
ObjetCurry: An Objet-Oriented Extension ofthe Delarative Multi-Paradigm Language CurryMihael Hanus1? and Frank Huh2 and Philipp Niederau21 Institut f�ur Informatik, Christian-Albrehts-Universit�at zu Kiel, Germany,mh�informatik.uni-kiel.de2 Lehrstuhl f�ur Informatik II, RWTH Aahen, Germanyhuth�i2.informatik.rwth-aahen.de phn�navigium.de

Springer-VerlagIn Pro. of the 12th International Workshop on Implementation of FuntionalLanguages, IFL 2000, Aahen.Springer LNCS 2011, pp. 89{106, 2001

Abstrat. Curry ombines the onepts of funtional, logi and onur-rent programming languages. Conurrent programming with ports allowsthe modeling of objets in Curry similar to objet-oriented programminglanguages. In this paper, we present ObjetCurry, a onservative exten-sion of Curry. ObjetCurry allows the diret de�nition of templates whihplay the role of lasses in onventional objet-oriented languages. Objetsare instanes of a template. An objet owns a state and reats when itreeives a message|usually by sending messages to other objets or atransformation of its state. ObjetCurry also provides inheritane be-tween templates. Furthermore, we show how programs an be translatedfrom ObjetCurry into Curry by exploiting the onurreny and distri-bution features of Curry. To implement inheritane, we extend the typesystem of Curry, whih is based on parametri polymorphism, to inludesubtyping for objets and messages.1 IntrodutionCurry [4, 6℄ is a multi-paradigm delarative language whih integrates funtional,logi, and onurrent programming paradigms (see [3℄ for a survey on integratedfuntional logi languages). The syntax of Curry is similar to Haskell [15℄, e.g.,funtions are de�ned by rules of the form \f t1 : : : tn = e" where f is the funtionto be de�ned, t1; : : : ; tn are the pattern arguments, and e is an expression whihreplaes a funtion all mathing the left-hand side. In addition to Haskell, loalnames introdued in let and where lauses an be delared as \free" whihmeans that their value is unknown. Suh free or logial variables in expressionssupports logi programming features like partial data strutures and searh forsolutions. Furthermore, funtions in Curry an be de�ned by onditional equa-tions \l |  = r" where the ondition  is a onstraint (an expression of theprede�ned type Suess) whih must be solved in order to apply the equation.Basi onstraints are \suess" (the always satis�able onstraint) and equa-tional onstraints of the form \e1 =:= e2" whih are satis�ed if both sides e1? This researh has been partially supported by the German Researh Counil (DFG)under grant Ha 2457/1-2 and by the DAAD under the PROCOPE programme.



and e2 are reduible to the same value (data term). More omplex onstraintsan be onstruted with the onurrent onjuntion operator &. A non-primitiveonstraint like \1 & 2" is solved by solving both onstraints 1 and 2 onur-rently. Finally, \1 &> 2 denotes the sequential onjuntion of two onstraints,i.e., �rst the onstraint 1 is solved and, if this was suessful, the onstraint 2is evaluated.Using both funtional and logi features of Curry, it is possible to modelobjets with states (see Setion 2) at a very low level. Therefore, we proposean extension of Curry, alled ObjetCurry, whih provides all standard featuresof objet-oriented programming, like (onurrent and distributed) objets withstate that an be de�ned by lass templates and inheritane between templates.This paper is strutured as follows. In the next setion, we review the model-ing of onurrent objets in Curry as proposed in [5℄. We present ObjetCurry inthe subsequent setion and show the translation of ObjetCurry programs intoCurry in Set. 4. Setion 5 desribes an extended type system for ObjetCurryin order to detet type errors related to inheritane at ompile time before wedisuss related work in Set. 6 and onlude in Set. 7.2 Implementing Objets in CurryIt is well known from onurrent logi programming [16℄ that objets an beeasily implemented as prediates proessing a stream of inoming messages. Theinternal state of the objet an be implemented as a parameter whih may hangein reursive alls when the message stream is proessed. Sine onstraints playthe role of prediates in Curry, we onsider objets as funtions with result typeSuess. These funtions take the urrent state of the objet and a streamof inoming messages as arguments. If the stream is not empty, the \objet"funtion alls itself reursively with a new state, depending on the �rst elementof the message stream. Thus,o :: State! [MessageType℄! Suessis the general type of an objet where State is the type of the internal state ofthe objet and MessageType is the type of messages. Usually, we de�ne a newalgebrai data type for the messages.The following example shows a ounter whih understands the messages In,Set s, and Get v. Thus, we de�ne the data typedata CounterMessage = In | Set Int | Get IntThe ounter has an integer value as an internal state. Reeiving In inrementsthe internal state and Set s assigns it to a new value s. To get the urrent stateof the ounter as an answer, we send the message Get v to the objet where vis a free logial variable. In this ase the ounter objet binds this variable to itsurrent state:ounter :: Int -> [CounterMessage℄ -> Suess2



