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Abstract. Functional logic languages extend purely functional lan-
guages with two features: operations defined by overlapping rules and
logic variables in both defining rules and expressions to evaluate. In this
paper, we show that only one of these features is sufficient in a core lan-
guage. On the one hand, overlapping rules can be eliminated by intro-
ducing logic variables in rules. On the other hand, logic variables can be
eliminated by introducing operations defined by overlapping rules. The
proposed transformations between different classes of programs not only
give a better understanding of the features of functional logic programs
but also may simplify implementations of functional logic languages.

1 Motivation

Functional logic languages [20] integrate the best features of functional and logic
languages in order to provide a variety of programming concepts. For instance,
the concepts of demand-driven evaluation and higher-order functions from func-
tional programming can be combined with logic programming features like com-
puting with partial information (logic variables), constraint solving, and non-
deterministic search for solutions. In contrast to purely functional languages,
functional logic languages allow computations with overlapping rules (i.e., more
than one rule can be applied to evaluate a function call) and logic variables (i.e.,
unbound variables occurring in the initial expression and/or rules, also called ex-
tra variables). Operationally, these features are supported by nondeterministic
computation steps.

Functional logic languages are modeled by constructor-based term rewriting
systems (TRS) with narrowing as the evaluation mechanism. A crucial choice
in the design of a language, both at the source level and the implementation
level, is the class of rewrite systems used to model the programs. Early lan-
guages (e.g., Babel [28] and K-Leaf [19]) were modeled by weakly orthogonal,
constructor-based TRSs. Larger classes are more expressive, i.e., programs in
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larger classes are textually shorter and/or conceptually simpler. Thus, modern
languages, such as Curry [21, 23] and T OY [26], are modeled by the whole class
of the constructor-based rewrite systems with extra variables. However, the im-
plementation of a language modeled by a smaller class is likely to be simpler
and/or more efficient.

For the above reason, program transformation among different classes of
TRSs is an interesting research subject. The goal is to transform a program in
the source language into an equivalent program in a language, referred to as
the core language, that is conceptually simpler or could be implemented more
efficiently. For example, the results of [5] show that any conditional constructor-
based TRS can be transformed into an unconditional overlapping inductively
sequential TRS [4]. The target class is a proper subclass of the source class, a
situation that leads to conceptual and practial benefits. This paper studies two
transformations similar to that described in [5] and with the same intent.

The first transformation maps the overlapping inductively sequential TRS
with or without extra variables into the inductively sequential TRS with extra
variables. This shows that if a language allows extra variables, then, at the core
level, overlapping is not necessary. Of course, at the source level overlapping is
a feature that contributes to the expressiveness of a language and therefore is
desirable.

The second transformation eliminates logic variables from computations
within the overlapping inductively sequential TRS. By “logic variables” we mean
extra variables in rewrite rules and variables, which are free or unbound, in ex-
pressions to evaluate. A somewhat unexpected, though immediate, consequence
of this transformation is that the power of narrowing computations can be ob-
tained by mere rewriting. As for the previous transformation, at the source level
logic variables contribute to the expressiveness of a language and therefore are
desirable.

Loosely speaking, these results can be understood as the possibility to trade
in a core language logic variables for a rather disciplined form of rule overlapping
and vice versa. Section 2 reviews concepts and notations used in this paper. Sec-
tion 3 defines the transformation that replaces overlapping with extra variables
and states its correctness. Section 4 defines the transformation that replaces
logic variables with overlapping and states its correctness. Section 5 offers our
conclusion. The proofs of the results presented in this paper can be found in the
full version of the paper [8].

2 Preliminaries

In this section we review some term rewriting [11, 18] notations and functional
logic programming [20] concepts used in the remaining of this paper.

