
Nondeterminism Analysis of Functional Logic
Programs?

Bernd Braßel and Michael Hanus

Institut für Informatik, CAU Kiel, Olshausenstr. 40, D-24098 Kiel, Germany.
{bbr,mh}@informatik.uni-kiel.de

c©Springer-Verlag
In Proc. of the International Conference on Logic Programming, ICLP 2005.

In Springer LNCS 3668, pp. 265-279, 2005

Abstract. Information about the nondeterminism behavior of a func-
tional logic program is important for various reasons. For instance, a non-
deterministic choice in I/O operations results in a run-time error. Thus,
it is desirable to ensure at compile time that a given program is not go-
ing to crash in this way. Furthermore, knowledge about nondeterminism
can be exploited to optimize programs. In particular, if functional logic
programs are compiled to target languages without builtin support for
nondeterministic computations, the transformation can be much simpler
if it is known that the source program is deterministic.
In this paper we present a nondeterminism analysis of functional logic
programs in form of a type/effect system. We present a type inferencer
to approximate the nondeterminism behavior via nonstandard types and
show its correctness w.r.t. the operational semantics of functional logic
programs. The type inference is based on a new compact representation
of sets of types and effects.

1 Introduction

Functional logic languages [8] aim to integrate the best features of functional
and logic languages in order to provide a variety of programming concepts. For
instance, the concepts of demand-driven evaluation, higher-order functions, and
polymorphic typing from functional programming can be combined with logic
programming features like computing with partial information (logic variables),
constraint solving, and nondeterministic search for solutions. This combination
leads to optimal evaluation strategies [2] and new design patterns [3] that can
provide better programming abstractions, e.g., for implementing graphical user
interfaces [10] or dynamic web pages [11]. One of the key points in this integra-
tion is the treatment of nondeterministic computations. Usually, the top-level
of an application written in a functional logic language is a sequence of I/O
operations applied to the outside world (e.g., see [25]). Since the outside world
(e.g., file system, Internet) cannot be copied in nondeterministic branches, all
nondeterminism in logic computations must be encapsulated, as proposed in [4,
13] for the declarative multi-paradigm language Curry [15], otherwise a run-time

? The research described in this paper has been partially supported by the German
Research Council (DFG) under grant Ha 2457/5-1.



error occurs. Therefore, it is desirable to ensure at compile time that this cannot
happen for a given program. Since this is undecidable in general, one can try
to approximate the nondeterminism behavior by some program analysis. As a
further motivation, the results of such an analysis can also be used for program
optimization. For instance, if functional logic programs are compiled to target
languages without builtin support for nondeterministic computations (e.g., im-
perative or functional languages), the compilation process can be considerably
simplified for deterministic source programs.

Existing determinism analyses for (functional) logic languages cannot be di-
rectly adapted to Curry due to its advanced lazy operational semantics ensuring
optimal evaluation for large classes of programs [2]. This demand-driven seman-
tics has the effect that the occurrence of nondeterministic choices depends on
the demandedness of argument evaluation (see also [14]). Therefore, analyses
for languages like Prolog [24, 6], Mercury [16], or HAL [7] do not apply because
they do not deal with lazy evaluation. On the other hand, analyses proposed for
narrowing-based functional logic languages dealing with lazy evaluation cannot
handle residuation, which additionally exists in Curry and is important to con-
nect external operations, and rely on the non-ambiguity condition [20] which is
too restrictive in practice. Furthermore, these analyses are either applied during
run time (like in Babel [20] and partially in K-Leaf [19]), or are unable to derive
groundness information for function calls in arguments (like in K-Leaf).

We present a static analysis of functional logic programs with a demand-
driven evaluation strategy. The analysis has the form of a type/effect system [22].
Such systems can be seen as extensions of classical type systems known from
functional languages. In our analysis the types represent information about the
groundness of the considered expressions, and the effects provide information
about the possible source of nondeterministic branches. The inclusion of ground-
ness information is necessary since the same function might evaluate determin-
istically or not, depending on the instantiation of its arguments. The idea of this
type/effect system has been proposed in [14]. In the current paper we propose
a slightly modified system and show its correctness w.r.t. a recently developed
high-level operational semantics of functional logic programs [1] that covers all
operational aspects, in particular, the sharing of subterms which is important
in practice but has not been addressed in [14]. Furthermore, we present a new
method to infer types and effects (which was not covered in [14]) and show the
correctness of this inference. In order to make the type/effect inference feasible,
we introduce a new compact representation of sets of types and effects.

Due to lack of space, all proofs and details about the implementation are
omitted. They can be found in the full version of the paper that is available
from http://www.informatik.uni-kiel.de/~mh.

2 The Type/Effect Analysis

In this section we define a type/effect system based on the ideas in [14] and
show its correctness w.r.t. the operational semantics of functional logic programs

2



P ::=D1 . . . Dm (program) Domains
D::=f(x1, . . . , xn) = e (function definition)
e::=x (variable) P1, P2, . . . ∈ Prog (Programs)
| s(e1, . . . , en) (constructor or x, y, z, . . . ∈ Var (Variables)

function call) a, b, c, . . . ∈ C (Constructors)
| let x = e1 in e2 (let binding) f, g, h, . . . ∈ F (Functions)
| e1 or e2 (disjunction) s, t, u, . . . ∈ C ∪ F
| case e of {pk → ek} (rigid case) p1, p2, . . . ∈ Pat (Patterns)
| fcase e of {pk → ek} (flexible case) e, e1, e2, . . . ∈ Exp (Expressions)

p::=c(x1, . . . , xn) (pattern)

Fig. 1. Syntax of flat programs

developed in [1]. We assume familiarity with the basic ideas of functional logic
programming (see [8] for a survey).