ounter eval rigidounter x (In : ms) = ounter (x+1) msounter _ (Set s : ms) = ounter s msounter x (Get v : ms) = v =:= x & ounter x msounter _ [℄ = suessThe evaluation of the onstraint \ounter 42 s" reates a new ounter objetwith initial value 42. Messages are sent by instantiating the variable s. Theobjet terminates if the stream of inoming messages is empty. In this asethe onstraint is redued to the trivial onstraint suess. For instane, theonstraintlet s free in ounter 41 s & s=:=[In, Get x℄is suessfully evaluated where x is bound to the value 42. The annotationounter eval rigidmarks ounter as a rigid funtion. This means that an expression \ounter x s"an be redued only if s is bound.1If there is more than one proess sending messages to the same ounter objet,it is neessary to merge the message streams from di�erent proesses into a singlemessage stream. Doing that with a merger funtion auses a set of problems asdisussed in [5, 8℄. Therefore, Janson et al. [8℄ proposed the use of ports for theonurrent logi language AKL whih are generalized in [5℄ to support distributedprogramming in Curry. In priniple, a port is a onstraint between a multisetand a stream whih is satis�ed if the multiset and the stream ontain the sameelements. In Curry a port is reated by a onstraint \openPort p s" where pand s are free logial variables. This onstraint reates a multiset and a streamand ombines them over a port. Elements an be inserted into the multiset bysending them to p. When a message is sent to p, it will automatially be addedto the stream s in order to satisfy the port onstraint. For sending a message,there is a onstraint \send m p" where m is the message and p is a port reatedby openPort.Using ports, we an rewrite the ounter example as followsopenPort p s &> ounter 0 s & (send In p &> send (Get x) p)3 ObjetCurry, an Objet-Oriented Extension of CurryUsing the tehnique presented above is troublesome and error-prone, in parti-ular, if the state onsists of many variables, beause the programmer has to1 In ontrast to rigid funtions, Curry also provides exible funtions whih nondeter-ministially instantiate their arguments in order to allow the redution of funtionalls, whih provides for goal solving like in logi programming. As a default (whihan be hanged by eval annotations), onstraints are exible and all other funtionsare rigid. 3



repeat the whole state in the reursive alls. This motivated us to introduesome speial syntax for de�ning templates. Templates play the role of lassesin onventional objet-oriented programming languages. We use the word \tem-plate" instead of lass to avoid onfusion between lasses in an objet-orientedmeaning and Haskell's type lasses. For instane, a template for ounter objetsan be de�ned in ObjetCurry as follows:template Counter =onstrutorounter init = x := initmethodsIn = x := x + 1Set s = x := sGet v = v =:= xA template de�nition starts with the reserved keyword template followed bythe name of the template. Similar to a data type delaration, the name of thetemplate is its own type. The onstrutor is a funtion whih we use to instan-tiate new objets. The left-hand side is onstruted as in onventional funtiondelarations. The right-hand side is a set of assignments desribing the attributesof the objet and their initial values. The assignments are onseutively writtenusing the o�side rule.The messages whih are understood by the objet and the reations to thesemessages are de�ned by methods. Messages are de�ned similarly as the on-strutor. The left-hand side of a method delaration onsists of the name ofthe method followed by a list of patterns as in a funtion delaration and de-sribes the signature of a message with the same name as the method. Theright-hand side desribes the behavior of the objet in response to reeiving amessage. A reation an be a transformation of the internal state of the objet.The transformation of a state an be expressed by a set A of assignments of theform \v := e". If the tuple (v01; : : : ; v0n) is the urrent state of the objet wherethe template has the attributes v1; : : : ; vn, A spei�es the state transformation(v01; : : : ; v0n) 7! (v001 ; : : : ; v00n) de�ned byv00i = �ei if vi := ei 2 Av0i otherwiseAdditionally, the right-hand side of a method an also inlude onstraints, i.e.,expressions of the type Suess, beause onstraints o�er further possibilitiesto express reations, e.g., equational onstraints are used to yield an answer bybinding a logial variable, or messages are sent to other objets by the sendonstraint.The assignments and onstraints in the right-hand side of a method aretreated as a set (where for eah omponent of the state at most one assignmentis allowed), i.e., they an be plaed in any order: an assignment has no side e�etto another assignment in the same method.A template de�nition introdues the type of the template, the onstrutorfuntion and the messages at the top level of the Curry program. If T is the type4



