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ABSTRACT
Xtext is an open-source framework for implementing exter-
nal, textual domain-specific languages (DSLs). So far, most
DSLs implemented with Xtext and similar tools focus on
structural aspects such as service specifications and entities.
Because behavioral aspects are significantly more compli-
cated to implement, they are often delegated to general-
purpose programming languages. This approach introduces
complex integration patterns and the DSL’s high level of
abstraction is compromised.

We present Xbase as part of Xtext, an expression language
that can be reused via language inheritance in any DSL im-
plementation based on Xtext. Xbase expressions provide
both control structures and program expressions in a uni-
form way. Xbase is statically typed and tightly integrated
with the Java type system. Languages extending Xbase in-
herit the syntax of a Java-like expression language as well as
language infrastructure components, including a parser, an
unparser, a linker, a compiler and an interpreter. Further-
more, the framework provides integration into the Eclipse
IDE including debug and refactoring support.

The application of Xbase is presented by means of a do-
main model language which serves as a tutorial example and
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by the implementation of the programming language Xtend.
Xtend is a functional and object-oriented general purpose
language for the Java Virtual Machine (JVM). It is built on
top of Xbase which is the reusable expression language that
is the foundation of Xtend.
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ges]: Language Constructs and Features—Inheritance; D.3.4
[Programming Languages]: Processors—Code generation
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1. INTRODUCTION
The simplicity and application-specific syntax of DSLs in-

creases the readability as well as the density of information.
Hence, developers using DSLs cannot only develop systems
faster but also understand, evolve, and extend existing sys-
tems easier.
There are two different but converging approaches for de-

signing DSLs. On the one hand, there are the so called exter-
nal DSLs [7]. An external DSL is a completely independent
language built from scratch, such as the AWK1 program-
ming language for file processing or the MENGES language

1http://www.gnu.org/software/gawk/



for programming railway control centers [9]. As external
DSLs are independent from any other language, they need
their own infrastructures like parsers, linkers, compilers or
interpreters. More popular examples for external DSLs are
SQL [2] or the Extended Backus-Naur Form (EBNF) [22]
to easily interact with relational databases or representing
formal grammars, respectively.

On the other hand, an internal DSL (sometimes also called
embedded DSL) leverages a so called host language to solve
domain-specific problems. This idea originates from the
LISP programming language, where several internal DSLs
have been designed [10]. Examples of modern internal DSLs
are the OpenGL API, the Java Concurrency API, or the
Scala parser combinators. An internal DSL is basically an
API which pushes the host language’s capabilities to make
client code as dense and readable as possible.

As internal DSLs are defined on top of a general pur-
pose programming language, their syntax is constrained to
what the host language allows. The advantage is that no
new language infrastructure needs to be built, because the
parser and compiler (resp. interpreter) of the host language
is used. Also it is possible to call out to and reuse the con-
cepts of the host language, such as expressions. The down-
side is the limited flexibility, because internal DSLs have to
be expressed using concepts of the host language. Also, in-
ternal DSLs typically do not have special IDE support or
domain-specific compiler checks.

A domain-specific language (DSL) as we understand the
term is a programming language or specification language
dedicated to a particular problem or solution domain. Other
definitions focus on the aspect that a DSL is explicitly not
intended to be able to solve problems outside of that par-
ticular domain [7], but from our viewpoint this is not an
important distinction.

Creating a DSL and tools to support it can be worthwhile
if the language allows one to express a particular type of
problem or solution more clearly than an existing language.
Furthermore, the kind of problem addressed by the DSL
should appear frequently—otherwise it may not be worth
the effort to develop a new language.

Xtext2 is a framework for external textual DSLs. Devel-
oping textual DSLs has become straightforward with Xtext
because the framework provides a universal architecture for
language implementations and well-defined default services.
Structural languages which introduce new coarse-grained
concepts, such as services, entities, value objects or state-
machines can be developed with very little effort. However,
software systems do not only consist of structures. At some
point a system needs to have some behavior which is usu-
ally specified using statements and expressions. Expressions
are the heart of every programming language and their im-
plementation is error prone. On the other hand, expressions
are well understood and many programming languages share
a common set and understanding of expressions. Unfortu-
nately, implementing a language with support for statically
typed expressions is complicated and requires a great deal of
work. As a consequence, most designers of external DSLs do
not include support for expressions in their DSL but provide
some workarounds. A typical workaround is to define only
the structural information in the DSL and add behavior by
modifying or extending the generated code. It is obviously

