤ cost(B) [41, 50]. By Definition 17, cost(A) = cost(α) and
cost(B) = cost(β). Thus, α has minimum cost among all the narrowing derivations computing

t
∗
;σ u. 2

Completeness is essential to achieve minimum cost. In fact, if we stick to elementary derivations,
the outermost-needed strategy yields the longest derivation among those that narrow terms only at
needed positions. Non-trivial families of blood related subterms are created only by non-right-linear
rules. The following example highlights these issues:

29

Example 12 We follow up on Example 5. It is immediate to verify that an outermost-needed
narrowing elementary derivation (actually, a reduction sequence since the term is ground) of
double(0 + 0) has 4 steps. The following elementary derivation is shorter.

double(0 + 0) ;1,R4,{} double(0) ;Λ,R6,{} 0 + 0 ;Λ,R4,{} 0

This derivation is shorter than the outermost-needed one, because its first step narrows the subterm
at position 1. By contrast, the first step of the outermost-needed derivation narrows the initial term
at the root. This step yields two descendants of position 1, which are both needed. Sharing these
blood related subterms would save one step.

6 Extensions of needed narrowing

Since the preliminary publication of needed narrowing in [5], both needed narrowing and a com-
bination of other strategies originating from this idea have become the preferred choice for the
evaluation of modern narrowing-based functional logic languages. We will come back later to the
reasons of this acceptance. In this section, we discuss variations and extensions of needed narrowing
to classes of functional logic programs which are more general than the inductively sequential ones.

The key idea behind needed narrowing is the discovery that certain steps of a computation
(referred to as “needed”) must be performed to obtain the computation’s result. Definitional trees
allow us to efficiently compute needed steps. For instance, [32] describes an efficient implementation
of needed narrowing by a straightforward transformation of definitional trees into Prolog programs,
and [70] presents an abstract machine suitable for the direct compilation of needed narrowing into
machine code. However, definitional trees also limit the domain of needed narrowing to inductively
sequential systems. Inductive sequentiality excludes systems with overlapping left-hand sides, such
as the following one, that are interesting in functional logic programming.

Example 13 The following definition of Boolean disjunction is known as the parallel-or:

X ∨ true → true R1

true ∨ X → true R2

false ∨ false → false R3

This system is not inductively sequential since there is no definitional tree of “∨.” This can be
inferred by the fact that neither argument of “∨” is demanded by all the rules. The first two rules
of “∨” are overlapping. Both rules are applicable, e.g., to the term true∨ true. As a consequence, a
term of the form t1∨ t2 may be narrowed to normal form by narrowing either t1 or t2, although it is
not known how to make this choice without looking ahead. A further consequence is the existence
of terms of the form t1 ∨ t2 in which neither t1 nor t2 need to be evaluated—condition contrary to
the key idea of needed narrowing.

The rules of parallel-or belong to the class of the weakly orthogonal, constructor-based rewrite
systems which allow overlapping among the rules’ left-hand sides as long as any critical pair is trivial
[15, 47]. A variation of needed narrowing, applicable to this class of rewrite systems, is obtained
by extending definitional trees with a new kind of nodes providing a mechanism for the non-
deterministic selection of arguments to be evaluated [2, 6]. These definitional trees, called parallel,
have the additional form or(T1, . . . , Tk), where k > 1 and all subtrees Tj have the same pattern,
but different arguments in the immediately subsequent branch nodes. The parallel definitional tree
of the operation of Example 13 is

or(branch(X1 ∨X2, 1, leaf(true ∨X2 → true), . . .),
branch(X1 ∨X2, 2, leaf(X1 ∨ true → true), . . .))

30

Weakly needed narrowing [6] is an extension of needed narrowing to weakly orthogonal, constructor-
based rewrite systems. This strategy is computed by a function similar to λ that non-determini-
stically selects a subtree of each or node that is encountered during the computation of a narrowing
step. This strategy is almost identical to the demand driven narrowing strategy proposed in [49]
(which is presented without proofs of soundness and completeness) and is a conservative extension
of needed narrowing. Since weakly orthogonal term rewriting systems lack a notion of needed redex,
the strong optimality results of needed narrowing cannot be preserved by weakly needed narrowing.

By contrast to needed narrowing, weakly needed narrowing, as well as any other previously
proposed narrowing strategy for weakly orthogonal systems, does not evaluate every ground term
in a deterministic way. Parallel narrowing [6] is a variation of weakly needed narrowing that
deterministically evaluates every ground term. It achieves this property by narrowing in a single
step several distinct subterms similarly to the rewriting strategy of Sekar and Ramakrishnan [66].
Parallel narrowing is better than weakly needed at pruning the search space. For instance, consider
Example 13 together with the additional rule

f(a) → true R4

and the term f(X) ∨ f(X). Weakly needed narrowing computes four distinct derivations all with
the same substitution, {X 7→ a}.

