
A Residualizing Semantics for the Partial

Evaluation of Functional Logic Programs ?

Elvira Albert a Michael Hanus b Germán Vidal a,∗

aDSIC, U. Politécnica de Valencia, Camino de Vera s/n, E-46022 Valencia, Spain
bInstitut für Informatik, CAU Kiel, Olshausenstr. 40, D-24098 Kiel, Germany

Preliminary version. Final version in Information Processing Letters
(Elsevier), Vol. 85, No. 1, pp. 19–25, 2003

Abstract

Recent proposals for multi-paradigm declarative programming combine the most
important features of functional, logic and concurrent programming into a single
framework. The operational semantics of these languages is usually based on a com-
bination of narrowing and residuation. In this note, we introduce a non-standard,
residualizing semantics for multi-paradigm declarative programs and prove its equiv-
alence with a standard operational semantics. Our residualizing semantics is partic-
ularly relevant within the area of program transformation where it is useful, e.g., to
perform computations during partial evaluation. Thus, the proof of equivalence is a
crucial result to demonstrate the correctness of (existing) partial evaluation schemes.

Key words: Programming languages, formal semantics, program transformation

1 Introduction

Multi-paradigm declarative lan-
guages (like Curry [6,7]) integrate
features from functional, logic and
concurrent programming (e.g., lazy
evaluation, partial data structures,
non-deterministic computations, and
concurrent evaluation with synchro-

? Some preliminary material of this
note appeared in LPAR 2000 [1].
This work has been partially supported
by CICYT TIC 2001-2705-C03-01, by
Acción Integrada HA2001-0059, and by
the DFG under grant Ha 2457/1-2.
∗ Corresponding author.

nization on logical variables) into a
single programming paradigm. The
operational semantics of these lan-
guages is usually based on a combi-
nation of two different operational
principles: narrowing and residua-
tion [6]. The residuation principle is
based on the idea of delaying func-
tion calls until they are ready for a
deterministic evaluation (by rewrit-
ing). On the other hand, the narrow-
ing mechanism allows the instantia-
tion of variables in input expressions
and, then, applies reduction steps
to the function calls of the instanti-
ated expressions. Each function has
an evaluation annotation (see [6,7])
indicating whether it should be eval-

Preprint submitted to Information Processing Letters 10 January 2003

uated by residuation (for functions
annotated as rigid) or by narrow-
ing (for flexible functions). Due to
its optimality properties w.r.t. the
length of derivations and the number
of computed solutions, needed nar-
rowing [5] is currently the best nar-
rowing strategy for multi-paradigm
functional logic programs. The for-
mulation of needed narrowing is
based on the use of definitional trees
[4], which define a strategy to evalu-
ate functions by applying narrowing
steps. Recently, [8] introduced a flat
representation for functional logic
programs in which definitional trees
are embedded in the rewrite rules by
means of case expressions. The inter-
est in using the flat representation
arises because it provides more ex-
plicit control (hence the associated
calculus is simpler than needed nar-
rowing), while source programs can
be still automatically translated to
the new representation.

In this article, we define a new, resid-
ualizing version of the operational se-
mantics for flat programs: the RLNT
calculus. We call it “residualizing”
because it does not compute bindings
but encodes them by means of case
expressions (which are considered
“residual” code), which contrasts
with the previous semantics. This
property is essential in the area of
program transformation and, partic-
ularly, to perform computations dur-
ing partial evaluation [10]. Indeed,
recent approaches to the partial eval-
uation of multi-paradigm functional
logic languages are defined at the
level of the flat representation and
use the RLNT calculus to perform
partial evaluations (see, e.g., [1–3]).

