
Specialization of Inductively Sequential Functional Logic Programs∗

Maŕıa Alpuente† Michael Hanus‡ Salvador Lucas† Germán Vidal†

† DSIC, UPV, Camino de Vera s/n, 46022 Valencia, Spain. {alpuente,slucas,gvidal}@dsic.upv.es
‡ Informatik II, RWTH Aachen, D-52056 Aachen, Germany. hanus@informatik.rwth-aachen.de

Abstract

Functional logic languages combine the operational prin-
ciples of the most important declarative programming
paradigms, namely functional and logic programming. In-
ductively sequential programs admit the definition of op-
timal computation strategies and are the basis of several
recent (lazy) functional logic languages. In this paper, we
define a partial evaluator for inductively sequential func-
tional logic programs. We prove strong correctness of this
partial evaluator and show that the nice properties of in-
ductively sequential programs carry over to the specializa-
tion process and the specialized programs. In particular,
the structure of the programs is preserved by the specializa-
tion process. This is in contrast to other partial evaluation
methods for functional logic programs which can destroy
the original program structure. Finally, we present some
experiments which highlight the practical advantages of our
approach.

1 Introduction

Functional logic languages combine the operational prin-
ciples of the most important declarative programming
paradigms, namely functional and logic programming (see
[25] for a survey). Efficient demand-driven functional com-
putations are amalgamated with the flexible use of logical
variables providing for function inversion and search for solu-
tions. The operational semantics of such languages is usu-
ally based on narrowing, which combines reduction (from
the functional part) and variable instantiation (from the lo-
gic part) [48, 32, 47]. A narrowing step instantiates variables
of an expression and applies a reduction step to a redex of
the instantiated expression. The instantiation of variables
is usually computed by unifying a subterm of the entire ex-
pression with the left-hand side of some program equation.

Example 1.1 Consider the data type Nat defined as

data Nat = 0 | S Nat

∗This work has been partially supported by CICYT TIC 98-0445-
C03-01, by Acción Integrada hispano–alemana HA1997-0073, and by
the German Research Council (DFG) under grant Ha 2457/1-1.

In Proc. of the International Conference on Functional Programming
(ICFP’99), pp. 273–283, Paris, 1999.

c©1999 ACM. Permission to make digital or hard copies of part or
all of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission.

and the operator 6 :: Nat → Nat → Bool which is
defined by the following equations:

0 6 n = True
(S m) 6 0 = False
(S m) 6 (S n) = m 6 n

The expression (S m) 6 y can be evaluated (i.e., reduced
to a value) by instantiating y to (S n) to apply the third
equation, followed by the instantiation of m to 0 to apply the
first equation:

(S m) 6 y ;{y7→(S n)} m 6 n ;{m7→0} True

Narrowing provides completeness in the sense of logic pro-
gramming (computation of all answers, i.e., substitutions
leading to successful evaluations) as well as functional pro-
gramming (computation of values). Since simple narrowing
can have a huge search space, great effort has been made
to develop sophisticated narrowing strategies without los-
ing completeness. To avoid unnecessary computations and
to provide computations with infinite data structures as well
as a demand-driven generation of the search space, the most
recent work has advocated lazy narrowing strategies (e.g.,
[9, 22, 41, 43]). Needed narrowing [9] is based on the idea of
evaluating only subterms which are needed in order to com-
pute a result. For instance, in a term like t1 6 t2, it is always
necessary to evaluate t1 (to some head normal form) since
all three equations in Example 1.1 have a non-variable first
argument. On the other hand, the evaluation of t2 is only
needed if t1 is of the form (S 2). Thus, if t1 is a free variable,
needed narrowing instantiates it to a constructor term, here
0 or (S 2). Depending on this instantiation, either the first
equation is applied or the second argument t2 is evaluated.
Needed narrowing is currently the best narrowing strategy
for first-order (inductively sequential) functional logic pro-
grams due to its optimality properties w.r.t. the length of
derivations and the number of computed solutions [9] and
it can be efficiently implemented by pattern matching and
unification (e.g., [26, 41]). Moreover, it has recently been ex-
tended to higher-order functions and λ-terms as data struc-
tures and proved optimal w.r.t. independency of computed
solutions [29].

Partial evaluation (PE) is a semantics-preserving per-
formance optimization technique for computer programs
which consists of the specialization of the program w.r.t.
parts of its input. PE has been widely applied in the fields
of term rewriting systems [12, 13, 18, 36, 42], functional
programming [15, 33], and logic programming [21, 40]. Al-
though the objectives are similar, the general methods are

often different due to the distinct underlying models and
the different perspectives (see [5] for a detailed comparison).
This separation has the negative consequence of duplicated
work since developments are not shared and many similar-
ities are overlooked. A unified (narrowing-based) treatment
can bring the different methodologies closer and lays the
ground for new insights in all three fields [5, 6, 23, 44, 49].

Narrowing-driven PE [4, 5] is the first generic algorithm
for the (on-line) specialization of functional logic programs.
The method is parametric w.r.t. the narrowing strategy
which is used for the automatic construction of the search
trees. The method is inspired by the theoretical framework
established in [40] for the partial evaluation of logic pro-
grams (also known as partial deduction), although a num-
ber of concepts have been generalized to deal with the func-
tional component of the language (e.g., nested function calls
in expressions, different evaluation strategies, etc.). This ap-
proach has better opportunities for optimization thanks to
the functional dimension (e.g., by the inclusion of determin-
istic evaluation steps). Also, since unification is embedded
into narrowing, it is able to automatically propagate syn-
tactic information on the partial input (term structure) and
not only constant values, similar to partial deduction. Using
the terminology of [24], the narrowing-driven PE method of
[5] is able to produce both polyvariant and polygenetic spe-
cializations, i.e., it can produce different specializations for
the same function definition and can also combine distinct
original function definitions into a comprehensive special-
ized function. This means that narrowing-driven PE has
the same potential for specialization as positive supercom-
pilation of functional programs [23] and conjunctive partial
deduction of logic programs [39] (a comparison can be found
in [1, 5, 6]).

To perform reductions at specialization time, a partial
evaluator normally includes an interpreter [15, 24]. This
implies that the power of the transformation is highly influ-
enced by the properties of the evaluation strategy from the
underlying interpreter. The contribution of this paper is
the definition of a partial evaluator for functional logic pro-
grams based on needed narrowing. We provide the following
results:

• We prove strong correctness for such a partial evalu-
ator, i.e., the answers and values computed by needed
narrowing in the original and the partially evaluated
programs coincide.

• We relate this partial evaluator to PE based on the lazy
narrowing strategy of [43] and show its advantages.

• We prove that PE based on needed narrowing keeps
desirable properties during the specialization process,
namely the inductively sequential structure of pro-
grams which is a prerequisite for optimal evaluation
strategies. This is in contrast to partial evaluation
based on lazy narrowing which can destroy such prop-
erties.

• We show that the specialized programs do not lose their
abilities for deterministic reduction, which is important
from an implementation point of view and is not ob-
tained by PE based on other operational models, like
lazy narrowing.

• Moreover, we provide experimental evidence of the ad-
vantages of partial evaluation based on needed narrow-
ing.

The multi-paradigm language Curry [27, 30] is an extension
of Haskell with features for logic and concurrent program-
ming. Since the kernel of Curry (i.e., without the concur-
rency features) is based on needed narrowing and inductively
sequential programs, the results of this paper can be applied
to optimize a large class of Curry programs.