f(X) ∨ f(X) ;1,R4,{X 7→a} true ∨ f(a) ;Λ,R2, id true

f(X) ∨ f(X) ;1,R4,{X 7→a} true ∨ f(a) ;2,R4, id true ∨ true ;Λ,R2, id true

f(X) ∨ f(X) ;2,R4,{X 7→a} f(a) ∨ true ;Λ,R1, id true

f(X) ∨ f(X) ;2,R4,{X 7→a} f(a) ∨ true ;1,R4, id true ∨ true ;Λ,R2, id true

Parallel narrowing computes the same substitution and simultaneously reduces both arguments of
“∨,” yielding the unique parallel narrowing derivation

f(X) ∨ f(X) ;; {X 7→a} true ∨ true ;; id true

Parallel narrowing is a conservative extension of two optimal evaluation strategies. It behaves as
needed narrowing on inductively sequential rewrite systems, and is identical to Sekar and Ramakr-
ishnan’s rewrite strategy [66] on ground terms. Parallel narrowing is the only complete strategy
for functional logic programs that evaluates ground terms in a fully deterministic way—even in the
presence of overlapping and non-terminating rules.

A second extension of needed narrowing deals with so-called non-determinate functions. The
choice operator is a perfect example of this idea. Non-determinate computations are modeled by
overlapping rewrite systems, e.g.,

choice(X,Y) → X
choice(X,Y) → Y

Non-determinate functions support a terse and elegant programming style. For example, the fol-
lowing program non-deterministically computes a permutation of a list.

insert(X,Xs) → choice([X|Xs], insert1(X,Xs))
insert1(X, [Y |Y s]) → [Y |insert(X,Y s)]

permute([]) → []
permute([X|Xs]) → insert(X, permute(Xs))

The use of non-determinate functions in functional logic programming has been investigated by
[1, 25]. In particular, Gonzales Moreno et al. [25] present a sound and complete narrowing cal-
culus for a very large class of overlapping constructor-based systems which allow non-determinate

31

computations. A more sophisticated narrowing strategy for a more limited class of overlapping
systems is given in [4] along the lines of needed narrowing. Overlapping rules in these systems have
the same left-hand side except for a renaming of variables. Rules with overlapping left-hand sides
are merged by introducing a “choice” in the right-hand side (as shown by the rule of insert in the
previous program). Definitional trees in these systems are exactly the definitional trees discussed
in this paper—except for leaf nodes which may contain several choices. Systems in which every
function has one such tree are called overlapping inductively sequential. Inductively sequential nar-
rowing [4] is a strategy for possibly overlapping inductively sequential systems. This strategy is
simply obtained from needed narrowing by adding, where appropriate, a choice of a right-hand side.
This strategy preserves, with a few exceptions, the most important properties of needed narrowing
including a weaker form of optimality modulo non-determinate choices.

A third extension of needed narrowing deals with higher-order programming; a feature that
greatly contributes to the power of functional languages and has been investigated in the context
of functional logic languages by [35, 57]. As shown by Warren [72] for the case of logic program-
ming, one can extend a first-order language to cover the higher-order features of existing functional
languages (including partial applications and lambda abstractions) by providing an application
function apply(F,X)→ F (X). This function can be explicitly defined by first-order rules through
an encoding of function names as constructors. By this method, we extend needed narrowing to
higher-order functional programming since the rules defining the apply function are inductively
sequential. More expressive languages should allow lambda abstractions in patterns (i.e., as ar-
guments in the left-hand sides of rules)—a use that goes beyond current higher-order functional
languages. For instance, the following higher-order rules for symbolic differentiation cannot be han-
dled by existing functional languages, but are plausible in a higher-order functional logic language:

diff(λy.y, X) → 1
diff(λy.sin(F (y)), X) → cos(F (X)) ∗ diff(λy.F (y), X)
diff(λy.ln(F (y)), X) → diff(λy.F (y), X)/F (X)

A higher-order functional logic language is able to synthesize new functions satisfying a given goal.
For instance, the equation

λx.diff(λy.sin(F (x, y))), x) ≈ λx.cos(x)

is solved by instantiating the functional variable F by the projection function λx.λy.y. Function
synthesis is a complex task that requires higher-order unification. A strategy for higher-order
narrowing, based on definitional trees, has been proposed in [35]. This strategy computes a minimal
set of (higher-order) solutions by extending needed narrowing to deal with lambda abstractions.

A fourth extension of needed narrowing deals with graph rewriting systems [19]. Future func-
tional and logic programming languages will handle graph structures explicitly, as is yet the case
in the declarative language Clean [63]. There are many reasons which motivate the use of graphs.
They actually allow sharing of subexpressions, which leads to efficient implementations. They also
permit to go beyond the processing of first-order terms by efficiently handling real-world data struc-
tures (e.g., data bases). In [19], a class of confluent constructor-based graph rewriting systems has
been proposed for which needed narrowing has been generalized successfully with the same nice
optimality results.

Finally, the ideas of (weakly) needed narrowing and definitional trees have also been extended by
concurrency features. This approach provides a unified computation model which encompasses the
most important existing declarative programming paradigms [33]. This extension is the foundation
of Curry [33, 37], a new multi-paradigm programming language aiming to integrate functional,

32

logic, and concurrent programming paradigms. The operational model of Curry uses a slightly
extended form of definitional trees to specify the evaluation strategy of each function.