We consider a many-sorted signature Σ partitioned into a set C of construc-
tors and a set F of (defined) functions or operations. We write c/n ∈ C and
f/n ∈ F for n-ary constructor and operation symbols, respectively. Given a
set of sorted variables X , the set of well-sorted terms and constructor terms



are denoted by T (Σ,X ) and T (C,X ), respectively. We write Var(t) for the set
of all the variables occurring in a term t. A term t is ground if Var(t) = ∅.
A term is linear if it does not contain multiple occurrences of a variable. A
term is operation-rooted (constructor-rooted) if its root symbol is an operation
(constructor). We write ok for a sequence of objects o1, . . . , ok.

Example 1. In the following, we write datatype declarations in Curry syntax
[23], i.e., a sort S is defined by enumerating its constructors in the form

data S = C1 s11 . . . s1a1 | . . . | Cn sn1 . . . snan

Thus, Ci is a constructor of sort S and arity ai with argument sorts si1, . . . , siai
.

For instance, the sorts of Boolean values and natural numbers in Peano’s notation
are defined as

data Bool = True | False
data Nat = O | S Nat 2

A pattern is a linear term of the form f(t1, . . . , tn) where f/n ∈ F is an operation
symbol and t1, . . . , tn are constructor terms. A constructor-based rewrite system
is a set of pairs of terms or rewrite rules of the form

l→ r

where l is a pattern and l and r are of the same sort. An operation f is defined
by all the rewrite rules whose left-hand side is rooted by f . A functional logic
program is a constructor-based rewrite system. Traditionally, term rewriting sys-
tems have the additional requirement Var(r) ⊆ Var(l). However, in functional
logic programming variables occurring in Var(r) but not in Var(l), called extra
variables, are often useful. Therefore, we allow rewrite rules with extra variables
in functional logic programs. We denote the set of extra variables of a rewrite
rule l→ r, defined as Var(r)\Var(l), with Evar(l→ r).

To formally define computations w.r.t. a given program, additional notions
are necessary. A position p in a term t is represented by a sequence of natural
numbers. Positions are used to identify specific subterms. Thus, t|p denotes the
subterm of t at position p, and t[s]p denotes the result of replacing the subterm
t|p with the term s (see [18] for details). A substitution is an idempotent mapping
σ : X → T (Σ,X ) such that its domain Dom(σ) = {x | σ(x) 6= x} is finite and
x and σ(x) are of the same sort for all variables x. We denote a substitution
σ by the finite set {x 7→ σ(x) | x ∈ Dom(σ)}. In particular, ∅ denotes the
identity substitution. We denote by σ|V the restriction of a substitution σ to
a set of variables V . A (ground) constructor substitution σ has the property
that σ(x) is a (ground) constructor term for all x ∈ Dom(σ). The composition
σ ◦ η of two substitutions is defined by (σ ◦ η)(x) = η(σ(x)) for all variables
x. Substitutions are extended to morphisms on terms in the obvious way. The
subsumption ordering is a binary relation on terms defined by u ≤ v if there is
a substitution σ with σ(u) = v. In this case, v is also called an instance of u.
If, in addition, v is a (ground) constructor term, we call it (ground) constructor
instance. If u ≤ v and v ≤ u, then u and v differ only for a renaming of variables.



We write u < v if u ≤ v and v 6≤ u. A unifier of two terms s and t is a substitution
σ such that σ(s) = σ(t). The unifier σ is most general if for any other unifier σ′

there exists a substitution η with σ′ = σ ◦ η. Furthermore, we denote by s� t
the most general unifier of s and t restricted to Var(s).

A rewrite step t→p,l→r,η t
′ w.r.t. a given rewrite system R is defined if there

are a position p in t, a rule l→ r ∈ R with fresh variables, and a substitution η
with t|p = η(l) such that t′ = t[η(r)]p. We impose the condition on the freshness
of the variables since we allow extra variables in rewrite rules. The indices in the
notation of a rewrite step are omitted when inconsequential. +→ and ∗→ denote
the transitive and reflexive-transitive closure of the relation →, respectively.