of the template and the onstrutor funtion has n arguments �1; : : : ; �n, thetype of the onstrutor funtion is�1 ! : : : ! �n ! Construtor TIn a similar manner, a method has the type�1 ! : : : ! �n ! Message Tif it takes n arguments. Additionally, eah objet understands the prede�nedmessage Stop whih terminates the objet.To instantiate a template, there is a onstraintnew :: Construtor � ! Objet � ! Suess .new takes a onstrutor funtion and a free logial variable and binds the vari-able to a new instane of the template �. Messages an be sent to suh an ob-jet using the onstraint send :: Message � ! Objet � ! Suess. Forinstane, the evaluation of the following expression binds the variable v to thevalue 42:new (ounter 41) o& (send In o &> send (Get v) o &> send Stop o)To give an objet the possibility to send a message to itself, there is a prede�nedidenti�er self. self is visible in the right-hand side of eah method and boundto the urrent objet. Note that sending a message to self has no immediateside e�et to the attributes of the objet beause the objets an only reat tothis message after the evaluation of the urrent method is �nished.As a true extension to the modeling of objets in Curry as desribed in Set. 2,ObjetCurry also provides inheritane. A template an inherit attributes andmethods from another template, whih we all parent, where inherited methodsan be rede�ned or new attributes and methods an be added. A supertemplate ofa template T is T or one of its anestors w.r.t. the parent relation. Subtemplatesare analogously de�ned.For instane, we de�ne a new template maxCounter whih inherits the at-tribute x and the methods In, Set, and Get from ounter. It also introdues anew attribute maxwhih represents an upper bound for inrementing the ounter.The method In will be rede�ned to avoid inrementing x to a value greater thanmax. Additionally, we de�ne a new method SetMax v to set the upper bound:template MaxCounter extends Counter =onstrutormaxCounter init maxInit = ounter initmax := maxInitmethodsIn = x := (if x < max then x+1 else x)SetMax newMax = max := newMaxx := (if x<max then x else max)5



The reserved keyword extends followed by the name of the parent spei�es thatthe template inherits the attributes and methods from Counter.The �rst expression in the right-hand side of the onstrutor of a subtemplatemust be the funtion all of the onstrutor of the parent. In this way the initialvalues of the inherited attributes are determined.Methods an be rede�ned by de�ning a method with the same name in thesubtemplate. All methods whih are not rede�ned will be inherited.4 Translating ObjetCurry into CurryTo translate ObjetCurry programs into Curry, we basially use the tehniquepresented in Set. 2. An abstrat data type Msg ontains data onstrutors foreah message de�ned in all templates and the additional message Stop. Wedeided to use only one data type for all messages to obtain a maximum ofexibility. Of ourse, ObjetCurry programs translated in this way are not typesafe in a sense that messages an be sent to objets whih annot understandthese messages. We will disuss this issue and propose a solution for this inSet. 5.For our ounter example, we generate one data type for all messages:data Msg = In | Set Int | Get Int | SetMax Int | StopNext we de�ne a funtion whih de�nes the initial state of a new objet. If thestate of the objet onsists of more than one attribute, the state is implementedas a tuple.ounterInitState init = initThe initialization funtion of a subtemplate uses the initialization funtion of itsparent to obtain the initial values for the inherited attributes:maxCounterInitState (init,maxInit) =let r_x = ounterInitState initin (r_x,maxInit)Given a state and a message, the following ation funtion omputes the nextstate de�ned by the orresponding method.ounterAtion x self In = State (x+1)ounterAtion x self (Set s) = State sounterAtion x self (Get v) | v =:= x = State xounterAtion x self Stop = FinalWe use the abstrat data type \data State a = State a | Final" to distin-guish normal states and the �nal state.In a subtemplate, rede�ned and new methods are similarly translated:maxCounterAtion (x,max) self In= State (if x < max then x + 1 else x, max)6



maxCounterAtion (x,max) self (SetMax newMax)= State (if x < max then x else max, newMax)The ation funtion of a subtemplate also ontains an equation for eah inheritedmethod. Suh an equation alls the ation funtion of the parent of the templatefor reeiving the next state:maxCounterAtion (x,max) self (Get v)= let State r_x = ounterAtion x self (Get v)in State (r_x,max)maxCounterAtion (x,max) self Stop = FinalTo reate a new objet, we use the onstrutor funtion and the new onstraint.The onstrutor funtion determines the initial state of the objet using thetranslated funtion for the initialization de�ned above and transfers the initialstate and the ation funtion of the objet to a generi funtion loop whihhandles the reursive alls until the �nal state is reahed:ounter init self =loop (ounterInitState init) ounterAtion selfFor eah template the same funtion loop is used whih is de�ned by:loop eval rigidloop state ation self (m:ms) = ontinuation nextState self mswherenextState = ation state self montinuation (State ns) self ms = loop ns ation self msontinuation Final _ _ = suessThe funtion new has a onstrutor funtion and a free logial variable as ar-guments. It reates a port to whih the logial variable is bound and passesa stream assoiated with the port to the onstrutor funtion. Additionally, itpasses the port to the onstrutor as the value for the identi�er self:new onstrutor port =let stream free inopenPort port stream &> onstrutor port streamIn the transformation, eah message has the type Msg. Objets are representedby ports, so an objet has the type Port Msg instead of Objet Template.We have implemented a ompiler for ObjetCurry whih translates a programfrom ObjetCurry to Curry following the ideas skethed in this setion. Theompiler is written in Curry itself.5 Type SafenessThe presented translation into Curry programs is not type safe in the sensethat messages an be sent to objets whih annot understand these messages.7



