
Compiling Multi-Paradigm DelarativePrograms into Prolog?Sergio Antoy1 Mihael Hanus21 Department of Computer Siene, Portland State University,P.O. Box 751, Portland, OR 97207, U.S.A., antoy�s.pdx.edu2 Institut f�ur Informatik, Christian-Albrehts-Universit�at Kiel,Olshausenstr. 40, D-24098 Kiel, Germany, mh�informatik.uni-kiel.de

Springer-VerlagIn Pro. of the 3rd International Workshop on Frontiers of CombiningSystems, FroCoS 2000, Nany.Springer LNCS 1794, pp. 171{185, 2000

Abstrat. This paper desribes a high-level implementation of the on-urrent onstraint funtional logi language Curry. The implementation,direted by the lazy pattern mathing strategy of Curry, is obtained bytransforming Curry programs into Prolog programs. Contrary to previ-ous transformations of funtional logi programs into Prolog, our imple-mentation inludes new mehanisms for both eÆiently performing on-urrent evaluation steps and sharing ommon subterms. The pratialresults show that our implementation is superior to previously proposedsimilar implementations of funtional logi languages in Prolog and isompetitive w.r.t. lower-level implementations of Curry in other targetlanguages.An noteworthy advantage of our implementation is the ability to immedi-ately employ in Curry existing onstraint solvers for logi programming.In this way, we obtain with a relatively modest e�ort the implement-ation of a delarative language ombining lazy evaluation, onurrenyand onstraint solving for a variety of onstraint systems.1 IntrodutionThe multi-paradigm language Curry [12, 18℄ seamlessly ombines features fromfuntional programming (nested expressions, lazy evaluation, higher-order fun-tions), logi programming (logial variables, partial data strutures, built-insearh), and onurrent programming (onurrent evaluation of expressions withsynhronization on logial variables). Moreover, the language provides both themost important operational priniples developed in the area of integrated fun-tional logi languages: \residuation" and \narrowing" (see [10℄ for a survey onfuntional logi programming).Curry's operational semantis (�rst desribed in [12℄) ombines lazy redu-tion of expressions with a possibly non-deterministi binding of free variablesourring in expressions. To provide the full power of logi programming, (equa-tional) onstraints an be used in the onditions of funtion de�nitions. Basi? This researh has been partially supported by the DAAD/NSF under grant INT-9981317, the German Researh Counil (DFG) under grant Ha 2457/1-1, and by agrant from Portland State University.

onstraints an be ombined into omplex onstraint expressions by a onur-rent onjuntion operator that evaluates onstraints onurrently. Thus, purelyfuntional programming, purely logi programming, and onurrent (logi) pro-gramming are obtained as partiular restritions of this model [12℄.In this paper, we propose a high-level implementation of this omputationmodel in Prolog. This approah avoids the omplex implementation of an ab-strat mahine (e.g., [16℄) and is able to reuse existing onstraint solvers availablein Prolog systems. In the next setion, we review the basi omputation modelof Curry. The transformation sheme for ompiling Curry programs into Pro-log programs is presented in Setion 3. Setion 4 ontains the results of ourimplementation. Setion 5 disusses related work and ontains our onlusions.2 The Computation Model of CurryThis setion outlines the omputation model of Curry. A formal de�nition anbe found in [12, 18℄.The basi omputational domain of Curry is, similarly to funtional or logilanguages, a set of data terms onstruted from onstants and data onstrutors.These are introdued by data type delarations suh as:1data Bool = True | Falsedata List a = [℄ | a : List aTrue and False are the Boolean onstants. [℄ (empty list) and : (non-emptylist) are the onstrutors for polymorphi lists (a is a type variable rangingover all types and the type List a is usually written as [a℄ for onformity withHaskell). A data term is a well-formed expression ontaining variables, onstantsand data onstrutors, e.g., True:[℄ or [x,y℄ (the latter stands for x:(y:[℄)).Funtions are operations on data terms whose meaning is spei�ed by(onditional) rules of the general form \l | = r where vs free". l has theform f t1 : : : tn, where f is a funtion, t1; : : : ; tn are data terms and eah variableours only one. The ondition is a onstraint. r is a well-formed expressionthat may also ontain funtion alls. vs is the list of free variables that ourin and r, but not in l. The ondition and the where part an be omitted if and vs are empty, respetively. A onstraint is any expression of the built-intype Constraint. Primitive onstraints are equations of the form e1 =:= e2. Aonditional rule is applied only if its ondition is satis�able. A Curry program isa set of data type delarations and rules.Example 1. Together with the above data type delarations, the following rulesde�ne operations to onatenate lists and to �nd the last element of a list:on [℄ ys = yson (x:xs) ys = x : on xs ys1 Curry has a Haskell-like syntax [25℄, i.e., (type) variables and funtion names startwith lowerase letters and the names of type and data onstrutors start with anupperase letter. Moreover, the appliation of f to e is denoted by juxtaposition(\f e"). 2

