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Example 1.1 Consider the following rules:first(0,x)! [℄first(s(x),y::z) ! y::first(x,z)We give a graphi representation of the de�nitional treefor the funtion first (Figure 1). The �rst branh isdone on the �rst argument (x1) with alternative pat-terns 0 and s(x), where a further branh on x2 (withonly one alternative) is neessary for the latter pattern.first(x1; x2)���	 ���Rfirst(0; x2)? first(s(x); x2)?[℄ first(s(x); y :: z)?y :: first(x; z)Figure 1: De�nitional tree for the funtion firstA funtion f , de�ned by rules of a TRS R is indutivelysequential if there exists a de�nitional tree P ontain-ing all rules de�ning f . R is indutively sequential ifall de�ned symbols are indutively sequential.Reently, de�nitional trees and indutively sequen-tial TRS beame important for delarative program-ming languages sine they model lazy funtional lan-guages with pattern mathing and are an adequatebasis to implement optimal evaluation strategies forfuntional logi languages [2℄. Moreover, they an beeasily extended to more general lasses of TRSs [4℄.The relevane of indutively sequential TRSs for de-larative programming languages raised the questionabout their relationship to the lassial onept ofstrong sequentiality. In [3℄, the question was raisedwhether the lasses of strongly sequential and indut-ively sequential onstrutor-based TRSs are the same.In this paper we formally show that the two lassesoinide. Furthermore, we generalize the notion ofa de�nitional tree to deal also with non-onstrutor-based TRSs. This allows us to ompare de�nitionaltrees to other strutures used to implement strong se-quentiality, like index trees and forward-branhing in-dex trees [6, 11℄, and the mathing dags of Huet andL�evy [7℄.A de�nitional tree determines a rewriting strategy,namely the outermost-needed strategy. We prove that1



this strategy is an index redution strategy, i.e., it onlyselets strong indies for redution. Sine we an usethe properties of strong indies in onstrutor-basedTRSs, our proof is easier than the one in [1℄.In Setion 2, we review the tehnial onepts usedin the remainder of the paper. In Setion 3, we intro-due de�nitional trees. Setion 4 explores the relationbetween strongly sequential and indutively sequentialTRSs. Setion 5 ompares to other approahes.2 PreliminariesThis setion introdues our main notations (see [5, 8℄for full de�nitions). Given a partial order � on a setA and a 2 A, a"= fb 2 A j a � bg is the upward setassoiated with a. a k b means a 6� b and b 6� a.V denotes a set of variables and � denotes a setof funtion symbols ff; g; : : :g, eah with a �xed aritygiven by a funtion ar : � ! IN. We denote the setof terms by T (�; V ). A k-tuple t1; : : : ; tk of terms isdenoted by ~t, where k will be lari�ed by the ontext.The set of variables appearing in a term t is denotedby Var(t).Terms are viewed as labeled trees in the usual way.Ourrenes u; v; : : : are represented by hains of pos-itive natural numbers used to address subterms of t.Ourrenes are ordered by the standard pre�x order-ing: u � v i� 9v0 suh that v = u:v0. The emptyourrene is denoted by �. O(t) denotes the set ofourrenes of t. The subterm at ourrene u of t isdenoted by tju. The term t with the subterm at theourrene u replaed with s is denoted by t[s℄u. Thesymbol labeling the root of t is denoted by root(t).A rewrite rule is an ordered pair (l; r), written l !r, with l; r 2 T (�; V ), l 62 V and Var(r) � Var(l).Given a rule l ! r, l is alled the left-hand side (lhs)of the rule and r the right-hand side (rhs). A TRS isa pair R = (�; R) where R is a set of rewrite rules.A left-linear TRS is a TRS where every lhs is a linearterm. An orthogonal TRS is a left-linear TRS withoutoverlapping rules, i.e., given a rule l ! r, there is nonon-variable ourrene u 2 O(l) suh that lju uni�eswith a lhs l0 of a rule l0 ! r0 in the TRS (where l ! rand l0 ! r0 are di�erent in ase of u = �).A term t rewrites to a term s, written t !R s, iftju = �(l) and s = t[�(r)℄u, for some rule l ! r, u 2O(t) and substitution �. OR(t) = fu 2 O(t) j 9l ! r 2R and � with tju = �(l)g is the set of redex ourrenesin t.Given a TRS, we split the signature into the disjointunion � = C ℄F of symbols  2 C, alled onstrutors,having no assoiated rule and symbols f 2 F , alledde�ned funtions or operations, whih are de�ned by