The structure of the paper is as follows. After some ba-
sic definitions in the next section, we briefly introduce in
Section 3 the computation models for lazy functional logic
programs which we consider in this paper. The definition of
partial evaluation based on needed narrowing is provided in
Section 4 together with results about the structure of spe-
cialized programs and the (strong) correctness of the trans-
formation. Section 5 shows the practical importance of our
specialization techniques by means of some benchmarks and
Section 6 concludes. Proofs of all technical results can be
found in [7].

2 Preliminaries

Term rewriting systems (TRSs) provide an adequate com-
putational model for functional languages which allow the
definition of functions by means of patterns (e.g., Haskell,
Hope or Miranda) [11, 34, 46]. Within this framework, the
class of inductively sequential programs has been defined,
studied, and used for the implementation of programming
languages which provide for optimal computations both in
functional and functional logic programming [8, 9, 27, 28,
41]. Inductively sequential programs can be thought of as
constructor-based TRSs with discriminating left-hand sides,
i.e., typical functional programs. Thus, in the remainder of
the paper we follow the standard framework of term rewrit-
ing [17] for developing our results.

We consider a (many-sorted) signature Σ partitioned into
a set C of constructors and a set F of (defined) functions
or operations. We write c/n ∈ C and f/n ∈ F for n-ary
constructor and operation symbols, respectively. There is
at least one sort Bool containing the 0-ary Boolean con-
structors True and False. The set of terms and constructor
terms with variables (e.g., x, y, z) from X are denoted by
T (C ∪ F ,X) and T (C,X), respectively. The set of variables
occurring in a term t is denoted by Var(t). A term t is
ground if Var(t) = ∅. A term is linear if it does not contain
multiple occurrences of one variable. We write on for the
list of objects o1, . . . , on.

A pattern is a term of the form1 f(dn) where f/n ∈ F
and d1, . . . , dn ∈ T (C,X). A term is operation-rooted if it
has an operation symbol at the root. root(t) denotes the
symbol at the root of the term t. A position p in a term t
is represented by a sequence of natural numbers (Λ denotes
the empty sequence, i.e., the root position). Given a term
t, we let Pos(t) and NVPos(t) denote the set of positions
and the set of nonvariable positions of t, respectively. t|p
denotes the subterm of t at position p, and t[s]p denotes the
result of replacing the subterm t|p by the term s.

We denote by {x1 7→ t1, . . . , xn 7→ tn} the substitu-
tion σ with σ(xi) = ti for i = 1, . . . , n (with xi 6= xj if
i 6= j), and σ(x) = x for all other variables x. The set
Dom(σ) = {x ∈ X | σ(x) 6= x} is called the domain of σ.
A substitution σ is (ground) constructor, if σ(x) is (ground)
constructor for all x ∈ Dom(σ). The identity substitution is
denoted by id. Substitutions are extended to morphisms on

1Note the difference with the usual notion in functional program-
ming: a constructor term.

2

terms by σ(f(tn)) = f(σ(tn)) for every term f(tn). Given
a substitution θ and a set of variables V ⊆ X , we denote
by θ|̀V the substitution obtained from θ by restricting its
domain to V . We write θ = σ [V] if θ|̀V = σ |̀V , and
θ ≤ σ [V] denotes the existence of a substitution γ such
that γ ◦ θ = σ [V].

A term t′ is an instance of t if there is a substitution
σ with t′ = σ(t). This implies a subsumption ordering on
terms which is defined by t ≤ t′ iff t′ is an instance of t. A
unifier of two terms s and t is a substitution σ with σ(s) =
σ(t). Two substitutions σ and σ′ are independent (on a set
of variables V) iff there exists some x ∈ V such that σ(x)
and σ′(x) are not unifiable.

A set of rewrite rules l → r such that l 6∈ X , and
Var(r) ⊆ Var(l) is called a term rewriting system (TRS).
The terms l and r are called the left-hand side (lhs) and
the right-hand side (rhs) of the rule, respectively. A TRS
R is left-linear if l is linear for all l → r ∈ R. A TRS
is constructor based (CB) if each lhs l is a pattern. In
the remainder of this paper, a functional logic program is a
left-linear CB-TRS. Conditions in program rules are treated
by using the predefined functions and, if− then − else,
case − of which are reduced by standard defining rules
[30, 43].

A rewrite step is an application of a rewrite rule to a
term, i.e., t →p,R s if there exists a position p in t, a rewrite
rule R = l → r and a substitution σ with t|p = σ(l) and
s = t[σ(r)]p (p and R will often be omitted in the notation
of a computation step). The instantiated lhs σ(l) is called a
redex. A (constructor) head normal form is either a variable
or a term rooted by a constructor symbol. A term t is called
irreducible or in normal form if there is no term s with t → s.
→+ denotes the transitive closure of → and →∗ denotes the
reflexive and transitive closure of →.

To evaluate terms containing variables, narrowing
non-deterministically instantiates the variables such that
a rewrite step is possible (usually by computing most
general unifiers [25]). Formally, t ;p,R,σ t′ is a narrowing
step if p is a non-variable position in t and σ(t) →p,R t′.
We denote by t0 ;

∗
σ tn a sequence of narrowing steps

t0 ;σ1
. . . ;σn

tn with σ = σn ◦ · · · ◦ σ1. Since we
are interested in computing values (constructor terms)
as well as answers (substitutions) in functional logic
programming, we say that the narrowing derivation t ;

∗
σ c

computes the result c with answer σ if c is a constructor
term. The evaluation to ground constructor terms (and
not to arbitrary expressions) is the intended semantics
of functional languages and also of most functional logic
languages. In particular, the equality ≈ used in some
examples is defined, as in functional languages, as the strict
equality on terms, i.e., the equation t1 ≈ t2 is satisfied if
t1 and t2 are reducible to the same ground constructor
term. Furthermore, a substitution σ is a solution for
an equation t1 ≈ t2 if σ(t1) ≈ σ(t2) is satisfied. The
strict equality can be defined as a binary Boolean function
by the following set of orthogonal rewrite rules (see, e.g., [9]):

C ≈ C → True % C/0 ∈ C
C(xn) ≈ C(yn) → (x1 ≈ y1) ∧ . . . ∧ (xn ≈ yn) % C/n ∈ C

True ∧ x → x

Thus we do not treat the strict equality in any special way,
and it is sufficient to consider it as a Boolean function
which must be reduced to the constant True. We say that
σ is a computed answer substitution for an equation e if

there is a narrowing derivation e ;
∗
σ True.

3 Lazy Computation Models for Functional Logic
Programs

A challenge in the design of functional logic languages is
the definition of a “good” narrowing strategy, i.e., a restric-
tion λ on the narrowing steps issuing from t, without los-
ing completeness. In the following, we briefly outline the
computation models which we consider in this paper: lazy
narrowing and needed narrowing. A formal description of
these strategies can be found in [7].

3.1 Lazy Narrowing

Lazy narrowing reduces expressions at outermost narrow-
able positions. Narrowing at inner positions is performed
only if it is demanded (by the lhs of some rule). Follow-
ing [43], we define the lazy narrowing strategy as a function
λlazy(t) which returns a set of triples (p,R, σ) such that p is
a demanded position of t which can be narrowed by the rule
R with substitution σ (where σ is a most general unifier of
t|p and the lhs of R).