Functional logic languages compute solutions of free variables occurring in
expressions by instantiating these variables to constructor terms so that a rewrite
step becomes applicable. The combination of variable instantiation and rewriting
is called narrowing. Formally, t ;σ t

′ is a narrowing step if σ(t) →p,l→r,η t
′ where

σ is a substitution, t|p is not a variable, and Dom(η) ⊆ Var(l). We denote by
t0

∗
;σ tn a sequence of narrowing steps t0 ;σ1 . . . ;σn

tn with σ = σ1◦· · ·◦σn (if
n = 0 then σ = ∅). We omit the substitution in the notation of both narrowing
steps and sequences when irrelevant to the discussion.

The requirement that Dom(η) ⊆ Var(l), as in [5], ensures that no extra
variable in a rule is instantiated during a narrowing step. An extra variable
in a rewrite rule is generally intended as a place holder for any term, e.g.,
see [12] where extra variables are allowed in the conditions of rewrite rules.
In constructor-based rewrite systems, a more suitable convention should allow
an extra variable to stand only for constructor terms, since terms that cannot
be reduced to a constructor term are intended as errors. By contrast, requiring
that extra variables remain uninstantiated in a rewrite step appears as treating
extra variables as constants, thus foregoing the computational power that they
provide. However, when computations are performed by narrowing, particularly
using an efficient strategy, it seems most sensible to avoid instantiating extra
variables in the step that introduces them. The reason is that these variables
become logic variables in subsequent steps and therefore may be narrowed. The
advantage of instantiating them in a narrowing step after they are introduced,
as opposed to instantiating them in the step that introduces them, is that the
latter would have no information on choosing useful instantiations, whereas the
former could instantiate them with choices useful to perform a step. In particu-
lar, efficient strategies such as [4, 7] will instantiate logic variables only as far as
necessary to perform needed steps. This level of specialization seems impossible
to achieve at the time extra variables are introduced, unless the step introducing
them performs some kind of lookahead.

For an example of the expressiveness of code using extra variables, consider
the following definition (in Curry syntax) of an operation that computes the last
element of a list:

last l | l =:= x++[e] = e where x,e free



where “++” denotes the concatenation of lists. Narrowing instantiates the extra
variables x and e to satisfy the equation. The instantiation of e is the result of
the computation.

Narrowing is implemented by a strategy intended to limit the steps of an ex-
pression to a small set that suffices to ensure the completeness of the results. An
important narrowing strategy, needed narrowing [7], is defined on the subclass
of the inductively sequential TRSs. This class can be characterized by defini-
tional trees [3] that are also useful to formalize and implement demand-driven
narrowing strategies. Since only the left-hand sides of rules are important for
the applicability of needed narrowing, the following formulation of definitional
trees [4] considers patterns partially ordered by subsumption.

A definitional tree of an operation f is a non-empty set T of linear patterns
partially ordered by subsumption having the following properties:

Leaves property: The maximal elements of T , called the leaves, are exactly the
(variants of) the left-hand sides of the rules defining f . Non-maximal ele-
ments are also called branches.

Root property: T has a minimum element, called the root, of the form
f(x1, . . . , xn) where x1, . . . , xn are pairwise distinct variables.

Parent property: If π ∈ T is a pattern different from the root, there exists a
unique π′ ∈ T , called the parent of π (and π is called a child of π′), such
that π′ < π and there is no other pattern π′′ ∈ T (Σ,X ) with π′ < π′′ < π.

Induction property: All the children of a pattern π differ from each other only
at a common position, called the inductive position, which is the position of
a variable in π.1

An operation is called inductively sequential if it has a definitional tree. Tradi-
tionally, it is also required that the rules do not contain extra variables [7]. Here,
we relax this requirement: A TRS is inductively sequential with extra variables
(ISX ) if all its defined operations are inductively sequential. Purely functional
programs and the vast majority of functions in functional logic programs are
inductively sequential.