2http://www.eclipse.org/Xtext/

inconvenient and error prone to write, read and maintain
information which closely belongs together in two different
places, abstraction levels and languages. Additionally, the
techniques used to add the missing behavioral information
impose significant additional complexity to the system. So
far, for most projects, it seems more attractive to apply these
workarounds than to implement an expression language from
scratch.
The novel contribution of this paper is Xbase. It is a

reusable expression language which can be used in any Xtext
language. It comes with a complete grammar for a modern
Java-like expression language as well as all the required in-
frastructure:

• A parser and a lexer creating a strongly typed abstract
syntax tree (AST).

• A compiler translating the AST to Java source code, or
alternatively an interpreter running on the Java virtual
machine (JVM).

• A type system model, designed after Java’s type sys-
tem and supporting all Java 5 concepts, including gene-
rics.

• A linker that is implemented according to the Java
scoping rules and binds against concept of the Java
type system.

• Advanced editor features, such as content assist, syn-
tax coloring, code folding and error highlighting.

• Integration with Eclipse, such as call hierarchy view,
type hierarchy view and other useful navigation fea-
tures.

• A debugger allowing one to alternatively step through
the DSL or through the generated Java source.

Reusing Xbase in a language can be done by defining two ar-
tifacts: A grammar that extends the provided Xbase gram-
mar and a Java type inferrer that maps the DSL concepts
to the Java type model.
We first describe language development with Xtext in Sec-

tion 2. Section 3 introduces the Xbase language by giving
an overview on design goals and some examples for Xbase
expressions. Two applications of Xbase are presented in Sec-
tion 4. In Section 5, we take a look at some other work in this
field and relate it to Xbase. Finally, we draw our conclusions
and give an outlook on some future work in Section 6.

2. THE XTEXT FRAMEWORK
Xtext is an extensible language development framework

covering all aspects of language infrastructure such as par-
sers, linkers, compilers, interpreters and full-blown IDE sup-
port based on Eclipse. It is successfully used in academia
as well as in industrial applications. Among the industrial
users are projects for embedded system development, such
as AUTOSAR [15] and enterprise information systems [4,
6].
Xtext is hosted at Eclipse.org3 and is distributed under

the Eclipse Public Licence (EPL). With Xtext, the DSL
specification is defined in a grammar resembling EBNF from

3http://eclipse.org/



which parsers, linkers and other parts of the language in-
frastructure are derived. We give an example of that in
Section 2.1. Section 2.2 explains how dependency injection
facilitates tool chain adaptability and Section 2.3 explains
how language inheritance works with Xtext.

2.1 A Simple Domain Model Language
As an example of how to build DSLs using Xtext, we

present a simple language to define domain models. The
language is able to describe entities and their relations. En-
tities have a name and some properties. The type of a prop-
erty is either a defined entity or some predefined data type.
Listing 1 shows an example of a domain model defined with
this language.

Listing 1: An example domain model
1 datatype String
2

3 entity Person {
4 name : String
5 givenName : String
6 address : Address
7 }
8

9 entity Address {
10 street : String
11 zip : String
12 city : String
13 }
The corresponding grammar definition is given in List-

ing 2. In Line 1, the grammar is declared by giving it a
fully qualified name. The file name needs to correspond
to the language name with file extension xtext. In Line 3,
the Xtext generator is instructed to infer a type-safe AST
from the given grammar (nothing more has to be done by
the programmer to get the AST). Starting with Line 5, the
rules of the grammar are given. A rule is defined using a
sequence of terminals and non-terminals. A quoted string
declares a terminal. Alternatives are marked by a vertical
bar. Assignment operators are used to define how an AST
should be constructed by the parser. The identifier on the
left-hand side refers to a property of the AST class, the
right-hand side is a terminal or non-terminal. Xtext gram-
mars are bi-directional, i.e., a parser as well as an unparser,
aka serializer, is derived from an Xtext grammar.

Note that terminal rules such as ID are inherited from
the predefined Xtext terminals grammar (see with-clause in
Line 1), and do not need to be defined again (see also Sec-
tion 2.3). Line 15 contains a construct in square brackets
which refers to a type of the AST. This defines a cross ref-
erence to another element in the parsed model which is au-
tomatically linked according to the current scope definition.