some rule f(~l) ! r 2 R. Eah rule f(~Æ) ! r ina onstrutor-based TRS or onstrutor system (CS )must satisfy f 2 F and ~Æ 2 T (C; V )ar(f).3 De�nitional treesWe generalize the notion of (partial) de�nitional tree(pdt) by using its \delarative" de�nition (see [2℄). Torepresent unknown parts of a term t we use the symbol
. Terms in T (� [ f
g; V ) are alled 
-terms. Todisuss about unknown portions of expressions, we usethe ordering � on 
-terms given by: 
 � t for allt 2 T (�[f
g; V ), x � x for all x 2 V , and f(~t) � f(~s)if ti � si for 1 � i � ar(f). In this way, t � s means\t is less or equally de�ned than s". O
(t) = fu 2O(t) j tju = 
g is the set of ourrenes of 
 in t.A de�nitional tree of a �nite set of (inomparable)
-terms S � T (�[ f
g) with pattern � 2 T (�[ f
g)is a non-empty, ordered set P of 
-terms having thefollowing properties:� There is a minimum element whih is the patternof the pdt: min(P) = � (minimum property).� The maximal elements are the elements of S:maximal(P) = S (leaves property).� If �0 2 P , �0 6= �, there is a unique �00 2 P ,�00 < �0, suh that there is no �000 2 T (� [ f
g)with �00 < �000 < �0 (parent property).� Given �0 2 PnS, there is an ourrene u 2O
(�0) (alled the indutive ourrene), andsymbols1 f1; : : : ; fn 2 � with fi 6= fj for i 6= j,suh that, for all �1; : : : ; �n whih are immediatelybelow �0, �i = �0[fi(e
)℄u for all 1 � i � n (indu-tion property).These properties entail S � P � � ". Given a TRSR = (F ℄ C; R), a redex sheme of R is a lhs of arule l ! r where all variables are replaed by 
. LetL
(R) be the set of redex shemes of R. Sine wedeal with orthogonal TRSs, we assume that a bijet-ive funtion � : L
(R) ! R assoiates the rule whihorresponds to eah redex sheme. A preredex of a re-dex sheme l is an 
-term � suh that � � l. LetL<
(R) = f� j 9l 2 L
(R) with � < lg. For f 2 F ,let Lf
(R) = fl 2 L
(R) j root(l) = fg. f is alled in-dutively sequential if there exists a de�nitional tree Pfwhih is a pdt of Lf
(R) with pattern f(e
). R is alledindutively sequential if all de�ned symbols f 2 F areindutively sequential. An indutively sequential TRS1In the original de�nition of de�nitional trees, only on-strutor symbols are allowed.2



an be viewed as a set of de�nitional trees, eah de�n-ing a funtion symbol. By using a representation fun-tion pdt, we an represent a pdt P of a set S � L
(R)with pattern � as a term pdt(P) as follows:pdt(P) = rule(�(�)) if P = f�g = S.pdt(P) = branh(�; u; pdt(P1); : : : ; pdt(Pn)) if P isnot a singleton, where � = min(P), u is the in-dutive ourrene of �, f1; : : : ; fn 2 �, fi 6= fj ifi 6= j, and, for all i, 1 � i � n, Pi is a pdt withpattern �i = �[fi(e
)℄u of the set Si = S \ �i".Example 3.1 Consider the program of Example 1.1.Then (we use 
's instead of variables),branh(first(
;
); 1;rule(first(0,y)! [℄);branh(first(s(
),
); 2;rule(first(s(x),y::z)! y::first(x,z))))is a de�nitional tree for the funtion first (Figure 1).4 Strong sequentiality and in-dutively sequential TRSsRegarding normalization strategies, the main result ofHuet and L�evy [7, 9℄ is the following: redution ofneeded redexes is normalizing for orthogonal TRSs. Ingeneral, the ourrenes of suh needed redexes are un-deidable, but Huet and L�evy de�ne a omputable ap-proximation, the (strong) indies. To obtain suh anapproximation, they use 
-terms.To alulate indies a funtion ! is used. It is de�nedby means of a redution relation!
 [9℄: C[t℄!
 C[
℄if t 6= 
 and there exists l 2 L
(R) suh that t " l,i.e., there exists an 
-term s suh that t � s and l �s. The relation !
 is onuent and terminating (see[7, 9℄). Let !(t) be the !
-normal form of t. Insteadof the usual de�nition of index, based on the notionof sequential prediate, we use an equivalent, simplerharaterization (see [7, 9℄).De�nition 4.1 Let t 2 T (�[f
g; V ) and u 2 O
(t).Let � be a fresh onstant symbol, and t0 = t[�℄u. Thenu is an index of t i� !(t0)ju = � (sometimes we write� 2 !(t0) for short). The set of indies of t is denotedby I(t).Proposition 4.2 ([9℄) If u:v 2 I(t[s℄u), then u 2I(t[
℄u) and v 2 I(s).Proposition 4.3 ([9℄) If u 2 I(t) and t � t0, thenu 2 I(t0[
℄u).