2 The Flat Language

This section briefly introduces a flat
representation for multi-paradigm
functional logic programs and its
operational semantics. Similar repre-
sentations are considered in [8,9,11].
Unlike them, we consider two kinds
of case expressions in order to repre-
sent flexible/rigid evaluation anno-
tations of source programs as expres-
sions. Since inductively sequential
programs [4] (with evaluation anno-
tations) can be automatically trans-
lated into the flat representation, our
approach covers recent proposals for
multi-paradigm functional logic pro-
gramming. The syntax for programs
in the flat representation is:

R ::= D1 . . .Dm
D ::= f(xn) = e

e ::= x | c(en) | f(en)

| case e of {pn → en}

| fcase e of {pn → en}

p ::= c(xn)

Here, we write on for the sequence of
objects o1, . . . , on. Thus, a program
R consists of a sequence of function
definitions D such that the left-hand
side is linear and has only variable
arguments, i.e., pattern matching is
compiled into case expressions. The
right-hand side of each function def-
inition is an expression e composed
by variables (X), constructors (C),
function calls (F), and case expres-
sions for pattern matching. Variables
are denoted by x, y, z . . ., construc-
tors by a, b, c . . ., and defined func-

2

tions by f, g, h . . . The general form
of a case expression is:

(f)case e of { c1(xn1)→ e1 ;
. . . ;

ck(xnk)→ ek }

where e is an expression, c1, . . . , ck
are different constructors of the type
of e, and e1, . . . , ek are expressions
(possibly containing case structures).
The variables xni are local variables
which occur only in the correspond-
ing expression ei. The difference be-
tween case and fcase shows up when
the argument e is a free variable:
case suspends (which corresponds
to residuation) whereas fcase nonde-
terministically binds this variable to
the pattern in a branch of the case
expression and proceeds with the ap-
propriate branch (which corresponds
to narrowing). Functions defined
only by fcase or case expressions are
called flexible or rigid, respectively.

For instance, the (flexible) function
“app” to concatenate two lists can be
written in the flat representation by
the following single rule:

app (x, y) =

fcase x of {

[]→ y;

(z : zs)→ z : app (zs, y) }

The operational semantics of flat
programs is based on the LNT (Lazy
Narrowing with definitional Trees)
calculus [8]. In Figure 1, we present
a slight extension of this calculus in
order to cope with case expressions
including evaluation annotations;
nevertheless, we still use the name

“LNT calculus” for simplicity. First,
note that the symbols “[[” and “]]” in
an expression like [[e]] are purely syn-
tactical (i.e., they do not denote “the
value of e”). Indeed, they are only
used to mark subexpressions where
the inference rules may be applied.
LNT steps are labeled with the sub-
stitution computed in the step. The
empty substitution is denoted by id.
Let us briefly describe the LNT rules:

Case Select. It is used to select the ap-
propriate branch of the current case
expression. If there is no matching
branch, the evaluation of the current
expression fails.

Case Guess. It non-deterministically
selects a branch of a flexible case ex-
pression and instantiates the variable
at the case argument to the appro-
priate constructor pattern. The step
is labeled with the computed substi-
tution σ. Rigid case expressions with
a variable argument suspend, giving
rise to an abnormal termination.

Case Eval. It is used to evaluate case
expressions with a function call or
another case expression in the argu-
ment position. Here, root(e) denotes
the outermost symbol of e. This rule
initiates the evaluation of the case ar-
gument by creating a (recursive) call
for this subexpression. If it cannot be
evaluated, we stop (unsuccessfully).

Function Eval. This rule performs the
unfolding of a function call. If there is
no defining rule, the evaluation of the
current expression fails. As in logic
programming, we assume that rules
are renamed so that they always con-
tain fresh variables.

3

Case Select

[[(f)case c(en) of {pk → e′k}]] ⇒id [[σ(e′i)]] if pi = c(xn) and σ = {xn 7→ en}

Case Guess

[[fcase x of {pk → ek}]] ⇒σ [[σ(ei)]] if σ = {x 7→ pi}, i = 1, . . . , k

Case Eval

[[(f)case e of {pk → ek}]] ⇒σ [[σ((f)case e′ of {pk → ek})]]

if [[e]]⇒σ [[e′]], e 6∈ X , and root(e) 6∈ C

Function Eval

[[f(en)]] ⇒id [[σ(e′)]] if f(xn) = e′ ∈ R and σ = {xn 7→ en}

Fig. 1. The LNT calculus

Arbitrary LNT derivations are de-
noted by e ⇒∗σ e′ which is a short-
hand for the sequence of steps
e⇒σ1 . . .⇒σn e

′ with σ = σn◦· · ·◦σ1

(if n = 0 then σ = id). We say that an
LNT derivation e ⇒∗σ e′ is successful
when e′ is in head normal form, i.e.,
it is rooted by a constructor symbol
or a variable; in this case, we say that
e evaluates to e′ with answer σ. Our
calculus can be easily extended to
evaluate expressions to normal form,
but we keep the above presentation
for simplicity. Furthermore, the cal-
culus is intended to perform partial
evaluations where computations pro-
ceed at most to head normal form
(although this is not strictly neces-
sary to preserve correctness results,
current partial evaluators follow this
convention; see, e.g., [2]).