Example 3.1 Consider the following rules:

0 6 n → True 0 + n → n
S(m) 6 0 → False S(m) + n → S(m + n)
S(m) 6 S(n) → m 6 n

Lazy narrowing evaluates the term x 6 x + x by applying
a narrowing step at the top (with the first rule for “6”) or
by applying a narrowing step to the second argument x + x
since this is demanded by the second and third rules for “6”.
Thus, there are three lazy narrowing steps:

x 6 x + x ;{x7→0} True

x 6 x + x ;{x7→0} 0 6 0

x 6 x + x ;{x7→S(m)} S(m) 6 S(m + S(m))

Note that the second lazy narrowing step is in some sense
superfluous since it also yields the final value True with the
same binding as the first step. The avoidance of such su-
perfluous steps by using needed narrowing (see below) will
have a positive impact on the partial evaluation process, as
we will see later.

3.2 Needed Narrowing

Needed narrowing extends the Huet and Lévy’s notion of a
needed reduction [31]. The definition of needed narrowing
[9] is currently the best known narrowing strategy due to
its optimality properties w.r.t. the length of successful de-
rivations and the number of computed solutions. Needed
narrowing is defined on inductively sequential programs. A
precise definition of this class of programs and the needed
narrowing strategy is based on the notion of a definitional
tree [8]. Roughly speaking, a definitional tree for a func-
tion symbol f is a tree whose leaves contain all (and only)
the rules used to define f and whose inner nodes contain
information to guide the (optimal) pattern matching during
the evaluation of expressions. Each inner node contains a
pattern and a variable position in this pattern (the induct-
ive position) which is further refined in the patterns of its
immediate children by using different constructor symbols.
The pattern of the root node is simply f(xn), where xn are

3

0 6 y → True S(m) 6 y

S(m) 6 0 → False S(m) 6 S(n) → m 6 n

x 6 y

�
�

��

Q
Q

QQ

�
�

�

Q
Q

Q

Figure 1: Definitional tree for the operator “6” of Ex-
ample 3.1

different variables. A graphic representation of definitional
trees, where each inner node is marked with a pattern, the
inductive position in branches is surrounded by a box, and
the leaves contain the corresponding rules illustrates this
notion (see Figure 1).

Definitional trees are similar to standard matching trees
of functional programming2 [20]. However, differently from
left-to-right matching trees used in either Hope, Miranda, or
Haskell, definitional trees can deal with more complex de-
pendencies between arguments of functional patterns (e.g.,
right-to-left evaluations of arguments). As a good point, op-
timality is achieved when definitional trees are used (in this
sense, they are closer to matching dags or index trees for
TRSs [31, 19, 28]). A defined function is called inductively
sequential if it has a definitional tree. A rewrite system R
is called inductively sequential if all its defined functions are
inductively sequential3.

To compute needed narrowing steps for an operation-
rooted term t, we take a definitional tree P for the root
of t and compute λneeded(t,P). Then, for all (p, R, σ) ∈
λneeded(t,P), t ;p,R,σ t′ is a needed narrowing step. We
call this step deterministic if λneeded(t,P) contains exactly
one element. Informally speaking, needed narrowing applies
a rule, if possible, or checks the subterm corresponding to
the inductive position of the branch: if it is a variable, it is
instantiated to the constructor of a child; if it is already a
constructor, we proceed with the corresponding child; if it
is a function, we evaluate it by recursively applying needed
narrowing.

Example 3.2 Consider the rules for “6” and “+” in Ex-
ample 3.1. Then the function λneeded computes the following
set for the initial term x 6 x + x:

{(Λ, 0 6 n → True, {x 7→ 0}),

(2, S(m) + n → S(m + n), {x 7→ S(m)})}

This corresponds to the narrowing steps

x 6 x + x ;{x7→0} True

x 6 x + x ;{x7→S(m)} S(m) 6 S(m + S(m))

The main properties of needed narrowing are formalized as
follows:

Theorem 3.3 [9] Let R be an inductively sequential pro-
gram and e an equation.

2Definitional trees can also be encoded using case expressions, an-
other well-known technique to implement pattern matching in func-
tional languages [45, 29].

3For CB-TRSs, inductive sequentiality and Huet and Lévy’s strong
sequentiality coincide [28].

1. (Soundness) If e ;
∗
σ True is a needed narrowing deriv-

ation, then σ is a solution for e.

2. (Completeness) For each constructor substitution σ
that is a solution of e, there exists a needed narrow-
ing derivation e ;

∗
σ′ True with σ′ ≤ σ [Var(e)].

3. (Minimality) If e ;
∗
σ True and e ;

∗
σ′ True are two

distinct needed narrowing derivations, then σ and σ′

are independent on Var(e).

4 Partial Evaluation of Lazy Functional Logic Pro-
grams

In narrowing-driven PE [5], specialized program rules are
constructed from narrowing derivations using resultants.

Definition 4.1 (resultant) Let R be a TRS and s be a
term. Given a narrowing derivation s ;

+
σ t, its associated

resultant is the rewrite rule σ(s) → t.

We note that, whenever the specialized call s is not a linear
pattern, lhs’s of resultants may not be linear patterns either
and hence resultants may not be program rules. In order to
produce program rules, we will introduce in Definition 4.7
a post-processing renaming transformation which not only
eliminates redundant structures but also obtains independ-
ent specializations (in the sense of [40]) and is necessary for
the correctness of the PE transformation. Roughly speak-
ing, independence ensures that the different specializations
for the same function definition are correctly distinguished,
which is crucial for polyvariant specialization.

Narrowing derivations can be represented by a (possibly
infinite) finitely branching tree. Following [40], in this work
we adopt the convention that any derivation is potentially
partial, i.e., not fully expanded. Thus, a branch can be
failed, partial, successful, or infinite. A failing leaf is an
expression which is not a constructor term and which cannot
be further narrowed. The (pre–)partial evaluation of a term
s is obtained by constructing a (possibly partial) narrowing
tree for s and then extracting the specialized definitions (the
resultants) from the non–failing, root–to–leaf paths of the
tree.

Definition 4.2 (pre–partial evaluation) Let R be a
TRS and s a term. Let T be a finite (possibly partial) nar-
rowing tree for s in R such that no (constructor) head nor-
mal form in the tree has been narrowed. Let tn be the terms
in the non-failing leaves of T. Then, the set of resultants for
the narrowing sequences {s ;

+
σi

ti | i = 1, . . . , n} is called a
pre–partial evaluation of s in R.

The pre–partial evaluation of a set of terms S in R is
defined as the union of the pre–partial evaluations for the
terms of S in R.

The following example illustrates that the restriction to not
evaluate beyond head normal forms in pre–partial evalu-
ations cannot be dropped. This is due to the fact that a
pre–partial evaluation beyond the head normal form might
propagate bindings which do not occur in the execution of
the original program.

Example 4.3 Consider the following program R:

f(0) → 0
g(x) → S(f(x))

h(S(x)) → S(0)

4

with the set of calls S = {g(x), h(x)}. Then, a pre–partial
evaluation of S in R without the restriction to not evaluate
beyond head normal forms is the program R′:

g(0) → S(0)
h(S(x)) → S(0)

Now, the equation h(g(S(0))) ≈ x has the following successful
needed narrowing derivation in R:

h(g(S(0))) ≈ x ; h(S(f(S(0)))) ≈ x

; S(0) ≈ x

;
∗
{x7→S(0)} True

whereas it fails in the specialized program R′.

A recursive closedness condition, which guarantees that each
call which might occur during the execution of the resulting
program is covered by some program rule, is formalized by
inductively checking that the different calls in the rules are
sufficiently covered by the specialized functions.