To detet suh a kind of type errors without restriting the use of objets andmessages, it is neessary to de�ne a new type system and implement a new typeheker whih supports subtyping.5.1 SubtypingWe introdue a new type system whih uses subtype onstraints for expressingthe types of objets, messages and funtions whih have suh argument types ordeliver objets or messages as their results.First we take a look at the type of onstrutor funtions, objets, messagesand the prede�ned funtions send and new. In a �rst step, we de�ne three newprede�ned type onstrutors named Construtor, Objet and Message witharity one. An objet as an instane of a template T has type Objet T . Amessage has type �1 ! � � � ! �n ! Message T , where �1; : : : ; �n are the types ofthe arguments of this message and T is the template whih de�nes this message.A onstrutor of a template T has type �1 ! � � � ! �n ! Construtor T ,where again �1; : : : ; �n are the types of the arguments of this onstrutor. Forexample, an instane of the template Counter has type Objet Counter, themessage Get has type Int ! Message Counter and the onstrutor funtionounter has type Int! Construtor Counter. With these types the funtionsend must have the typesend :: Message � ! Objet � ! Suessand new has the typenew :: Construtor � ! Objet � ! SuessThese types do not allow subtyping w.r.t. a Hindley/Milner-like type system[2℄ as used in Curry. Therefore, we need subtyping in three ases in order tosupport objet-oriented programming tehniques and to ombine them with theadvantages of parametri polymorphism:1. We want to send messages de�ned in a template T to instanes of subtem-plates of T .2. It should be possible to keep objets of di�erent templates in a polymorphidata struture, e.g., in a list: If these objets have a ommon supertemplate,there are ommon messages whih all of these objets understand.3. We also want to store messages de�ned in di�erent templates in a polymor-phi data struture if these templates have a ommon subtemplate.Therefore, we introdue subtype onstraints and onstrained types. We use themto de�ne new types of objets and messages whih supports subtyping in thethree desribed ases. Note that, in ontrast to other approahes to subtypingor order-sorted types, we onsider only subtype relations between templates andnot subtyping of standard data types, like numbers or funtions, sine this issuÆient for our purposes. 8



De�nition 1. A subtype onstraint is an expression �1 � �2 where �i (i = 1; 2)is a type variable or the name of a template.De�nition 2. A onstrained type is a pair � jC onsisting of a type expression� and a set C of subtype onstraints. A onstrained type sheme has the form8�1 : : : �n:� jC.Intuitively, a onstraint of the form �1 � �2 expresses that �1 must be a subtem-plate of �2. To allow keeping instanes of di�erent templates in one polymor-phi data struture, an objet gets the type Objet � j fT � �g. For example,an instane of Counter gets the type Objet � j fCounter � �g and an in-stane of MaxCounter gets the type Objet � j fMaxCounter� �g. We an keepboth objets in a list where this list has the type [Objet �℄ j fCounter ��; MaxCounter � �g. The type of the list is inferred by using standard typingrules but additionally olleting all subtype onstraints in one set.Intuitively, this onstraint set an be satis�ed beause there exists a templateT whih is a supertemplate of Counter and a supertemplate of MaxCounter:Counter is a supertemplate of both Counter and MaxCounter . If we mix ob-jets whih do not have a ommon supertemplate, the onstraint set annot besatis�ed. This makes sense beause these objets do not have a ommon messageand so there is no reason to store them in one data struture. We will formallyde�ne the satis�ability of a onstraint set later.Using this type for an objet, we must also modify the type of new as follows:new :: Construtor � ! Objet � ! Suess | f� � �gA similar modi�ation of the type of a message allows to mix messages of di�erenttypes in a ommon data struture: A message gets the type�1 ! � � � ! �n ! Message � j f� � Tgwhere �1; : : : ; �n are the types of the arguments of this message.With these de�nitions it is possible to send a message de�ned in a template Tto an instane of a subtemplate of T : The resulting onstraint set an be satis�edi� the objet understands the message. For instane, if we send the message Into an objet of the instane MaxCounter, we get the typed expressionsend In maxCounterObjet :: Suess j f� � Counter; MaxCounter� �gUnfortunately, we must also modify the type of send. Consider the followingexample:f m1 m2 o1 o2 = send m1 o1 & send m2 o2 & send m1 o2f has two messages and two objets as arguments. It sends the �rst messageto the �rst objet, the seond message to the seond objet, and also the �rstmessage to the seond objet. With the type of send de�ned above, we get thetypef :: Message � ! Message � ! Objet � ! Objet � ! Suess9