Example 2. The following operations are inductively sequential w.r.t. the
datatype declarations of Example 1:

leq(O,x) → True
leq(S(x),O) → False
leq(S(x),S(y)) → leq(x,y)

cond(True,x) → x

nine → S(S(S(S(S(S(S(S(S(0)))))))))

The operation smallnum denotes a number less than ten and is defined by an
ISX rule containing an extra variable x:
1 There might exist distinct definitional trees of an operation. In this case one can use

any tree for computing a needed narrowing step of a term since the need of the step
does not depend on the selected tree.



smallnum → cond(leq(x,nine),x) 2

Functional logic languages extend purely functional languages by allowing over-
lapping rules. We are interested only in a disciplined form of overlapping. Two
distinct rewrite rules l1 → r1 and l2 → r2 are called overlapping if the left-hand
sides l1 and l2 are variants of each other, i.e., they are equal by subsumption.
We denote the set of all rules with the same left-hand side l by the single (meta)
rule l → r1 ? · · · ? rk, where “?” is a meta symbol and r1, . . . , rk are the right-
hand sides. A TRS is overlapping inductively sequential (OIS ) if all its defined
operations are inductively sequential when overlapping rules with identical left-
hand sides are joined into a single rule as above. The purpose of this paper is to
show that an ISX program executed by narrowing can be transformed into an
OIS program executed by rewriting and vice versa, i.e., the classes ISX and OIS
loosely speaking have the same expressiveness.

Next, we define the needed narrowing strategy on inductively sequential
rewrite systems.

Definition 1. Let R be an inductively sequential TRS where each function
symbol has a uniquely associated definitional tree. We define the function λ
from operation-rooted terms to sets of triples (position, rule, substitution) as
follows. Let t = f(t1, . . . , tn) be an operation-rooted term, T the definitional
tree associated to f , and π a maximal pattern of T that unifies with t. Then
λ(t) is the least set satisfying

λ(t) 3


(Λ, π → r, t� π) if π is a leaf of T and π → r

is a variant of a rewrite rule
(q · p,R, η ◦ σ) if π is a branch of T ,

where q is the inductive position of π,
η = t� π, and (p,R, σ) ∈ λ(η(t|q)) 2

In each recursive step during the computation of λ, a position and a substitution
is composed with the results computed by the recursive call. Thus, each needed
narrowing step can be represented as (p1 · · · pk, R, σ1 ◦ · · · ◦ σk), where pk = Λ,
pj is an inductive position for all j ∈ {1, . . . , k − 1}, and σj a most general
unifier restricted to the term variables computed in each recursive call for all j ∈
{1, . . . , k}. This representation of a needed narrowing step is called its canonical
decomposition.

Proposition 1 ([4]). Let R be an overlapping inductively sequential TRS and
t an operation-rooted term. If (p, l → r, σ) ∈ λ(t), then t ;p,l→r,σ σ(t[r]p) is a

needed narrowing step, also denoted by t
NN
;p,l→r,σ σ(t[r]p).

The need of the step computed by λ in Proposition 1 is modulo the nonde-
terministic choice of the right-hand side. The term t cannot be narrowed to a
constructor term without a step at p with a rule l → r′. However, it may be
possible that r 6= r′.



3 Eliminating Overlapping Rules

In this section we show that using rules with multiple right-hand sides does
not increase the expressiveness of a functional logic language already providing
inductively sequential rewrite systems with extra variables. For this purpose, we
introduce a transformation from OIS into ISX systems and prove that needed
narrowing computes the same results on the original and the transformed system.

Definition 2 (Transformation from OIS into ISX). We define a transfor-
mation OE (Overlapping Elimination) on TRSs. Non-overlapping rewrite rules
are not changed. Overlapping rewrite rules of the form f(tn) → r1 ? · · · ? rk are
replaced by a single rule f(tn) → f ′(y, xl) where Var(tn) = {x1, . . . , xl}, y is a
new free variable, and f ′ is a new function symbol defined by the new rules

f ′(I1, xl) → r1
...
f ′(Ik, xl) → rk

The constants Ij are the elements of a new index type defined by

data Ix = I1 | · · · | Ik

In practice, one can use the same index type (e.g., natural numbers) for all the
rules. 2

The transformation only adds new function and constructor symbols. Thus, ev-
ery term w.r.t. the original signature is also a term w.r.t. the transformed sig-
nature. In the following, we denote the original TRS by R and the transformed
TRS by R′ = OE (R).