As the field of functional logic programming evolves, more demands are placed on narrowing
strategies. In addition to soundness, completeness, and efficiency, a strategy must cope with results,
features and techniques adopted in this field. One such feature is conditional rules that contribute
to the expressiveness of programs. For instance, the following rules define a predicate for list
membership on the basis of the function append to concatenate lists:

append([], L) → L
append([E|R], L) → [E|append(R,L)]

member(E,L) → true ⇐ append(L1, [E|L2]) ≈ L

Variables L1 and L2 do not occur in the left-hand side of their rule; hence, they don’t get a
value when the rule is fired. However, narrowing is an ideal computation to instantiate them. For
example, in order to reduce a term like member(b, [a, b, c]), we can compute (e.g., by narrowing)
values for the extra variables L1 and L2 so that the condition “append(L1, [b|L2]) ≈ [a, b, c]” is
reducible to true. If the left-hand sides of rewrite rules are non-overlapping, one can easily translate
conditional rules into unconditional ones [8]. This method has also been used in the functional logic
language BABEL [55] to define the semantics of conditional rules. In our example, we transform
the rule for member into an unconditional one by interpreting the condition and the right-hand
side as a “conditional expression”:

member(E,L) → cond(append(L1, [E|L2]) ≈ L, true)

cond(true, X) → X

On an inductively sequential source system, this transformation yields an inductively sequential
target system. Hence we can apply needed narrowing to the target system, although not all the
properties of needed narrowing may be preserved by the transformation.

7 Comparison with other narrowing strategies

The trade-off between power and efficiency is central to the use of narrowing, especially in program-
ming. To this aim, several narrowing strategies, e.g., [11, 14, 17, 18, 21, 22, 23, 20, 28, 38, 39, 43,
51, 52, 53, 54, 55, 59, 65, 73] have been proposed. The notion of completeness has evolved accord-
ingly. Plotkin’s classic formulation [64] has been relaxed to completeness w.r.t. ground solutions
(e.g. [22]) or completeness w.r.t. strict equality and domain-based interpretations, as in [23, 55].
The latter appear more appropriate for narrowing as the computational paradigm of functional
logic programming languages in the presence of infinite data structures and computations. For
this purpose, we have introduced the equality rules in Section 2 and defined the computation of
solutions of an equation as narrowing the equation to true. Although this approach is also taken in
other functional logic languages, e.g., K-LEAF [23] or BABEL [55], it has the disadvantage that,
in some cases, it simply enumerates all constructor terms.

Example 14 Consider the signature of Example 2 and the equation s(A) ≈ s(s(B)). All possible
solutions of this equation can be described by σ ◦ {A 7→ s(B)} where σ is an arbitrary ground
constructor substitution with B ∈ Dom(σ). However, applying needed narrowing to this equation
w.r.t. the equality rules produces an infinite set of derivations with outcomes {A 7→ s(0), B 7→ 0},
{A 7→ s(s(0)), B 7→ s(0)}, {A 7→ s(s(s(0))), B 7→ s(s(0))}, etc.

33

In order to avoid such trivial but infinite search spaces, we can replace narrowing of constructor
terms by a computation of the most general unifier. If t1 ≈ t2 is an equation with t1, t2 ∈ T (C,X),
we compute the most general unifier of t1 and t2 instead of applying narrowing steps. If both terms
are not unifiable, there is no solution of t1 ≈ t2. Otherwise, mgu(t1, t2) represents all solutions
of t1 ≈ t2 in the sense that for each solution σ there exists a ground constructor substitution τ
with σ = τ ◦ mgu(t1, t2). Note that the restriction to constructor substitutions is essential since
{A 7→ s(f(0)), B 7→ f(0)} is not a solution of the equation s(A) ≈ s(s(B)) if the operation f is
defined by

f(0)→ f(0) .

The computation of the most general unifier in the final step of a narrowing derivation is also done
in other narrowing strategies for terminating rewrite systems (e.g., [14, 17, 22]).

We briefly recall the underlying ideas of a few major strategies and compare them with ours
using the following example. We choose a terminating rewrite system with completely defined
operations, otherwise all the eager strategies would be immediately excluded.

Example 15 The symbols a, b, and c are constructors, whereas f and g are defined operations.

f(a) → a R1

f(b(X)) → b(f(X)) R2

f(c(X)) → a R3

g(a,X) → b(a) R4

g(b(X), a) → a R5

g(b(X), b(Y)) → c(a) R6

g(b(X), c(Y)) → b(a) R7

g(c(X), Y) → b(a) R8

The equation to solve is g(X, f(X)) ≈ c(a). Our strategy computes only three derivations—only
one of which yields a solution.

g(X, f(X)) ≈ c(a) ;1,R4,{X 7→a} b(a) ≈ c(a)

g(X, f(X)) ≈ c(a) ;1,R8,{X 7→c(X1)} b(a) ≈ c(a)

g(X, f(X)) ≈ c(a) ;1.2,R2,{X 7→b(X1)} g(b(X1), b(f(X1))) ≈ c(a)
∗
;{} true

Basic narrowing [42] avoids positions introduced by the instantiations of previous steps. Its
completeness, and that of its variations, e.g., [11, 38, 39, 51, 59, 58], is known for confluent and
terminating rewrite systems (see [51] for a systematic study.) This strategy may perform useless
steps and computes an infinite search space for our benchmark example. LSE narrowing [11], a
refinement of basic narrowing with additional redundancy tests, ensures that the same solution (up
to variable renaming) is not computed by two different derivations. However, it may be the case
that one solution is an instance of another. Hence different solutions computed by LSE narrowing
are not incomparable in general.