For our running example, we assume:In :: Message � | f� � Counterg(SetMax 42) :: Message � | f� � MaxCountergounterObjet :: Objet � | fCounter � �gmaxCounterObjet :: Objet � | fMaxCounter� �gThus, the appliation of f to these arguments would yield the typef In (SetMax 42) ounterObjet maxCounterObjet ::Suess | f� � Counter; � � MaxCounter; Counter � �; MaxCounter� �gThe set of onstraints of this type is not satis�able beause there is no substitu-tion for � suh that all onstraints are elements of the inheritane hierarhy. Thisdoes not math our intuition beause it is possible to send In to ounterObjetand maxCounterObjet and (SetMax 42) to maxCounterObjet.The problem an be easily solved if we modify the type of send:send :: Message � ! Objet � ! Suess | f� � �gThis type orresponds to the intuition that a message de�ned in template � anbe send to all instanes of template � provided that � is a subtemplate of �.Now the type of f isMessage � ! Message � ! Objet  ! Objet Æ ! Suess| f � �; Æ � �; Æ � �gand \f In (SetMax 42) ounterObjet maxCounterObjet" has typeSuess | f � �; Æ � �; Æ � �; � � Counter; � � MaxCounter;Counter � ; MaxCounter� ÆgThese subtype onstraints are satis�able by the following substitution �:�(�) = Counter; �(�) = MaxCounter; �() = Counter; �(Æ) = MaxCounter5.2 Core ObjetCurryIn order to de�ne the type system of ObjetCurry, we introdue a simpli�edore language to provide a more ompat representation of ObjetCurry's typingrules. The expressions and templates of the ore language are de�ned in Fig. 1.An expression E of the ore language is either a variable, a lambda ab-stration, an appliation of two expressions, an expression ombined with thedelaration of free variables, or a onditional expression. A template T onsistsof an initial assignment I , whih de�nes the attributes and initial values of thetemplate, and a set of methods. A template an also be de�ned as a subtem-plate of another template by an extends lause. I 0 ontains additionally to theinitial assignments of the subtemplate a all to the onstrutor funtion of itssupertemplate. This ensures that eah inherited attribute gets an initial value.10



E ::= x variablej �x:E abstrationj E1 E2 appliationj let x free inE free variablej if E1 then E2 else E3 onditionalT ::= Template name I M� templatej Template name1extends name2 I 0 M� subtemplateA ::= (x := E)� assignmentI ::= A initial assignmentj �x:I abstrationI 0 ::= E;A initial assignment of subtemplatesj �x:I 0 abstrationM ::= E ) A bodyj �x:M abstrationFig. 1. A ore language for ObjetCurryA blok of assignments A onsists of assignments of the form x := E whereE is any expression. Due to the fat that a onstrutor funtion of ObjetCurryan have some arguments, we allow lambda abstration on initial assignments.A method M is de�ned by an expression E and a blok of assignments A. Ehas to be a onstraint (a funtion with the result type Suess) whih has to besolved when the method is alled. The assignments de�ne the transformation ofthe urrent state of the objet.A program of Core ObjetCurry is a set of de�nitions of funtions and tem-plates. The de�nition of a funtion has the form funtionName = E (where E isusually a lambda abstration) and the de�nition of a template is written as(onstrName;methodName1; : : : ;methodNamen) = T :Suh a program ontains no loal de�nitions, i.e., all identi�ers are introduedon top level (thus, loal delarations in ObjetCurry programs are globalized inCore ObjetCurry by lambda lifting).As an example, our original Counter and MaxCounter template de�nitionsare transformed into the ore language as follows:(ounter; In; Set; Get) = Template Counter�i : x := i (body of ounter)suess) x := x+1 (body of In)�s : suess) x := s (body of Set)�v : (v =:= x)) � (body of Get)11



(maxCounter; In; SetMax) = Template MaxCounter extends Counter�i : �mi : ounter i; max := misuess) x := if x<max then x+1 else x�v : suess) max := v;x := if x<max then x else max5.3 A Type System for ObjetCurryBefore we present a type system for this ore language, we de�ne the satis�abilityof a set of onstraints.De�nition 3. A (type) substitution � is a mapping from type variables to typessuh that �(�) 6= � only for �nitely many type variables �. We write a substi-tution as follows: � = [x1=�1; : : : ; xn=�n℄ if �(xi) = �i for all i = 1; : : : ; n and�(y) = y for all y 62 fx1; : : : ; xng. The extension of a substitution to types andonstraint sets is obvious.In the following we assume that P is a Core ObjetCurry program.De�nition 4. Let H be the relation of subtemplates of P de�ned by its extendlauses. The reexive and transitive losure of H is denoted by H�, also alledinheritane hierarhy.De�nition 5. A substitution � satis�es a subtype onstraint �1 � �2 w.r.t. theinheritane hierarhy H�, denoted � j=H� �1 � �2, if there is a substitution �with (��1; ��2) 2 H�.A substitution � satis�es a set C of subtype onstraints (� j=H� C) if for all 2 C: � j=H� .A set C of subtype onstraints is satis�able w.r.t. the inheritane hierarhyH�, denoted j=H� C, if there is a substitution � with � j=H� C.Type environments ollet the type information for named entities in a program:De�nition 6. A type environment � is a mapping from names to onstrainedtype shemes. In the following we denote by TE the set of all type environments.The union of two type environments �1 and �2 with non-overlapping domainsis de�ned as follows:(�1 [ �2)(�) = ��2(�); if �1(�) is unde�ned�1(�); if �2(�) is unde�nedAdditionally, we de�ne another onatenation of two type environments �1 and�2 whih gives preferene to �2 if an identi�er is a member of the domains ofboth environments. We need this operation in order to extend the global typeenvironment with the attributes of a template.(�1 � �2)(�) = ��2(�); if �2(�) is de�ned�1(�); otherwiseGeneri instanes of onstrained type shemes are de�ned as usual:12