Example 3. Consider an operation parent that nondeterministically returns ei-
ther the mother or the father of the argument:

parent(x) → mother(x) ? father(x)

The OE transformed program is:

data Iparent = I0 | I1

parent(x) → parent’(y,x)
parent’(IO,x) → mother(x)
parent’(I1,x) → father(x) 2

Proposition 2. IfR is overlapping inductively sequential, then the transformed
system R′ is inductively sequential with extra variables.

The transformation is correct if, loosely speaking, any result computed by
the original program can be computed by the transformed program and vice
versa. This concept is formulated by the next theorem. The soundness is based
on the fact that any narrowing step in the original system can be simulated in
the transformed system by either the same step or two consecutive steps using



the introduced rules. The completeness is based on the fact that every needed
narrowing step in the transformed system that introduces a function symbol not
occurring in the signature of the original system is immediately followed by a
needed narrowing step that removes that symbol.

Theorem 1 (Correctness of OE). Let R be a OIS TRS, R′ = OE (R), and
t, s terms of R. The following claims hold.

Soundness If t
NN *
;σ′ s w.r.t. R′, then there exists a derivation t

NN *
;σ s w.r.t. R

such that σ =Var(t) σ
′.

Completeness If t
NN *
;σ s w.r.t. R, then there exists a derivation t

NN *
;σ′ s w.r.t.

R′ such that σ =Var(t) σ
′.

4 Eliminating Logic Variables

In the previous section, we have shown that the class of the inductively sequential
TRSs with extra variables, ISX, is at least as expressive as the class of the
overlapping inductively sequential TRSs, OIS. This result is interesting because
it enables us to trade in the implementation of a language the complications
of overlapping, or multiple right-hand sides, for the presence of extra variables.
Since we already allow extra variables in the OIS programs, we simply eliminate
overlapping in the transformation.

In this section, we present a somewhat complementary result. We show that
the overlapping inductively sequential TRSs, without extra variables, denoted
OIS−, are at least as expressive as the ISX programs. We use a transformation
that eliminates unbound variables entirely, i.e., also from the “top-level” or initial
term being evaluated. Therefore, a computation in the OIS− programs is by
rewriting, not narrowing. This result is interesting because it enables us to trade
in the implementation of a language the complications of narrowing, in particular
the use of substitutions, for the presence of multiple right-hand sides in the
program rules.

As for the OE transformation, a functional logic program is an overlapping
inductively sequential, many sorted, constructor-based TRSs with extra vari-
ables. This time, though, our goal is to eliminate extra variables, instead of
overlappings. Thus, we denote with XE , extra variable elimination, this trans-
formation. For any sort S, we consider a constant operation, instanceOfS, that
enumerates the values of the sort S. We call this operation a generator of S.

Definition 3 (instanceOf). Let S be a sort defined by a datatype declaration
of the form

data S = C1 t11 . . . t1a1 | . . . | Cn tn1 . . . tnan

The operation instanceOfS is defined by the overlapping rules

instanceOfS → C1(instanceOft11,. . .,instanceOft1a1)
? . . .
? Cn(instanceOftn1,. . .,instanceOftnan

) 2



If S is a primitive or builtin sort, e.g., integers or characters, then we will assume
that the operation instanceOfS is primitive or builtin as well. However, the
following example shows that generators of primitive sorts, even infinite ones,
can be coded by ordinary rules.

