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Abstract

Functional logic languages combine lazy (demand-driven) evaluation strategies from functional
programming with non-deterministic computations from logic programming. To provide a
strategy-independent semantics, most languages are based on the call-time choice semantics
where parameters are passed as values. From an implementation point of view, the call-time
choice semantics fits well with sharing performed by lazy languages. On the other hand, there
are also situations where it is intended to pass non-deterministic arguments as sets of values
in order to exploit the power of non-deterministic programming. This alternative parameter
passing model is known under the name “plural” arguments. In this paper, we show how both
mechanisms can be integrated in a single language. In particular, we present a novel technique
to implement plural arguments in a call-time choice language so that existing implementations
of contemporary functional logic languages can be easily re-used to implement plural parameter
passing.

KEYWORDS: functional logic programming, semantics, program transformation, implementa-
tion

1 Motivation

Functional logic languages support the most important features of functional and logic

programming in a single language (see (Antoy and Hanus 2010; Hanus 2013b) for recent

surveys). They provide higher-order functions and demand-driven evaluation from func-

tional programming as well as logic programming features like non-deterministic search

and computing with partial information (logic variables). This combination led to new

design patterns (Antoy and Hanus 2002; Antoy and Hanus 2011), better abstractions for

application programming (e.g., programming with databases (Braßel et al. 2008; Fischer

2005), GUI programming (Hanus 2000), web programming (Hanus 2001; Hanus 2006;

Hanus and Koschnicke 2010), string parsing (Caballero and López-Fraguas 1999)), and

new techniques to implement programming tools, like partial evaluators (Alpuente et al.

1998) or test case generators (Fischer and Kuchen 2007; Runciman et al. 2008).

The execution model of contemporary functional logic languages, like Curry

(Hanus (ed.) 2012) or TOY (López-Fraguas and Sánchez-Hernández 1999), is based on

(some variant of) needed narrowing (Antoy et al. 2000) which subsumes demand-driven

term rewriting, used to evaluate functional programs, and unification and resolution

applied in logic programming. Needed narrowing is an optimal evaluation strategy for

large classes of programs. Moreover, operations in functional logic programs can be also
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non-deterministic, i.e., deliver more than one result on a given (ground) input, like the

predefined choice operation, denoted by the infix operator “?”:

x ? _ = x

_ ? y = y

Thus, the expression “0 ? 1” has two values: 0 and 1. If non-deterministic operations

are used as arguments in other operations, a semantical ambiguity might occur. Consider

the Curry program1

f (C x) = (x,x) (1)

Here, C is a data constructor so that the expression “f (C 0)” evaluates to the pair (0,0).

However, the intended semantics becomes less clear when non-deterministic operations

occur as arguments. For instance, what should be the intended results of “f (C (0?1))”?

Hussmann (Hussmann 1992) proposed two options:

Call-time choice semantics: The value of each argument is fixed before parameter

passing. In our case, the parameter (C (0?1)) has the two values (C 0) and (C 1) so

that the call to f has also two results: (0,0) and (1,1).

Run-time choice semantics: Values are computed when they are needed. Hence, the

parameter (C (0?1)) is not evaluated before parameter passing but copied into the

right-hand side so that the call to f reduces to the expression (0?1,0?1) which sub-

sequently evaluates to four results: (0,0), (1,0), (0,1), and (1,1).

Since the computed results of a run-time choice semantics might depend on the evalu-

ation strategy (e.g., the previous example call would not produce the result (1,0) if it

is evaluated with an innermost reduction strategy), contemporary functional logic lan-

guages, like Curry or TOY, are based on the call-time choice semantics. Note that this

semantics does not exclude the demand-driven evaluation of arguments. Actually, it fits

well with a lazy evaluation strategy where actual arguments are shared instead of du-

plicated. A logical (execution- and strategy-independent) foundation for the call-time

choice semantics where programs contain non-strict and non-deterministic operations is

defined in (González-Moreno et al. 1999) by the rewriting logic CRWL.