Informally, a term t rooted by a defined function symbol
is closed w.r.t. a set of calls S, if it is an instance of a term of
S and the terms in the matching substitution are recursively
closed by S.

Definition 4.4 (closedness) Let S be a finite set of
terms. We say that a term t is S-closed if closed(S, t) holds,
where the predicate closed is defined inductively as follows:

closed(S, t) ⇔
8

>

>

>

>

<

>

>

>

>

:

True if t ∈ X
closed(S, t1) ∧ . . . ∧ closed(S, tn) if t = c(tn), n ≥ 0,

c ∈ (C ∪ {≈,∧})
^

x7→t′∈θ

closed(S, t′) if ∃θ, ∃s ∈ S
s.t. θ(s) = t

We say that a set of terms T is S-closed, written
closed(S, T), if closed(S, t) holds for all t ∈ T , and we say
that a TRS R is S-closed if closed(S,Rcalls) holds. Here we
denote by Rcalls the set of the rhs’s of the rules in R.

According to the (nondeterministic) definition above, an ex-
pression rooted by a “primitive” function symbol, such as
a conjunction t1 ∧ t2 or an equation t1 ≈ t2, can be proven
closed w.r.t. S either by checking that t1 and t2 are S-closed
or by testing whether the conjunction (equation) is an in-
stance of a call in S (followed by an inductive test of the
subterms). This is useful when we are not interested in
specializing complex expressions (like conjunctions or strict
equations) but we still want to run them after specializa-
tion. Note that this is safe, since we consider that the rules
which define the primitive functions are automatically added
to each program, hence calls to these symbols are steadily
covered in the specialized program. A general technique
for dealing with primitive symbols which deterministically
splits terms before testing them for closedness and is able to
improve the specialization can be found in [1].

In general, given a call s and a program R, there exists an
infinite number of different pre–partial evaluations of s in R.
A fixed rule for generating resultants called an unfolding rule
is assumed, which determines the expressions to be narrowed
(by using a fixed narrowing strategy) and which decides how
to stop the construction of narrowing trees (see [1, 5] for the
definition of concrete unfolding rules).

Example 4.5 Consider the well-known concatenation op-
erator:

[] ++ ys → ys
(x : xs) ++ ys → x : (xs ++ ys)

with the set of calls S = {(xs++ys)++zs, xs++ys}. A pre–
partial evaluation of S in R using needed narrowing is the
S-closed program:

([] ++ ys) ++ zs → ys ++ zs
((x : xs) ++ ys) ++ zs → x : ((xs ++ ys) ++ zs)

[] ++ zs → zs
(y : ys) ++ zs → y : (ys ++ zs)

In the following, we denote by pre–NN–PE and pre–LN–
PE the sets of resultants computed for S in R by consid-
ering an unfolding rule which constructs finite needed and
lazy narrowing trees, respectively. We will use the acronyms
NN–PE and LN–PE for the renamed rules which will res-
ult from the correspondent post-processing renaming trans-
formation. The idea behind this transformation is that, for
any S-closed call t, the answers computed for t in R and
the answers computed for the renamed call in the special-
ized, renamed program coincide. In particular, in order to
apply a partial evaluator based on needed narrowing and
to ensure that the resulting program is inductively sequen-
tial whenever the source program is, we have to make sure
that the set of specialized terms (after renaming) contains
only linear patterns with distinct root symbols. This can be
ensured by introducing a new function symbol for each spe-
cialized term and then replacing each call in the specialized
program by a call to the corresponding renamed function.

Definition 4.6 (independent renaming) An independ-
ent renaming ρ for a set of terms S is a mapping from terms
to terms defined as follows: for s ∈ S, ρ(s) = fs(xn), where
xn are the distinct variables in s in the order of their first
occurrence and fs is a new function symbol, which does not
occur in R or S and is different from the root symbol of any
other ρ(s′), with s′ ∈ S and s′ 6= s. By abuse, we let ρ(S)
denote the set S′ = {ρ(s) | s ∈ S}.

The notion of partial evaluation can be formally defined
as follows.

Definition 4.7 (partial evaluation) Let R be a TRS, S
a finite set of terms and R′ a pre–partial evaluation of R
w.r.t. S. Let ρ be an independent renaming of S. We define
the partial evaluation R′′ of R w.r.t. S (under ρ) as follows:

R′′ =
S

s∈S
{θ(ρ(s)) → renρ(r) | θ(s) → r ∈ R′ is a

resultant for s in R}

where the nondeterministic renaming function renρ is
defined as follows:

renρ(t) =
8

>

>

>

>

>

<

>

>

>

>

>

:

t if t ∈ X

c(renρ(tn)) if t = c(tn), c ∈ (C ∪ {≈,∧}), n ≥ 0

θ′(ρ(s)) if ∃θ, ∃s ∈ S such that t = θ(s) and

θ′ = {x 7→ renρ(θ(x)) | x ∈ Dom(θ)}

t otherwise

Similarly to the test for closedness, an equation s ≈ t can
be (nondeterministically) renamed either by independently

5

renaming s and t or by replacing the considered equation
by a call to the corresponding new, renamed function (when
the equation is an instance of some specialized call in S).

We now illustrate these definitions with an example.

Example 4.8 Consider again the definition of the operator
++ and the set S of Example 4.5. An independent renaming
ρ for S is the mapping:

{ xs ++ ys 7→ app(xs, ys),
(xs ++ ys) ++ zs 7→ dapp(xs, ys, zs) }.

A partial evaluation R′ of R w.r.t. S (under ρ) is:

dapp([], ys, zs) → app(ys, zs)
dapp(x : xs, ys, zs) → x : dapp(xs, ys, zs)

app([], ys) → ys
app(x : xs, ys) → x : app(xs, ys)

The following theorem states an important property of PE
w.r.t. needed narrowing: if the input program is inductively
sequential, then the specialized program is also inductively
sequential so that we can apply the optimal needed narrow-
ing strategy to the specialized program.

Theorem 4.9 Let R be an inductively sequential program
and S a finite set of operation-rooted terms. Then each NN-
PE of R w.r.t. S is inductively sequential.

4.1 Needed-PE vs. Lazy-PE

The correctness of LN-PE is stated in [1, 3] for ortho-
gonal programs (i.e., programs without overlapping left-
hand sides). In the following we show that the partial eval-
uation w.r.t. needed narrowing can also be obtained (but
possibly with more steps) by partial evaluation of a trans-
formed uniform program w.r.t. lazy narrowing. This shows
that in some sense the specializations computed by a par-
tial evaluator based on needed narrowing cannot be worse
than the specializations computed by a lazy narrowing par-
tial evaluator. On the other hand, we will show that there
are cases where a LN-PE is worse than a NN-PE for the
same original program.

In functional programming, the class of so-called uniform
programs was introduced to ease the efficient implementa-
tion of the pattern matching [45]. For the implementation
of needed narrowing, a similar class of programs has been
studied. These are the uniform programs of [51], where
each function f is defined by one rule f(xn) → r or the lhs
of every rule Ri defining f has the form f(xk, ci(yni

), zm),
where xk, yni

, zm are pairwise different variables and the
constructors ci are distinct in different rules. In the latter
case, an evaluation of a call to f demands its (k + 1)-th
argument. Uniform programs are inductively sequential. A
different definition of uniform programs can be found in [35].