Example 4. Suppose that a sort “tree of integers” is defined by

data TreeInt = Leaf | Branch Int TreeInt TreeInt

the generator of TreeInt is

instanceOfTreeInt
→ Leaf
? Branch(instanceOfInt,instanceOfTreeInt,instanceOfTreeInt)

Below are two plausible ordinary definitions of the generator of the integers:

instanceOfInt → 0 ? genNeg ? genPos
genNeg → -1 ? genNeg - 1
genPos → 1 ? genPos + 1

or also

instanceOfInt → gen(0)
gen(x) → if x >= 0 then x ? gen(-(x+1))

else x ? gen(-x) 2

In the following, we consider only ordinary rewrite systems over algebraic
datatypes. For such systems, Definition 3 immediately implies the following prop-
erty of instanceOf.

Lemma 1 (Completeness of generators). For every ground constructor
term t of sort S, there exists a rewrite sequence of instanceOfS to t.

The XE transformation replaces any free variable v in a term with an opera-
tion that evaluates to any value that could instantiate the variable v during a
computation.

Definition 4 (Extra variable elimination). Let V be a set of (sorted) vari-
ables. Then the instantiation substitution IOV is defined as

IOV = {x 7→ instanceOfsx | x ∈ V has sort sx}

For every term t we define

XE (t) = IOVar(t)(t) 2

The following lemma extends Lemma 1 to terms with variables.

Lemma 2. For every variable x and constructor term u of the same sort,
XE (x) ∗→ XE (u).



Definition 5 (Transformation from OIS into OIS−). Let R be an
OIS program. We define XE (R) = R′ ∪ I, where I defines a fresh symbol
instanceOfS for every sort S in the signature of R, and l → r′ is a rule of R′

iff l→ r is a rule of R and r′ = IOEvar(l→r)(r). 2

Proposition 3. If R is an overlapping inductively sequential TRSs, then
XE (R) is an overlapping inductively sequential TRSs without extra variables.

To claim the correctness of the XE transformation, we need to show that, un-
der appropriate conditions and qualifications, every computation in the original
system has a corresponding computation in the transformed system and vice
versa. First, we discuss the completeness of XE . We state the completeness for
narrowing derivations that compute constructor substitutions.

Lemma 3 (Completeness of XE derivations). Let R an OIS program.

For any term t and constructor term u, if t
∗
; u w.r.t. R where the substitu-

tion of each narrowing step is a constructor substitution, then for any ground
constructor instance v of u, XE (t) ∗→ v w.r.t. XE (R).

The evaluation of expressions with free variables, particularly in the tradition
of logic programming, produces variable bindings. These bindings are lost by
the XE transformation. We will discuss how to recover this information after
introducing new concepts that simplify the problem.

For narrowing derivations with arbitrary substitutions, the proof of Lemma 3
fails since instanceOf rewrites only to constructor terms. To extend the proof
to obtain a more general result, we need to consider a variation of instanceOf
defined as follows:

instanceOfS → s1(instanceOft11,. . .,instanceOft1a1)
? . . .
? sn(instanceOftn1,. . .,instanceOftnan

)

where {s1, . . . , sn} are all the signature symbols of sort S and the arguments of
si have sorts ti1, . . . , tiai

. However, this extension is not relevant in practice since
narrowing strategies used in functional logic languages compute only constructor
substitutions [6, 7].

In general, the transformation XE is not sound, i.e., there are rewrite deriva-
tions in the transformed system that have no correspondence in the original
system.

Example 5. Consider the following program defining an operation that evaluates
to an arbitrary even number:

even → x+x

Applying XE to this program yields:

even → instanceOfInt + instanceOfInt

Consequently, the term even can be evaluated as follows:

even → instanceOfInt + instanceOfInt
+→ 0 + 1 → 1 2



This examples shows that all the occurrences of an instanceOf operation origi-
nating from the same variable should be reduced to the same value. Derivations
where this condition is satisfied are called admissible. We will show that the XE
transformation is sound for admissible derivations.