Listing 2: A simple domain model language
1 grammar org.example.domainmodel.DomainModel with

org.eclipse.xtext.common.Terminals
2

3 generate domainmodel ”http://www.example.org/
domainmodel/Domainmodel”

4

5 Domainmodel :
6 elements += Type∗;
7

8 Type:
9 DataType | Entity;

10

11 DataType:
12 ’datatype’ name = ID;
13

14 Entity:
15 ’entity’ name = ID (’extends’ superType = [Entity])? ’

{’
16 features += Feature∗
17 ’}’
18

19 Feature:
20 name = ID ’:’ type = [Type]
21 ;

A class diagram of the AST classes derived from the gram-
mar in Listing 2 is shown in Figure 1.

Figure 1: A class diagram of the generated AST
model for the domain model language, as specified
in Listing 2.

2.2 Tool Chain Adaptability
Not every aspect of a language implementation can be ex-

pressed in an Xtext grammar. To allow for arbitrary adapta-
tion of the default functionality, the Xtext framework makes
heavy use of the dependency injection pattern [19]. Depen-
dency injection allows one to control which concrete imple-
mentations are used in a language configuration. Because of
this flexibility, the framework can provide default behavior
for almost every aspect of a language infrastructure. If the
default behavior does not fit for the language at hand, the
implementation can be changed easily by binding an inter-
face to another compatible class type.



2.3 Language Inheritance
Xtext supports language inheritance which allows to reuse

an existing grammar [3]. Similar to inheritance in object-
oriented languages, the symbols (terminals and non-termi-
nals) of the parent grammar can be used as if they were
defined in the inheriting grammar. Their definition can also
be overridden in the inheriting grammar. This way it is pos-
sible to refine and extend arbitrary Xtext grammars. For in-
stance, Line 1 of Listing 2 above shows the import of another
language, containing the definition of the terminal ID.

This mechanism is also employed to reuse the Xbase ex-
pression language, as described in the following section.

3. DESIGN OF THE REUSABLE EXPRES-
SION LANGUAGE XBASE

To lower the barrier for users already familiar with the
Java programming language, Xbase expressions resemble Ja-
va’s expressions and statements in terms of syntax and se-
mantics. Additionally, Xbase expressions support advanced
concepts such as type inference, extension methods and var-
ious forms of syntactic sugar facilitating writing more con-
cise and readable code. The expression language is statically
typed and is linked to the Java type system, which renders
it fully interoperable with Java. This implies that it is pos-
sible to reuse any Java classes, i.e., to subclass them or call
out to their methods, constructors and fields.

The implementation consists of a grammar definition, as
well as reusable and adaptable implementations for the dif-
ferent aspects of a language infrastructure such as an AST
structure, a compiler, an interpreter, a linker, and a static
analyzer. In addition, it provides the integration of the ex-
pression language with an Eclipse IDE. Default implemen-
tations for tool features such as content assistance, syntax
coloring, hovering, folding and navigation are automatically
integrated and reused within any language inheriting from
Xbase.

In the following subsections we introduce some concepts of
the Xbase expression language. We start with an introduc-
tion to Xbase expressions in Section 3.1, including features
like type inference, operator overloading, and lambda ex-
pressions. Then we describe the concept of extension meth-
ods in Section 3.2. Finally, we show how Xbase integrates
with Java in Section 3.3.

3.1 Expressions
Expressions are the main language constructs that are

used to express behavior and computation of values. A sep-
arate concept of statements is not supported with Xbase.
Instead, powerful expressions are used to handle situations
in which the imperative nature of statements would be help-
ful. An expression always results in a value (which might
be null). In addition every resolved expressions is of a static
type, inferred at compile time. As in other languages, ex-
pressions can be formed by composing variables, constants,
literals, or expressions with each other using operators or
method calls.

3.1.1 Type Inference
Xbase is a statically typed language, based on the Java

type system. In Java, type information must often be spec-
ified redundantly which is perceived to be verbose in the
code. For example, in Java a variable declaration is defined
like this:

final ArrayList<Integer> ls = new ArrayList(1, 2, 3)

Xbase allows one to omit the redundant definition of types,
because types can be inferred from the expression on the
right-hand side. Instead one uses the keyword val to declare
a local final variable. The method newArrayList() is a static
helper from dependency injection framework Google Guice.4

val ls = newArrayList(1, 2, 3)

While the keyword val implies a final variable, the keyword
var is used to declare mutable variables.
Type inference is also heavily used for type parameters

in method and constructor calls and to infer the parameter
types as well as the return type of a lambda expression.