3 The Residualizing Semantics

The first framework to perform par-
tial evaluation in functional logic lan-
guages (see [3] for a survey) consid-

ered the same mechanism (narrow-
ing) for both execution and partial
evaluation. Basically, the idea is to
compute a residual rule of the form
σ(e) = e′ for each partial computa-
tion e⇒∗σ e′. However, the backprop-
agation of bindings to the left-hand
sides of residual rules poses several
problems in the context of the flat
representation (see, e.g., [1]). For in-
stance, the variables in the left-hand
sides of residual rules may become
instantiated, which is not allowed in
our flat syntax (cf. Section 2). There-
fore, we propose a new, residualiz-
ing version of the LNT calculus in
which variable bindings are encoded
by (flexible) case expressions (and
are considered “residual” code). This
avoids the backpropagation of bind-
ings and makes our calculus suitable
for being used in partial evaluation.
The inference rules of the Residual-
izing LNT calculus (RLNT calculus
in the following) are shown in Fig. 2.

The main difference with the LNT
formulation is in the Case Guess
rule. In particular, the new defini-

4

Case Select

[[(f)case c(en) of {pk → e′k}]] ⇒ [[σ(e′i)]] if pi = c(xn) and σ = {xn 7→ en}

Case Guess

[[(f)case x of {pk → ek}]] ⇒ (f)case x of {pk → [[σk(ek)]]}

if σi = {x 7→ pi}, i = 1, . . . , k

Case Eval

[[(f)case e of {pk → ek}]] ⇒ [[(f)case e′ of {pk → ek}]]

if [[e]]⇒ [[e′]], e 6∈ X , root(e) 6∈ C, and

e 6= (f)case x of {. . .}

Function Eval

[[f(en)]] ⇒ [[σ(e′)]] if f(xn) = e′ ∈ R and σ = {xn 7→ en}

Case-of-Case

[[(f)case ((f)case x of {pk → ek}) of {p′j → e′j}]]

⇒ [[(f)case x of {pk → (f)case ek of {p′j → e′j}}]]

Fig. 2. The RLNT calculus

tion “residualizes” the case structure
and continues with the evaluation of
the different branches (by applying
the corresponding substitution in or-
der to propagate bindings forward
in the computation). It imitates the
instantiation of variables in the stan-
dard evaluation of a flexible case but
keeps the case structure. Due to this
modification, no distinction between
flexible and rigid case expressions is
needed. Moreover, the resulting cal-
culus does not compute “answers”.
Rather, they are represented in the
derived expressions by means of case
expressions with variable arguments.
Also, the calculus becomes determin-
istic, i.e., there is no don’t know non-
determinism involved in the compu-
tations (thus only one derivation can
be issued from a given expression).

An undesirable effect of the Case
Guess rule is that nested case expres-
sions may suspend unnecessarily.
Consider the expression

[[case (case x of {[]→ T;

(y : ys)→ F})

of {T→ F}]]
The evaluation of this expression
suspends since the outer case can be
evaluated only if the argument is a
variable (Case Guess), a function call
(Case Eval) or a constructor-rooted
term (Case Select). To avoid such
premature suspensions, we introduce
the Case-of-Case rule, which moves
the outer case inside the branches of
the inner one and, thus, the evalua-
tion of the branches can now proceed
(similar rules can be found in the
Glasgow Haskell Compiler as well

5

as in Wadler’s deforestation [13]).
By using the Case-of-Case rule, the
above expression can be reduced to:

[[case x of {

[]→ case T of {T→ F}

(y : ys)→ case F of {T→ F} }]]
which can be further simplified by
applying the Case Guess and Case Se-
lect rules. Rigorously speaking, the
Case-of-Case rule can be expanded
into four rules (with the different
combinations for case and fcase),
but we keep the above (less formal)
presentation for simplicity. Observe
that the outer case expression may
be duplicated several times, but each
copy is now (possibly) scrutinizing a
known value, and so the Case Select
rule can be applied to eliminate some
case constructs.