There is a simple mapping U from inductively sequential
into uniform programs which can be found in [51] and is
based on flattening nested patterns. For instance, if R is
the set of rules defining “6” (see Example 3.1), then U(R)
consists of the rules

0 6 n → True
S(m) 6 n → m 6

′ n
m 6

′ 0 → False
m 6

′ S(n1) → m 6 n1

where 6
′ is a new function symbol. Lazy narrowing and

needed narrowing coincide on this class of programs, since
the transformed uniform program embeds the information
carried on the definitional trees of the original one. Now we
can precisely relate NN-PE with LN-PE.

Lemma 4.10 Let R be an inductively sequential program,
Ru = U(R) the corresponding uniform program, and S a
finite set of operation-rooted terms. If R′ is a NN-PE of S
in R, then R′ is also a LN-PE of S in Ru.

The following example reveals that, when we consider lazy
narrowing, the LN-PE of a uniform program w.r.t. a linear
pattern is not generally uniform.

Example 4.11 Let R be the uniform program:

f(x, B) → g(x)
g(A) → A

Let t = f(x, y) and ρ(t) = f2(x, y). Then, a LN-PE R′ of t
in R (under ρ) is

f2(A, B) → A

which is not uniform.

Note that the residual program R′ in the example above
is inductively sequential. This raises the question as to
whether the LN-PE of a uniform program is always induct-
ively sequential. Corollary 4.12 will positively answer this
question.

Corollary 4.12 Let R be a uniform program and S a finite
set of operation-rooted terms. If R′ is a LN-PE of S in R,
then R′ is inductively sequential.

The uniformity condition in Corollary 4.12 cannot be
weakened to inductive sequentiality when LN-PEs are con-
sidered, as demonstrated by the following counterexample.

Example 4.13 Let R be the inductively sequential pro-
gram:

f(A, A, A) → B h(A, B, x) → B
f(B, B, x) → B h(E, x, K) → B
g(A, B, x) → B i(x, C, D) → B
g(x, C, D) → B i(E, x, K) → B

Let t = f(g(x, y, z), h(x, y, z), i(x, y, z)) ∈ S and ρ be a re-
naming such that ρ(t) = f3(x, y, z). Then, every LN-PE
R′ of S in R (considering depth-2 lazy narrowing trees to
construct the resultants) contains the rules:

f3(A, B, x) → · · ·
f3(E, x, K) → · · ·
f3(x, C, D) → · · ·

and thus R′ is not inductively sequential.

Two main factors affecting the quality of a PE are determin-
acy and choice points [21]. The following examples illustrate
the different way in which NN-PE and LN-PE “compile-
in” choice points during unfolding, which is crucial to per-
formance since a poor control choice during the construction
of the computation trees can inadvertently introduce extra
computation into a program.

Example 4.14 Consider again the rules of Example 3.2
and the input term x 6 x + y. The computed LN-PE is

leq2(0, n) → True
leq2(0, n′) → True

leq2(S(m), n) → leq2(m, n)

6

where the renamed initial term is leq2(x, y). The redund-
ancy of lazy narrowing has the effect that the first two rules
of the specialized program are identical (up to renaming).
A good specialization without generating redundant rules is
obtained with partial evaluation based on needed narrowing,
since the NN-PE consists of the rules

leq2(0, n) → True
leq2(S(m), n) → leq2(m, n)

which are computed in half of the time needed for LN-PE (see
Section 5). A call-by-value partial evaluator based on in-
nermost narrowing (without normalization) [5] has an even
worse behavior in this example since it does not specialize
the program at all.

In the example above, the superfluous rule in the LN-PE can
be avoided by removing duplicates in a post-processing step.
The next example shows that this is not always possible.

Lazy evaluation strategies are necessary if one wants
to deal with infinite data structures and possibly non-
terminating function calls. The following program makes
extensive use of these features:

Example 4.15 Consider the following orthogonal program:

f(0, 0) → S(f(0, 0))
f(S(n), x) → S(f(n, x))

g(0) → g(0)
h(S(x)) → 0

The specialization is initiated with the term h(f(x, g(y))).
Note that this term reduces to 0 if x is bound to S(2), and it
does not terminate if x is bound to 0 due to the nontermin-
ating evaluation of the second argument. The NN-PE of this
program perfectly reflects this behavior (the renamed initial
term is h2(x, y)):

h0 → h0
h2(0, 0) → h0

h2(S(x), y) → 0

On the other hand, the LN-PE of this program has a worse
structure:

h1(x) → h1(x)
h1(S(x)) → 0
h2(x, 0) → h1(x)

h2(S(x), y) → 0
h2(S(x), 0) → 0

Note that the program specialized by LN-PE in the ex-
ample above is not inductively sequential (nor orthogonal)
in contrast to the original program. This does not only
mean that needed narrowing is not applicable to the spe-
cialized program but also that the specialized program has
a worse termination behavior than the original one. For in-
stance, consider the term h(f(S(0), g(0))). The evaluation
of this term has a finite derivation tree w.r.t. lazy narrowing
as well as needed narrowing. However, the renamed term
h2(S(0), 0) has a finite derivation tree w.r.t. the NN-PE but
an infinite derivation tree w.r.t. the LN-PE and lazy nar-
rowing. The infinite branch is caused by the application of
the rules h2(x, 0) → h1(x) and h1(x) → h1(x).

4.2 Correctness of NN-PE and Preservation of De-
terministic Evaluations

The strong correctness of NN-PE is stated in the following
theorem, which amounts to the full computational equival-
ence between the original and the specialized programs (i.e.,
the fact that the two programs compute exactly the same
answers).

Theorem 4.16 (strong correctness) Let R be an in-
ductively sequential program. Let e be an equation, V ⊇
Var(e) a finite set of variables, S a finite set of operation-
rooted terms, and ρ an independent renaming of S. Let R′

be a NN-PE of R w.r.t. S (under ρ) such that R′∪{e′} is S′-
closed, where e′ = renρ(e) and S′ = ρ(S). Then, e ;

∗
σ True

is a needed narrowing derivation for e in R iff there exists
a needed narrowing derivation e′ ;

∗
σ′ True in R′ such that

σ′ = σ [V] (up to renaming).

Now, we show another practically interesting property of
NN-PE. One can prove that a term which is deterministic-
ally normalizable w.r.t. the original program cannot cause a
non-deterministic evaluation w.r.t. the specialized program
using NN-PE. For this purpose, we call a term t determin-
istically evaluable (w.r.t. needed narrowing) if each step in
a narrowing derivation issuing from t is deterministic. A
term t deterministically normalizes to a constructor term c
(w.r.t. needed narrowing) if t is deterministically evaluable
and there is a needed narrowing derivation t ;

∗
id c (i.e., c is

the normal form of t).

Proposition 4.17 Let R be an inductively sequential pro-
gram and t be a term.

1. If t ;
∗
id c is a needed narrowing derivation, then t

deterministically normalizes to c.

2. If t is ground, then t is deterministically evaluable.

This kind of determinism in computations is an import-
ant advantage of functional logic languages in comparison
to pure logic languages as it can avoid the evaluation of
potential non-deterministic expressions. For instance, con-
sider again the rules in Example 3.1 and the term 0 6 x + x.
Needed narrowing evaluates this term by one determin-
istic step to True. In an equivalent logic program, this
nested term must be flattened into a conjunction of two
predicate calls, like +(x, x, z) ∧ 6(0, z, B), which causes a
non-deterministic computation due to the predicate call
+(x, x, z).4 Another reason for the improved operational
behavior of functional logic languages is the ability of par-
ticular evaluation strategies (like needed narrowing or paral-
lel narrowing [10]) to evaluate ground terms in a completely
deterministic way, which is important to ensure an efficient
implementation of purely functional evaluations.