3.1.2 Lambda Expressions
A lambda expression is a literal that defines an anonymous

function. It also captures the current scope such that any
final variables and parameters visible at construction time
can be referred to in the lambda expression’s body. Lamb-
das can be used wherever a type with a single method is
expected. This includes all functional interfaces as defined
in the current draft of JSR 335 (Project Lambda) [13]. A
lambda expression will result in an instance of that interface,
implementing the single method using the given expression.
Consider, for example, the following Java method signa-

ture as defined in java.util.Collections:

public static <T> List<T> sort(List<T> list, Comparator<
T> comparator)

With Xbase, it can be invoked using a lambda expression
such as:

sort(listOfPersons, [p1, p2 | p1.name.compareTo(p2.name)])

All needed type information is automatically inferred from
the current context.

Lambda expressions allow for convenient usage of higher-
order functions [12] and also simplify the use of many exist-
ing Java APIs which are designed for use with anonymous
classes in Java.

3.1.3 Operator Overloading
In contrast to Java, the semantics and the applicability of

operators is not hard-coded into the language. Instead, all
operators are delegated to methods with a specific signature
depending on the operator. This allows for defining and
implementing operators for any Java type.

One could, for instance, support arithmetic on a custom
type “distance”. Together with a skillful application of ex-
tension methods, the following code can be written:

12.cm + 44.mm == 164.mm

Just like in Java, the precedence and associativity of the
operators is predefined and cannot be changed.

By extending the Xbase language in a DSL definition,
it is also possible to introduce new operators and define a

4http://code.google.com/p/google-guice/



method mapping for them. Predefined operators can also be
removed by overriding and deactivating their default defini-
tions in the grammar.

3.2 Extension Methods
An extension method is a method that can be invoked

as if it were a member of a certain type, although it is de-
fined elsewhere. The first argument of an extension method
becomes the receiver. Xbase comes with a small standard
library that defines so-called extension methods for existing
types from the Java Runtime Environment (JRE).

For example, an extension method for java.lang.String is
defined which turns the first character of a given string to
upper case leaving the others as is:

public static String toFirstUpper(String receiver)

Because Xbase puts this static Java method as an extension
method on the scope of java.lang.String, it can be used like
this:

”some text”.toFirstUpper()

Xbase’s standard library comes with many useful extension
methods adding support for various operators and higher-
order functions for common types, such as java.lang.String,
java.util.List, etc.

Languages extending Xbase may contribute additional me-
thods and can change the whole implementation as it seems
fit. There are various ways in which extension methods can
be added. The simplest possibility is an explicit listing of
types that provide extensions to existing classes. The lan-
guage designer can predefine this list. This implies that
language users cannot add additional library functions.

An alternative is to have them looked up by a certain
naming convention. A third option is to allow users to im-
port extension methods on the client side. This is often the
most valuable way especially for general purpose languages.
The approach can be seen in the language Xtend, where ex-
tension methods are added using a special keyword on field
declarations, see Section 4.2.

The precedence of extension methods in Xbase is lower
than real member methods, i.e., one cannot override mem-
ber features. Moreover, extension members are not invoked
polymorphically. For example, if there are two extension
methods available (foo(Object) and foo(String)) the expres-
sion (foo as Object).foo would bind and invoke foo(Object).
The binding rules are the same as for overloaded Java meth-
ods that are statically bound according to the compile time
type of an expression. That is because extension invoca-
tions are actually shortcuts for method calls with parame-
ters. myValue.extensionCall() is equivalent to extensionCall(
myValue).

3.3 Model Inference
The method calls, constructor invocations, and field ref-

erences are linked against Java’s type model. That type
model is populated from real Java classes but may also be
instantiated as a representation of arbitrary models. They
may be based on the AST of a DSL script. This allows
for the linking of non-Java elements. The Java type model
in Xbase consists of all structural concepts of Java, such as
classes, interfaces, enums, and annotations and also includes
all possible members such as methods, fields, constructors,
or enum literals. Also Java generics are fully supported.