Beyond this operational view of parameter passing, there is also denotational view of

parameters (Rodŕıguez-Hortalá 2008):

Singular semantics: Parameter variables denote single values. This is equivalent to

call-time choice.

Plural semantics: A parameter variable denotes a set of values, i.e., the set of all

results when the parameter is evaluated. Although one might have the impression

that this corresponds to run-time choice, Rodŕıguez-Hortalá (2008) showed that this is

not the case when pattern matching is taken into account. For instance, consider the

expression “f (C 0 ? C 1)”. Since an application of the defining rule for f demands

for the constructor C, the argument (C 0 ? C 1) must always be evaluated before

applying the f-rule. Hence, run-time choice cannot yield the result “(0,1)” for this

expression. However, a plural semantics specifies that the value of the argument is

1 The syntax of Curry is close to Haskell (Peyton Jones 2003), i.e., variables and function names usually
start with lowercase letters and the names of type and data constructors start with an uppercase
letter. The application of f to e is denoted by juxtaposition (“f e”).
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the set {C 0, C 1} so that the parameter variable x denotes the set {0,1}. As a

consequence, “(0,1)” is a possible value of the initial expression.

Rodŕıguez-Hortalá (2008) proposed a strategy-independent definition of the plural se-

mantics for non-strict and non-deterministic operations in the form of a “plural rewrit-

ing logic” πCRWL. He also showed that there is actually a semantical hierarchy w.r.t.

the sets of computed results: all results of a call-time choice semantics are contained in

the results of a term-rewriting semantics (which corresponds to run-time choice) which

are again contained in the results of a plural semantics. Due to its strategy-independent

definition, the plural semantics is an interesting model for programming, in particular, if

singular and plural functions or arguments are combined (Riesco and Rodŕıguez-Hortalá

2010b). Such a combination is interesting since it has already been argued in (López-

Fraguas et al. 2009) that there are situations in practice where there is no clear preference

to either of these options for treating non-determinism.

Since implementations of functional logic languages are based on lazy evaluation and

sharing, which fits well with the call-time choice semantics, the implementation of plu-

ral arguments or their combination with singular arguments is less clear. Riesco and

Rodŕıguez-Hortalá (2010a) developed an implementation of plural arguments by trans-

forming functional logic programs into rewrite rules implementing πCRWL with the

Maude system (Clavel et al. 2007).

In this paper, we present a novel implementation technique for plural arguments by

transforming them in such a way that their execution with call-time choice produces

the intended results. Thus, we can re-use existing implementations of functional logic

languages. This does not only ease the implementation efforts but also leads to much

more efficient and comprehensive implementations.

In the next section, we sketch the relevant foundations of functional logic programming

and Curry. Section 3 reviews the plural semantics and shows some programming exam-

ples. Section 4 presents our transformation to implement plural functions with a call-time

choice semantics and discusses its correctness. We sketch an implementation and show

its superiority by some benchmarks in Section 5 before we conclude in Section 6.

2 Functional Logic Programming and Curry

The declarative multi-paradigm language Curry (Hanus (ed.) 2012) combines features

from functional programming (demand-driven evaluation, parametric polymorphism,

higher-order functions) and logic programming (computing with partial information, uni-

fication, constraints). A Curry program consists of definitions of data types enumerating

their constructors and of operations or defined functions on these types. A functional

logic computation reduces an expression to some value, if possible, where a value is an

expression without defined operations. For instance, 0 and 1 are the values obtained by

evaluating the expression (0?1).

The concrete syntax of Curry is close to Haskell but, in addition, allows non-

deterministic operations (like “?”) and free (logic) variables in conditions and right-hand

sides of defining rules. Actually, non-deterministic operations and logic variables have

the same expressive power (Antoy and Hanus 2006; de Dios Castro and López-Fraguas

2007). For instance, a Boolean logic variable can be replaced by the non-deterministic

generator operation for Booleans defined by
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aBool = True ? False

Exploiting this equivalence, one can implement Curry by translation into Haskell aug-

mented with a mechanism to handle non-deterministic computations, as shown recently

with the KiCS2 system (Braßel et al. 2011). Note that call-time choice and sharing is im-

portant for this equivalence since different occurrences of the same logic variable should

denote the same value. Although the source language Curry allows the explicit introduc-

tion (by “where x,y free”) and use of logic variables, we assume in the theoretical part

of this paper that they are replaced by generator operations.