Innermost narrowing [22] narrows only patterns. It is ground complete only for terminating
constructor-based systems with completely defined operations. It may perform useless steps and it
computes an infinite number of derivations for our benchmark example.

Outermost narrowing [17, 18, 20] narrows outermost operation-rooted terms. This strategy is
ground complete only for a restrictive class of rewrite systems. It computes no solution for our
benchmark example unless we transform the considered rewrite system [17].

Lazy narrowing [23, 28, 54, 55, 65] narrows an inner term only when the step is demanded to
narrow an outer term. For these strategies, the qualifier “lazy” is used as a synonym of “outermost”

34

or “demand driven,” rather than in the technical sense we propose. The completeness of these
strategies is generally expensive to achieve: [28] requires an ad-hoc implementation of backtracking,
with the potential of evaluating some term several times; [23] requires flattening of functional nesting
and a specialized WAM-like machine in which terms are dynamically reordered; and [54] requires
a transformation of the rewrite system which, for our benchmark example, increases the number
of operations and lengthen the derivations. The following example shows a further important
difference between lazy narrowing and needed narrowing:

Example 16 Consider the following term rewriting system:

one(0) → s(0) R1

one(s(X)) → one(X) R2

f(0, 0) → 0 R3

f(s(X), 0) → s(0) R4

f(X, s(Y)) → s(s(0)) R5

A lazy narrowing strategy reduces a term to a head normal form before a narrowing rule is applied,
when this reduction is required for the rule’s application [54, 65]. For instance, if we wish to
apply rule R3 to the term f(one(X), X), then f ’s argument one(X) must be narrowed to head
normal form in an attempt to unify the result with f ’s argument 0 in R3. Unfortunately, there
are infinitely many narrowing derivations of one(X) to a head normal form term—for every n ≥ 0,

one(X)
∗
;{X 7→sn(0)} s(0). In a sequential implementation of a lazy strategy, this would delay

forever the application of rules R4 and R5, which would result in an incomplete implementation
[28]. Apart from this behavior in sequential implementations, lazy narrowing may have an infinite
search space which may be avoided by our strategy. For instance, there are infinitely many lazy
narrowing derivations of the equation f(one(X), X) ≈ 0 due to the infinite number of derivations
of one(X) to head normal form. But our strategy computes only the following two derivations:

f(one(X), X) ≈ 0 ;1.1,R1,{X 7→0} f(s(0), 0) ≈ 0 ;1,R4,{} s(0) ≈ 0

f(one(X), X) ≈ 0 ;1,R5,{X 7→s(Z)} s(s(0)) ≈ 0

The good behavior of our strategy is due to the fact that we have changed the order of redex
selection and variable instantiation: our strategy instantiates f ’s second argument X to one of the
constructors 0 or s before the redex is selected. This avoids narrowing the uninstantiated argument
one(X).

Standard narrowing [14, 43, 52, 73], also called leftmost outside-in narrowing [43], extends to
narrowing the notion of standard rewrite derivations introduced by Huet and Lévy [41]. Thus,
standard narrowing characterizes narrowing derivations rather than narrowing steps. In these
narrowing derivations, as in lazy narrowing, outer positions are considered before inner positions.
This strategy is complete for orthogonal systems w.r.t. strict equality. Standard narrowing
derivations are the same as needed narrowing derivations on the benchmark example. However,
You gives no constructive procedure for enumerating standard narrowing derivations. Darlington
and Guo sketch in [14] a narrowing strategy called lazy pattern driven narrowing which is intended
to compute standard narrowing derivations for orthogonal constructor-based rewrite systems.
This strategy is not optimal in the sense that it may generate several times a same standard
derivation. On the benchmark example, this strategy generates fourteen standard derivations and
three times the unique derivation that computes a solution for the equation g(X, f(X)) ≈ c(a).
In [43], Ida and Nakahara give a procedure for enumerating standard narrowing derivations.
They do not use the classic definition of a narrowing step (as in Definition 6), but break a
narrowing step into more elementary inference steps (selection of a rule, pattern matching,
etc). Due to the separation of rule application and pattern matching, their calculus has more

35

non-deterministic choices than needed narrowing. For our benchmark example, their narrowing
calculus non-deterministically applies five different inference steps to the initial equation. The
same holds for other similar narrowing calculi, e.g., [27, 53]. Since this strategy is defined for
orthogonal, but not necessarily constructor-based rewrite systems, it has also been extended
[57] to provide a complete narrowing calculus for applicative term rewriting systems (which
model the higher-order features of current functional languages). Recently, Middeldorp and Okui
improved the strategies in [43, 53] by providing a deterministic lazy narrowing calculus [52] for
orthogonal constructor-based rewrite systems (actually, they also provide completeness results
for left-linear confluent constructor-based rewrite systems). This improved calculus is complete
w.r.t. strict equality and behaves on the benchmark example as the narrowing calculus given
in [43]. If we reconsider Example 16, all the quoted strategies including the last one, fail to
stop on the equation f(one(X), X) ≈ 0 contrary to needed narrowing. Nevertheless, standard
narrowing has one optimality result due to the standardization of narrowing derivations. It has
been shown in [52, 73] that the solutions computed by standard narrowing are always incomparable.