last xs | on ys [x℄ =:= xs = x where x,ys freeIf \on ys [x℄ =:= xs" is solvable, then x is the last element of list xs. 2Funtional programming: In funtional languages, the interest is in omputingvalues of expressions, where a value does not ontain funtion symbols (i.e., itis a data term) and should be equivalent (w.r.t. the program rules) to the initialexpression. The value an be omputed by replaing instanes of rules' left sideswith orresponding instanes of right sides. For instane, we ompute the valueof \on[1℄[2℄" by repeatedly applying the rules for onatenation to thisexpression:on [1℄ [2℄ ! 1:(on [℄ [2℄) ! [1,2℄Curry is based on a lazy (outermost) strategy, i.e., the seleted funtion all ineah redution step is outermost among all reduible funtion alls. This strategysupports omputations with in�nite data strutures and a modular programmingstyle with separation of ontrol aspets. Moreover, it yields optimal omputations[5℄ and a demand-driven searh method [15℄ for the logi part of a program whihwill be disussed next.Logi programming: In logi languages, an expression (or onstraint) may ontainfree variables. A logi programming system should ompute solutions, i.e., �ndvalues for these variables suh that the expression (or onstraint) is reduibleto some value (or satis�able). Fortunately, this requires only a minor extensionof the lazy redution strategy. The extension deals with non-ground expressionsand variable instantiation: if the value of a free variable is demanded by theleft-hand sides of some program rules in order to ontinue the omputation (i.e.,no program rule is appliable if the variable remains unbound), the variable isbound to all the demanded values. For eah value, a separate omputation isperformed. For instane, if the funtion f is de�ned by the rulesf 0 = 2f 1 = 3(the integer numbers are onsidered as an in�nite set of onstants), then theexpression \f x", with x a free variable, is evaluated to 2 by binding x to 0, or itis evaluated to 3 by binding x to 1. Thus, a single omputation step may yield asingle new expression (deterministi step) or a disjuntion of new expressions to-gether with the orresponding bindings (non-deterministi step). For indutivelysequential programs [3℄ (these are, roughly speaking, funtion de�nitions withone demanded argument), this strategy is alled needed narrowing [5℄. Needednarrowing omputes the shortest suessful derivations (if ommon subtermsare shared) and minimal sets of solutions. Moreover, it is fully deterministi forexpressions that do not ontain free variables.Constraints: In funtional logi programs, it is neessary to solve equationsbetween expressions ontaining de�ned funtions (see Example 1). In general,an equation or equational onstraint e1=:= e2 is satis�ed if both sides e1 and e2are reduible to the same value (data term). As a onsequene, if both sides are3

unde�ned (non-terminating), then the equality does not hold.2 Operationally,an equational onstraint e1=:= e2 is solved by evaluating e1 and e2 to uni�abledata terms, where the lazy evaluation of the expressions is interleaved with thebinding of variables to onstrutor terms [21℄. Thus, an equational onstrainte1=:= e2 without ourrenes of de�ned funtions has the same meaning (uni-�ation) as in Prolog. Curry's basi kernel only provides equational onstraints.Constraint solvers for other onstraint strutures an be oneptually integratedwithout diÆulties. The pratial realization of this integration is one of thegoals of this work.Conurrent omputations: To support exible omputation rules and avoid anunontrolled instantiation of free argument variables, Curry gives the optionto suspend a funtion all if a demanded argument is not instantiated. Suhfuntions are alled rigid in ontrast to exible funtions|those that instantiatetheir arguments when the instantiation is neessary to ontinue the evaluationof a all. As a default easy to hange, Curry's onstraints (i.e., funtions withresult type Constraint) are exible whereas non-onstraint funtions are rigid.Thus, purely logi programs (where prediates orrespond to onstraints) behaveas in Prolog, and purely funtional programs are exeuted as in lazy funtionallanguages, e.g., Haskell.To ontinue a omputation in the presene of suspended funtion alls, on-straints are ombined with the onurrent onjuntion operator &. The onstraint1 & 2 is evaluated by solving 1 and 2 onurrently.A design priniple of Curry is the lear separation of sequential and onur-rent ativities. Sequential omputations, whih form the basi units of a pro-gram, are expressed as usual funtional (logi) programs and are omposed intoonurrent omputation units via onurrent onjuntions of onstraints. Thisseparation supports the use of eÆient and optimal evaluation strategies for thesequential parts. Similar tehniques for the onurrent parts are not available.This is in ontrast to other more �ne-grained onurrent omputation modelslike AKL [19℄, CCP [27℄, or Oz [28℄.Monadi I/O: To support real appliations, the monadi I/O onept of Haskell[29℄ has been adapted to Curry to perform I/O in a delarative manner. Inthe monadi approah to I/O, an interative program is onsidered as a fun-tion omputing a sequene of ations whih are applied to the outside world.An ation has type \IO �", whih means that it returns a result of type �whenever it is applied to a partiular state of the world. For instane, getChar,of type \IO Char", is an ation whose exeution, i.e., appliation to a world,reads a harater from the standard input. Ations an be omposed only se-quentially in a program and their omposition is exeuted whenever the mainprogram is exeuted. For instane, the ation getChar an be omposed withthe ation putChar (whih has type Char -> IO () and writes a haraterto the terminal) by the sequential omposition operator >>= (whih has type2 This notion of equality, known as strit equality [9, 22℄, is the only reasonable notionof equality in the presene of non-terminating funtions.4