The problem in the previous example would be eliminated by having only
one occurrence of instanceOfInt. Therefore, we introduce a notation of terms
where only one occurrence is represented so that the derivation above is no
longer possible. Our notation uses pairs 〈t, χ〉 of a term t and a substitution χ
which represents the term χ(t). The substitution χ will be defined as IOVar(t)

so that it contains a single occurrence of an instanceOf operation for each free
variable of t. An example of this representation, using the familiar let notation
for defining substitutions, is shown in Display (1). We define rewrite steps on this
representation. A redex may occur in either t or χ. Rewriting in t corresponds to
standard rewriting, whereas a rewrite step in χ may correspond to a multistep
[24] in χ(t) if the bound variable has several occurrences in t.

Definition 6 (Transformation to term/substitution pairs). For every
term t we define XEP(t) = 〈t, IOVar(t)〉. For every OIS program R we define
XEP(R) = R′ ∪ I, where I is as in Definition 5, and l → r′ is a rule of R′ iff
l→ r is a rule of R and r′ = 〈r, IOEvar(l→r)〉. 2

Definition 7 (Rewriting on term/substitution pairs). Let R be an OIS
program and XEP(R) = R′∪ I. Let t be a term and XEP(t) = 〈t, χ〉. We define
a rewrite step on XEP(t) as follows. 〈t, χ〉 → 〈t′, χ′〉 if one of the following
conditions holds:

(type-1 step) there exist a position p in t, a variant l→ 〈r, ψ〉 with fresh variables
of a rule in R′, a substitution σ such that Dom(σ) ⊆ Var(l), σ(l) = t|p,
t′ = t[σ(r)]p, and χ′ = χ|Var(t′) ∪ ψ

(type-2 step) there exist a variable v ∈ Dom(χ) with χ(v) = instanceOfS and
a rule

instanceOfS → c(instanceOfS1, . . . , instanceOfSk)

according to Definition 3 such that t′ = {v 7→ c(v1, . . . , vk)}(t), χ′ =
(χ\{v 7→ instanceOfS}) ∪ {vi 7→ instanceOfSi | i = 1, . . . , k} where
v1, . . . , vk are fresh variables. 2

The term/substitution representation is an appealing formalism for this problem
because it can be directly mapped to let binding constructs available in many
programming languages. For instance, the transformed program of Example 5
can be coded in Curry [23] with a let binding as

even = let x = instanceOfInt in x+x (1)

The semantics of the let binding construct is defined in such a way that all
occurrences of let bound variables are replaced by the same replacement [1,
25] (efficiently implemented by sharing). Our notion of rewriting is a natural
adaptation of this semantics.



Theorem 2 (Correctness of XEP). Let R be a OIS TRS, R′ = XEP(R),
t, s terms of R, and t′ = XEP(t). Then the following claims hold.

Soundness If t′
∗→ 〈v, ν〉 is a derivation w.r.t. R′, then there exists a narrowing

derivation t
∗
; u w.r.t. R with u ≤ ν(v). In particular, if ν(v) is a constructor

term, then ν = ∅ and u is a constructor term.
Completeness If t

∗
; s w.r.t. R, then there exists a derivation t′

∗→ s′ w.r.t. R′

such that s′ = XEP(s). In particular, if s is a constructor term, then there

exists a derivation t′
∗→ 〈v,∅〉 w.r.t. R′ for any ground constructor instance

v of s.

The proof of this theorem relies on a commutativity property of reductions
and transformations. More precisely, given an ordinary term t, the result of
transforming t into a term/substitution pair and reducing it is equivalent to
computing some reduction sequence of t and transforming the final reduct into
a term/substitution pair.

The above results show that, loosely speaking, variables and overlapping
rules have the same computational power in a functional logic language. To keep
track of the binding of logic variables replaced by the XEP transformation, we
transform the initial term t of a computation into a tuple (t, x1, . . . , xn) where
x1, . . . , xn are the variables of t. The evaluation of the tuple will be (e, b1, . . . , bn)
where e is the computed value and b1, . . . , bn constitute the computed answer.
A remaining obstacle is that bindings may contain variables whereas in our
approach b1, . . . , bn are ground. To overcome this obstacle, one may adopt the
convention that an occurrence of instanceOf is only evaluated if its value is nec-
essary to perform a type-1 step. Observe that type-1 steps are never performed
in b1, . . . , bn.