2.1 Flat Functional Logic Programs

Since a determinism analysis of functional logic programs should provide in-
formation about nondeterministic branches that might occur during run time,
it requires detailed information about the operational behavior of programs.
Recently, it has been shown that an intermediate flat representation of pro-
grams [12] is a good basis to provide this information. In flat programs, the
pattern matching strategy (which determines the demand-driven evaluation of
goals) is explicitly given by case expressions. This flat representation consti-
tutes the kernel of modern functional logic languages like Curry [9, 15] or Toy
[21]. Thus, our approach is applicable for general lazy functional logic languages
although the examples and implementation are for Curry.

The syntax of flat programs is shown in Figure 1. There and in the following
we write ok to denote a sequence o1, . . . , ok (o0 is empty). A flat program is a set
of function definitions, i.e., the arguments are pairwise different variables and the
right-hand side consists of variables, constructor/function applications, let bind-
ings, disjunctions to represent nondeterministic choices, and case expressions to
represent pattern matching. The difference between case and fcase corresponds
to principles of residuation and narrowing: if the argument is a logic variable,
case suspends whereas fcase proceeds with a nondeterministic binding of the
variable in one branch of the case expression (cf. Section 2.1). A flat program is
called normalized if all arguments of constructor and function calls are variables.
Any flat program can be normalized by introducing let expressions [1, 18]. The
operational semantics is defined only on normalized programs in order to model
sharing, whereas our type-based analysis is defined for flat programs.

Any Curry program can be translated into this flat representation.

Example 1 (Flat Curry representation). The concatenation function on lists

app [] ys = ys

app (x:xs) ys = x : app xs ys

3



is represented by the (normalized) flat program

app(xs,ys) = fcase xs of {[] -> ys, z:zs -> let a = app(zs,ys) in z:a }

Note that all variables occurring in the right-hand side of a function definition
must occur in the left-hand side or be introduced by an enclosing let binding. In
order to avoid a special declaration for logic variables, they are represented as
self-circular let bindings. E.g., the expression “let xs=xs in app(xs,[])” intro-
duces the logic variable xs in the expression “app(xs,[])”.

Based on the principles developed in [18], [1] introduces a natural seman-
tics of normalized flat programs. As this semantics adequately resembles the
behavior of modern multi-paradigm languages like Curry [9, 15] or Toy [21], it
is a good reference to show the correctness of program analyses for functional
logic languages. There are some special properties of this semantics we have to
consider in order to examine our type/effect analysis.

The only difference we have to consider is the treatment of circular data
structures which are allowed in [1]. Since the nondeterminism analysis of [14] as
well as ours do not consider such structures, we restrict the set of permissible
programs to those without circular data structures. This is not a restriction in
practice since the current definitions of Curry [9, 15] or Toy [21] do not support
such structures. Note that the definition of infinite data structures is still possible
since they can be defined by functions, e.g., “repeat x = x : repeat x”.

Definition 1 (Cycle restriction). The set of programs P⊗ is defined exactly
like P except for the definition of let-clauses: For any expression let x = e, if x
occurs in e then e = x.

This definition allows only non-circular let-expressions with the single exception
being logic variables defined by “let x=x”.

Having defined the set of programs we want to examine, we now turn to
the semantics of these programs. In contrast to an operational semantics based
on term rewriting (e.g., [2, 15]), the semantics considered here correctly models
sharing of common subterms as necessary for optimal evaluation and done in
implementations. Sharing is modeled by introducing heaps. A heap, here denoted
by Γ,∆, or Θ, is a finite partial mapping from variables to expressions (the
empty heap is denoted by []). The value associated to variable x in heap Γ is
denoted by Γ [x]. Γ [x 7→ e] denotes a heap Γ ′ with Γ ′[x] = e (in the rules, this
notation is used as a condition as well as an update of a heap). A logic variable
x is represented by a circular binding of the form Γ [x] = x. A value v is a
constructor-rooted term c(xn) (i.e., a term whose outermost function symbol is
a constructor symbol) or a logic variable (w.r.t. the associated heap). ρ represents
a substitution of variables in expressions by other variables, i.e., ρ is a renaming.

The natural semantics uses judgements of the form “Γ : e ⇓ ∆ : v” which
are interpreted as: “In the context of heap Γ , the expression e evaluates to value
v and produces a new heap ∆.” Figure 2 shows the rules defining this semantics
(also called big-step semantics) of normalized flat programs, where the current
program P is considered as a global constant. The rules VarCons and VarExp