IO � -> (� -> IO �) -> IO �). Thus, \getChar >>= putChar" is a om-posed ation whih prints the next harater of the input stream on the sreen.The seond omposition operator, >>, is like >>=, but ignores the result of the�rst ation. Furthermore, done is the \empty" ation whih does nothing (see[29℄ for more details). For instane, a funtion whih takes a string (list of har-aters) and produes an ation that prints the string to the terminal followed bya new line is de�ned as follows:putStrLn [℄ = putChar '\n'putStrLn (:s) = putChar >> putStrLn sIn the next setion, we will desribe a transformation sheme to implement thisomputation model in Prolog.3 A Transformation Sheme for Curry ProgramsAs mentioned above, the evaluation of nested expressions is based on a lazystrategy. The exat strategy is spei�ed via de�nitional trees [3℄, a data stru-ture for the eÆient seletion of the outermost reduible expressions. Direttransformations of de�nitional trees into Prolog (without an implementation ofonurreny features) have been proposed in [2, 4, 11, 21℄. De�nitional trees dealwith arbitrarily large patterns and use the notion of \position" (i.e., a sequene ofpositive integers) to speify the subterm where the next evaluation step must beperformed. We avoid this ompliation and obtain a simpler transformation by�rst ompiling de�nitional trees into ase expressions as desribed, e.g., in [14℄.Thus, eah funtion is de�ned by exatly one rule in whih the right-hand sideontains ase expressions to speify the pattern mathing of atual arguments.For instane, the funtion on in Example 1 is transformed into:on xs ys = ase xs of [℄ -> ys(z:zs) -> z : on zs ysA ase expression is evaluated by reduing its �rst argument to a head normalform, i.e., a term whih has no de�ned funtion symbol at the top, and mathingthis redued term with one of the patterns of the ase expression. Case expres-sions are used for both rigid and exible funtions. Operationally, ase expres-sions are used for rigid funtions only, whereas flexase expressions are usedfor exible funtions. The di�erene is that a ase expression suspends if thehead normal form is a free variable, whereas a flexase expression (don't knownon-deterministially) instantiates the variable to the di�erent onstrutors inthe subsequent patterns.To implement funtions with overlapping left-hand sides (where there is nosingle argument on whih a ase distintion an be made), there is also a dis-juntive expression \e1 or e2" meaning that both alternatives are don't knownon-deterministially evaluated.3 For instane, the funtion0 * x = 03 In the implementation desribed in this paper, don't know non-determinism is im-plemented via baktraking as in Prolog.5

x * 0 = 0is transformed into the single rulex * y = or (flexase x of 0 -> 0)(flexase y of 0 -> 0)under the assumption that *" is a exible operation.Transformation shemes for programs where all the funtions are exible havebeen proposed in [2, 4, 11, 21℄. These proposals are easily adaptable to our rep-resentation using ase and or expressions. The hallenge of the implementationof Curry is the development of a transformation sheme that provides both thesuspension of funtion alls and the onurrent evaluation of onstraints (whihwill be disussed later).3.1 Implementing Conurrent EvaluationsMost of the urrent Prolog systems support oroutining and the delaying of liter-als [23℄ if some arguments are not suÆiently instantiated. One ould use thesefeatures to provide the suspension, when required, of alls to rigid funtions.However, in onditional rules it is not suÆient to delay the literals orrespond-ing to suspended funtion alls. One has to wait until the ondition has beenompletely proved to avoid introduing unneessary omputations or in�niteloops. The following example helps in understanding this problem.Example 2. Consider the funtion de�nitionsf x y | g x =:= y = h yg [℄ = [℄h [℄ = [℄h (z:zs) = h zswhere g is rigid and h is exible. To evaluate the expression \f x y" (wherex and y are free variables), the ondition \g x =:= y" must be proved. Sineg is rigid, this evaluation suspends and the right-hand side is not evaluated.However, if we only delay the evaluation of the ondition and proeed with theright-hand side, we run into an in�nite loop by applying the last rule forever.This loop is avoided if x is eventually instantiated by another thread of the entireomputation. 2To explain how we solve this problem we distinguish between sequential andonurrent omputations. A sequential omputation is a sequene of alls toprediates. When a all is ativated, it may return for two reasons: either theall's omputation has ompleted or the all's omputation has been suspendedor delayed. In a sequential omputation, we want to exeute a all only if theprevious all has ompleted. Thus, we add an input argument and an outputargument to eah prediate. Eah argument is a variable that is either unin-stantiated or bound to a onstant|by onvention the symbol eval that standfor \fully evaluated". We use these arguments as follows. In a sequential om-putation, the all to a prediate is exeuted if and only if its input argument6