A precise definition of call-time choice is proposed in (González-Moreno et al. 1999) by

the rewriting logic CRWL. In order to present this logic, we briefly recall some notions

and notations of term rewriting (Baader and Nipkow 1998; Dershowitz and Jouannaud

1990).2 All symbols used in a program must be either variables from a set V or symbols

from a signature Σ partitioned into a set C of constructors and a set F of (defined)

functions or operations. The set Exp of expressions consists of variables or signature

symbols applied to a list of expressions (also called application). Var(e) denotes the set

of variables in an expression e. An expression e is called ground if Var(e) = ∅. A value

belongs to the set CTerm of constructor terms, i.e., expressions without defined function

symbols. A program P is a set of rules of the form f(t1, . . . , tn) → e where f ∈ F ,

t1, . . . , tn ∈ CTerm, e ∈ Exp, and the patterns t1, . . . , tn must not contain multiple

occurrences of a same variable. We ignore conditions in the rules since a conditional

rule l | c = r can be translated into the unconditional rule l = cond c r where the

predefined operation cond reduces to its second argument if the first one is true (Antoy

2001), e.g., cond could be defined by the rule “cond True x = x”. Moreover, we omit

other constructs of source programs, like extra variables or let expressions, and assume

that they are eliminated by some program transformation (although we use them in

concrete example programs).

A substitution σ ∈ Sub is a finite mapping σ : V → Exp which is homomorphically

extended to a mapping σ : Exp → Exp. The domain of a substitution σ is defined by

Dom(σ) = {x ∈ V | σ(x) 6= x}. If Dom(σ1) ∩ Dom(σ2) = ∅, then their disjoint union

σ1 ] σ2 is defined by (σ1 ] σ2)(x) = σi(x), if x ∈ Dom(σi) for some i ∈ {1, 2}, and

(σ1 ] σ2)(x) = x, otherwise. A C-substitution σ ∈ CSub satisfies σ(x) ∈ CTerm for all

x ∈ Dom(σ).

A position p in an expression e could be represented by a sequence of natural numbers.

Positions are used to identify specific subterms. Thus, e|p denotes the subterm of e at

position p, and e[s]p denotes the result of replacing the subterm e|p with the expression

s (see (Dershowitz and Jouannaud 1990) for details). The set of all positions of an

expression e is denoted by Pos(e).
If P is a program, then a rewrite step e→P e′ is defined if there are a position p in e,

a rule l → r ∈ P, and a substitution σ with e|p = σ(l) such that e′ = e[σ(r)]p. We denote

by
∗→P the reflexive and transitive closure of →P , and we write P ` e ∗→ t if e

∗→P t.
In order to define the meaning of call-time choice by the rewriting logic CRWL, we

extend the standard signature with the new constructor symbol ⊥ to represent undefined

2 Although the theoretical part uses notations from term rewriting, its mapping into the concrete syntax
of Curry should be obvious.
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RR
x� x

x ∈ V DC
e1 � t1 · · · en � tn

c(e1, . . . , en) � c(t1, . . . , tn)
c ∈ C

B
e� ⊥ OR

e1 � σ(t1) · · · en � σ(tn) σ(r) � t

f(e1, . . . , en) � t

f(t1, . . . , tn)→ r ∈ P
σ ∈ CSub⊥

Fig. 1. The call-time choice semantics CRWL

RR
x� x

x ∈ V DC
e1 � t1 · · · en � tn

c(e1, . . . , en) � c(t1, . . . , tn)
c ∈ C

B
e� ⊥ POR

e1 � σ11(t1)
...
e1 � σ1m1(t1)

· · ·
en � σn1(tn)
...
en � σnmn(tn)