4



VarCons Γ [x 7→ t] : x ⇓ Γ [x 7→ t] : t where t is constructor-rooted

VarExp
Γ [x 7→ e] : e ⇓ ∆ : v

Γ [x 7→ e] : x ⇓ ∆[x 7→ v] : v

where e is not constructor-rooted
and e 6= x

Val Γ : v ⇓ Γ : v where v is constructor-rooted or a logic variable

Fun
Γ : ρ(e) ⇓ ∆ : v

Γ : f(xn) ⇓ ∆ : v
where f(yn) = e ∈ P and ρ = {yn 7→ xn}

Let
Γ [y 7→ ρ(e1)] : ρ(e2) ⇓ ∆ : v

Γ : let x = e1 in e2 ⇓ ∆ : v

where ρ = {x 7→ y}
and y is a fresh variable

Or
Γ : ei ⇓ ∆ : v

Γ : e1 or e2 ⇓ ∆ : v
where i ∈ {1, 2}

Select
Γ : e ⇓ ∆ : c(yn) ∆ : ρ(ei) ⇓ Θ : v

Γ : (f )case e of {pk → ek} ⇓ Θ : v

where pi = c(xn)
and ρ = {xn 7→ yn}

Guess
Γ : e ⇓ ∆ : x ∆[x 7→ ρ(pi), yn 7→ yn] : ρ(ei) ⇓ Θ : v

Γ : fcase e of {pk → ek} ⇓ Θ : v
where pi = c(xn), ρ = {xn 7→ yn}, and yn are fresh variables

Domains: v, t ∈ Exp (Expressions), Γ, ∆, Θ Heaps, ρ Substitution (Renaming)

Fig. 2. Natural semantics of normalized flat programs [1]

are responsible to retrieve expressions from the heap, the difference being that
VarCons retrieves values, whereas the expressions retrieved by VarExp have to
be further evaluated. VarCons and Val form the base of proof trees generated
by the big-step semantics. They treat values, i.e., expressions which are either
logic variables or evaluated to head normal form. VarCons is merely a shortcut
for applying VarExp and Val once each. The rule Let introduces a new binding
for the heap, Fun is used to unfold function applications, and Or introduces a
nondeterministic branching. Select and Guess deal with case expressions. Select
determines the corresponding branch to continue with, if the first argument of
case was reduced to a constructor rooted term. Guess treats the case that the first
argument evaluates to a logic variable. If so, Guess introduces a nondeterministic
branching where the logic variable is bound nondeterministically to one of the
patterns of the case-expression. Remember that there are two kinds of case-
expressions in flat programs. Only fcase (with f for “flexible”) can introduce
nondeterminism if the number of branches is greater than one. In short, fcase
models narrowing whereas case is used to model the operational behavior of
residuation. We often write (f)case to denote both kinds of cases.

The restriction to non-circular data structures introduced in Definition 1
implicates that no circular structures are produced during program execution,
which is the content of Lemma 1.

5



Lemma 1 (Well-founded heaps). Let Γ be a heap occurring in a derivation
[] : e ⇓ ∆ : v w.r.t. a program P ∈ P⊗, and Γ0 := Γ , Γn+1 := Γ̂ ◦ Γn for
n ≥ 0 where Γ̂ is the homomorphic extension of Γ . Then there is no non-trivial
circular structure in Γ , i.e., there is no natural number n for which a variable
x exists with Γn(x) = t such that x occurs in t and t 6= x.

As programs in P⊗ produce only well founded heaps, we can extract a complete
substitution from the heap as follows:

Definition 2 (σΓ ). For a well-founded heap Γ , Γ ∗ is defined as the least fixpoint
of {Γ0 := Γ, Γn+1 := Γ̂ ◦ Γn}. Then σΓ is the substitution with dom(σΓ ) =
dom(Γ ) and {x 7→ Γ ∗(x)}.

Example 2 (Substitution σΓ ). Consider the following definition:

main = let z = 3 in let y = c(z,z) in let x = f(y) in f(x)

Evaluating main yields heap Γ := [][z’ 7→3][y’ 7→c(z’,z’)][x’ 7→f(y’)]. For this
heap, σΓ (z’) = 3, σΓ (y’) = c(3,3) and σΓ (x’) = f(c(3,3)).

The main purpose of Definition 1 is to ensure that the substitution σΓ is well
defined.

2.2 Type/Effect Analysis Revisited

The basic ideas of the type/effect analysis used in this paper were first proposed
in [14]. Here we use a slightly different definition (e.g., without a rule for sub-
typing but let clauses to describe sharing that is not covered in [14]) and base
it on the natural semantics introduced in the previous section. The analysis uses
the idea to attach to expressions and functions two kinds of information: a type
to describe the ground status and an effect to describe the nondeterminism be-
havior. Similarly to standard types in typed functional languages, there are also
typing rules that define well-typed expressions w.r.t. this type/effect system.
Before defining these rules, two preliminary Definitions are needed. The analy-
sis of a given program is always performed w.r.t. a type environment E which
associates types/effects to functions, constructors and variables in the given pro-
gram. Such an association is called type annotation and denoted by s :: τn

ϕ→ τ
(resp. s :: τ/ϕ for constants or variables). Note that there may be more than one
type annotation for a function or constructor. The purpose of the type inference
described in Section 3 is to provide a method to derive appropriate type envi-
ronments. In this section, we assume that a correct type environment (defined
below) is given. In a type annotation s :: τn

ϕ→ τ for a function or construc-
tor s each τ(i) describes whether the corresponding argument or result of the
function is a ground value, denoted by G, or if it might contain logic variables,
and, hence, is of any value, denoted by A. The set of effects ϕ describes the
possible causes for nondeterminism which might occur while evaluating s, if s is
a function. Effects are either or or guess. The meaning of these effects is that
one of the nondeterministic rules Or or Guess could be applied while evaluating
an expression or function.