Example 4.15 showed that partial evaluation based on
lazy narrowing can destroy the advantages of deterministic
reduction of functional logic programs, which is not possible
using NN-PE. The following proposition formalizes that de-
terministic normalizations w.r.t. the original program can-
not cause a non-deterministic evaluation w.r.t. the special-
ized program using NN-PE.

4Such non-deterministic computations could be avoided using Pro-
log systems with coroutining, but then we are faced with the problem
of floundering and incompleteness.

7

Proposition 4.18 Let R be an inductively sequential pro-
gram, S a finite set of operation-rooted terms, ρ an inde-
pendent renaming of S, and e an equation. Let R′ be a NN-
PE of R w.r.t. S (under ρ) such that R′ ∪ {e′} is S′-closed,
where e′ = renρ(e) and S′ = ρ(S). If e deterministically
normalizes to True w.r.t. R, then e′ deterministically nor-
malizes to True w.r.t. R′.

This property of the specialized programs is desirable
and important from an implementation point of view, since
the implementation of non-deterministic steps is an expens-
ive operation in logic-oriented languages. Moreover, addi-
tional non-determinism in the specialized programs can res-
ult in additional infinite derivations, as shown in Example
4.15. This might have the effect that solutions are no longer
computable in a sequential implementation based on back-
tracking. Therefore, this property is also desirable in par-
tial deduction of logic programs, but as far as we know, no
similar results are known for partial deduction of logic pro-
grams.

In the next section, we report on some experiments
which highlight the practical advantages of our approach
and demonstrate that NN-PE can not only produce better
specialized programs in comparison with lazy narrowing, but
it also leads to better specialization times.

5 Experimental Results

A partial evaluator for functional logic programs based on
needed narrowing as well as on lazy narrowing has been
implemented in the Indy system5 [2] in order to compare
the run time of the partial evaluator and the effects of both
narrowing strategies on the specialized programs.

We have measured the improvements by some experi-
ments which we summarize in Tables 1 and 2. Here we have
benchmarked the speed and specialization achieved by our
implementation (including size and execution time of spe-
cialized code). Times were measured on a HP 712/60 work-
station, running under HP Unix v10.01. They are expressed
in milliseconds and are the average of 10 executions. The
benchmarks used for the analysis were: ackermann, the clas-
sical ackermann function; allones, which transforms all ele-
ments of a list into 1; applast, which appends an element at
the end of a given list and returns the last element of the res-
ulting list; exam, the program of Example 4.15; fibonacci,
fibonacci’s function; kmp, the specialization of a semi-näıve
string pattern matcher; palindrome, a program to check
whether a given list is a palindrome; sumprod, which obtains
the sum and the product of the elements of a list; matmul,
a program for matrix multiplication, and sumleq, the pro-
gram of Example 3.1 containing the rules for “+”,“−”, and
“6”. Some of the examples are typical PD benchmarks (see
[37, 38]) adapted to a functional logic syntax, while others
come from the literature of functional program transform-
ations, such as positive supercompilation [49], fold/unfold
transformations [14, 16], and deforestation [50]. Runtime
input goals were chosen to give a reasonably long overall
time. The complete code for benchmarks and the special-
ized goals can be found in Table 3.

Table 1 compares the performances of NN-PE w.r.t. LN-
PE. The columns “Size”, “LN-Size” and “NN-Size” are the

5The Indy system gives the user the choice of the narrowing
strategy as well as the unfolding rule which controls the construc-
tion of the computation trees and which ensures the finiteness of the
unfolding process.

number of rewrite rules in the original program, the spe-
cialized program using LN-PE and the program specialized
by NN-PE, respectively. The columns “LN-St” and “NN-
St” are the corresponding specialization times. The column
“Improvement” shows the relative improvement achieved by
NN-PE for each benchmark, obtained as the ratio (LN-St ÷
NN-St). In all benchmarks, the NN-PE specialization times
were considerably better, with an average speedup of 1.6 in
comparison with LN-PE.

Table 2 summarizes our findings w.r.t. the quality of
the specialization achieved. The experiments reported in
this table correspond to a combination of the benchmarks
ackerman and sumleq, which were executed using differ-
ent running calls (including nested calls to these functions).
Remember that natural numbers are implemented by 0/S-
terms. The columns “LN-Speedup” and “NN-Speedup”
show the speedups for computing the first solution of each
call in the programs specialized using LN-PE and NN-PE re-
lative to the original program for the same goal. The column
“Improvement” shows the relative improvement for each
call, obtained as the ratio (NN-Speedup ÷ LN-Speedup).
Our results show that the specialization achieved by using
NN-PE in these experiments is better, with an average im-
provement factor of 2.66 in comparison to LN-PE. These
results point to the superiority of the NN-PE strategy.

In general, partially evaluated programs cannot be guar-
anteed to be faster than the original ones, since there is a
trade-off between the smaller number of computation steps
and the larger number of rules after the specialization. Nev-
ertheless, our experiments seem to indicate that the gain
due to the smaller derivations makes up for the overhead of
checking the applicability of the larger number of rules in
the specialized programs.

6 Conclusions

Few attempts have been made to investigate powerful and
effective PE techniques which can be applied to term re-
writing systems, logic programs and functional programs.
In this paper, we have presented a partial evaluator for
functional logic programs based on needed narrowing and
we have shown its strong correctness, i.e., the answers and
values computed by needed narrowing in the original and
specialized programs are identical (up to renaming). Fur-
thermore, we have shown that the partial evaluation pro-
cess keeps the inductively sequential structure of programs
so that the optimal needed narrowing strategy can also be
applied to the specialized programs. As a consequence, the
partial evaluation process preserves the desirable determ-
inism property of functional logic programs: deterministic
evaluations w.r.t. the original program are still determin-
istic in the specialized program. This property is nontrivial
as witnessed by counterexamples for the case of lazy nar-
rowing. We have also empirically verified that the use of
needed narrowing in a partial evaluator speeds up the spe-
cialization time in comparison to lazy narrowing and it does
not remove indexing information from the program, which
is needed to obtain fast unification. Thus, we conclude that
needed narrowing is the best known framework for special-
ising functional logic programs. The results in this paper are
relevant for the optimization of Curry [27, 30], a language
which is intended to become a standard in the functional
logic programming community.

We are currently working on the development of some

8

Original LN-PE NN-PE
Benchmarks Size LN-Size LN-St NN-Size NN-St Improvement

ackermann 4 20 2690 17 1370 1.96
allones 6 4 140 4 80 1.75
applast 5 4 340 4 190 1.78
exam 5 5 180 3 80 2.25
fibonacci 5 15 960 15 730 1.31
kmp 12 14 1290 14 1100 1.17
palindrome 12 19 1810 19 1400 1.29
sumprod 8 18 1110 18 880 1.26
matmult 10 24 1610 24 1190 1.35
sumleq 7 6 92 6 50 1.85

Table 1: NN-PE vs. LN-PE: size of specialized code and specialization times (in ms.)

Specialized Expressions: LN-Speedup NN-Speedup Improvement

ackermann(5) ≤ (5 + 5) ≈ True 1.20 1.49 1.24
(20− x) + ((20− x) + (20− x)) ≤ 40 + 40 ≈ True 2.33 6.67 2.87
(20 + y) + (y + 20) ≤ 20 + 20 ≈ True 1.37 2.70 1.97
10 + x ≤ (x + 2) + x ≈ True 4.54 14.93 3.29
(x− 10) + ((x− 10) + (x− 10)) ≤ 20 + 20 ≈ True 1.15 4.55 3.95

Table 2: NN-PE vs. LN-PE: relative runtimes

abstract interpretation techniques for the detection and re-
moval of redundant arguments and useless clauses from the
partially evaluated program in order to further enhance the
specialization.