σ(r) � t

f(e1, . . . , en) � t

f(t1, . . . , tn)→ r ∈ P, σij ∈ CSub⊥, dom(σij) = Var(ti)
σ = ?{σ11, . . . , σ1m1} ] . . . ] ?{σn1, . . . , σnmn}, mi > 0

Fig. 2. The plural semantics πCRWL

or unevaluated values. The set Exp⊥ of partial expressions consists of all expressions

that might contain occurrences of ⊥. The sets CTerm⊥ and CSub⊥ are similarly de-

fined. CRWL defines the deduction of approximation statements e� t with the intended

meaning “the partial constructor term t approximates the value of e.” The inference rules

defining such statements are summarized in Fig. 1. Rule B specifies that ⊥ approximates

any expression to get a non-strict semantics. Rule DC decomposes constructor-rooted

expressions in order to process their argument expressions. Rule OR expresses call-time

choice by passing only partial constructor terms as parameters (by the substitution σ).

We write P `CRWL e� t if e� t is derivable with the CRWL inference rules.

3 Plural Semantics and Plural Arguments

In this section we review the plural semantics and discuss our proposed extension to

support plural arguments in Curry. The formal definition of the approximation relation

of the plural semantics πCRWL (Rodŕıguez-Hortalá 2008) is shown in Fig. 2. The only

difference to the calculus CRWL is the replacement of rule OR by POR (Plural Outer

Reduction). In contrast to rule OR used to specify call-time choice, rule POR passes all

non-deterministic values of an argument ei into the right-hand side r via the substitution

σ. In order to avoid the explicit introduction of sets of values, the πCRWL calculus

allows that variables are mapped into disjunctive values and ?{θ1, . . . , θn} denotes the

substitution which combines the different substitutions θ1, . . . , θn for the same variable

into one substitution with disjunctive values (see (Rodŕıguez-Hortalá 2008) for detailed

definitions). For instance, if θ1(x) = 1 and θ2(x) = 2, then (?{θ1, θ2})(x) = 1?2. By

this mechanism, all non-deterministic values of a parameter variable are available in each

occurrence of this variable in the right-hand side. We write P `πCRWL e � t if e � t is

derivable with the πCRWL inference rules.

For instance, consider again program rule (1) of Section 1. Then rule POR states that

f (C (0?1)) � t holds if (0?1,0?1) � t holds (with σ(x) = 0?1). Using the rules for
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“?”, we can further deduce that the latter approximation statement holds for the values

t ∈ {(0,0), (1,0), (0,1), (1,1)}.

In the following we will discuss how we support plural arguments in a Curry program.

It has been argued in (Riesco and Rodŕıguez-Hortalá 2010b) that there should not be

a choice between a plural or singular program but it is more adequate to support a

choice for individual arguments of operations (since plurality causes an increase of the

search space which is intended only in specific situations). Conceptually, the semantics

of individual plural arguments can be specified by a combined OR/POR rule where

disjunctive values are only passed for the plural arguments. We follow this reasonable

design decision and explicitly mark plural arguments, i.e., as the default all arguments

are singular. For instance, consider the example of Section 1 but now extended with its

type definition:

data C = C Int

f :: C → (Int,Int)

f (C x) = (x,x)

This is a valid Curry program. Since the call-time choice semantics is the default, the

expression “f (C (0?1))” evaluates only to the two values (0,0) and (1,1). If the

programmer wants to change this intended semantics and use plural parameter passing

for the argument of f, the argument has to be marked as plural. In order to avoid

the introduction of specific syntactic constructs for this case (as done in (Riesco and

Rodŕıguez-Hortalá 2010b)) and to make our implementation available for standard Curry

implementations, we mark a plural argument by simply wrapping its type with the type

constructor Plural:

f :: Plural C → (Int,Int)

f (C x) = (x,x)

No other change is necessary and this is again a valid Curry program (after importing

the library Plural which contains the definition of the new type constructor). As we will

discuss in Section 4, the plural semantics can be implemented by a transformation of the

source program (which could be attached as a preprocessor to the compiler). Hence, if we

transform and compile the latter program and evaluate the expression “f (C (0?1))”,

we obtain the results (0,0), (1,0), (0,1), and (1,1).