is instantiated to eval. Likewise, a omputation has ompleted if and only ifits output argument is instantiated to eval. As one would expet, we hain theoutput argument of a all to the input argument of the next all to ensure thesequentiality of a omputation.The ativation or delay of a all is easily and eÆiently ontrolled by blokdelarations.4 For instane, the blok delaration \:- blok f(?,?,?,-,?)"spei�es that a all to f is delayed if the fourth argument is a free variable.Aording to the sheme just desribed, we obtain the following lauses for therules de�ning the funtions f and g above:5:- blok f(?,?,?,-,?).f(X,Y,Result,Ein,Eout) :- eq(g(X),Y,Ein,E1), h(Y,Result,E1,Eout).:- blok g(?,?,-,?).g(X,Result,Ein,Eout) :- hnf(X,HX,Ein,E1), g_1(HX,Result,E1,Eout).:- blok g_1(-,?,?,?), g_1(?,?,-,?).g_1([℄,[℄,E,E).The prediate hnf omputes the head normal form of its �rst argument. If ar-gument HX of g is bound to the head normal form of X, we an math this headnormal form against the empty list with the rule for g_1.We use blok delarations to ontrol the rigidity or exibility of funtions,as well. Sine g is a rigid funtion, we add the blok delaration g_1(-,?,?,?)to avoid the instantiation of free variables. A omputation is initiated by set-ting argument Ein to a onstant, i.e., expression (f x y) is evaluated by goalf(X,Y,Result,eval,Eout). If Eout is bound to eval, the omputation has om-pleted and Result ontains the omputed result (head normal form).Based on this sheme, the onurrent onjuntion operator & is straightfor-wardly implemented by the following lauses (the onstant suess denotes theresult of a suessful onstraint evaluation):&(A,B,suess,Ein,Eout) :- hnf(A,HA,Ein,E1), hnf(B,HB,Ein,E2),waitonj(HA,HB,E1,E2,Eout).?- blok waitonj(?,?,-,?,?), waitonj(?,?,?,-,?).waitonj(suess,suess,_,E,E).As one an see, prediate waitonj waits for the solution of both onstraints.The elements of our approah that most ontribute to this simple trans-formation of Curry programs into Prolog programs are the implementation ofonurreny and the use of both ase and or expressions. Eah funtion is trans-formed into a orresponding prediate to ompute the head normal form of a4 An alternative to blok is freeze whih leads to a simpler transformation sheme.However, our experiments indiate that freeze is a more expensive operation (atleast in Sistus-Prolog Version 3#5). Using freeze, the resulting Prolog programswere approximately six times slower than using the sheme presented in this paper.5 As usual in the transformation of funtions into prediates, we transform n-aryfuntions into n+1-ary prediates where the additional argument ontains the resultof the funtion all. 7

all to this funtion. As shown above, this prediate ontains additional argu-ments for storing the head normal form and ontrolling the suspension of funtionalls. Case expressions are implemented by evaluating the ase argument to headnormal form. We use an auxiliary prediate to math the di�erent ases. Thedi�erene between flexase and ase is only in the blok delaration for thease argument. \or" expressions are implemented by alternative lauses and allother expressions are implemented by alls to prediate hnf, whih omputesthe head normal form of its �rst argument. Thus, funtion on in Example 1is transformed into the following Prolog lauses::- blok on(?,?,?,-,?).on(A,B,R,Ein,Eout) :- hnf(A,HA,Ein,E1), on_1(HA,B,R,E1,Eout).:- blok on_1(-,?,?,?,?), on_1(?,?,?,-,?).on_1([℄ ,Ys,R,Ein,Eout) :- hnf(Ys ,R,Ein,Eout).on_1([Z|Zs℄,Ys,R,Ein,Eout) :- hnf([Z|on(Zs,Ys)℄,R,Ein,Eout).Should on be a exible funtion, the blok delaration on_1(-,?,?,?,?)would be omitted, but the rest of the ode would be unhanged. The de�nitionof hnf is basially a ase distintion on the di�erent top-level symbols that anour in an expression and a all to the orresponding funtion if there is ade�ned funtion at the top (ompare [11, 21℄).Although this ode is quite eÆient due to the �rst argument indexing ofProlog implementations, it an be optimized by partially evaluating the alls tohnf, as disussed in [4, 11℄. Further optimizations ould be done if it is knownat ompile time that the evaluation of expressions will not ause any suspension(e.g., when all arguments are ground at run time). In this ase, the additionaltwo arguments in eah prediate and the blok delarations an be omitted andwe obtain the same sheme as proposed in [11℄. This requires stati analysistehniques for Curry whih is an interesting topi for further researh.3.2 Implementing SharingEvery serious implementation of a lazy language must implement the sharing ofommon subterms. For instane, onsider the ruledouble x = x + xand the expression \double (1+2)". If the two ourrenes of the argumentx in the rule's right-hand side are not shared, the expression 1+2 is evaluatedtwie. Thus, sharing the di�erent ourrenes of a same variable avoids unnees-sary omputations and is the prerequisite for optimal evaluation strategies [5℄.In low level implementations, sharing is usually obtained by graph struturesand destrutive assignment of nodes [26℄. Sine a destrutive assignment is notavailable in Prolog, we resort to Prolog's sharing of logi variables. This ideahas been applied, e.g., in [8, 11, 20℄ where the prediates implementing funtionsare extended by a free variable that, after the evaluation of the funtion all,is instantiated to the omputed head normal form. Although this avoids themultiple evaluation of expressions, it introdue a onsiderable overhead when no8