An 
-normal form is an 
-term t suh that OR(t) = ?and O
(t) 6= ?. Strongly sequential TRSs are de�nedas follows.De�nition 4.4 ([8℄) An orthogonal TRS is stronglysequential if every 
-normal form has an index.When onsidering CSs, things are simpler.Proposition 4.5 ([9℄) An orthogonal CS R isstrongly sequential i� 8� 2 L<
(R)nf
g; I(�) 6= ?.We use the following property of indies in CSs.Proposition 4.6 ([9℄) Let R be an orthogonal CS.Let u 2 I(t) and s suh that root(s) 2 F and v 2 I(s).Then u:v 2 I(t[s℄u).A strategy whih always redues redexes pointed byindies is alled index redution.Theorem 4.7 ([7℄) Index redution is normalizingfor orthogonal, strongly sequential TRSs.4.1 Indutive sequentiality of stronglysequential TRSsLet t 2 T (� [ f
g). t"< is the set of terms whih aregreater than t: t"<= fs 2 T (� [ f
g) j t < sg. Givenu 2 O(t), t#u< is the set of terms whih are smallerthan t and whose subterm at ourrene u is not 
:t#u<= fs 2 T (� [ f
g) j s < t ^ u 2 O(s) ^ sju 6= 
g.Given a set of terms S � L
(R) and an ourreneu 2 O(s) for all s 2 S, we de�ne the equivalene rela-tion �u by s �u s0 i� root(sju) = root(s0ju), i.e., theterms have the same symbol rooting the subterm atthe ourrene u.In the remainder of the paper, given 
-terms �and l 2 � " and an ourrene u 2 O(�), we de�ne�(l; �; u) = �"< \ l#u<. The funtion nodes builds apdt for a given funtion de�nition:nodes(S; �; u) =if S = flg and �(l; �; u) = ? thenrule(�(l))else let �0 = min([l2S�(l; �; u))u0 2 I(�0)fS1; : : : ; Sng = S=�u0in branh(�0; u0; nodes(S1; �0; u0); : : : ;nodes(Sn; �0; u0))Lemma 4.8 Let � 2 T (�[f
g), u 2 O
(�) and S ��", suh that, 9f 2 �:8l 2 S, root(lju) = f and thereexists l 2 S with l#u< 6= ?. Let �S = [l2S�(l; �; u).Then, min(�S) = �[f(e
)℄u.3