Implementations of narrowing in Prolog [3, 13, 44, 49] are proposed as a prototypical and
portable integration of functional and logic languages. For example, [13, 44] have been proposed as
an alternative to the specialized machines required for K-LEAF [23] and BABEL [55], respectively.
The most recent proposals [3, 49] are based on definitional trees and appear to compute needed steps
for inductively sequential systems, although both methods neither formalize nor claim this property.
The scheme in [3] computes λ directly by unification. The patterns involved in the computation of
λ are a superset of those represented by the leaves of a definitional tree. This is suggested by claim 1
of Theorem 1 that shows a “strong” need for the positions computed using λ—not only the terms at
these positions must be eventually narrowed, but they must be eventually narrowed to head normal
forms. The resulting implementation takes advantage of this characteristic and its performance
appears to be superior to the other proposals. This property of needed narrowing is also emphasized
by the benchmarks presented in [32] which show the superiority of needed narrowing in comparison
to other narrowing strategies for Prolog-based implementations of functional logic programs. We

Strategy Requirements Completeness Optimality

C T CB others IS DS length of
derivations

basic [42] X X complete no no no

innermost [22] X X X
completely
defined
operations

ground complete (yes) no

outermost [17, 18] X X X uniformity ground complete (yes) no

lazy [23, 28, 54]
[55, 65]

X X nonambiguity
[55, p. 197]

complete w.r.t.
strict equality

no no no

standard [14, 43]
[52, 73]

X (X) orthogonality complete w.r.t.
strict equality

yes

needed X X inductive
sequentiality

complete w.r.t.
strict equality

yes yes yes

Figure 1: Summary of the characteristics of some major narrowing strategies.

summarize the characteristics of the major narrowing strategies in the table of Figure 1. In the
requirement columns, C, T and CB denote “confluence,” “termination,” and “constructor discipline,”

36

respectively. In the optimality section, columns IS and DS denote incomparable and disjoint
solutions, respectively. The entries “yes” and “no” mean that the corresponding property holds
or does not hold, respectively. An empty entry indicates that the corresponding property has not
been investigated in the literature. The entry “(yes)” means that the corresponding property has
been shown under some additional conditions [17, Theorem 3].

It is interesting to note that lazy narrowing, as formally defined in [55], does not satisfy any
of the optimality properties shown in the table. For instance, consider Example 2 and the goal
X ≤ X +X. Since both arguments of ≤ are demanded in the sense of [55], there are the following
lazy narrowing derivations (among others):

X ≤ X +X ;Λ,R1,{X 7→0} true

X ≤ X +X ;2,R4,{X 7→0} 0 ≤ 0 ;Λ,R1,{} true

Thus, the solution {X 7→ 0} is computed twice and the second derivation is not of minimal length.
To summarize, the distinguishing features of our strategy are the following: with respect to

eager strategies, completeness for non-terminating rewrite systems; with respect to the so-called
lazy strategies, a sharp characterization of laziness; with respect to any strategy, optimality and
ease of computation.

8 Concluding remarks

We have proposed a new narrowing strategy obtained by extending to narrowing the well-known
notion of need for rewriting. Need for narrowing appears harder to handle than need for rewriting—
to compute a needed narrowing step one must also look ahead at a potentially infinite number of
substitutions. Remarkably, there is an efficiently algorithm for this computation in inductively
sequential systems.

The only non-trivial operation required for the implementation of our strategy is unification.
Prolog interpreters and compilers offer efficient built-in implementations of unification. This is one
reason for the good performance, as we have reported in the previous section, of implementations
of needed narrowing in Prolog (see [32] for some benchmarks). In addition to being well-suited to
efficient implementations of functional logic languages in Prolog, as described in [3, 32, 49], our
strategy can be easily implemented in other languages. Unification has well-understood algorithms
that are efficiently implemented in various programming styles and abstract machines. For instance,
[36] describes the compilation of the functional logic language Curry (which is based on an extension
of needed narrowing) into Java.

We have also shown that our strategy computes only disjoint and optimal derivations. Although
all the previously proposed lazy strategies have the latter as their primary goal, our strategy is the
only one for which this result is formalized and proved.

We want to conclude with a general assessment of the “overall quality” of the narrowing strategy
used by a programming language. The key factor is the trade-off between the size of the class of
rewrite systems for which the strategy is complete, and the efficiency of its computations.