ommon subterms our at run time|in some ases more than 50%, as reportedin [11℄. Therefore, we have developed a new tehnique that auses no overhead inall pratial experiments we performed. As seen in the example above, sharingis only neessary if terms are dupliated by a variable having multiple our-renes in a ondition and/or right-hand side. Thus, we share these ourrenesby a speial share struture ontaining the omputed result of this variable. Forinstane, the rule of double is translated intodouble(X,R,E0,E1) :- hnf(share(X,EX,RX)+share(X,EX,RX),R,E0,E1).In this way, eah ourrene of a left-hand side variable X with multiple our-renes in the right-hand side is replaed by share(X,EX,RX), where RX ontainsthe result omputed by evaluating X. EX is bound to some onstant if X has beenevaluated. EX is neessary beause expressions an also evaluate to variables ina funtional logi language. Then, the de�nition of hnf is extended by the rule:hnf(share(X,EX,RX),RX,E0,E1) :- !,(nonvar(EX) -> E1=E0; hnf(X,HX,E0,E1), EX=eval, propagateShare(HX,RX)).where propagateShare(HX,RX) puts share strutures into the arguments of HX(yielding RX) if HX is bound to a struture and the arguments are not alreadyshared.This implementation sheme has the advantage that the Prolog ode forrules without multiple variable ourrenes remains unhanged and onsequentlyavoids the overhead for suh rules (in ontrast to [8, 11, 20℄). The following tableshows the speedup (i.e., the ratio of runtime without sharing over runtime withsharing), the number of redution steps without (RS1) and with sharing (RS2),and the number of shared variables (SV) in the right-hand side of rules of pro-grams we benhmarked. It is worth to notie that the speedup for the �rst twogoals reported in [11℄, whih uses a di�erent tehnique, is 0.64 (i.e., a slowdown)and 3.12. These values show the superiority of our tehnique.Example: Speedup RS1 RS2 # SV10000�10000+10000 =:= True 1.0 20002 20002 0double(double(one 100000)) =:= x 4.03 400015 100009 1take 25 fibs 6650.0 196846 177 3take 50 primes 15.8 298070 9867 2quiksort (quiksort [...℄) 8.75 61834 3202 2mergesort [...℄ 91.5 303679 1057 14Program analysis tehniques are more promising with our sheme than with[8, 11, 20℄. For instane, no share strutures must be introdued for argumentvariables that de�nitely do not ontain funtion alls at run time, e.g., argumentsthat are always uninstantiated or bound to onstrutor terms.3.3 ConstraintsEquational onstraints, denoted e1=:= e2, are solved by lazily evaluating eahside to uni�able data terms. In our translation, we adopt the implementation of9

this mehanism in Prolog presented in [21℄. Basially, equational onstraints aresolved by a prediate, eq, whih omputes the head normal form of its argumentsand performs a variable binding if one of the arguments is a variable.:- blok eq(?,?,-,?).eq(A,B,Ein,Eout) :- hnf(A,HA,Ein,E1), hnf(B,HB,E1,E2),eq_hnf(HA,HB,E2,Eout).:- blok eq_hnf(?,?,-,?).eq_hnf(A,B,Ein,Eout) :- var(A), !, bind(A,B,Ein,Eout).eq_hnf(A,B,Ein,Eout) :- var(B), !, bind(B,A,Ein,Eout).eq_hnf((X1,...,Xn),(Y1,...,Yn),Ein,Eout) :- !,hnf((X1=:=Y1)&...&(Xn=:=Yn),_,Ein,Eout). % 8n-ary onstr. bind(X,Y,E,E) :- var(Y), !, X=Y.bind(X,(Y1,...,Yn),Ein,Eout) :- !, % 8n-ary onstrutors ours_not(X,Y1),..., ours_not(X,Yn), X=(X1,...,Xn),hnf(Y1,HY1,Ein,E1), bind(X1,HY1,E1,E2),...hnf(Yn,HYn,E2n�2,E2n�1), bind(Xn,HYn,E2n�1,Eout).Due to the lazy semantis of the language, the binding is performed inrement-ally. We use an auxiliary prediate, bind, whih performs an our hek followedby an inremental binding of the goal variable and the binding of the arguments.Similarly, the evaluation of an expression e to its normal form, whih isthe intended meaning of e, is implemented by a prediate, nf, that repeatedlyevaluates all e's subexpressions to head normal form.Apart from the additional arguments for ontrolling suspensions, this shemeis idential to the sheme proposed in [21℄. Unfortunately, this sheme generallyauses a signi�ant overhead when one side of the equation is a variable and theother side evaluates to a large data term. In this ase, the inremental instan-tiation of the variable is unneessary and auses the overhead, sine it reatesa new data struture and performs an our hek. We avoid this overhead byevaluating to normal form, if possible, the term to whih the variable must bebound. To this aim, we replae bind with bind_trynf in the lauses of eq_hnftogether with the following new lause:bind_trynf(X,T,Ein,Eout) :- nf(T,NT,Ein,E1),(nonvar(E1) -> ours_not(X,NT), X=NT, Eout=E1; bind(X,T,Ein,Eout)).If the evaluation to normal form does not suspend, the variable X is bound to thenormal form by X=NT, otherwise the usual prediate for inremental binding isalled. Although this new sheme might ause an overhead due to potential re-evaluations, this situation did not our in all our experiments. In some pratialbenhmarks, we have measured a speedup up to a fator of 2.The ompilation of Curry programs into Prolog greatly simpli�es the integra-tion of onstraint solvers for other onstraint strutures, if the underlying Prologsystem o�ers solvers for these strutures. For instane, Sistus-Prolog inludes asolver for an arithmeti onstraint over reals, whih is denoted by enlosing the10