To see another example, consider the parsing of strings, a classical example for both

functional and logic languages. Caballero and López-Fraguas (1999) showed that func-

tional logic programming provides new opportunities to construct parsers in a natural

way. Functional programming is useful to define a parser as a function that consumes

some tokens from the list of input tokens and returns the list of remaining tokens:

type Parser token = [token] → [token]

Hence, the empty parser does not consume a token and the terminal parser consumes

only a token when it is identical to the token given as an argument:3

empty :: Parser t

empty xs = xs

3 “=:=” denotes an equational constraint which is satisfied if its arguments are reducible to unifiable
values.
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terminal :: t → Parser t

terminal sym (token:tokens) | sym=:=token = tokens

Furthermore, we need operations to combine two parsers as alternatives (“<|>”) or

sequentially (“<*>”). The alternative combinator can be easily defined using non-

determinism:

(<|>) :: Parser t → Parser t → Parser t

p <|> q = \xs → p xs ? q xs

For the sequence combinator, we have to ensure that the second parser is applied to

the evaluated output of the first parser. This can be obtained by a condition with an

equational constraint:4

(<*>) :: Parser t → Parser t → Parser t

p1 <*> p2 = \xs → cond (p1 xs =:= ys) (p2 ys) where ys free

Using such combinators, it is easy to define the parsing of palindromes. Since the notion

of a palindrome is independent of the underlying sets of tokens, we parameterize the

palindrome parser by this set so that it could have the type

pali :: a → Parser a

The type variable a should denote a set of tokens, e.g., specified by a non-deterministic

operation. In order to ensure that each element of this set can be used inside the parser,

this argument must be a plural one. Thus, we define our parser as follows:

pali :: Plural a → Parser a

pali t = empty

<|> terminal t

<|> let someT = terminal t

in someT <*> pali t <*> someT

Thus, a palindrome is either empty or a single token, or an inner palindrome enclosed

with identical tokens. For instance,

pali (’a’ ? ’b’)

recognizes palindromes over the letters a and b, and

pali (0 ? 1 ? 2 ? 3 ? 4 ? 5 ? 6 ? 7 ? 8 ? 9)

recognizes palindromes over digits. Note that the plural argument is required here. Oth-

erwise, the parameter variable t would always denote the same token in the entire palin-

drome.

We have not discussed the let construct of Curry, since it is the same as in functional

languages, i.e., let x=e in e′ is the same as the application (\x→ e′) e. Since the stan-

dard parameter passing is singular, the two occurrences of someT denote the same value,

as intended for a palindrome. Thus, the combination of singular and plural arguments

supports this generic and concise definition.

Our final example is also related to parsing. In this case, we want to provide a generic

definition of numbers w.r.t. different digit domains, e.g., octal, decimal, or hexadecimal

numbers. Since the syntax of a number should be defined as a non-empty sequence of

digits without leading zeros, the following parser combinator for sequences is useful:

4 As usual, the lambda abstraction \x → e denotes an anonymous function which maps x into e.
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star :: Plural (Parser t) → Parser t

star p = empty <|> (p <*> star p)

This combinator constructs from a given parser p a new parser that accepts (pos-

sibly empty) sequences of items accepted by p. Note that the argument of star is

marked as plural since the different occurrences of p in the right-hand side could non-

deterministically accept different items, as already noted in (López-Fraguas et al. 2009).

Similarly to our previous palindrome parser, a parser for numbers is parameterized over

the possible leading digits so that we obtain the following definition:

number :: Plural Char → Parser Char

number d = terminal d <*> star (terminal (d ? ’0’))

Note that the digit ’0’ is added as a further choice for the non-leading digits. To use

this number parser, we define the choices of non-zero digits for various numeral systems:

octDigit = ’1’ ? ’2’ ? ’3’ ? ’4’ ? ’5’ ? ’6’ ? ’7’

decDigit = octDigit ? ’8’ ? ’9’

hexDigit = decDigit ? ’A’ ? ’B’ ? ’C’ ? ’D’ ? ’E’ ? ’F’

Then “number octDigit”, “number decDigit”, and “number hexDigit” are parsers for

octal, decimal, and hexadecimal numbers, respectively. Further examples for program-

ming with plural arguments can be found in (Riesco and Rodŕıguez-Hortalá 2010b).