De�nition 7. A onstrained type � 0jC 0 is a generi instane of a onstrainedtype sheme 8�1 : : : �n:� jC if there is a substitution � with � � j � C = � 0 jC 0and �(�) = � for all � 62 f�1; : : : ; �ng.An attribute whih is de�ned in a template T is also visible in the subtemplatesof T with the same type. To speify the visibility of attributes in the methodsof all subtemplates, we introdue attribute type environments:De�nition 8. An attribute type environment � : Templates ! TE maps thename of a template to a type environment. This type environment ontains thetypes of the attributes de�ned in this template.Now we are able to de�ne the well-typedness of Core ObjetCurry programs:De�nition 9. A funtion de�nition f =�x1 : : : �xn:e is well-typed w.r.t. a typeenvironment � , an attribute type environment �, and an inheritane hierarhyH�, if the following onditions are satis�ed:{ � (f) = 8�1 : : : �m:� jC{ �;�;H� ` �x1 : : : �xn:e : �|C an be dedued by the rules of Fig. 2 and 3{ j=H� CA template de�nition (;m1; : : : ;mn) = e is well-typed w.r.t. a type environment� , an attribute type environment �, and an inheritane hierarhy H�, if{ � () = �0jC0, � (mi) = 8�i:�ijCi for i = 1; : : : ; n,{ �;�;H� ` e : (�0jC0; �1jC1; : : : ; �njCn) an be dedued by the rules of Fig. 2and 3{ j=H� C0 [ C1 [ : : : [ CnA Core ObjetCurry program is well-typed if there exist a type environment � ,an attribute type environment � and an inheritane hierarhy H� suh that allfuntion and template de�nitions are well-typed w.r.t. these environments and� (send) = 8�1; �2 : Message �1 ! Objet �2 ! Suess | f�2 � �1g� (new) = 8�1; �2 : Construtor �1 ! Objet �2 ! Suess | f�1 � �2gIn the inferene rules of Fig. 2 and 3, we use the auxiliary funtions super andtemplates whih yield all supertemplates of a template (inluding the templateitself) and all templates of a program, respetively.In order to hek the well-typedness of a program by the rules of Fig. 2 and 3,the type environment � must ontain the types of eah de�ned funtion andtemplate. The attribute type environment � maps the name of eah templateto a new type environment whih ontains the types of the attributes de�nedin that template. The inheritane hierarhy onsists of the subtype relationsbetween all templates whih are de�ned in the program.The inferene rules [Axiom℄, [Abstration℄, [Existential℄, and [Appliation℄are de�ned in the usual way, ompare the Curry Report [6℄. The only modi-�ation is the olletion of all onstraints of all subexpressions into one set ofonstraints. The satis�ability of this onstraint set is heked outside the typing13



[Axiom℄ �;�;H� ` x : � jC if � jC generi instane of � (x)[Abstration℄ � [x=� jC℄; �;H� ` E : � 0jC0�;�;H� ` �x:E : � ! � 0jC0[Existential℄ � [x=� jC℄; �;H� ` E : � 0jC0�;�;H� ` let x free inE : � 0jC [ C0[Appliation℄ �;�;H� ` E1 : �1 ! �2jC1 �;�;H� ` E2 : �1jC2�;�;H� ` E1E2 : �2jC1 [ C2[Template℄ name 2 templates(H�)(name; x) 62 H� for all x 2 templates(H�) with x 6= name� 0 = � ��(name)� 0; �;H� `nameI I : �0jC0 � 0; �;H� `nameM Mi : �ijCi (i = 1; : : : ;m)�;�;H� ` Template name I M1 : : : Mm : (�0jC0; �1jC1; : : : ; �mjCm)[Subtemplate℄ (name1; name2) 2 H�; (name2; name1) 62 H�� 0 = � �Sp2super(H�;name1)�(p)pi 2 super(H�; name1) (i = 1; : : : ;m)� 0; �;H� `name1name2I0 I 0 : �0jC0 � 0; �;H� `piM Mi : �ijCi (i = 1; : : : ; m)�;�;H� ` Template name1 extends name2 I 0 M1 : : : Mm: (�0jC0; �1jC1; : : : ; �mjCm)Fig. 2. Typing rules for ObjetCurry programs (1)rules in the de�nition of a well-typed program (see Def. 9). In the rule [Abstra-tion℄ we do not have to ollet the onstraints C of the type of the variable x: IfE ontains an ourrene of x, the onstraints of the type of x are olleted intothe set of onstraints of E by the other rules. Otherwise, x is never used and itsonstraints an be ignored.In addition to Curry's type system, we introdue new rules [Template℄ and[Subtemplate℄ for heking the types of templates and subtemplates. In the rule[Template℄, whih is appliable if there is no true supertemplate in H�, we ex-tend the type environment � by the type assumptions for the attributes of thetemplate in order to make the attribute types visible in the type heking ofthe methods. Note that the global type environment � ontains the types of allidenti�ers de�ned in the program (inluding the method identi�ers) so that wean use the methods of the template also inside the template and we do not needa speial rule for reursion. 14