onstraint between urly brakets. E.g., goal {3.5=1.7+X} binds X to 1.8. Wemake these onstraints available in Curry by translating them into the orres-ponding onstraints of Sistus-Prolog. For instane, the inequational onstrainte1<e2 is translated as follows. First, e1 and e2, whih might ontain user-de�nedfuntions or might be variables, are evaluated to their (head) normal forms, saye01 and e02. Then, the goal {e01<e02} is alled. With this tehnique, all onstraintsolvers available in Sistus-Prolog beome available in Curry.3.4 Further FeaturesCurry supports standard higher-order onstruts suh as lambda abstrationsand partial appliations. In Prolog, the higher-order features of Curry are im-plemented aording to Warren's original proposal [30℄ to translate higher-orderonstruts into �rst-order logi programming. A lambda abstration is elim-inated by transforming it into a top-level de�nition of a new funtion. Con-sequently, the fundamental higher-order onstrut is a binary funtion, apply,whih applies its �rst argument, a funtion, to its seond argument, the funtion'sintended argument. For eah n-ary funtion or onstrutor f, we introdue n�1onstrutors with the same name. This enables us to implement the appliationfuntion with the following Prolog lauses:apply(f(X1,...,Xk),X,f(X1,...,Xk,X),E,E). % 0 � k < n� 1apply(f(X1,...,Xn�1),X,H,E0,E) :- hnf(f(X1,...,Xn�1,X),H,E0,E).Note that prediate apply should be alled only for partial appliations or ap-pliations where it is known at ompile time that the �rst argument is not ade�ned funtion or a onstrutor. In other words, all �rst-order alls are diretlytranslated without using apply as shown in the previous setions. This imple-mentation of apply has the advantage that the unique mathing lause is foundin onstant time due to the �rst argument indexing of Prolog systems. Althoughthe number of apply lauses ould be high for large appliations, and there arealternative shemes that avoid this problem (e.g., [24℄), we have found that thissheme auses no problems for programs with several hundred funtions.Monadi I/O is easily implemented by introduing a speial onstrutor (de-noted by \$io") to hold the result of an I/O ation. For instane, getChar isimplemented as a proedure whih reads a harater, , from standard inputand returns the term \$io " whenever it is evaluated. With this approah,both sequential omposition operators >>= and >> for ations are de�ned by:($io x) >>= fa = fa x($io _) >> b = bThus, the �rst ation is evaluated to head normal form before the seond ationis applied. This simple implementation has, however, a pitfall. The result of anI/O ation should not be shared, otherwise I/O ations will not be exeutedas intended. For instane, the expressions \putChar 'X' >> putChar 'X'" and\let a = putChar 'X' in a >> a" are equivalent but would produe di�erentresults with sharing. Lukily, the intended behavior an be obtained by a slighthange of the de�nition of hnf so that terms headed by $io are not shared.11

The primitives of Curry to enapsulate searh and de�ne new searhstrategies [17℄ annot be diretly implemented in Prolog due to its �xed bak-traking strategy. However, one an implement some standard depth-�rst searhstrategies of Curry via Prolog's findall and bagof primitives.4 Experimental ResultsWe have developed a ompiler from Curry programs into Prolog programs(Sistus-Prolog Version 3#5) based on the priniples desribed in this paper.The pratial results are quite enouraging. For instane, the exeution of thelassi \naive reverse" benhmark is exeuted at the speed of approximately660,000 rule appliations per seond on a Linux-PC (Pentium II, 400 Mhz) withSistus-3 (without native ode). Note that Curry's exeution with a lazy strategyis ostlier than Prolog's exeution. Although the development of the ompiler isrelatively simple, due to the transformation shemes disussed in the paper, ourimplementation is ompetitive w.r.t. other high-level and low-level implement-ations of Curry and similar funtional logi languages. We have ompared ourimplementation to a few other implementations of delarative multi-paradigmlanguages available to us. The following table shows the results of benhmarksfor various features of the language.Program Prolog Toy Java-1 Java-2 UPV-Curryrev180 50 110 1550 450 43300twie120 30 60 760 190 40100qqsort20 20 20 230 45 72000primes50 80 90 810 190 >2000000lastrev120 70 160 2300 820 59700horse 5 10 50 15 200aount 10 n.a. 450 670 2050hords 220 n.a. 4670 1490 n.a.Average speedup: 1.77 23.39 13.55 1150.1All benhmarks are exeuted on a Sun Ultra-2. The exeution times are measuredin milliseonds. The olumn \Prolog" ontains the results of the implementationpresented in this paper. \Toy" [7℄ is an implementation of a narrowing-basedfuntional logi language (without onurreny) whih, like ours, ompiles intoProlog. This implementation is based on the ideas desribed in [21℄. \Java-1"is the ompiler from Curry into Java desribed in [16℄. It uses JDK 1.1.3 toexeute the ompiled programs. \Java-2" di�ers from the former by using JDK1.2. This system ontains a Just-in-Time ompiler. Finally, UPV-Curry [1℄ is animplementation of Curry based on an interpreter written in Prolog that employsan inremental narrowing algorithm.Most of the programs, whih are small, test various features of Curry.\rev180" reverses a list of 180 elements with the naive reverse funtion.\twie120" exeutes the all \twie (rev l)", where twie is de�ned by\twie xs = on xs xs" and l is a list of 120 elements. \qqsort20" alls12