6



VAR E ` x ::τ/ϕ if x :: τ/ϕ ∈ E

APP
E ` en ::τn/ϕn

E ` s en :: τ/
Sn

i=1 ϕi ∪ ϕ
if s ::τn

ϕ→ τ ∈ E

LET
E[x ::A/∅] ` e1 ::τ1/ϕ1 E[x ::τ1/ϕ1] ` e2 ::τ/ϕ

E ` let x = e1 in e2 :: τ/ϕ

OR
E ` e1 :: τ1/ϕ1 E ` e2 :: τ2/ϕ2

E ` or(e1, e2) :: max(τ1, τ2)/ϕ1 ∪ ϕ2 ∪ {or}

SELECT
E ` e ::τ/ϕ E[xkm ::τ/∅] ` ek ::τk/ϕk

E ` (f)case e of {pk(xkm) → ek} :: max(τk)/
Sk

i=1 ϕi ∪ ϕ

if, for fcase, τ = G or k = 1

GUESS
E ` e ::A/ϕ E[xkm ::A/∅] ` ek ::τk/ϕk k > 1

E ` fcase e of {pk(xkm) → ek} :: max(τk)/
Sk

i=1 ϕi ∪ ϕ ∪ {guess}

Domains: τ, τ1, τ2 . . .∈T (Types), ϕ, ϕ1, ϕ2 . . .∈E(Effects), E ⊆ TA (Annotations)

Fig. 3. Typing rules for flat expressions

Definition 3 (Type/Effects, Type Annotation, Type Environment).
The set of types T is defined as T = {A,G}, the set of Effects E is defined as
E={or, guess}, the set of type/effects for arity n is defined as TEn={τn

ϕ→ τ |
τ, τi ∈ T , ϕ ⊆ E}. For n = 0 instead of ϕ→ τ we write τ/ϕ. And, finally, a
type environment E is a subset of the set of all type annotations TA = {x :: χ |
x is a variable, χ ∈ TE0} ∪ {s :: ξ | s ∈ F ∪ C, s is of arity n, ξ ∈ TEn}.

Before defining the typing rules and giving an example, we have to introduce
an ordering on the types to compare different abstract results. In general, an
ordering is a reflexive, transitive and anti-symmetric relation.

Definition 4 (Type/effect ordering ≤, max, min). ≤ denotes an ordering
on types and effects that is the least order relation satisfying G ≤ A and, for
effects ϕ ≤ ϕ′ iff ϕ ⊆ ϕ′. Type/effects are ordered by τ1

ϕ1→ τ2 ≤ τ ′1
ϕ2→ τ ′2 iff

τ ′1 ≤ τ1, τ2 ≤ τ ′2 and ϕ1 ≤ ϕ2. Furthermore, max(τk) (resp. min(τk)) denotes
the maximum (minimum) of the τk with respect to ≤.

Note the difference between argument and result in the definition of ≤ for func-
tional types. Informally speaking, for functions with the same result type, it
holds: the bigger the argument type, the smaller is the type of the whole function.
This makes perfect sense if we think of the type as a grade of nondeterminism. A
function of type A

∅→ G is more deterministic than one of type A
∅→ A. However,

A
∅→ A is still more deterministic than G

∅→ A because a function of the latter
type might not merely map logic variables to logic variables but could introduce
new ones. We are now ready to define the typing rules as given in Figure 3.

Example 3 ((In)correct type annotation). Consider the (flat) function

7



and(x,y) = fcase x of {False -> False; True -> y}

Correct types for and would be GA
∅→ A and GG

∅→ G. The first type can
be intuitively read as: “If the first argument is ground and the second possibly
contains a logic variable, then the result may also contain a logic variable.”
However, AG

∅→ A is not a valid type. If the first argument is a logic variable,
fcase will instantiate this variable nondeterministically (cf. Figure 2). Thus, the
correct type for these input arguments is AG

{guess}→ G. The difference in the
actual type check by the rules of Figure 3 is that rule SELECT is applicable for
input vector GA, whereas the case AG is covered by rule GUESS.

The correctness of type annotations is now defined in two steps.

Definition 5 (Constructor-correct). A type environment E is called correct
with respect to constructor symbols, or constructor-correct for short, iff E con-
tains only the types c ::τn

∅→ max(τn) for any constructor symbol c.

This definition implies that constructors do not influence the deterministic type
of their arguments at all. If any argument is of type A, then the whole term
is as well. Furthermore, constructors do never yield any nondeterministic effect.
Constructor-correctness is a requirement for our definition of general correctness.

Definition 6 (Correctness). A type annotation f ::τn
ϕ→ τ contained in a type

environment E is correct for a definition f(xn) = e if E[xn ::τn/∅] ` e ::τ/ϕ. E
is correct if it is constructor-correct and contains only correct type annotations.

The aim of this section is to show that correct type environments correctly indi-
cate the nondeterminism caused by the evaluation of a given function. Whenever
the evaluation of a function call f en involves a nondeterministic branching by
an or or a flexible case expression, a correct type environment must contain the
corresponding type indicating the effect or or guess. And whenever the correct
type environment indicates that a function f with arguments of a certain type
evaluates to a ground term, then no evaluation of f with corresponding argu-
ments yields a result containing a logic variable. The first step towards proving
this correctness is the observation that expressions of the same type are indis-
tinguishable by the type/effect system.