Proof. Let �0 = �[f(e
)℄u. Clearly, �0 2 � "<and it is minimal in � "<. Let l 2 S be suh thatl#u< 6= ?. Clearly, �(l; �; u) 6= ? beause, sine l 2 �",l#u< 6= ?, and lju 6= 
, we have that �0 2 l#u<. There-fore, �0 is minimal in �(l; �; u). Let �00 2 �(l; �; u).Sine root(lju) = f and root(�00ju) 6= 
, it must bethat root(�00ju) = f . Thus �0 � �00. Sine �00 is ar-bitrary, it follows that �(l; �; u) has a minimum ele-ment min(�(l; �; u)) = �0. Sine this holds for everyl 2 S with l #u< 6= ? and the elements l 2 S withl#u<= ? do not introdue new elements in �S , we ob-tain min(�S) = �0. 2The height h of a �nite ordered set is the number ofelements n of the largest strit hain a = a1 < a2 <� � � < an = b going from a minimal element a to amaximal element b. We de�ne h = 0 if the set is empty.Then, we an prove the following result.Theorem 4.9 Let R be an orthogonal, strongly se-quential TRS. Then, for all de�ned symbols f ,nodes(Lf
(R);
; �) is a de�nitional tree for f .Proof. We onsider a generi all nodes(S; �; u)under the restritions � 2 T (� [ f
g), u 2 O
(�),and S � �" \ L
(R) non-empty and suh that 9f 2�;8l 2 S, root(lju) = f . First, we prove that nodesbuilds a pdt for S with pattern �[f(e
)℄u. Given l 2 S,let hl denote the height of �(l; �; u). We proeed byindution on the height hS = maxl2S(hl) of �S =[l2S�(l; �; u).hS = 0: Note that hS = 0 implies that, for all l 2 S,hl = 0, i.e., �(l; �; u) = ? for all l 2 S. Moreover, or-thogonality implies that S = flg. Otherwise, sine forall (distint) l; l0 2 S, we have root(lju) = root(l0ju) =f , it holds that �[f(e
)℄u � l and �[f(e
)℄u � l0. Or-thogonality implies that �[f(e
)℄u < l. This means that�(l; �; u) 6= ?, a ontradition. Therefore, we are inthe if part of nodes and the onlusion is immediate.hS > 0: Sine hS > 0 implies that there is l 2 S withhl > 0, this means that �(l; �; u) 6= ? for this l. Hene,we are in the else part of nodes. By de�nition of�(l; �; u), we have l#u< 6= ?. Then, by Lemma 4.8, �0 inthe algorithm is orretly de�ned as �0 = min(�S) =�[f(~
)℄u. Sine �0 < l and l 2 L
(R), by orthogon-ality, �0 is an 
-normal form. By strong sequentiality,there exists u0 2 I(�0). Strong sequentiality ensuresthat, for eah l 2 S, lju0 6= 
, i.e., root(lju0 ) = gl 2 �.Otherwise, u0 is not an index, sine �0[�℄u0 an be re-�ned to a redex of l, and hene � 62 !(�0[�℄u0) = 
.Sine � < �0, the height h0l of �(l; �0; u0) is less thanhl, for eah l 2 S. Thus, we apply the I.H.: eahPi = nodes(Si; �0; u0), 1 � i � n, is a pdt for Siwith pattern �00i = �0[gi(e
)℄u0 , where gi is the ommon
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)?Figure 2: Two pdts for fsymbol at ourrene u0 of eah l 2 Si. Thus, P =branh(�0; u0; nodes(S1; �0; u0); : : : ; nodes(Sn; �0; u0))immediately satis�es theminimum and leaves property.By minimality of eah �00i in Pi, and by the de�nitionof P , it satis�es the parent and indution propertiestoo.Now we apply nodes to the arguments Lf
(R);
; �in the hypothesis and we obtain the desired result. 2The previous de�nition of nodes was loser to ourde�nition of a pdt as a kind of ordered set whih sim-pli�ed the proofs. However, using the previous results,we an give a more readable version of the algorithm.Remember that �(�) assoiates with � 2 L
(R) therule l ! r suh that � is a redex sheme of l.nodes(S; �; u) =if S = f�g then rule(�(�))else let f = root(lju) for some l 2 S�0 = �[f(e
)℄uu0 2 I(�0)fS1; : : : ; Sng = S=�u0in branh(�0; u0; nodes(S1; �0; u0); : : : ;nodes(Sn; �0; u0))4.2 Strong sequentiality of indutivelysequential TRSsProposition 4.10 Let Pf be a pdt for the funtion fof a CS. Then every indutive ourrene u in a branhnode branh(�; u; eP) of Pf satis�es u 2 I(�).Proof. Let Pf = branh(�; u; eP). Note that u 2O
(�). By ontradition: Sine we onsider CSs, ifu 62 I(�), then �[�℄u " l for some redex sheme l inmaximal([P2ePP). Sine � < l, this means that thepattern �0 of P , the pdt in eP whih ontains l, veri�esroot(�0ju) = 
, ontraditing the de�nition of a pdt,sine it must be that root(�0ju) 2 �. 2This result does not hold for arbitrary pdts.4