[Assignment1℄ �;�;H� ` x : � jC1 �;�;H� ` E : � jC2 �;�;H� `A A : CA�;�;H� `A x := E;A : C1 [ C2 [ CA[Assignment2℄ �;�;H� `A � : ;[Init℄ �;�;H� `A A : C�;�;H� `nameI A : Construtor namejC[Init'℄ �;�;H� ` E : Construtor name2j� �; �;H� `A A : C�;�;H� `name1name2I0 E;A : Construtor name1jC[Method℄ �;�;H� ` E : SuessjC �;�;H� `A A : C0 v new type variable�;�;H� `nameM E ) A : Message vjfv � nameg [ C [ C0[AbstrationX ℄ � [x=� jC℄; �;H� `nX X : � 0jC0�;�;H� `nX �x:X : � ! � 0jC0 X 2 fI; I 0;MgFig. 3. Typing rules for ObjetCurry programs (2)The rule [Subtemplate℄ is similar to [Template℄ exept for the following dif-ferenes:{ The type environment � 0 also ontains the type assumptions of the inheritedattributes, i.e., the attributes of the urrent template and all its supertem-plates.{ I 0 ontains a all to the onstrutor funtion of the parent. It must be hekedthat this has the type Construtor name2 where name2 is the name of theparent. This is ensured by using `I0 instead of `I .{ Furthermore, we have to ensure that (name1; name2) is an element of thetype hierarhy H� and (name2; name1) must not be in H�. Due to thefat that H� is transitive and reexive, it also ontains (name2; name2),(name1; name1), and (name1; p) for all supertemplates p of name1.{ For heking the types of the methods, we also allow that a method Miis assigned to some supertemplate pi (note that pi is the urrent templatename1 or one of its supertemplates). This is neessary if the method isrede�ned. Note, however, that methods rede�ned in subtemplates must havethe same type as in supertemplates. This is reasonable sine, due to the logifeatures of Curry, arguments of a method an be used as value parametersas well as result parameters so that a ontra- or ovariane restrition onarguments annot be learly required.[Template℄ and [Subtemplate℄ use the rules of Fig. 3 whih we disuss next. Therule [Assignment1℄ ensures that in an assignment of the form x := E the typeof x is the same as the type of the expression E. [Assignment2℄ handles thespeial ase of an empty list of assignments. The rule [Init℄ heks the type of15



a onstrutor funtion where the name of the template must be provided as anextra argument. [Init'℄ additionally heks if E is a valid all of the onstrutorfuntion of the parent. For this purpose, we also need the name of the parent(name2). The rule [Method℄ types a method with subtyping the result type asdisussed in Set. 5.1. It heks whether the expression E of a method E ) Ais a onstraint (with the type Suess) and ollets the resulting onstraints.Due to the fat that we need lambda abstration over initial assignments Ior I 0 and methods M , we introdue a generi rule [AbstrationX ℄. X an be I ,I 0 or M . The rule is similar to the ommon rule for abstration.5.4 Type InfereneWe have also developed a type inferener for our modi�ed type system. Due tolak of spae we an not present it here but refer to [12℄ whih ontains the om-plete desription of the type inferener and its implementation. The algorithm isbased on the algorithm D of Kaes [10℄. However, our inferene algorithm is sim-pler beause we allow subtyping only for objets and messages. The algorithmuni�es type expressions in the same way as standard type inferene algorithms[2℄ but additionally ollets the subtype onstraints. The resulting set of subtypeonstraints is then heked for satis�ability with a simple test proedure.Our implementation of the type heker for ObjetCurry is based on MarkJones' \Typing Haskell in Haskell" [9℄ whih we adapted to Curry. The imple-mentation of the ObjetCurry ompiler together with the type inferener is freelyavailable from the authors.6 Related WorkIn this setion we ompare ObjetCurry with some other approahes for theobjet-oriented extension of funtional (logi) languages.Oz [17℄ is a onurrent onstraint programming language with a partiu-lar syntax for objet-oriented programming, thus, o�ering similar features asObjetCurry. The main di�erenes between ObjetCurry and Oz are the typesystem and the operational semantis. Oz is untyped and supports no dete-tion of type errors at ompile time in ontrast to ObjetCurry. Furthermore, theoperational model of ObjetCurry is based on Curry's omputation model [4℄whih ombines an optimal lazy evaluation strategy [1℄ for the funtional (logi)parts of a program with the onurrent evaluation of onstraints. In partiular,we onsider objets as funtions onsuming the stream of inoming messageswhere the state is passed as an argument between the di�erent funtion alls.In ontrast, Oz evaluates funtions in an eager manner and implement statefulobjets via a spei� ell store.Haskell++ [7℄ extends Haskell's type lasses to objet lasses. It providesa limited form of multiple inheritane and virtual methods but does not pro-vide subtype polymorphism. For instane, it is not possible to reate a list with16