Lemma 2 (Substitution Lemma). Let E be a correct type environment for
a flat program. Then for each expression e holds: E[xn ::τn/∅] ` e :: τ/ϕ if and
only if replacing each xi (by a substitution σ) with a term ei of the same type
also yields the same type for e, i.e., E ` en ::τn/∅ also implies E ` σ(e) :: τ/ϕ.
Furthermore, if some of the en have a non-empty effect, i.e., E ` ei ::τi/ϕi, then
E ` σ(e) :: τ/

⋃n
i=1 ϕi ∪ ϕ, i.e., the type τ of e remains the same but the effect

inferred for e is larger.

Lemma 2 is a typical requirement in type systems. The correctness of the type
analysis is mainly based on the following theorem. We use the notation Efree for
a type environment that extends a type environment E by annotations for free
variables, i.e., if x :: τ/ϕ ∈ E, then x :: τ/ϕ ∈ Efree , otherwise x :: A/∅ ∈ Efree .

8



Theorem 1 (Type-descending). Let E be a correct type environment for a
non-circular program P in P⊗, e an expression with Γ : e ⇓ ∆ : v built in
a proof tree for an expression [] : e′ ⇓ ∆′ : v′, and Efree ` σΓ (e) :: τ/ϕ and
Efree ` σ∆(v) ::τ ′/ϕ′. Then τ ≥ τ ′ and ϕ ⊇ ϕ′.

Theorem 1 implies that the type analysis correctly indicates the evaluation of
expressions to ground terms:

Corollary 1 (Correctness for ground terms). Let E be a correct type envi-
ronment for a non-circular program P in P⊗. If, for some expression e, Efree `
e :: G/ϕ and e reduces in finitely many steps to a value v (i.e., a term without
defined function symbols), then v is a ground term.

The last property to prove is that the analysis is not only decreasing for types
but also gathers all effects. This finally leads to the proposition that all potential
effects in the evaluation of a given expression are correctly predicted.

Lemma 3 (Gathering of effects). Let E be a correct type environment for a
non-circular program P in P⊗. Let Γ be a well-founded heap, T be a proof tree
for Γ : e ⇓ ∆ : v and Efree ` σΓ (e) :: τ/ϕ. Then, for any Γ ′ : e′ ⇓ ∆′ : v′ in T
with Efree ` σΓ (e′) ::τ ′/ϕ′, ϕ′ ⊆ ϕ holds.

Lemma 3 implies the final important property of the type/effect system:

Corollary 2 (Identification of nondeterminism). If, for a non-circular pro-
gram P ∈ P⊗ and expression e, there are two proof trees T and T ′ for [] : e ⇓
∆ : v and [] : e ⇓ ∆′ : v′ differing in more than variable names, then any type of
e w.r.t. a correct type environment for P contains an effect or or guess.

3 Type/Effect Inference

In this section we introduce a method to infer the types and effects introduced in
the previous section. In order to obtain a feasible inference method, we introduce
base annotations, a compact representation of sets of types and effects.

3.1 Base Annotations

The definition of well-typed programs is usually not sufficient. Instead one wants
to compute all of the correct type environments for a given program. On a first
glance, this problem seems quite hard, as for each n-ary function there are 2n+1

possible types even with an empty effect. However, a closer observation shows
that one need only to consider n+1 types, namely the type where all arguments
are ground (G) and the n types where a single argument is any (A) and all others
are ground. The remaining types can be deduced by combining these n + 1 base
types, which we also call a type base. For instance, the type for GGAGAG

ϕ→ τ
is the result of combining the type for GGGGAG

ϕ1→ τ1 and GGAGGG
ϕ2→ τ2.

Before introducing the compact representation of type/effects, we first show the
soundness of this combination of two types.

9



Definition 7 (Supremum t, τ/ϕ1/ϕ2). For types τ1, τ2 ∈ T the type τ1 t τ2

is their supremum, i.e. max(τ1, τ2). For type/effects τn
ϕ1→ τ, un

ϕ2→ u ∈ TEn, the
type/effect (τn

ϕ1→ τ) t (un
ϕ2→ u) denotes max(τn, un)

ϕ1∪ϕ2→ max(τ, u). For type
environments E1, E2 ⊆ TA , E1 t E2 ={s :: ξ t ξ′ | s ∈Var ∪ C∪F , s :: ξ, s :: ξ′ ∈
E1∪E2}. Finally,

⊔
x denotes the supremum of a set x and the notation τ/ϕ/ϕ′

is used to denote τ/ϕ ∪ ϕ′.

Lemma 4 (Compositionality). If, for any function declaration f xn = e,
there are correct type annotations A1 = τn

ϕ1→ τ and A2 = un
ϕ2→ u for environ-

ments E1 and E2, respectively, then A1 tA2 is also a correct type for f for the
environment E1 t E2.

Lemma 4 ensures that every correct type can be easily derived from a correct
type base, i.e., a set containing the n + 1 basic types as mentioned above. This
fact is the basis for the compact representation of correct type environments.
Instead of an exponential number of types, it is sufficient to consider only the
n + 1 elements of a type base. Furthermore, we can pack the information of
the type base into a single structure with at most n elements, which we call
a base annotation for a function. A base annotation for a function f is either
A (or G) if the result of f is of type A (or G) regardless of the types of its
arguments, or it is a term indicating which arguments influence the type of f .
For instance, if f has type A whenever its first argument is of type A, then the
base annotation for f is Π1 (Π denotes a kind of projection). If f has type A
whenever either its second or its fourth argument is A, the annotation for f is
Π2tΠ4. To determine the type for a given application of f , the Πs are replaced
by the actual types of the corresponding arguments. For complex annotations,
like Π2 t Π4, the result type is the supremum of the replacements. Therefore,
we reuse the symbol t although it is used here as a term constructor for base
annotations. Furthermore, the effect guess is extended by a base annotation,
e.g., guess(Π1). The reason for this will be explained soon.