quiksort (de�ned with higher-order funtions) twie on a list of 20 elements.\primes50" omputes the in�nite list of prime numbers and extrats the �rst50 elements. \lastrev120" omputes the last element x of a list by solving theequation \on xs [x℄ =:= rev [...℄". \horse" is a simple puzzle that needssome searh. \aount" is a simulation of a bank aount that uses the onur-reny features of Curry. \hords", the largest of our benhmarks, is a musialappliation [15℄ that uses enapsulated searh, laziness, and monadi I/O.The omparison with Toy shows that our implementation of the onurrenyfeatures does not ause a signi�ant overhead ompared to a pure-narrowing-based language. Furthermore, the \aount" example, whih heavily uses on-urrent threads, demonstrates that our implementation is ompetitive with animplementation based on Java threads. Although the table indiates that ourimplementation is superior to other available systems, implementations ompil-ing to C or mahine languages may be more eÆient. However, the developmente�ort of these lower level implementations is muh higher.5 Related Work and ConlusionsThe idea of implementing funtional logi programs by transforming them intologi programs is not new. An evaluation of di�erent implementations is presen-ted in [11℄, where it is demonstrated that funtional logi programs based onneeded narrowing are superior to other narrowing-based approahes. There areseveral proposals of ompilation of needed narrowing into Prolog [4, 11, 21℄. Allthese approahes lak onurrent evaluations. Moreover, the implementation ofsharing, similar in all these approahes, is less eÆient than in our proposal, asan be veri�ed in the omparison table (see olumns \Prolog" and \Toy").Naish [24℄ has proposed NUE-Prolog, an integration of funtions into Prologprograms obtained by transforming funtion de�nitions into Prolog lauses withadditional \when" delarations. when delarations, whih are similar in sopeto the blok delarations that we propose, suspend the funtion alls until thearguments are suÆiently instantiated. The e�et of this suspension is that allfuntions are rigid|exible funtions are not supported. Funtions intended tobe exible must be enoded as prediates by attening. This approah has thedrawbak that optimal evaluation strategies [5℄ annot be employed for the logiprogramming part of a program. Strit and lazy funtions an be freely mixed,whih makes the meaning of programs harder to understand (e.g., the meaningof equality in the presene of in�nite data strutures). NUE-Prolog uses a form ofonurreny for suspending funtion alls, as we do. But it is more restritive inthat there is no possibility to wait for the omplete evaluation of an expression.This leads to the undesired behavior disussed in Example 2.Apart from the eÆieny and simpliity of our transformation sheme ofCurry into Prolog programs, the use of Prolog as a target language has furtheradvantages. A high-level implementation more easily aomodates the inlusionof additional features. For instane, the implementation of a standard programtraer w.r.t. Byrd's box model [6℄ requires only the addition of four lauses to13

eah program and two prediate alls for eah implemented funtion. The mostimportant advantage is the reuse of existing onstraint solvers available in Pro-log, as shown in Setion 3.3. Thus, with a limited e�ort, we obtain a usableimplementation of a delarative language that ombines onstraint solving overvarious onstraint domains, onurrent evaluation and searh failities from logiprogramming with higher-order funtions and laziness from funtional program-ming. The ombination of laziness and searh is attrative beause it o�ers amodular implementation of demand-driven searh strategies, as shown in [15℄.Sine the ompilation time of our implementation is reasonable,6 this Prolog-based implementation supports our urrent main development system for Curryprograms.7 This system has been used to develop large distributed appliationswith sophistiated graphial user interfaes and Web-based information serversthat run for weeks without interruption (see [13℄ for more details). By takingadvantage of both the features of our system and already developed ode, we anmake available on the Internet onstraint programming appliations in minutes.Referenes1. M. Alpuente, S. Esobar, and S. Luas. UPV-Curry: an Inremental Curry Inter-preter. In Pro. of 26th Seminar on Current Trends in Theory and Pratie ofInformatis (SOFSEM'99), pp. 327{335. Springer LNCS 1725, 1999.2. S. Antoy. Non-Determinism and Lazy Evaluation in Logi Programming. In Pro.Int. Workshop on Logi Program Synthesis and Transformation (LOPSTR'91), pp.318{331. Springer Workshops in Computing, 1991.3. S. Antoy. De�nitional Trees. In Pro. of the 3rd International Conferene onAlgebrai and Logi Programming, pp. 143{157. Springer LNCS 632, 1992.4. S. Antoy. Needed Narrowing in Prolog. Tehnial Report 96-2, Portland StateUniversity, 1996.5. S. Antoy, R. Ehahed, and M. Hanus. A Needed Narrowing Strategy. Journal of theACM (to appear). Previous version in Pro. 21st ACM Symposium on Priniplesof Programming Languages, pp. 268{279, 1994.6. L. Byrd. Understanding the Control Flow of Prolog Programs. In Pro. of theWorkshop on Logi Programming, Debreen, 1980.7. R. Caballero-Rold�an, J. S�anhez-Hern�andez, and F.J. L�opez-Fraguas. User'sManual for TOY. Tehnial Report SIP 97/57, Universidad Complutense de Mad-rid, 1997.8. P.H. Cheong and L. Fribourg. Implementation of Narrowing: The Prolog-BasedApproah. In K.R. Apt, J.W. de Bakker, and J.J.M.M. Rutten, editors, Logiprogramming languages: onstraints, funtions, and objets, pp. 1{20. MIT Press,1993.9. E. Giovannetti, G. Levi, C. Moiso, and C. Palamidessi. Kernel LEAF: A Logi plusFuntional Language. Journal of Computer and System Sienes, Vol. 42, No. 2,pp. 139{185, 1991.6 Sine the transformation of Curry programs into Prolog is fast, the overall ompila-tion time mainly depends on the time it takes to ompile the generated Prolog ode.In our tests, it takes only a few seonds even for programs with approximately 2,000lines of soure ode.7 http://www-i2.informatik.rwth-aahen.de/~hanus/pas/14