We have proved both completeness and optimality for inductively sequential systems. We
have also discussed how the idea of needed narrowing has been extended into different directions
(weakly orthogonal systems, non-determinate functions, conditional rules, higher-order functions,
graph rewrite systems). These extensions preserve some of the remarkable characteristics of needed
narrowing, such as an inherent conceptual simplicity and efficiency of computations; compatibly
with the larger domain in which they are employed; and the full preservation of the key feature of
needed narrowing—the computation of needed steps—on the inductively sequential portions of a
program.

37

Acknowledgement

The authors are grateful to the anonymous referees for their helpful remarks to improve the final
version of this paper.

References

[1] S. Antoy. Non-determinism and lazy evaluation in logic programming. In T. P. Clement
and K.-K. Lau, editors, Proc. Int. Workshop on Logic Program Synthesis and Transformation
(LOPSTR’91), pages 318–331, Manchester, UK, July 1991. Springer Workshops in Computing
Series.

[2] S. Antoy. Definitional trees. In Proc. International Conference on Algebraic and Logic Pro-
gramming (ALP’92), pages 143–157. Springer LNCS 632, 1992.

[3] S. Antoy. Needed narrowing in Prolog. In Proc. Int. Symposium on Programming Languages,
Implementations, Logics, and Programs (PLILP’96), pages 473–474. Springer LNCS 1140,
1996. Full version accessible at http://www.cs.pdx.edu/~antoy.

[4] S. Antoy. Optimal non-deterministic functional logic computations. In Proc. International
Conference on Algebraic and Logic Programming (ALP’97), pages 16–30. Springer LNCS 1298,
1997.

[5] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. In Proc. 21st ACM
Symposium on Principles of Programming Languages, pages 268–279, Portland, 1994.

[6] S. Antoy, R. Echahed, and M. Hanus. Parallel evaluation strategies for functional logic lan-
guages. In Proc. of the Fourteenth International Conference on Logic Programming (ICLP’97),
pages 138–152. MIT Press, 1997.

[7] H. Barendregt, M. van Eekelen, J. Glauert, R. Kennaway, M.J. Plasmeijer, and M. Sleep.
Term graph rewriting. In Proc. Parallel Architectures and Languages Europe (PARLE’87),
pages 141–158. Springer LNCS 259, 1987.

[8] J.A. Bergstra and J.W. Klop. Conditional rewrite rules: Confluence and termination. Journal
of Computer and System Sciences, 32(3), 1986.

[9] G. Berry and J.-J. Lévy. Minimal and optimal computations of recursive programs. Journal
of the Association for Computing Machinery, 26(1):148–175, 1979.

[10] D. Bert and R. Echahed. Design and implementation of a generic, logic and functional program-
ming language. In Proc. European Symposium on Programming (ESOP’86), pages 119–132.
Springer LNCS 213, 1986.

[11] A. Bockmayr, S. Krischer, and A. Werner. Narrowing strategies for arbitrary canonical systems.
Fundamenta Informaticae, 24(1,2):125–155, 1995.

[12] G. Boudol. Computational semantics of term rewriting systems. In M. Nivat and J. C.
Reynolds, editors, Algebraic methods in semantics, chapter 5, pages 169–236. Cambridge Uni-
versity Press, Cambridge, UK, 1985.

38

[13] P.H. Cheong and L. Fribourg. Implementation of narrowing: The Prolog-based approach.
In K.R. Apt, J.W. de Bakker, and J.J.M.M. Rutten, editors, Logic programming languages:
constraints, functions, and objects, pages 1–20. MIT Press, 1993.

[14] J. Darlington and Y. Guo. Narrowing and unification in functional programming - an evalu-
ation mechanism for absolute set abstraction. In Proc. Conference on Rewriting Techniques
and Applications (RTA’89), pages 92–108. Springer LNCS 355, 1989.

[15] N. Dershowitz and J. Jouannaud. Rewrite systems. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science B: Formal Methods and Semantics, chapter 6, pages 243–320.
North Holland, Amsterdam, 1990.

[16] Nachum Dershowitz. Completion and its applications. In H. Aı̈t-Kaci and M. Nivat, editors,
Resolution of Equations in Algebraic Structures, volume 2: Rewriting Techniques, chapter 2,
pages 31–85. Academic Press, New York, 1989.

[17] R. Echahed. On completeness of narrowing strategies. Theoretical Computer Science 72, pages
133–146, 1990.

[18] R. Echahed. Uniform narrowing strategies. In Proc. Third International Conference on Alge-
braic and Logic Programming (ALP’92), pages 259–275, Volterra, Italy, 1992. Springer LNCS
632.

[19] R. Echahed and J.C. Janodet. Admissible graph rewriting and narrowing. In Proc. of the 1998
Joint International Conference and Symposium on Logic Programming (JICSLP’98), pages
325–340. MIT Press, June 1998.

[20] H. Fassbender and H. Vogler. A universal unification algorithm based on unification-driven
leftmost outermost narrowing. Acta Cybernetica, 11(3):139–167, 1994.

[21] M. J. Fay. First-order unification in an equational theory. In Proc. 4th Workshop on Automated
Deduction, pages 161–167, Austin (Texas), 1979. Academic Press.