Xbase uses the type model during type and method reso-
lution. In order to refer to concepts from a DSL, there must
be a mapping to the Java type model. For example, a prop-
erty in the domain model language might be translated to
a Java field and two Java methods, one for the getter and
one representing the setter method. Given such a transla-
tion, an expression can now invoke the inferred field, getter
or setter method. The visibility constraints are applied ac-
cording to the Java language specification. Also a generic
code generator is available which automatically transforms
the Java type model to compilable Java source code.
In addition, the variable scope of an expression is defined

by associating it with a certain Java element. For example,
consider the domain model language where a Java field, a
getter and a setter method is inferred from a property. Imag-
ine one would want to specify a custom implementation for
the setter of a property using the following notation:

entity Person {
name : String set {

if (name == null)
throw new NullPointerException()

fName = name
}

}
To define a proper scope for the expression in the set block,

one would only have to associate the expression with the
derived setter method. Doing this automatically makes any
declared parameters and access to the instance (this) avail-
able: The expression is now logically contained in the de-
rived setter method. The scope of the expression is defined
accordingly. Also the expected type is declared through the
return type of the method, so incompatible return expres-
sions will be marked with an error. Xbase expressions can
be associated with derived Java methods, constructors, and
fields. The generic code generator not only generates dec-
larations for the inferred Java model but will also generate
proper Java statements and expressions for the associated
Xbase expressions.
Within the explained Java model inference, a Java model

is inferred from the DSL’s AST and all used expressions are
associated with elements in the inferred Java model. Doing
so provides the information needed to define the scopes of
the expressions and how the DSL is translated to executable
Java code. The Java model inference is a central aspect
when implementing a language inheriting from Xbase. The
model inference together with a grammar definition is suf-
ficient to define executable languages with Xbase, including
advanced IDE support.
A Java model inference is usually implemented in Xtend, a

statically typed programming language, which itself is built
with Xbase and presented in Section 4.2.

4. APPLICATIONS OF XBASE
In this section we present two examples of how Xbase

can be applied to develop DSLs. The first example is an
extension to the introductory Xtext example presented in
Section 2. We add support for operations, the Java type
system, and for building web services. In the second ex-
ample we show how the Xtend programming language is
implemented based on Xbase.



4.1 The Extended Domain Model Example
In the introductory example in Section 2, we presented a

simple language to define entities, datatypes and relation-
ships. The language does not support expressions and uses
a very primitive type system, consisting of data types and
entities. Because we initially did not allow expressions, the
type system did not contribute compatiblity rules. In this
section, support for the Java type system, including gener-
ics, and expressions are added to this language using Xbase.

4.1.1 The Extended Grammar
At first the grammar needs to inherit from org.eclipse.xtext

.xbase.Xbase, see Line 1 in Listing 3. This allows one to
use the rules defined in the Xbase grammar, that is, for
instance, needed to implement operations using these ex-
pressions. Second, as we intend to add Java type system
support, we no longer need our own types. Hence, we re-
place the symbol Type by a new symbol AbstractElement, see
Lines 8–9 in Listing 3. This non-terminal denotes a package
declaration, an entity, or an import. The package declara-
tion and the contained entities resemble the Java package
structure.

As we now intend to create and reuse Java classes, we
also modify the definition of Entity, starting with Line 19 in
Listing 3. Instead of being able to extend other entities, we
now want to allow arbitrary Java classes as the super type of
entites. To do this, we simple exchange the [Entity] reference
with JvmParametrizedTypeReference. This rule is inherited
from Xbase and allows to declare full Java type references,
e. g. java.lang.String or java.util.Map<Integer, String>.

Next, we want to add support for operations to the do-
main model language. In the first example, entities could
only declare properties. As an entity now can contain oper-
ations as well, we introduce a new symbol called Feature that
delegates to a Property or an Operation. Finally, we have to
define a syntax for the operations. The signature of an oper-
ation starts with the keyword op followed by a name, a list
of parameters and, separated by a colon, a return type. The
body of the operation is defined to be an XBlockExpression
which is a non-terminal defined as part of Xbase. The full
grammar is given in Listing 3. For details on the employed
syntax and the reused Xbase non-terminals, please refer to
the Xtext documentation.5

4.1.2 Java Type Model Inference
To be able to integrate the entities into the Java type

system, we have to map the concepts of the domainmodel
DSL to the Java types. The DomainmodelJvmModelInferrer,
which takes care of this, is given in Listing 4. It is imple-
mented in Xtend, see Section 4.2.