The same considerations of Sec-
tion 2 about the symbols “[[” and
“]]”, derivations, etc., apply here. In
contrast to the LNT calculus, ex-
pressions like [[e]] can also occur at
inner positions. In this case we also
allow RLNT steps at these positions
(which can be formally defined by a
congruence rule for case expressions).
In the RLNT calculus, the relation
⇒ is not labeled with a substitution
since the new calculus does not com-
pute bindings. This allows us to use
the same arrow “⇒” for the formal-
ization of both calculi without con-
fusion. The following theorem estab-
lishes a precise equivalence between
the (nondeterministic) LNT calculus
(Fig. 1) and its residualizing, deter-
ministic version: the RLNT calculus
(Fig. 2). The correctness of a par-
tial evaluation scheme based on our

residualizing semantics [1,2] relies on
this result. First, we need the auxil-
iary relation ↪→, which is defined by

fcase x of {pk → ek} ↪→σ ei

where σ = {x 7→ pi}, i = 1, . . . , k.
This (nondeterministic) relation is
used to extract the bindings encoded
by residualized case expressions.

Theorem 1 Let e be an expression,
e′ a head normal form, and R a flat
program. For each LNT derivation
[[e]]⇒∗σ e′ inR, there exists an RLNT
derivation [[e]] ⇒∗ e′′ in R such that
e′′ ↪→∗σ e′ 6↪→, and vice versa.

Informally speaking, for each LNT
derivation from [[e]] to a head nor-
mal form e′, computing σ, there is an
RLNT derivation from [[e]] to some e′′

in which the computed substitution
σ is encoded in e′′ by case expressions
and can be obtained by a (finite) se-
quence of ↪→ steps (deriving the same
expression e′).

PROOF. Our proof proceeds by re-
lating the application of a rule in one
calculus to the application of one or
more rules in the other calculus.

(⇒) Let us consider an LNT deriva-
tion of the form [[e]] ⇒∗σ e′. We pro-
ceed by induction on the length n of
this derivation.

Base case (n = 0). Trivial.

Inductive case (n > 0). Assume that
the LNT derivation has the form
[[e]] ⇒θ e

a ⇒∗γ e′ where σ = γ ◦ θ.
Now, we distinguish several cases de-
pending on the rule applied in the
first step:

6

Case Select. Since its definition is the
same in both calculi, the claim fol-
lows trivially by induction.

Case Guess. Then, [[e]] has the form
[[fcase x of {pk → ek}]] and, thus,
ea = [[σj(ej)]], where σj = θ = {x 7→
pj} for some j ∈ {1, . . . , k}. In the
RLNT calculus, we can also apply
the equivalent rule and obtain

ea
′
= fcase x of {pk → [[σk(ek)]]}

where σi = {x 7→ pi} for all
i = 1, . . . , k. Since ea ⇒∗γ e′, by
the induction hypothesis, there ex-
ists an RLNT derivation ea ⇒∗ eb
with eb ↪→∗γ e′ 6↪→. Consider ea

′
rep-

resented as C[ea] (i.e., a context C
which contains the subterm ea). Let
C[eb] be the expression which results
from ea

′ ≡ C[ea] by replacing the oc-
currence of ea by eb. Since ea ⇒∗ eb,
we have that C[ea] ⇒∗ C[eb], and,
thus, [[e]] ⇒ C[ea] ⇒∗ C[eb]. Finally,
since C[eb] ↪→σj e

b and eb ↪→∗γ e′ 6↪→
(by the induction hypothesis), we
have C[eb] ↪→∗σ e′ 6↪→ and the claim
follows.