Example 4.11 Consider the orthogonal TRSf(g(h(x); a); y)! x ! ag(x; b)! g(h(x); a)Partial de�nitional trees for f are drawn in Figure 2.The indutive ourrene 1:1 is not an index in thepattern f(g(
;
);
) of the �rst pdt. By using nodes,we obtain the seond de�nitional tree for whih everyindutive ourrene is an index.Theorem 4.12 Let R = (�; R) be an indutively se-quential CS. Then, R is strongly sequential.Proof. From Proposition 4.5, we prove by on-tradition that every proper pre�x 
 < p < l of aredex sheme l has an index. Assume I(p) = ?.Let 
 < �1 < � � � < �n < l be the hain of pat-terns in the branh nodes of a pdt for the funtionf = root(p) whih ontains l. It is not possible tohave a �j , 1 � j � n suh that p � �j . Otherwise,by Proposition 4.10 and Proposition 4.2, p also hasan index. Thus, �i k p for some i, 1 � i � n. Letus onsider the maximal � 2 f�1; : : : ; �ng suh that� � p and � � �i. � exists, beause �1 = f(e
), and
 < f(e
) � p < l. Let u be the indutive ourrenefor the branh node with pattern �. By Proposition4.10, u 2 I(�). We have pju = 
. Otherwise, sinep < l and root(lju) = root(pju), there is �0 > � suhthat �0 � p and �0 � �i, thus ontraditing the max-imality of �. By Proposition 4.3, u 2 I(p). 2This theorem does not hold for general strongly se-quential TRSs, as the following example shows.Example 4.13 Consider the following TRS whih isnot strongly sequential (from [7℄):f(g(a; x); f(b; y))! x g(d; d)! df(g(x; a); f(; y))! xf and g admit de�nitional trees, and nodes an buildthem, beause every redex sheme has some index.Theorems 4.9 and 4.12 entail our main result.Theorem 4.14 An orthogonal CS is strongly sequen-tial i� it is indutively sequential.4.3 Outermost-needed redutionA de�nitional tree determines a rewriting strategy,namely the outermost-needed rewriting strategy2:De�nition 4.15 ([1℄) The (partial) funtion ' takesarguments t = f(~t), f 2 F and a pdt P suh thatmin(P) � t, and yields a redex ourrene u 2 OR(t):2This is a slightly di�erent de�nition beause we do not allowfor exempt nodes as in [1℄. However, it is equivalent.

'(t;P) =8>>>>>><>>>>>>: � if P = rule(�)'(t;Pi) if P = branh(�; u;P1; : : : ;Pn)and min(Pi) � t for some iu:'(tju;Pg) if P = branh(�; u;P1; : : : ;Pn), (�)root(tju) = g 2 F , andPg is a de�nitional tree for g:Note that, dealing with CSs, the seond and thirdases are disjoint. This is beause if root(tju) =g 2 F , then sine � � min(Pi) for all subpdt Pi ofP = branh(�; u;P1; : : : ;Pn), it is not possible to havemin(Pi) � t sine root(min(Pi)ju) 2 C. We show that' is equivalent to index redution.Theorem 4.16 Let R be an indutively sequential CSand u = '(t;P). Then u is an index of t[
℄u.Proof. Indution on the number of visited de�n-itional trees. In the ase base (n = 1), u is � andthe onlusion easily follows. Otherwise (n > 1), theourrene u an be split up into u = v:w, where vis an ourrene of the pdt P and w has been usedto redue tjv and, beause R is a CS, root(tjv) 2 F ,with v the indutive ourrene for some pattern ina branh node of P . By Proposition 4.10, v 2 I(�).Sine � � t, by Proposition 4.3, v 2 I(t[
℄v). Then,by I.H., w 2 I(tjv [
℄w) and the onlusion follows byProposition 4.6. 2Theorem 4.9 suggests that de�nitional trees an beused with general strongly sequential TRSs. Theoutermost-needed strategy, as given in De�nition 4.15annot be used to suessfully evaluate a term in gen-eral (i.e., non-onstrutor-based) TRSs. For instane,onsider the TRS in Example 4.11, t = f(g(x; b); y)and let Pf be a pdt for the funtion f if we try to om-pute '(t;Pf ). Then '(t;Pf ) = '(t;P1) are unde�ned,i.e., the strategy annot proeed. This an be solvedby hanging (�) in De�nition 4.15 as follows:'(t;P) = u0:v if P = branh(�; u;P1; : : : ;Pn),root(�j ju) 6= root(tju) = f 0 2 F , for all j, 1 � j � n;�0 = �[f 0(e
)℄u, and u0 2 O(�0), � < u0 � u isthe minimal ourrene suh that �0ju0 is ompatiblewith some redex sheme, Pg is a de�nitional tree forg = root(�0 ju0), and '(tju0 ;Pg) = v.This works well when onsidering CSs (it is equivalentto De�nition 4.15). However, this does not ensure that' is index redution when onsidering general TRSs.This an be lari�ed by omparing the strategy withthe standard Huet and L�evy proedure, as disussed inthe following setion.5