For each entity it defines a new Java class (Line 8) that
declares several members (Line 14). For properties, this is
a private field and the respective getter and setter method.
For operations, we convert the signature from the DSL to a
Java method signature and make it public. As the method’s
body, we simply assign the XBlockExpression as the logical
container, see Line 32 in Listing 3. The platform takes care
of that in the body assignment. Creating a JVM model also
enables the compiler to generate the full Java code from the
model.

5http://www.eclipse.org/Xtext/documentation/

Listing 3: The grammar of the domain model lan-
guage

1 grammar org.eclipse.xtext.example.domainmodel.
Domainmodel with org.eclipse.xtext.xbase.Xbase

2

3 generate domainmodel ”http://www.xtext.org/example/
Domainmodel”

4

5 DomainModel:
6 elements+=AbstractElement∗;
7

8 AbstractElement:
9 PackageDeclaration | Entity | Import;

10

11 Import:
12 ’import’ importedNamespace=

QualifiedNameWithWildCard;
13

14 PackageDeclaration:
15 ’package’ name=QualifiedName ’{’
16 elements+=AbstractElement∗
17 ’}’;
18

19 Entity:
20 ’entity’ name=ValidID (’extends’ superType=

JvmParameterizedTypeReference)? ’{’
21 features+=Feature∗
22 ’}’;
23

24 Feature:
25 Property | Operation;
26

27 Property:
28 name=ValidID ’:’ type=JvmTypeReference;
29

30 Operation:
31 ’op’ name=ValidID ’(’ (params+=

FullJvmFormalParameter (’,’ params+=
FullJvmFormalParameter)∗)? ’)’ ’:’ type=
JvmTypeReference

32 body=XBlockExpression;
33

34 QualifiedNameWithWildCard :
35 QualifiedName (’.’ ’∗’)?;



Listing 4: The Java Model inferrer of the domain
model language

1 class DomainmodelJvmModelInferrer extends
AbstractModelInferrer {

2

3 @Inject extension JvmTypesBuilder
4 @Inject extension IQualifiedNameProvider
5

6 def dispatch infer(Entity entity,
IJvmDeclaredTypeAcceptor acceptor, boolean
prelinkingPhase) {

7 acceptor.accept(
8 entity.toClass( entity.fullyQualifiedName)
9 ).initializeLater [

10 documentation = entity.documentation
11 if (entity.superType != null)
12 superTypes += entity.superType.

cloneWithProxies
13

14 for ( f : entity.features ) {
15 switch f {
16

17 Property : {
18 members += f.toField(f.name,

f.type)
19 members += f.toGetter(f.

name, f.type)
20 members += f.toSetter(f.name

, f.type)
21 }
22

23 Operation : {
24 members += f.toMethod(f.

name, f.type) [
25 documentation = f.

documentation
26 for (p : f.params) {
27 parameters += p.

toParameter(p.
name, p.
parameterType)

28 }
29 body = f.body
30 ]
31 }
32 }
33 }
34 ]
35 }
36

37 }

Listing 5: A domain model with behavior
1 package my.social.network
2

3 import java.uil.List
4

5 entity Person {
6 firstName : String
7 lastName : String
8 friends : List<Person>
9

10 op getFullName() : String {
11 return firstName + ” ”+ lastName
12 }
13

14 op getSortedFriends() : List<Person> {
15 return friends.sortBy[fullName]
16 }
17 }

Based on these two artifacts, one is now able to define
entities that link against Java types and may include defi-
nitions of operations including their behavior. At the same
time, model definitions are translated to valid Java source
code. Listing 5 shows an example of such a model definition.

4.1.3 Building Web Services
In addition to the aforementioned extensions, another ex-

tension for compiling RESTful web services and Java Per-
sictence API (JPA)6 compatible entity classes has been de-
veloped as an evaluation scenario for the Xbase language
and tools.
The extensions are implemented by adding mappings to

the JVM model inferrer, which generates two additional
classes for each entity, in addition to the original
DomainmodelJvmModelInferrer. One class is a so called data
access object (DAO) class, that encapsulates database logic
to create, retrieve, update and delete persisted entities via
JPA’s database access functionality. The other class pro-
vides RESTful web service bindings for each of the opera-
tions provided by the DAO class. These web services are
defined using the JAX-RS,7 the Java API for RESTful web
services, which means that methods and classes are anno-
tated with REST-specific annotations for URL and param-
eter mapping as well as HTTP content negotiation. This
extension is available as open source software.8