Acknowledgements

We wish to thank Elvira Albert and Santiago Escobar for
many helpful remarks and for their valuable contribution to
the implementation and testing work.

References

[1] E. Albert, M. Alpuente, M. Falaschi, P. Julián, and G. Vidal.
Improving Control in Functional Logic Program Specializa-
tion. In G. Levi, editor, Proc. of Static Analysis Symposium,
SAS’98, pages 262–277. Springer LNCS 1503, 1998.

[2] E. Albert, M. Alpuente, M. Falaschi, and G. Vidal. Indy

User’s Manual. Technical Report DSIC-II/12/98, UPV,
1998. Available from URL:
http://www.dsic.upv.es/users/elp/papers.html.

[3] M. Alpuente, M. Falaschi, P. Julián, and G. Vidal. Spe-
cialization of Lazy Functional Logic Programs. In Proc. of
PEPM’97, volume 32, 12 of Sigplan Notices, pages 151–162,
New York, 1997. ACM Press.

[4] M. Alpuente, M. Falaschi, and G. Vidal. Narrowing-driven
Partial Evaluation of Functional Logic Programs. In H. Riis
Nielson, editor, Proc. of the 6th European Symp. on Pro-
gramming, ESOP’96, pages 45–61. Springer LNCS 1058,
1996.

[5] M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation
of Functional Logic Programs. ACM Transactions on Pro-
gramming Languages and Systems, 20(4):768–844, 1998.

[6] M. Alpuente, M. Falaschi, and G. Vidal. A Unifying View of
Functional and Logic Program Specialization. ACM Com-
puting Surveys, 30(3es):9es, 1998.

[7] M. Alpuente, M. Hanus, S. Lucas, and G. Vidal. Specializa-
tion of Functional Logic Programs Based on Needed Narrow-
ing. Technical report 99-4, RWTH Aachen, 1999. Available
from ftp.informatik.rwth-aachen.de/pub/reports/.

[8] S. Antoy. Definitional trees. In Proc. of the 3rd Int’l Confer-
ence on Algebraic and Logic Programming, ALP’92, pages
143–157. Springer LNCS 632, 1992.

[9] S. Antoy, R. Echahed, and M. Hanus. A Needed Narrow-
ing Strategy. In Proc. 21st ACM Symp. on Principles of
Programming Languages, Portland, pages 268–279, 1994.

[10] S. Antoy, R. Echahed, and M. Hanus. Parallel evaluation
strategies for functional logic languages. In Proc. of the 14th
Int’l Conf. on Logic Programming (ICLP’97), pages 138–
152. MIT Press, 1997.

[11] F. Baader and T. Nipkow. Term Rewriting and All That.
Cambridge University Press, 1998.

[12] F. Bellegarde. ASTRE: Towards a fully automated pro-
gram transformation system. In Jieh Hsiang, editor, Proc.
of RTA’95, pages 403–407. Springer LNCS 914, 1995.

[13] A. Bondorf. Towards a Self-Applicable Partial Evaluator
for Term Rewriting Systems. In D. Bjørner, A.P. Ershov,
and N.D. Jones, editors, Proc. of the Int’l Workshop on
Partial Evaluation and Mixed Computation, pages 27–50.
North-Holland, Amsterdam, 1988.

[14] R.M. Burstall and J. Darlington. A Transformation System
for Developing Recursive Programs. Journal of the ACM,
24(1):44–67, 1977.

[15] C. Consel and O. Danvy. Tutorial notes on Partial Evalu-
ation. In Proc. of 20th Annual ACM Symp. on Principles of
Programming Languages, pages 493–501. ACM, New York,
1993.

[16] J. Darlington. Program transformation. In J. Darlington,
P. Henderson, and D. A. Turner, editors, Functional Pro-
gramming and its Applications, pages 193–215. Cambridge
University Press, 1982.

[17] N. Dershowitz and J.-P. Jouannaud. Rewrite Systems. In
J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, volume B: Formal Models and Semantics, pages
243–320. Elsevier, Amsterdam, 1990.

[18] N. Dershowitz and U. Reddy. Deductive and Inductive Syn-
thesis of Equational Programs. Journal of Symbolic Com-
putation, 15:467–494, 1993.

9

[19] I. Durand. Bounded, Strongly Sequential and Forward-
Branching Term Rewriting Systems. Journal of Symbolic
Computation, 18(4):319–352, 1994.

[20] A.J. Field and P.G. Harrison. Functional Programming.
Addison-Wesley, Wokingham, 1988.

[21] J. Gallagher. Tutorial on Specialisation of Logic Programs.
In Proc. of PEPM’93, pages 88–98. ACM, New York, 1993.

[22] E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Ker-
nel Leaf: A Logic plus Functional Language. Journal of
Computer and System Sciences, 42:363–377, 1991.

[23] R. Glück and M.H. Sørensen. Partial Deduction and Driv-
ing are Equivalent. In Proc. of PLILP’94, pages 165–181.
Springer LNCS 844, 1994.

[24] R. Glück and M.H. Sørensen. A Roadmap to Metacompu-
tation by Supercompilation. In O. Danvy, R. Glück, and
P. Thiemann, editors, Partial Evaluation, Int’l Seminar,
Dagstuhl Castle, Germany, pages 137–160. Springer LNCS
1110, February 1996.

[25] M. Hanus. The Integration of Functions into Logic Program-
ming: From Theory to Practice. Journal of Logic Program-
ming, 19&20:583–628, 1994.

[26] M. Hanus. Efficient translation of lazy functional logic pro-
grams into Prolog. In Proc. 5th Int’l Workshop on Lo-
gic Program Synthesis and Transformation, pages 252–266.
Springer LNCS 1048, 1995.

[27] M. Hanus. A unified computation model for functional and
logic programming. In Proc. of the 24th ACM Symposium on
Principles of Programming Languages (Paris), pages 80–93.
ACM, New York, 1997.

[28] M. Hanus, S. Lucas, and A. Middeldorp. Strongly sequential
and inductively sequential term rewriting systems. Inform-
ation Processing Letters, 67(1):1–8, 1998.

[29] M. Hanus and C. Prehofer. Higher-Order Narrowing with
Definitional Trees. Journal of Functional Programming,
9(1):33–75, 1999.

[30] M. Hanus (ed.). Curry: An Integrated Functional Logic
Language. Version 0.5, Jan. 1999. Available at
http://www-i2.informatik.rwth-aachen.de/~hanus/curry.

[31] G. Huet and J.J. Lévy. Computations in orthogonal rewrit-
ing systems, Part I + II. In J.L. Lassez and G.D. Plotkin,
editors, Computational Logic – Essays in Honor of Alan
Robinson, pages 395–443, 1992.

[32] J.M. Hullot. Canonical Forms and Unification. In Proc
of 5th Int’l Conf. on Automated Deduction, pages 318–334.
Springer LNCS 87, 1980.

[33] N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evalu-
ation and Automatic Program Generation. Prentice-Hall,
Englewood Cliffs, NJ, 1993.

[34] J.W. Klop. Term Rewriting Systems. In S. Abramsky,
D. Gabbay, and T. Maibaum, editors, Handbook of Logic
in Computer Science, volume I, pages 1–112. Oxford Uni-
versity Press, 1992.