[22] L. Fribourg. SLOG: A logic programming language interpreter based on clausal superposition
and rewriting. In Proc. IEEE Internat. Symposium on Logic Programming, pages 172–184,
Boston, 1985.

[23] E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: a logic plus functional
language. The Journal of Computer and System Sciences, 42:139–185, 1991.

[24] J. A. Goguen and J. Meseguer. Eqlog: Equality, types, and generic modules for logic program-
ming. In D. DeGroot and G. Lindstrom, editors, Logic Programming, Functions, Relations,
and Equations, pages 295–363. Prentice Hall, 1986.

[25] J.C. Gonzáles-Moreno, M.T. Hortalá-Gonzáles, F.J. López-Fraguas, and M. Rodŕıguez-
Artalejo. A rewriting logic for declarative programming. In Proc. European Symposium on
Programming (ESOP’96), pages 156–172. Springer LNCS 1058, 1996.

[26] J.V. Guttag and J.J. Horning. The algebraic specification of abstract data types. Acta Infor-
matica, 1978.

[27] M. Hamada and A. Middeldorp. Strong completeness of a lazy conditional narrowing calculus.
In Proc. 2nd Fuji International Workshop on Functional and Logic Programming, pages 14–32.
World Scientific, 1997.

39

[28] W. Hans, R. Loogen, and S. Winkler. On the interaction of lazy evaluation and backtracking.
In Proc. 4th International Symposium on Programming Language Implementation and Logic
Programming (PLILP’92), pages 355–369. Springer LNCS 631, 1992.

[29] M. Hanus. Compiling logic programs with equality. In Proc. 2nd Int. Workshop on Program-
ming Language Implementation and Logic Programming (PLILP’90), pages 387–401. Springer
LNCS 456, 1990.

[30] M. Hanus. Improving control of logic programs by using functional logic languages. In Proc. 4th
International Symposium on Programming Language Implementation and Logic Programming
(PLILP’92), pages 1–23. Springer LNCS 631, 1992.

[31] M. Hanus. The integration of functions into logic programming: From theory to practice.
Journal of Logic Programming, 19&20:583–628, 1994.

[32] M. Hanus. Efficient translation of lazy functional logic programs into Prolog. In Proc. Fifth
International Workshop on Logic Program Synthesis and Transformation (LOPSTR’95), pages
252–266. Springer LNCS 1048, 1995.

[33] M. Hanus. A unified computation model for functional and logic programming. In Proc. of the
24th ACM Symposium on Principles of Programming Languages (Paris), pages 80–93, 1997.

[34] M. Hanus, S. Lucas, and A. Middeldorp. Strongly sequential and inductively sequential term
rewriting systems. Information Processing Letters, 67(1):1–8, 1998.

[35] M. Hanus and C. Prehofer. Higher-order narrowing with definitional trees. In Proc. Seventh
International Conference on Rewriting Techniques and Applications (RTA’96), pages 138–152.
Springer LNCS 1103, 1996.

[36] M. Hanus and R. Sadre. An abstract machine for Curry and its concurrent implementation in
Java. Journal of Functional and Logic Programming, (6), 1999.

[37] M. Hanus (ed.). Curry: An integrated functional logic language. Available at
http://www-i2.informatik.rwth-aachen.de/~hanus/curry, 1999.

[38] A. Herold. Narrowing techniques applied to idempotent unification. Technical Report SR-86-
16, SEKI, 1986.

[39] S. Hölldobler. Foundations of Equational Logic Programming. Springer LNCS 353, 1989.

[40] G. Huet and J.-M. Hullot. Proofs by induction in equational theories with constructors. JCSS,
25:239–266, 1982.

[41] G. Huet and J.-J. Lévy. Computations in orthogonal term rewriting systems. In J.-L. Lassez
and G. Plotkin, editors, Computational logic: essays in honour of Alan Robinson, pages 395–
443. MIT Press, Cambridge, MA, 1991.

[42] J.-M. Hullot. Canonical forms and unification. In Proc. 5th Conference on Automated Deduc-
tion, pages 318–334. Springer LNCS 87, 1980.

[43] T. Ida and K. Nakahara. Leftmost outside-in narrowing calculi. Journal of Functional Pro-
gramming, 7(2):129–161, 1997.

40

[44] J.A. Jiménez-Mart́ın, J. Mariño-Carballo, and J.J. Moreno-Navarro. Efficient compilation of
lazy narrowing into prolog. In Proc. Int. Workshop on Logic Program Synthesis and Transfor-
mation (LOPSTR’92), pages 253–270. Springer Workshops in Computing Series, 1992.

[45] J. R. Kennaway. The specificity rule for lazy pattern-matching in ambiguous term rewrite
systems. In Proc. Third European Symp. on Programming (ESOP’90), pages 256–270. Springer
LNCS 432, 1990.

[46] J. R. Kennaway, J. K. Klop, M. R. Sleep, and F. J. de Vries. The adequacy of term graph
rewriting for simulating term rewriting. In M. R. Sleep, M. J. Plasmeijer, and M. C. J. D.
van Eekelen, editors, Term Graph Rewriting Theory and Practice, pages 157–169. J. Wiley &
Sons, Chichester, UK, 1993.