4.2 Xtend
Xtend9 is a statically typed, functional, and object-ori-

ented programming language for the JVM. Xtend is devel-
oped at Eclipse.org and is freely available under the Eclipse
Public License (EPL), similar to Xtext. Its primary goal is
to provide a significantly more concise notation than Java,
without switching to a whole new kind of language. The
language improves on Java by removing the need for writing
redundant and superfluous information. In addition, it adds
some new language features. For instance, Xtend’s tem-
plate expressions are designed to concatenate strings, e.g.,

6http://jcp.org/en/jsr/detail?id=317
7http://jcp.org/en/jsr/detail?id=311
8https://github.com/RvonMassow/Xrest
9http://www.eclipse.org/xtend/



Listing 6: Multi-methods in Xtend
1 class MultiMethods {
2 def dispatch overloaded(String s) { return ’string’ }
3 def dispatch overloaded(Object s) { return ’object’ }
4 }

for generating web pages. Xtend inherits all of the features
from Xbase but adds an additional expression for multi-line
strings and allows for declaring classes, methods, and so on.

4.2.1 Main Concepts
One of the main design goals of Xbase and also Xtend was

to eliminate the need to write boiler plate code by provid-
ing reasonable defaults. For instance, classes and methods
are public by default and type inference for variables and
method declarations allows to infer the return type of oper-
ations, thus, eliminating the need to define that redundantly.

Generally, Xtend reuses the concepts and even the key-
words of Java, such that new users can feel comfortable
immediately. Like Java classes, Xtend classes can declare
members, i.e., fields and methods. Fields have almost the
same syntax as in Java. The only difference is that the field’s
name is optional if the field is used as an extension provider.
That means, a local field can provide extension methods,
which is a powerful feature especially when used in conjunc-
tion with the dependency injection pattern. Static imports
can act as extension providers, too.

Xtend derives its name from its extensive support of ex-
tension methods.

4.2.2 Xtend Template Expressions
Xtend adds one expression to the set of Xbase expessions:

the template expression. It is a multi-line string literal which
supports string interpolation (i.e., embedded expressions).
The template expression is defined by extending the Xbase
grammar and adding several additional rules.

They also require additional scoping rules and an im-
plementation in the compiler and interpreter. Finally, the
type provider needs to know the type of a template expres-
sion. All these aspects are implemented by extending the
original services provided by Xbase and by adding another
case for template expressions. The necessary adaptions are
hooked in by means of dependency injection only, i.e., with-
out touching any line of the existing Xbase code.

4.3 Dispatch methods
Like for any other Xbase language, a model inferrer is

implemented mapping the various concepts from Xtend to
Java. In most cases the translation is a straight mapping
for Xtend. In one case, however, the mapping is more in-
teresting: Xtend supports multi-methods which allow one
to overload a method for different parameter types. In con-
trast to regular method resolution done at compile time, a
multi-method is bound at run time based on the run-time
type. This behavior is implemented through a synthetic dis-
patch method using the most common parameter types of
all overloaded declarations.

For example, given the definition in Listing 6, the Java
code in Listing 7 is generated. This mapping is implemented
in the Java type model inferrer.

Listing 7: Multi-methods in Xtend
1 public class MultiMethods {
2

3 protected String overloaded(String s) { return ”
string”; }

4 protected String overloaded(Object s) { return ”
object”; }

5

6 public String overloaded(Object s) {
7 if (s instanceof String)
8 return overloaded((String)s);
9 else

10 return overloaded(s);
11 }
12 }

5. RELATED WORK
This paper presents Xtext as a framework for implement-

ing external DSLs. Below, we take a look at some related
work. First, we compare Xtext to other frameworks for ex-
ternal DSL implementation. Second, we take a look at other
JVM languages supporting the definition of internal DSLs.