The size of search space of a computation is roughly the same in both sys-
tems. In XEP(R) an occurrence of an instanceOf operation is evaluated only
when demanded by its context. This evaluation corresponds to a step in which
some variable v is instantiated in R. There is a small difference in favor of
R, though, which is difficult to quantify. If the evaluation of an occurrence of
instanceOf is demanded by an incompletely defined operation, some replace-
ment of instanceOf may have no corresponding binding for v.

5 Conclusion

We have presented two transformations on functional logic programs. The first
transformation eliminates overlapping rules by introducing auxiliary functions
and extra variables. Together with the results of [5], this transformation shows
that any functional logic program can be mapped into an inductively sequential
TRS with extra variables so that it can be executed by needed narrowing. Hence,
the class ISX is a reasonable core language for functional logic programming. The
second transformation completely eliminates logic variables from functional logic
computations by replacing them with operations defined by overlapping rules.



The correctness of this transformation requires the consistent evaluation of these
new operations w.r.t. the logic variable occurrences. This can be achieved by
sharing which is usually available in lazy languages.

The results presented in this paper provide a better understanding of the
features of functional logic languages and their interactions. Although the source
level of such languages extend purely functional languages by overlapping rules
and extra variables, our results show that only one of these alternative concepts
is enough for a core language.

Apart from these theoretical considerations, our results have also a practical
interest since a simplified core language can reduce the implementation effort it
requires. For instance, typical implementations of core languages are based on
abstract machines that bridge the gap between the source level and the hard-
ware (e.g., [9, 22, 27]). Usually, these machines provide instructions and data
structures to support the implementation of both overlapping rules and logic
variables. Our results enable the simplification of these abstract machines. For
instance, specific instructions to handle computations that use overlapping rules
need not be considered in an abstract machine if the OE transformation is ap-
plied in the compilation process. This is done in the implementations described
in [15, 30], although without any formal justification. Likewise, the handling of
logic variables (e.g., data structures such as binding arrays and binding instruc-
tions) can be removed if the XEP transformation is applied. Which of the two
alternatives is more convenient depends on the concrete architecture of the ma-
chine. A simplified core language can also reduce the effort to build tools for
functional logic languages. For instance, recent tools for debugging functional
logic programs (e.g., tracers [14], profilers [13], slicers [29]) or program optimiza-
tion (e.g., partial evaluation [2]) are based on a core language that supports both
overlapping rules and logic variables which could be simplified using our results.
The effects that each transformation may have on the efficiency of the execution
of a program are a subject for future investigation.

After submitting this paper, we received from Paco López-Fraguas a draft [17]
describing a transformation substantially identical to our XEP . They prove the-
oretical results very similar to ours but within the framework of CRWL, and
present some benchmarks that show that eliminating logic variables does not
incur any substantial efficiency loss.

Finally, the XEP transformation also sheds some new light on the role of
logic variables in declarative programming. It has been sometimes argued (in
the functional programming community) that the instantiation of a logic vari-
able during a computation is similar to a side effect due to its global visibility.
For instance, this has led to the modeling of logic variables as references in
Haskell [16]. However, our results show that the binding of a logic variable can
be also interpreted as the stepwise evaluation of an operation so that the power
of narrowing computations can be obtained by rewriting.

We have presented our results for a first-order many-sorted functional logic
language. The extension, with standard approaches (e.g., see [10, 31]), to higher-
order programs presents no difficulties. The extension to polymorphically typed



languages is not so obvious since the XEP transformation assumes that the
type of each logic variable is known at compile time. This information is always
available in a many-sorted TRS but could be difficult to obtain in a polymorphic
functional logic language where logic variables might have an arbitrary type. In
this case, one could define a specific “polymorphic” instanceOf operation that
evaluates to values of all possible types. However, this is not practical due to
an increase of the search space size and the possibility of ill-typed expressions
during a computation. An appropriate solution to this problem is a topic for
future research.
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