Definition 8 (Syntax of base annotations). Let s ∈ C ∪ F be of arity n.
Then the set of well formed base types for s, BTs, is the smallest set satisfying:
({G,A,Π1, . . . ,Πn} ⊆ BTs)∧ (ν, µ ∈ BTs ⇒ νtµ ∈ BTs). The set of well formed
base effects BEs for s is the smallest set satisfying: ({or, guess} ⊆ BEs) ∧ (ν ∈
BTs ⇒ guess(ν) ∈ BEs). The set of well formed base annotations BAs is defined
as BAs = {s :: ν/ε | ν ∈ BTs, ε ∈ BEs}. We also use BT , BE, BA (without index)
to denote the set of all base types, effects, annotations.

Example 4 (Some correct base annotations).
-For each n-ary constructor c: c=Π1 t . . . tΠn/∅ if n > 0, otherwise c = G/∅
-f1 x = 1 f1 :: G/∅
-f2 = let x=x in x f2 :: A/∅
-f3 x y = y f3 :: Π2/∅
-f4 x y = fcase x of {1->1; 2->y} f4 :: Π2/{guess(Π1)}
Function f4 also illustrates the meaning of a guess effect depending on a type.
The rule Guess of the natural semantics (Figure 2) will only be applied if the

10



first argument of f4 is a logic variable. Therefore, guess(Π1) will yield the effect
guess only if Π1 is replaced by type A and no effect if it is replaced by type G.

The general meaning of base annotations is best conveyed by defining the set
of type/effects each of them represents. In the next section we will show how to
compute base annotations for a given program. For both purposes, we need the
notion of a normal form for base annotations as a means to effectively decide the
equivalence on base annotations. The normal forms are obtained by rewriting
with the following set of confluent and terminating rewrite rules.

Definition 9 (Normal form bν/εc). We denote by bνc and bεc the simplifi-
cation of base type ν and base effect ε, respectively, with the rules

G t ν → ν ν tG → ν
A t ν → A ν tA → A

Πi tΠj → Πj tΠi, i > j
ν t ν → ν

{guess(G)} → {}
guess(A) → guess
guess(ν) → guess(bνc)

(the simplification rules for guess become applicable after the transformation
shown in the subsequent definition, where the last rule only maintains the sorting
of the Π by index). Similarly, bν/εc denotes component-wise simplification.

As motivated above, the base annotations of a given function represents all of its
(minimal) types. The following definition describes this representation in detail.

Definition 10 (Base annotations and types). Let f be an n-ary func-
tion. To each base annotation b for f we associate a set of type annotations
types(n, bbc):

types(n, G/ε) = {τn
eff(τn,ε)→ G | τn ∈ T }

types(n, A/ε) = {τn
eff(τn,ε)→ A | τn ∈ T }

types(n, Πi1 t . . . tΠij /ε) =⊔
({Gn eff(Gn,ε)→ G} ∪ {Gk−1AGn−k︸ ︷︷ ︸

τk

eff(τk,ε)→ A | k ∈ {i1 . . . ij}})

where Gj is the usual notation for a sequence of Gs with length j and
eff(τn, ε) = b{Πn 7→ τn}εc.1

Example 5 (Continuing Example 4). The types associated with the base anno-
tations from Example 4 are:
-For a unary constructor c : types(1,Π1/∅) = {G ∅→ G, A

∅→ A}
-f1: types(1, G/∅) = {G ∅→ G, A

∅→ G}
-f2: types(0, A/∅) = {A/∅}
-f3: types(2,Π2/∅) = {GG

∅→ G, GA
∅→ A,AG

∅→ G, AA
∅→ A}

-f4: types(2,Π2/{guess(Π1)}) = {GG
∅→ G, GA

∅→ A,AG
{guess}→ G, AA

{guess}→ A}

1 {Πn 7→ τn}ε denotes the replacement of all occurrences of Πi by τi in ε for i ∈
{1, . . . , n}.

11



This representation of groundness information has some similarities to the
domain Prop of propositional formulas used in groundness analysis of logic pro-
grams [5]. However, we are interested in covering all sources of nondeterminism
which is usually the effect non-ground function arguments (apart from function
definitions with overlapping right-hand sides, represented by or). Therefore, we
use projections Πi in the base annotations to associate potential nondetermin-
istic behavior to the instantiation of particular arguments.

Finally, we define an ordering on base annotations. This ordering is used to
define the type inference in the next section and show its correctness. For the
latter purpose, it is important to note that the order is finite.

Definition 11 (Ordering on base annotations v). The ordering v is used
on base types, base effects, base annotations and sets of base annotations (base
environments). It is defined as the least ordering satisfying

– G v ν and ν v A for all ν ∈ BT
– Πi1 t . . . tΠim v Πj1 t . . . tΠjn if {Πi1 , . . . ,Πim} ⊆ {Πj1 , . . . ,Πjn}
– guess(ν) v guess and guess(ν) v guess(ν′) if ν v ν′ for all ν, ν′ ∈ BT
– For ε, ε′ ∈ BE: ε v ε′ if ∀x ∈ ε ∃x′ ∈ ε′ : x v x′

– Ordering on base type/effects: ν/ε v ν′/ε′ if bνc v bν′c and bεc v bε′c
– Ordering on base environments: B v B′ if ∀x ∈ B ∃x′ ∈ B′ : x v x′

t (resp.
⊔

) denotes the v-supremum of two (resp. a set of) base annotations.