4 Transforming Plural Arguments

In this section we present a source-to-source transformation for plural arguments so that

the transformed program can be executed under a call-time choice semantics but produces

the results intended by the plural semantics.

As already discussed above, a difference between the plural semantics and run-

time choice, i.e., term rewriting, occurs when pattern matching is involved. Therefore,

Rodŕıguez-Hortalá (2008) already proposed a program transformation to eliminate this

difference in order to use term rewriting to implement plural functions. Since pattern

matching usually enforces evaluation before function application, which is not appropri-

ate for plural arguments (compare Section 1), the idea of this transformation is to replace

pattern matching by explicit match operations and access occurrences of parameters in

the right-hand side by projection functions. Consider again our example rule

f (C x) = (x,x)

This rule is transformed into the definition

f y | match y = (project y, project y)

match (C x) = True

project (C x) = x

Thus, non-variable patterns in left-hand sides are replaced by fresh variables and a

“match” condition corresponding to this pattern, and, for each variable occurring in such

a pattern, a new “project” operation is introduced so that each variable occurrence in

the right-hand side of the original rule is replaced by a call to this “project” operation.

Now it is easy to see that the example expression “f (C 0 ? C 1)” of Section 1 can be

reduced to (0,1) by rewriting with the transformed program.

This transformation is denoted by pST . Its subsequent definition is adapted from
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(Rodŕıguez-Hortalá 2008). Let f(t1, . . . , tn) → r be a program rule with f 6∈ {?, cond}.

This rule is transformed by

pST (f(t1, . . . , tn) → r) = f(y1, . . . , yn) → cond(match(y1, . . . , yn), θ(r))

where y1, . . . , yn are fresh variables, {xi1, . . . , xiki} = Var(ti) ∩ Var(r) for each i ∈
{1, . . . , n}, and match and projectij are fresh function names where the rules

match(t1, . . . , tn) → True

projectij(ti) → xij

are added to the transformed program. Furthermore, the substitution θ used in the

transformation pST is defined by

θ = {xij 7→ projectij(yi) | i ∈ {1, . . . , n}, j ∈ {1, . . . , ki}}

This transformation can be improved by transforming only non-variable non-ground pat-

tern arguments Further details about this optimization can be found in (Rodŕıguez-

Hortalá 2008).

The following theorem states the equivalence of the plural semantics and term rewriting

on the transformed programs:

Theorem 1 (Rodŕıguez-Hortalá 2008 )

Let P be a program, e ∈ Exp, and t ∈ CTerm. Then P `πCRWL e� t holds if and only

if pST (P) ` e ∗→ t holds.

This equivalence is exploited in (Riesco and Rodŕıguez-Hortalá 2010a) where an im-

plementation of the plural semantics via term rewriting is developed with the Maude

system. In the following, we present an alternative implementation that can be used in

existing functional logic language implementations based on call-time choice. This imple-

mentation is based on the idea to pass plural arguments unevaluated into the right-hand

side of a rule and evaluate them (possibly multiple times) when their values are actually

required. The evaluation of an expression can be delayed by moving the expression into

the body of a new operation and applying the operation when its value is actually needed

(since, even in a call-by-value language, the body of an operation is not evaluated when

this operation is passed around as an argument). In functional programming, this tech-

nique is known as “thunkification” and used for a different purpose, namely to implement

a call-by-name semantics in a call-by-value language, e.g., (Amtoft 1993).