5.1 External DSL Frameworks
Several frameworks for external DSL development exist

besides Xtext [14, 17, 20]. In this section, we exemplary
compare the Xtext framework with the Meta Programming
System developed by Jetbrains.
The Meta Programming System (MPS) by JetBrains10 is

another DSL development tool. In contrast to Xtext, MPS
uses projectional editors for both, DSL development itself
and the IDE for that DSL. This means, languages are not
based on a plain text grammar. Instead, the developer cre-
ates a meta model of the AST by defining concepts. For
the representation to the user, the DSL developer creates
editors, which can be textual or even graphical, showing a
representation of the AST. These editors operate directly on
the underlying AST.
Similar to Xtext, MPS comes with a base language. This

base language can be reused in any MPS DSL. It provides
support for expressions, statements, typing, and operations
(i.e., feature calls) and can also be directly compiled to Java
statements, expressions, and feature calls.
Dissimilar to Xtext, the use of projectional editing pre-

vents the tooling from stumbling over syntactic ambiguities
in the DSL. Thus, it is possible to compose arbitrary lan-
guages. While the AST is always unambiguous, this is not
necessarily the case for the projected syntax, which can be
confusing when working with MPS.

5.2 Internal DSLs
In contrast to external DSLs, for which special editors and

compilers have to be developed, it is also possible to embed
DSLs into a general purpose language which serves as the
host for the DSL. For such approaches, the host language’s
infrastructure can be reused completely. The downside of
this approach is that the infrastructure can rarely be tailored
specifically for the DSL.

10http://www.jetbrains.com/mps/



For developing internal DSLs, some languages have proved
to be well-suited, due to their flexible syntax. One of the
oldest and at the same time most powerful languages which
are used to develop internal DSLs is Lisp. Later on, func-
tional languages, like Haskell, have been often advocated to
implement internal DSLs, e.g., for pretty printing [21], music
composition [11], or financial contract analysis [18].

In the following, we discuss the approaches for DSL devel-
opment in Groovy and Scala and compare this to the Xtext
approach.

5.2.1 Groovy
Groovy is a dynamically typed language that runs on the

Java Virtual Machine [16].
Like Xtend, Groovy has support for operator overloading

and lambda expressions. Because Groovy supports run-time
meta-programming, it is possible to add new methods to
classes at run time. Categories are a convenient feature to
add new methods to existing classes. A special DSL for
the Eclipse plug-in allows one to tell the IDE about applied
categories. As a result, users will get rudimentary content
assistance.

Groovy’s compile-time meta-programming capabilities al-
low for rewriting the AST at compile time as well.

5.2.2 Scala
Scala is a statically typed language for the JVM. It is a

blend of functional and object-oriented concepts and is often
used as a host language for DSLs. It offers various possibil-
ities to adapt the syntax to the needs of the DSL, e.g., by
operator overloading, implicits, and closures [8]. These fea-
tures allow one to define very concise internal DSLs.

In addition, the Scala group is working on so-called lan-
guage virtualization. Language virtualization, which com-
bines polymorphic embedding of languages and a staged
compilation process, supports the application of domain-
specific optimizations [1]. This mechanism is achieved by
decoupling the DSL definition from its execution. The DSL
is defined in an abstract manner, by defining the types and
operations on them. These DSL concepts are mapped to
actual implementations in several stages in which domain-
specific optimizations can be applied in the form of AST
rewriting. Another very similar approach is covered in SIP-
16 “Self Cleaning Macros” [5], which introduces a convenient
way to declare AST transformations.

5.2.3 Summary
These efforts demonstrate how general purpose languages

are enhanced to support the advantages of external DSLs.
While tools for external DSLs, such as Xtext, move toward
supporting the advantages of internal DSLs by allowing for
the reuse of sub-languages such as Xbase, general purpose
languages introduce compile-time meta programming and
language virtualization to support the advantages of an ex-
ternal DSL, such as compiling to arbitrary platforms. The
two approaches seem to converge eventually.

6. CONCLUSIONS AND FUTURE WORK
In this paper we presented Xbase, an expression language

library which can be integrated into domain-specific lan-
guages built with the Xtext language development frame-
work. We discussed the main concepts of the design and
implementation of the Xbase language and demonstrated its

application to two different languages. Xbase significantly
reduces the effort to implement domain-specific languages
with behavioral aspects running on the Java Virtual Ma-
chine.
Although Xbase has been available for less than a year,

it is already employed in industry and open-source projects.
Examples are Jnario,11 a language for executable specifica-
tions, and a domain-specific language to script CAD sys-
tems, developed by Sandvik Coromant which has been pre-
sented at EclipseCon 2012.12

For the future, we plan to support translations of Xbase
expressions to other target languages, such as JavaScript, C
and Objective-C.
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