[35] H. Kuchen, R. Loogen, J.J. Moreno-Navarro, and
M. Rodŕıguez-Artalejo. Lazy Narrowing in a Graph Ma-
chine. In Proc. of ALP’90, pages 298–317. Springer LNCS
463, 1990.

[36] L. Lafave and J.P. Gallagher. Constraint-based Partial Eval-
uation of Rewriting-based Functional Logic Programs. In
Proc. of LOPSTR’97, pages 168–188. Springer LNCS 1463,
1997.

[37] J. Lam and A. Kusalik. A Comparative Analysis of Par-
tial Deductors for Pure Prolog. Technical report, Depart-
ment of Computational Science, University of Saskatchewan,
Canada, May 1991. Revised April 1991.

[38] M. Leuschel. The ecce partial deduction system and the
dppd library of benchmarks. Technical report, Accessible
via http://www.cs.kuleuven.ac.be/~lpai, 1998.

[39] M. Leuschel, D. De Schreye, and A. de Waal. A Concep-
tual Embedding of Folding into Partial Deduction: Towards
a Maximal Integration. In M. Maher, editor, Proc. of the
Joint Int’l Conference and Symposium on Logic Program-
ming, JICSLP’96, pages 319–332. The MIT Press, Cam-
bridge, MA, 1996.

[40] J.W. Lloyd and J.C. Shepherdson. Partial Evaluation in
Logic Programming. Journal of Logic Programming, 11:217–
242, 1991.

[41] R. Loogen, F. López-Fraguas, and M. Rodŕıguez-Artalejo.
A Demand Driven Computation Strategy for Lazy Nar-
rowing. In J. Penjam and M. Bruynooghe, editors, Proc.
of PLILP’93, Tallinn (Estonia), pages 184–200. Springer
LNCS 714, 1993.

[42] A. Miniussi and D. J. Sherman. Squeezing Intermediate Con-
struction in Equational Programs. In O. Danvy, R. Glück,
and P. Thiemann, editors, Partial Evaluation, Int’l Seminar,
Dagstuhl Castle, Germany, pages 284–302. Springer LNCS
1110, February 1996.

[43] J.J. Moreno-Navarro and M. Rodŕıguez-Artalejo. Logic Pro-
gramming with Functions and Predicates: The language Ba-
bel. Journal of Logic Programming, 12(3):191–224, 1992.

[44] A. Pettorossi and M. Proietti. A Comparative Revisitation
of Some Program Transformation Techniques. In O. Danvy,
R. Glück, and P. Thiemann, editors, Partial Evaluation,
Int’l Seminar, Dagstuhl Castle, Germany, pages 355–385.
Springer LNCS 1110, 1996.

[45] S.L. Peyton Jones. The Implementation of Functional Pro-
gramming Languages. Prentice-Hall, 1987.

[46] R. Plasmeijer and M. van Eekelen. Functional Programming
and Parallel Graph Rewriting. Addison Wesley, 1993.

[47] U.S. Reddy. Narrowing as the Operational Semantics of
Functional Languages. In Proc. of Second IEEE Int’l Symp.
on Logic Programming, pages 138–151. IEEE, New York,
1985.

[48] J.R. Slagle. Automated Theorem-Proving for Theories with
Simplifiers, Commutativity and Associativity. Journal of the
ACM, 21(4):622–642, 1974.

[49] M.H. Sørensen, R. Glück, and N.D. Jones. A Positive Su-
percompiler. Journal of Functional Programming, 6(6):811–
838, 1996.

[50] P.L. Wadler. Deforestation: Transforming programs to elim-
inate trees. Theoretical Computer Science, 73:231–248, 1990.

[51] F. Zartmann. Denotational Abstract Interpretation of Func-
tional Logic Programs. In P. Van Hentenryck, editor, Proc.
of the 4th Int’l Static Analysis Symposium, SAS’97, pages
141–159. Springer LNCS 1302, 1997.

10

applast ackermann

applast(xs,x) -> last(append(xs,[x]) ackermann(n) -> ack(S(S(0)),n)
last([x]) -> x ack(0,n) -> S(n)
last(x:xs) -> last(xs) ack(S(m),0) -> ack(m,S(0))
append([],y) -> y ack(S(m),S(n)) -> ack(m,ack(S(m),n))
append(x:xs,y) -> x:append(xs,y)
call: applast(xs,x) call: ackermann(n)

allones sumleq

f(xs) -> allones(length(xs)) sum(0,x) -> x
allones(0) -> [] sum(S(x),y) -> S(sum(x,y))
allones(S(n)) -> 1:allones(n) sub(x,0) -> x
length([]) -> 0 sub(S(x),S(y)) -> sub(x,y)
length(x:xs) -> sum(S(0),length(xs)) leq(0,x) -> True
sum(0,y) -> y leq(S(x),0) -> True
sum(S(x),y) -> S(sum(x,y)) leq(S(x),S(y)) -> leq(x,y)
call: f(xs) call: leq(x,sum(x,y))

fibonacci sumprod

fib(0) -> S(0) sumprod(xs) -> sum(sumlist(xs),prodlist(xs))
fib(S(0)) -> S(0) sumlist([]) -> 0
fib(S(S(n))) -> sum(fib(S(n)),fib(n)) sumlist(x:xs) -> sum(x,sumlist(xs))
sum(0,y) -> y prodlist([]) -> S(0)
sum(S(x),y) -> S(sum(x,y)) prodlist(x:xs) -> prod(x,prodlist(xs))

sum(0,y) -> y
sum(S(x),y) -> S(sum(x,y))
prod(0,y) -> 0
prod(S(x),y) -> sum(prod(x,y),y)

call: fib(n) call: sumprod(xs)

exam matmult
f(0,0) -> S(f(0,0)) matmult(x:xs,y) -> rowmult(x,y):matmult(xs,y)
f(S(n),x) -> S(f(n,x)) matmult([],y) -> []
g(0) -> g(0) rowmult(x,y:ys) -> dotmult(x,y):rowmult(x,ys)
h(S(x)) -> 0 rowmult(x,[]) -> []

dotmult(x:xs,y:ys) -> plus(mult(x,y),dotmult(xs,ys))
dotmult([],[]) -> 0
sum(0,x) -> x
sum(S(x),y) -> S(sum(x,y))

call: h(f(x,g(y)) call: matmult([x,y,z],w)

kmp palindrome
match(p,s) -> loop(p,s,p,s) palindrome(xs) -> eqlist(reverse(xs),xs)
loop([],ss,op,os) -> True reverse(xs) -> rev(xs,[])
loop(p:ps,[],op,os) -> False rev([],xs) -> xs
loop(p:ps,s:ss,op,os) -> rev(x:xs,ys) -> rev(xs,x:ys)
if(eq(p,s),loop(ps,ss,op,os),next(op,os))
next(op,[]) -> False eqlist([],[]) -> True
next(op,s:ss) -> loop(op,ss,op,ss) eqlist(a:as,b:bs) -> if(eq(a,b),eqlist(as,bs),False)
if(True,a,b) -> a if(True,a,b) -> a
if(False,a,b) -> b if(False,a,b) -> b
eq(a,a) -> True eq(0,0) -> True
eq(b,b) -> True eq(0,S(m)) -> False
eq(a,b) -> False eq(S(n),0) -> False
eq(b,a) -> False eq(S(n),S(m)) -> eq(n,m)

call: match([a,a,b],s) call: palindrome(S(0):xs)

Table 3: Benchmark programs and specialized calls.

11