elements of di�erent instanes of one objet lass. The main goal in the devel-opment of Haskell++ was a minimal extension to Haskell whih supports theinheritane of funtions. Objets in Haskell++ ontain only methods but nostates. On the other hand, ObjetCurry provides real objets with states in thesense of objet-oriented programming. It ombines the exibility of onventionalobjet-oriented languages with the features of funtional logi programming.O'Haskell [13, 14℄ provides an extension for full objet-oriented programmingwith states and subtype polymorphism. It uses monads for the implementation ofonurrent objets and states. The main advantage of our implementation, whihuses the onurrent and logial features of Curry, is the opportunity to ombinethis with Curry's port onept [5℄ for distributed programming. In ontrast toO'Haskell, objets in ObjetCurry an also be exeuted in a distributed setting.This is supported by a funtion newNamedObjet whih is similar to new butmakes the new objet aessible from other mahines in the network with aunique port identi�er (see [5℄ for more details). The implementation of objetsremains unhanged. Furthermore, the logial variables in Curry an be exploitedas answer hannels sine the reeiver of a message an bind the logial variablesin the message to send answers bak to the sender.Finally, Objetive Caml [11℄ is an objet-oriented extension of ML. ObjetiveCaml inherits the strit evaluation strategy of ML and subtype polymorphisman only be programmed with expliit oerions in ontrast to ObjetCurrywhih is lazy and provides subtype polymorphism without any annotations sineall types an be automatially inferred.7 ConlusionsWe presented the language ObjetCurry as an extension of Curry to allow aonvenient de�nition of objets via templates. Templates play the role of lassesin onventional objet-oriented languages. A template de�nes the attributes andmethods of an objet. Methods are used to determine the reations to inomingmessages where reations an be the hange of the objet's state or a onstraint tosend messages to other objets. Assignments are used to express a transformationon the loal state of an objet. Templates an also inherit attributes and methodsfrom other templates and inherited methods an be rede�ned.We proposed a diret translation of templates into pure Curry but translatedtarget programs using more than one template are not type safe in the senseof traditional typed objet-oriented languages. Therefore, we developed a newtype system whih uses subtype onstraints in the types of objets, messagesand funtions whih use objets or messages. We implemented a ompiler whihtranslates ObjetCurry programs into Curry and a type heker whih also inferstypes of expressions without expliit type annotations.Aknowledgements. The authors are grateful to the anonymous referees fortheir helpful remarks to improve the �nal version of this paper.17



Referenes1. S. Antoy, R. Ehahed, and M. Hanus. A Needed Narrowing Strategy. Journal ofthe ACM, Vol. 47, No. 4, pp. 776{822, 2000.2. L. Damas and R. Milner. Prinipal type-shemes for funtional programs. In Pro.9th Annual Symposium on Priniples of Programming Languages, pages 207{212,1982.3. M. Hanus. The integration of funtions into logi programming: From theory topratie. Journal of Logi Programming, 19&20:583{628, 1994.4. M. Hanus. A uni�ed omputation model for funtional and logi programming. InPro. 24th ACM Symp. Priniples of Programming Languages, pages 80{93, 1997.5. M. Hanus. Distributed programming in a multi-paradigm delarative language.In Pro. of the International Conferene on Priniples and Pratie of DelarativeProgramming (PPDP'99), pages 376{395. Springer LNCS 1702, 1999.6. M. Hanus. Curry: An Integrated Funtional Logi Language, 2000.http://www.informatik.uni-kiel.de/~urry/7. J. Hughes and J. Sparud. Haskell++: An objet-oriented extension of Haskell.In Proeedings of the Workshop on Haskell, La Jolla, California, YALE ResearhReport DCS/RR-1075, 1995.8. S. Janson, J. Montelius, and S. Haridi. Ports for objets in onurrent logi pro-grams. In G. Agha, P. Wegner, and A. Yonezawa, editors, Researh Diretionsin Conurrent Objet-Oriented Programming, pages 211{231. MIT Press, London,1993.9. M.P. Jones. Typing Haskell in Haskell, 1999. In Proeedings of the Workshop onHaskell, Paris, Frane, Tehnial Report UU-CS-1999-28, University of Utreht,1999.10. S. Kaes. Type inferene in the presene of overloading, subtyping and reursivetypes. In 1992 ACM Conferene on Lisp and Funtional Programming, pages 193{204. ACM, ACM, August 1992.11. X. Leroy. The Objetive Caml system. Tehnial report, 1996.http://pauilla.inria.fr/oaml/ .12. P. Niederau. Objet-oriented extension of a delarative language (in german).Master's thesis, RWTH Aahen, 2000.13. J. Nordlander. Rationale for O'Haskell, August 1999.http://www.s.halmers.se/~nordland/ohaskell/rationale.html14. J. Nordlander. Reative Objets and Funtional Programming. PhD thesis,Chalmers G�oteborg University, May 1999.15. J. Peterson et al. Haskell: A non-strit, purely funtional language (version 1.4).Tehnial report, Yale University, Yale, 1997.16. E. Shapiro and A. Takeuhi. Objet oriented programming in Conurent Prolog.New Generation Computing, 1:25{48, 1983.17. G. Smolka. The Oz programming model. In J. van Leeuwen, editor, ComputerSiene Today: Reent Trends and Developments, pages 324{343. Springer LNCS1000, 1995.
18