Case Eval. This case is immedi-
ate except when [[e]] has the form
[[(f)case ex of {pm → em}]] with ex =
fcase x of {p′k → e′k} (since, in the re-
maining cases, rule Case Eval behaves
identically in both calculi when we
only consider derivations to head nor-
mal form). In this case, we get ea =
[[σj((f)case σj(e

′
j) of {pk → ek})]]

≡ [[σj((f)case e′j of {pk → ek})]]
with θ = σj = {x 7→ p′j} and
j ∈ {1, . . . , k} by one application
of rule Case Eval which, recursively,
demands the application of rule
Case Guess. In the RLNT calcu-
lus, we can first apply rule Case-
of-Case to obtain the new expres-

sion [[fcase x of {p′k → e′′k}]] with
e′′i = (f)case e′i of {pm → em} for all
i = 1, . . . , k. Then, by applying rule
Case Guess, we get

ea
′
= fcase x of {p′k → [[σk(e′′k)]]}

with σi = {x 7→ p′i} for all i =
1, . . . , k. Similarly to the previous
case, we can consider ea

′
of the form

C[ea] and the inductive hypothesis
can be applied as in the Case Guess.

Function Eval. As for the Case Select
rule, this case follows trivially by
induction, since its definition is the
same in both calculi.

(⇐) Let us consider an RLNT deriva-
tion [[e]]⇒∗ e′′ with e′′ ↪→∗σ e′ 6↪→. We
proceed by induction on the sum n
of the length of the RLNT derivation
plus the length of the ↪→ derivation.
It is obvious that the length of [[e]]⇒∗
e′′ could not be zero when e′′ ↪→∗σ
e′ 6↪→ has a positive length (since ↪→
only applies when there are residual-
ized case expressions produced by re-
lation⇒). We will assume this prop-
erty in the following.

Base case (n = 0). Trivial.

Inductive case (n > 0). Assume that
the RLNT derivation has the form
[[e]] ⇒ ea ⇒∗ e′′ with e′′ ↪→∗σ e′ 6↪→.
Now, we distinguish several cases de-
pending on the rule applied in the
first step:

Case Select. Since its definition is the
same in both calculi, the claim fol-
lows trivially by induction.

Case Guess. Then, [[e]] has the form
[[fcase x of {pk → ek}]]. Note that, if
the case expression is rigid, e′ could
not be a head normal form (since ↪→

7

cannot remove the outer case expres-
sion). Thus, e must be rooted by a
flexible case. By applying rule Case
Guess, we get

ea = fcase x of {pk → [[σk(ek)]]}

where σi = {x 7→ pi} for all
i = 1, . . . , k. Now, we look at the
↪→ derivation, since it will deter-
mine the corresponding LNT step.
Let us assume e′′ ↪→θ e

b ↪→∗γ e′ with
σ = γ ◦ θ. Since the outermost case
has been residualized, e′′ is of the
form e′′ = fcase x of {pk → eck}.
Thus, we have that θ = σj for some
j ∈ {1, . . . , k}. By definition of the
“↪→” relation, if ea ⇒∗ e′′ ↪→σj e

b,
then [[σj(ej)]] ⇒∗ eb for some j ∈
{1, . . . , k}. Now, [[e]] ⇒σj [[σj(ej)]],
by applying once rule Case Guess.
Finally, by the induction hypothesis,
we have [[σj(ej)]]⇒∗γ e′ and the claim
follows.

Case Eval and Function Eval. As for
the Case Select rule, the proof follows
trivially by induction, since these
steps can be also done with the cor-
responding LNT rules.

Case-of-Case. Then, [[e]] has the
form [[(f)case ex of {pm → em}]]
with ex = (f)case x of {p′k → e′k}.
By applying Case-of-Case, we get
[[(f)case x of {p′k → e′′k}]] with
e′′i = (f)case e′i of {pm → em} for
all i = 1, . . . , k. The same con-
siderations of the previous case
apply, thus the outer case ex-
pression must be flexible. Then,
the only possibility is to apply
rule Case Guess, thus obtaining
ea = fcase x of {p′k → [[σk(e′′k)]]} with
σi = {x 7→ p′i} for all i = 1, . . . , k.
As in the previous case, we look at

the ↪→ derivation, since it will deter-
mine the corresponding LNT step.
We assume e′′ ↪→θ eb ↪→∗γ e′ with
σ = γ ◦ θ. Since the outermost case
has been residualized, e′′ is of the
form e′′ = fcase x of {pk → eck}.
Thus, we have that θ = σj for some
j ∈ {1, . . . , k}. By definition of the
“↪→” relation, if ea ⇒∗ e′′ ↪→σj e

b,
then [[σj(ej)]] ⇒∗ eb for some j ∈
{1, . . . , k}. Now, [[e]]⇒σj [[σj(e

′′
j)]] by

applying once rule Case Eval which
demands the application of rule Case
Guess. Finally, by the induction hy-
pothesis, we have [[σj(e

′′
j)]]⇒∗γ e′ and

the claim follows.