[47] J. W. Klop. Term Rewriting Systems. In S. Abramsky, D. Gabbay, and T. Maibaum, editors,
Handbook of Logic in Computer Science, Vol. II, pages 1–112. Oxford University Press, 1992.

[48] J. W. Klop and A. Middeldorp. Sequentiality in orthogonal term rewriting systems. Journal
of Symbolic Computation, pages 161–195, 1991.

[49] R. Loogen, F. Lopez Fraguas, and M. Rodŕıguez Artalejo. A demand driven computation
strategy for lazy narrowing. In Proc. 5th International Symposium on Programming Lan-
guage Implementation and Logic Programming (PLILP’93), pages 184–200. Springer LNCS
714, 1993.

[50] L. Maranget. Optimal derivation in weak lambda-calculi and in orthogonal terms rewriting
systems. In 18th Annual Symp. on Principles of Prog. Languages, pages 255–269. ACM, 1991.

[51] A. Middeldorp and E. Hamoen. Completeness results for basic narrowing. Applicable Algebra
in Engineering, Communication and Computing, 5:213–253, 1994.

[52] A. Middeldorp and S. Okui. A deterministic lazy narrowing calculus. Journal of Symbolic
Computation, 25(6):733–757, 1998.

[53] A. Middeldorp, S. Okui, and T. Ida. Lazy narrowing: Strong completeness and eager variable
elimination. Theoretical Computer Science, 167(1,2):95–130, 1996.

[54] J. J. Moreno-Navarro, H. Kuchen, R. Loogen, and M. Rodŕıguez-Artalejo. Lazy narrowing in a
graph machine. In Proc. Second International Conference on Algebraic and Logic Programming
(ALP’90), pages 298–317. Springer LNCS 463, 1990.

[55] J. J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic programming with functions and
predicates: The language BABEL. Journal of Logic Programming, 12:191–223, 1992.

[56] J.J. Moreno-Navarro, H. Kuchen, J. Marino-Carballo, S. Winkler, and W. Hans. Efficient lazy
narrowing using demandedness analysis. In Proc. 5th International Symposium on Program-
ming Language Implementation and Logic Programming (PLILP’93), pages 167–183. Springer
LNCS 714, 1993.

[57] K. Nakahara, A. Middeldorp, and T. Ida. A complete narrowing calculus for higher-order func-
tional logic programming. In Proc. 7th International Symposium on Programming Languages,
Implementations, Logics and Programs (PLILP’95), pages 97–114. Springer LNCS 982, 1995.

41

[58] Robert Nieuwenhuis. On narrowing, refutation proofs and constraints. In Jieh Hsiang, editor,
Rewriting Techniques and Applications, 6th International Conferenc e, RTA-95, LNCS 914,
pages 56–70, Kaiserslautern, Germany, April 5–7, 1995. Springer-Verlag.

[59] W. Nutt, P. Réty, and G. Smolka. Basic narrowing revisited. Journal of Symbolic Computation,
7:295–317, 1989.

[60] M. J. O’Donnell. Computing in Systems Described by Equations. Springer LNCS 58, 1977.

[61] M. J. O’Donnell. Equational Logic as a Programming Language. MIT Press, 1985.

[62] P. Padawitz. Computing in Horn Clause Theories, volume 16 of EATCS Monographs on
Theoretical Computer Science. Springer, 1988.

[63] R. Plasmeijer and M. van Eekelen. Functional Programming and Parallel Graph Rewriting.
Addison-Wesley, 1993.

[64] G.D. Plotkin. Building-in equational theories. Machine Intelligence, 7:73–90, 1972.

[65] U. S. Reddy. Narrowing as the operational semantics of functional languages. In Proc. IEEE
Internat. Symposium on Logic Programming, pages 138–151, Boston, 1985.

[66] R.C. Sekar and I.V. Ramakrishnan. Programming in equational logic: Beyond strong sequen-
tiality. Information and Computation, 104(1):78–109, 1993.

[67] J. R. Slagle. Automated theorem-proving for theories with simplifiers, commutativity, and
associativity. Journal of the ACM, 21(4):622–642, 1974.

[68] M. R. Sleep, M. J. Plasmeijer, and M. C. J. D. van Eekelen, editors. Term Graph Rewriting
Theory and Practice. J. Wiley & Sons, Chichester, UK, 1993.

[69] J.J. Thiel. Stop losing sleep over incomplete data type specifications. In 11th ACM Symposium
on Principles of Programming Languages, pages 76–82, Salt Lake City, 1984.

[70] E. Ullán Hernández. A lazy narrowing abstract machine. Technical report DIA/95/3, Univer-
sidad Complutense, Madrid, 1995.

[71] P. Wadler. How to replace failure by a list of successes. In Functional Programming and
Computer Architecture, pages 113–128. Springer LNCS 201, 1985.

[72] D.H.D. Warren. Higher-order extensions to prolog: are they needed? In Machine Intelligence
10, pages 441–454, 1982.

[73] J.-H. You. Unification modulo an equality theory for equational logic programming. The
Journal of Computer and System Sciences, 42(1):54–75, 1991.

42