In a higher-order language, like Curry, this idea can be easily implemented via lambda

abstractions. For instance, consider the rules

dup x = (x,x)

main = dup (0?1)

In order to pass the argument (0?1) unevaluated into the right-hand side of the dup

rule, we wrap the argument into a lambda abstraction and unwrap it in the right-hand

side by applying this lambda abstraction to some value (the unit value () chosen here

could be replaced by any other constant):

dup x = (x (), x ())

main = dup (\_ → (0?1))

Since partial applications like lambda abstractions are values in a higher-order language,
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they are not further evaluated w.r.t. a call-time choice semantics (González-Moreno et al.

1997). Hence, there exists the following call-time choice derivation:

main → dup (\_ → (0?1)) → ((\_ → (0?1)) (), (\_ → (0?1)) ())
∗→ ((0?1), (0?1))

∗→ (0,1)

Note that the result (0,1) is intended w.r.t. the plural semantics but could not be

computed w.r.t. the call-time choice semantics for the original program.

In order to provide a precise definition of this transformation, we define a mapping pp

on expressions, rules, and programs. In the following, we denote by F the set of user-

defined functions (i.e., without the match/project operations introduced by pST and

the predefined operations “?” and cond). Any expression is transformed by pp as follows:

pp(x) = x () if x ∈ V
pp(f(e1, . . . , en)) = f(\_ → pp(e1), . . . , \_ → pp(en)) if f ∈ F
pp(g(e1, . . . , en)) = g(pp(e1), . . . , pp(en)) if g 6∈ F ∪ V

Hence, parameter variables are replaced by applications (to the “void” value ()) and

parameters in applications of defined functions are replaced by lambda abstractions. All

other applications (e.g., constructors and auxiliary operations) are not modified.

A program rule is transformed by pp as follows:

pp(l → r) = l → pp(r)

Finally, pp transforms a program by applying pp to each rule defining some function

belonging to F , i.e., the auxiliary match/project operations introduced by pST are not

modified by pp.

The complete transformation of a source program with plural semantics into a target

program executable with call-time choice consists of applying first the transformation

pST followed by the transformation pp. For instance, the example program

f (C x) = (x,x)

main = f (C (0?1))

is transformed by pST/pp into the final program

f y | match (y ()) = (project (y ()), project (y ()))

match (C x) = True

project (C x) = x

main = f (\_ → (C (0?1)))

The careful reader might have noticed that pp-transformed programs are not programs

as defined above since they contain higher-order constructs like lambda abstractions and

higher-order applications. This is only a syntactic problem since these higher-order con-

structs can be eliminated by “defunctionalization” (Reynolds 1972), i.e., mapping higher-

order features into first-order definitions (Warren 1982). For instance, the transformed

higher-order program

dup x = (x (), x ())

main = dup (\_ → (0?1))

can be considered as syntactic sugar or further transformed into a first-order program

by naming all anonymous operations and introducing an explicit apply operation:

dup x = (apply x (), apply x ()) coinFunc _ = (0?1)
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main = dup CoinFunc apply CoinFunc x = coinFunc x

Note that a new constructor (CoinFunc) is introduced to represent the lambda abstrac-

tion passed as an argument. Thus, substitutions that map variables to lambda abstrac-

tions are actually constructor substitutions. This property is important to support the

passing of lambda abstractions as parameters with the call-time choice semantics. Thus,

we assume that this higher-order elimination is implicitly applied to the transformed

programs.

The correctness of our transformation is stated by the following soundness and com-

pleteness result which expresses that the original and the transformed programs compute

the same results.

Theorem 2 (Correctness of pST/pp)

Let P be a program, e ∈ Exp, and t ∈ CTerm.

Soundness: If pp(pST (P)) `CRWL pp(e) � t, then P `πCRWL e� t.

Completeness: If P `πCRWL e� t, then pp(pST (P)) `CRWL pp(e) � t.

We omit the proof of this main result (which can be found in (Hanus 2013a)) but provide

some ideas about its structure. Since πCRWL-derivations of the original program and

CRWL-derivations of the transformed program have quite different shapes (due to the

points where arguments are evaluated), it is unclear how to construct a direct mapping

between these kinds of derivations. Therefore, the proof exploits let-rewriting (López-

Fraguas et al. 2007) to link the different derivations. Let-rewriting is similar to ordinary

rewriting but uses let-expressions to express sharing which is necessary for call-time

choice. Thus, soundness is proved by exploiting the completeness of let-rewriting w.r.t.