5 De�nitional trees and math-ing dagsTo implement normalizing strategies without look-ahead, the mathing dags (direted ayli graphs)of Huet and L�evy an be used with any strongly se-quential TRS. Simpler strutures are the index treesof Strandh [11℄ whih have been proved equivalent tomathing dags by Durand [6℄. An index tree is a �-nite state automaton whih has, in addition to theusual transfer funtion, also a failure funtion. Theset of �nal states is L
(R). Non-�nal states are in-dex points, pairs h�; ui, where � 2 L<
(R), and u isan index of � and both satisfy some speial ondi-tions (see [6℄). The initial state is h
; �i. The trans-fer funtion, written Æ(s; f), yields a new state of theautomaton, given a state s and a funtion symbolf : Æ(h�; ui; f) = h�[f(e
)℄u; vi (or just Æ(h�; ui; f) =�[f(e
)℄u if �[f(e
)℄u 2 L
(R)). The failure funtion,�, is �(s) = s0 i� s0 is an immediate failure point ofs. Failure points are states of the automaton whihare expeted to deal with a failing partial mathing,by resuming the mathing of a subterm of the ur-rently inspeted term. In the most general de�nitionof an index tree, some states may not be reahable fromthe initial state h
; �i via transfer transitions (using Æ)only. Thus, only the failure funtion an provide aessto these nodes of the tree. Orthogonal TRSs whih anbe given suh an index tree are alled bounded TRSs.Durand proves that the lass of bounded TRSs andstrongly sequential TRSs oinide. The proof is givenby showing that there is an immediate orrespondenebetween the mathing dag of Huet and L�evy and theindex trees of Strandh.Strandh de�nes the forward-branhing index trees,for whih all states of the index tree an be reahedvia the transfer funtion Æ from the initial state.We provide a simple onnetion between indextrees and de�nitional trees: transitions Æ(h�; ui; f1) =h�[f1(e
)℄u; v1i; : : : ; Æ(h�; ui; fn) = h�[fn(e
)℄u; vni anbe written as branh(�; u;P1; : : : ;Pn), where the pat-tern of eah Pi is �i = �[fi(e
)℄u. Eah initial trans-ition Æ(h
; �i; f) = hf(e
); ui an be seen as the startingpoint of the pdt for the funtion f . When onsideringforward-branhing index trees, the orrespondene iseven loser. However, pdts are not equivalent to theprevious strutures. For instane, onsider the boundedTRS (from [6℄)f(g(x; a); a)! a g(b; b)! af(g(a; x); b)! aand the pdts in Figure 3.The patterns and indutive ourrenes of these pdtsare taken by following the index tree for the TRS, as

f(
; 
)���	 ���Rf(
; a)? f(
; b)?f(g(
; 
); a)? f(g(
; 
); b)?f(g(
; a); a)? f(g(a; 
); b)?
g(
; 
)?g(b; 
)?g(b; b)?g(
; 
)?g(
; b)?g(b; b)?Figure 3: pdts for f and g

given in [6℄. Of ourse, if we do not do this, we annotensure that the omposition of the ourrenes on-sidered for the partial mathings (whih are indies ofthe orresponding preredexes) is an index. This meansthat, even if we use nodes, that always selets (arbit-rary) indies for indutive ourrenes, we annot en-sure index redution. But we have more involved situ-ations. For instane, if we redue t = f(g(�1; �2); a),where �1; �2 are redexes, it is not diÆult to see that '(modi�ed) redues the redex �1 whih is not a neededredex. This is beause, when we fail in mathingf(g(
; a); a) (we underline the last onsidered our-rene, 1:2) against our term, we try to redue g(�1; �2)and we must jump to a pdt for g, in order to ontinuethe mathing. If we have the �rst pdt (reall that, inour strategy, only one pdt is available), then we hooseto redue �1. However, �1 is not needed in the wholeontext, sine f(g(�; 
); a) !
 
. With an index tree,the failure funtion selets the other pdt for g, whihproperly ontinues the mathing tasks by looking atthe ourrene 2 of g(�1; �2). This is onsistent withthe situation before the jump.The modi�ation of ' would work if we onsider for-ward branhing TRSs (beause they do not have suhadditional nodes) and we use pdts having the same pat-tern and indutive ourrenes as the orrespondingforward-branhing index tree. The previous TRS is notforward-branhing. However, even with suh modi�a-tions, we loose eÆieny, beause, having a very simplede�nition of the failure funtion (we always jump tothe root node of a new pdt), we would read more thanone some symbols. Therefore, it seems that there isno advantage in using pdts with general TRSs.6
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