4 Discussion

This note presents a novel, non-
standard, residualizing semantics
for functional logic programs and
demonstrates its equivalence with
a standard semantics for such pro-
grams. In the field of program trans-
formation, the residualizing seman-
tics has been shown especially well
suited to perform computations
during partial evaluation (see, e.g.,
[1,2]). Thus, our proof of equivalence
is the basis for the correctness of this
partial evaluation scheme. Moreover,
we think that our calculus is of in-
dependent interest itself and can be
used for other applications in the
field of program transformation.

In the literature, many different cal-
culi have been defined for the purpose
of program transformation. Among
them, the closest to our work are
the driving mechanism to perform
positive supercompilation [12] and

8

Wadler’s calculus for deforestation
[13]. In particular, the main differ-
ence with driving is the use of logic
variables by means of flexible case
constructs. Indeed, our underlying
semantics is based on a combina-
tion of narrowing and residuation,
while driving is defined for purely
functional expressions. On the other
hand, an important difference w.r.t.
deforestation is revealed in the Case
Guess rule, where the patterns are
substituted in the different branches,
like in the driving transformation.

References

[1] E. Albert, M. Hanus, G. Vidal,
Using an Abstract Representation
to Specialize Functional Logic
Programs, in: Proc. of the Int’l
Conf. on Logic for Programming
and Automated Reasoning (LPAR
2000), Springer LNAI 1955, 2000,
pp. 381–398.

[2] E. Albert, M. Hanus, G. Vidal,
A Practical Partial Evaluation
Scheme for Multi-Paradigm
Declarative Languages, Journal of
Functional and Logic Programming
2002 (1).

[3] E. Albert, G. Vidal, The Narrowing
Driven Approach to Functional
Logic Program Specialization, New
Generation Computing 20 (1)
(2002) 3–26.

[4] S. Antoy, Definitional trees, in:
Proc. of the 3rd Int’l Conference on
Algebraic and Logic Programming
(ALP’92), Springer LNCS 632,
1992, pp. 143–157.

[5] S. Antoy, R. Echahed, M. Hanus,
A Needed Narrowing Strategy,

Journal of the ACM 47 (4) (2000)
776–822.

[6] M. Hanus, A Unified computation
model for functional and logic
programming, in: Proc. of ACM
Symp. on Principles of
Programming Languages (POPL
’97), ACM, New York, 1997, pp.
80–93.

[7] M. Hanus, Curry: An Integrated
Functional Logic Language,
http://www.informatik.
uni-kiel.de/~curry (2000).

[8] M. Hanus, C. Prehofer, Higher-
Order Narrowing with Definitional
Trees, Journal of Functional
Programming 9 (1) (1999) 33–75.

[9] T. Hortalá-González, E. Ullán, An
Abstract Machine Based System
for a Lazy Narrowing Calculus, in:
Proc. of the 5th Int’l Symp. on
Functional and Logic Programming
(FLOPS 2001), Springer LNCS
2024, 2001, pp. 216–232.

[10] N. Jones, C. Gomard, P. Sestoft,
Partial Evaluation and Automatic
Program Generation, Prentice-
Hall, Englewood Cliffs, NJ, 1993.

[11] W. Lux, H. Kuchen, An Efficient
Abstract Machine for Curry, in:
Proc. of the 8th Int’l Workshop on
Functional and Logic Programming
(WFLP’99), 1999, pp. 171–181.

[12] M. Sørensen, R. Glück, N. Jones,
A Positive Supercompiler, Journal
of Functional Programming 6 (6)
(1996) 811–838.

[13] P. Wadler, Deforestation:
Transforming Programs
to Eliminate Trees, Theoretical
Computer Science 73 (1990) 231–
248.

9