CRWL to construct a let-rewrite derivation from pp(e) to t. This implies the existence

of an ordinary rewrite derivation which can be mapped (by induction on the derivation

steps) into a rewrite derivation on pST -transformed programs. Then the soundness of

pST w.r.t. term rewriting (Theorem 1) ensures the existence of a πCRWL-derivation from

e to t. Similarly, the completeness of our transformation can be proved by completeness

of pST w.r.t. term rewriting, mapping term rewriting into let-rewriting, and applying a

soundness result for let rewriting.

5 Implementation and Benchmarks

The actual implementation of plural arguments in Curry consists of a library Plural

containing a few definitions to mark plural arguments and support the transformation

and the implementation of the transformations pST/pp on Curry programs. To mark

plural arguments, the library Plural contains the following “identity” type definition:

type Plural a = a

Hence, marking a plural argument in a type definition of an operation does not change its

actual type so that the “marked” Curry program is still valid and can be processed by the

front end of each Curry system. The program transformation tool looks for occurrences

of the Plural constructor and replaces the corresponding arguments according to the

transformations pST/pp as described above.

In order to evaluate our transformational approach, we have performed a few bench-

marks comparing our implementation with the Maude implementation of (Riesco and
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Rodŕıguez-Hortalá 2010a). The transformed programs have been executed by PAKCS

(Hanus et al. 2013), an implementation of Curry that compiles into Prolog (executed

by SICStus-Prolog). Due to the fact that the Maude implementation is a prototype

and does not contain features that are important for application programming (e.g.,

predefined data types like numbers, characters, or strings, arithmetic operations, data

structures, input/output operations, etc), we could only compare quite small programs.

The following table contains the result of the naive reverse operation (where plural

arguments are not present), the palindrome and decimal number parsers (see Sec-

tion 3), and an expression parser where the digits and operations occurring in an

expression are passed as plural arguments. All operations are applied to lists of dif-

ferent lengths (as specified in the table). The programs have been executed on a

PC running Ubuntu 12.04 with an Intel Core i5 (2.53GHz) and 4GB of main mem-

ory. The run times are in milliseconds (or “–” if the execution delivers no result,

e.g., runs out of memory), where 0 denotes a run-time of less than ten milliseconds:

nrev pali number expr

Length: 8 16 32 256 6 18 34 514 20 80 320 9 21 93 1533

Maude: 120 1180 – – 36 260 – – 210 1410 – 90 280 – –

PAKCS: 0 0 0 30 0 0 0 100 0 0 50 0 0 0 30

Although these benchmarks are small, they clearly show the superiority of our trans-

formational approach over a new implementation of the plural semantics. Furthermore,

our approach has the advantage that all advanced language features required for applica-

tion programming (predefined operations, application libraries) are immediately available

from the host language.

6 Conclusions

In this paper we have shown how plural arguments can be added to existing functional

logic languages based on the call-time choice semantics. In practice, plural arguments

could be a useful feature. However, executing complete programs with a plural semantics

increases the search space considerably and might produce unintended results. Thus, in

larger programs only a few arguments should be passed with the plural semantics. We

support this idea by a program transformation that changes only the handling of plural

arguments so that the entire program can be executed with a call-time choice semantics.

This has the advantage that existing implementations can be re-used and all language

features, execution strategies, libraries, or programming environments, are immediately

available also for this extended language. Beyond its correctness, we have also shown for

a widely used implementation of Curry that this approach is much more efficient than a

dedicated implementation of the plural semantics.

For future work, it is interesting to explore the use of plural arguments in larger

applications since this is now possible with our transformational approach. Furthermore,

it could be useful to analyze plural arguments in order to deduce for which occurrences of

plural arguments our transformation could be omitted in order to improve the efficiency

of the overall implementation.
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