10. M. Hanus. The Integration of Funtions into Logi Programming: From Theory toPratie. Journal of Logi Programming, Vol. 19&20, pp. 583{628, 1994.11. M. Hanus. EÆient Translation of Lazy Funtional Logi Programs into Prolog. InPro. Fifth International Workshop on Logi Program Synthesis and Transforma-tion, pp. 252{266. Springer LNCS 1048, 1995.12. M. Hanus. A Uni�ed Computation Model for Funtional and Logi Programming.In Pro. of the 24th ACM Symposium on Priniples of Programming Languages,pp. 80{93, 1997.13. M. Hanus. Distributed Programming in a Multi-Paradigm Delarative Language.In Pro. of the International Conferene on Priniples and Pratie of DelarativeProgramming (PPDP'99), pp. 376{395. Springer LNCS 1702, 1999.14. M. Hanus and C. Prehofer. Higher-Order Narrowing with De�nitional Trees.Journal of Funtional Programming, Vol. 9, No. 1, pp. 33{75, 1999.15. M. Hanus and P. R�ety. Demand-driven Searh in Funtional Logi Programs.Researh Report RR-LIFO-98-08, Univ. Orl�eans, 1998.16. M. Hanus and R. Sadre. An Abstrat Mahine for Curry and its ConurrentImplementation in Java. Journal of Funtional and Logi Programming, Vol. 1999,No. 6, 1999.17. M. Hanus and F. Steiner. Controlling Searh in Delarative Programs. InPriniples of Delarative Programming (Pro. Joint International SymposiumPLILP/ALP'98), pp. 374{390. Springer LNCS 1490, 1998.18. M. Hanus (ed.). Curry: An Integrated Funtional Logi Language (Vers. 0.6).Available at http://www-i2.informatik.rwth-aahen.de/~hanus/urry, 1999.19. S. Janson and S. Haridi. Programming Paradigms of the Andorra Kernel Language.In Pro. 1991 Int. Logi Programming Symposium, pp. 167{183. MIT Press, 1991.20. J.A. Jim�enez-Martin, J. Marino-Carballo, and J.J. Moreno-Navarro. EÆient Com-pilation of Lazy Narrowing into Prolog. In Pro. Int. Workshop on Logi ProgramSynthesis and Transformation (LOPSTR'92), pp. 253{270. Springer Workshops inComputing Series, 1992.21. R. Loogen, F. Lopez Fraguas, and M. Rodr��guez Artalejo. A Demand Driven Com-putation Strategy for Lazy Narrowing. In Pro. of the 5th International Symposiumon Programming Language Implementation and Logi Programming, pp. 184{200.Springer LNCS 714, 1993.22. J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logi Programming with Fun-tions and Prediates: The Language BABEL. Journal of Logi Programming,Vol. 12, pp. 191{223, 1992.23. L. Naish. Negation and Control in Prolog. Springer LNCS 238, 1987.24. L. Naish. Adding equations to NU-Prolog. In Pro. of the 3rd Int. Symposiumon Programming Language Implementation and Logi Programming, pp. 15{26.Springer LNCS 528, 1991.25. J. Peterson et al. Haskell: A Non-strit, Purely Funtional Language (Version 1.4).Tehnial Report, Yale University, 1997.26. S.L. Peyton Jones. The Implementation of Funtional Programming Languages.Prentie Hall, 1987.27. V.A. Saraswat. Conurrent Constraint Programming. MIT Press, 1993.28. G. Smolka. The Oz Programming Model. In Computer Siene Today: ReentTrends and Developments, pp. 324{343. Springer LNCS 1000, 1995.29. P. Wadler. How to Delare an Imperative. ACM Computing Surveys, Vol. 29,No. 3, pp. 240{263, 1997.30. D.H.D. Warren. Higher-order extensions to PROLOG: are they needed? In Ma-hine Intelligene 10, pp. 441{454, 1982.15