3.2 Inferring Base Annotations

After having defined the structure of base annotations, we are ready to define
the inference of them. Figure 4 shows the rules to infer base annotations for a
given expression. The complete inference is defined as a fix-point iteration on a
given flat program. Before we can define the iteration, we need to observe that
the inference is monotone, i.e., the inference always computes greater types for
greater environments (with respect to v).

Lemma 5 (3 respects v). Let B and B′ be two base environments with B v
B′. Then, for each e with B 3 e :: ν/ε, there is a derivation B′ 3 e :: ν′/ε′ with
ν/ε v ν′/ε′.

Because of the monotonicity of 3, we can define the inference of a base environ-
ment as follows:

Definition 12 (Type inference). The mapping Inf associates to a flat pro-
gram P a type environment. It is defined by the following fix-point iteration based
on the inference system in Figure 4:

Inf 0(P ) = {c :: G/∅ | c is a 0-ary constructor} ∪
{c :: Π1 t . . . tΠn/∅ | c is an n-ary constructor, n > 0} ∪
{f :: G/∅ | f is a defined function}

Inf i+1(P ) = {f :: bν/εc | f xn = e ∈ P, Inf i(P )[xn :: Πn/∅] 3 e :: ν/ε}
Inf (P ) = Inf j(P ), if j ∈ N is smallest with Inf j(P ) = Inf j+1(P )

12



VAR B 3 x ::ν/ε if x :: ν/ε ∈ B

APP
B 3 en ::νn/εn

B 3 f en :: b{Πn 7→ νn/εn}ν/{Πn 7→ νn}εc
if f :: ν/ε ∈ B

LET
B[x ::A/∅] 3 e1 ::ν1/ε1 B[x ::ν1/ε1] 3 e2 ::ν/ε

B 3 let x = e1 in e2 :: ν/ε

OR
B 3 e1 :: ν1/ε1 B 3 e2 :: ν2/ε2

B 3 or(e1, e2) :: ν1/ε1 t ν2/ε2 ∪ {or}

SELECT
B 3 e ::ν/ε B[xkm ::ν/∅] 3 ek ::νk/εk

B 3 (f)case e of {pk(xkm) → ek} ::
Fk

i=1 νi/εi ∪ ε

if, for fcase, ν = G or k = 1

GUESS
B 3 e ::ν/ε ν 6= G B[xkm ::ν/∅] 3 ek ::νi/εi k > 1

B 3 fcase e of {pk(xkm) → ek} ::
Fk

i=1 νi/εi ∪ ε ∪ b{guess(ν)}c

Domains: ν, ν1, ν2, . . . ∈ BT (Base Types), ε, ε1, ε2, . . . ∈ BE (Base Effects),
B ⊆ BA (Base Annotations)

Fig. 4. Inference rules

After proving that Inf (P ) is indeed well defined, we will give examples for in-
ferring types for a given program.

Lemma 6 (Type increase). Let P be a flat program and f a function defined
in P . If f :: ν/ε ∈ Inf i(P ) and f :: ν′/ε′ ∈ Inf i+1(P ), then ν/ε v ν′/ε′.

Corollary 3 (Inf (P ) is well defined). For each finite program P there is a
natural number n with Inf n(P ) = Inf n+1(P ).

Corollary 3 states that the iteration of the inference finally terminates.

Example 6 (Type inference). As an example for the type inference, consider the
flat program (c0, c1 are constructors of arity 0, 1):

P =

f1(x) = fcase x of {c0 → g, c1(y) → f1(y)}
f2(x, y) = f1(y)
g = let x = x in x

Remember that “let x = x” defines a logic variable x so that g evaluates to a
new logic variable. The type environments are computed by the iterations:

Inf 0(P )={c0 ::G/∅, c1 ::Π1/∅, f1 ::G/∅, f2 ::G/∅, g ::G/∅}
Inf 1(P )={c0 ::G/∅, c1 ::Π1/∅, f1 ::G/{guess(Π1)}, f2 ::G/∅, g ::A/∅}
Inf 2(P )={c0 ::G/∅, c1 ::Π1/∅, f1 ::A/{guess(Π1)}, f2 ::G/{guess(Π2)}, g ::A/∅}
Inf 3(P )={c0 ::G/∅, c1 ::Π1/∅, f1 ::A/{guess(Π1)}, f2 ::A/{guess(Π2)}, g ::A/∅}
Inf (P ) =Inf 3(P )

The inference shows that a call to f2 might produce a non-ground result but
causes nondeterministic steps only if the second argument is non-ground.

13



To complete this section about the type inference, we show that its computed
results correctly and completely correspond to the results of the type/effect
analysis of Section 2.

Theorem 2 (Correctness of the inference). Let P be a flat program, E(P )=
{s :: τn

ϕ→ τ | s is n-ary, s :: ν/ε ∈ Inf (P ), τn
ϕ→ τ ∈ types(n, ν/ε)}, and E be a

correct environment for P . Then:

Soundness: E(P ) is a correct environment in the sense of Definition 6.
Completeness: If A ∈ E is a type annotation, then E(P ) contains a type

annotation A′ with A′ ≤ A (cf. Definition 4).

4 Conclusions

We have presented a program analysis to approximate the nondeterminism be-
havior of functional logic programs. Unlike existing nondeterminism analyses for
logic languages, we have considered a language with a demand-driven evaluation
strategy. Such a strategy has good properties for executing (e.g., optimal evalu-
ation [2]) and writing programs (e.g., more modularity due to the use of infinite
data structures [17]), it considerably complicates the analysis of programs since,
in contrast to logic languages with an eager evaluation model (e.g., Prolog, Mer-
cury, HAL), there is no direct correspondence between the program structure
and its evaluation order. Therefore, we have abstracted the information about
the run-time behavior of the program in form of a non-standard type and effect
system. The program analysis is then an iterative type inference process based
on a compact structure to represent sets of types and effects.

For future work we plan to improve the preliminary implementation of the
type inference and apply it to larger application programs. Furthermore, we are
working on a compilation for the functional logic language Curry [9, 15] into the
functional language Haskell [23]. This compilation should take great advantage
of the presented analysis.

References

1. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational Semantics for
Declarative Multi-Paradigm Languages. JSC, Vol. 40, No. 1, pp. 795–829, 2005.

2. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of
the ACM, Vol. 47, No. 4, pp. 776–822, 2000.

3. S. Antoy and M. Hanus. Functional Logic Design Patterns. In Proc. of FLOPS
2002, pp. 67–87. Springer LNCS 2441, 2002.

4. B. Braßel, M. Hanus, and F. Huch. Encapsulating Non-Determinism in Functional
Logic Computations. Journal of Functional and Logic Programming, No. 6, 2004.

5. A. Cortesi, G. File, and W. Winsborough. Prop revisited: Propositional Formula
as Abstract Domain for Groundness Analysis. In Proc. IEEE Symposium on Logic
in Computer Science, pp. 322–327, 1991.

14



6. S.K. Debray and D.S. Warren. Detection and Optimization of Functional Compu-
tations in Prolog. In Proc. Third International Conference on Logic Programming
(London), pp. 490–504. Springer LNCS 225, 1986.

7. B. Demoen et al. Herbrand constraint solving in HAL. In Proc. of ICLP’99, pp.
260–274. MIT Press, 1999.

8. M. Hanus. The Integration of Functions into Logic Programming: From Theory to
Practice. Journal of Logic Programming, Vol. 19&20, pp. 583–628, 1994.

9. M. Hanus. A Unified Computation Model for Functional and Logic Programming.
Proc. 24th ACM Symp. on Principles of Programming Languages, pp. 80–93, 1997.

10. M. Hanus. A Functional Logic Programming Approach to Graphical User Inter-
faces. In International Workshop on Practical Aspects of Declarative Languages
(PADL’00), pp. 47–62. Springer LNCS 1753, 2000.

11. M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of the Third In-
ternational Symposium on Practical Aspects of Declarative Languages (PADL’01),
pp. 76–92. Springer LNCS 1990, 2001.

12. M. Hanus and C. Prehofer. Higher-Order Narrowing with Definitional Trees. Jour-
nal of Functional Programming, Vol. 9, No. 1, pp. 33–75, 1999.

13. M. Hanus and F. Steiner. Controlling Search in Declarative Programs. In
Principles of Declarative Programming (Proc. Joint International Symposium
PLILP/ALP’98), pp. 374–390. Springer LNCS 1490, 1998.

14. M. Hanus and F. Steiner. Type-based Nondeterminism Checking in Functional
Logic Programs. In Proc. of PPDP 2000, pp. 202–213. ACM Press, 2000.

15. M. Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.8).
Available at http://www.informatik.uni-kiel.de/~curry, 2003.

16. F. Henderson, T. Somogyi, Z. Conway. Determinism analysis in the Mercury com-
piler. In Proc. 19th Australian Computer Science Conference, pp. 337–346, 1996.

17. J. Hughes. Why Functional Programming Matters. In D.A. Turner, editor, Re-
search Topics in Functional Programming, pp. 17–42. Addison Wesley, 1990.

18. J. Launchbury. A Natural Semantics for Lazy Evaluation. In Proc. of POPL’93,
pp. 144–154. ACM Press, 1993.

19. F. Liu. Towards lazy evaluation, sharing and non-determinism in resolution based
functional logic languages. In Proc. of FPCA’93, pp. 201–209. ACM Press, 1993.

20. R. Loogen and S. Winkler. Dynamic Detection of Determinism in Functional Logic
Languages. Theoretical Computer Science 142, pp. 59–87, 1995.

21. F. López-Fraguas and J. Sánchez-Hernández. TOY: A Multiparadigm Declarative
System. In Proc. of RTA’99, pp. 244–247. Springer LNCS 1631, 1999.

22. F.Nielson, H.R.Nielson, C.Hankin. Principles of Program Analysis. Springer, 1999.
23. S. Peyton Jones, editor. Haskell 98 Language and Libraries—The Revised Report.

Cambridge University Press, 2003.
24. P. Van Roy, B. Demoen, and Y.D. Willems. Improving the execution speed of

compiled Prolog with modes, clause selection, and determinism. In Proc. of the
TAPSOFT ’87, pp. 111–125. Springer LNCS 250, 1987.

25. P. Wadler. How to Declare an Imperative. ACM Computing Surveys, Vol. 29,
No. 3, pp. 240–263, 1997.

15


