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Abstra
t. This paper des
ribes a high-level implementation of the 
on-
urrent 
onstraint fun
tional logi
 language Curry. The implementation,dire
ted by the lazy pattern mat
hing strategy of Curry, is obtained bytransforming Curry programs into Prolog programs. Contrary to previ-ous transformations of fun
tional logi
 programs into Prolog, our imple-mentation in
ludes new me
hanisms for both eÆ
iently performing 
on-
urrent evaluation steps and sharing 
ommon subterms. The pra
ti
alresults show that our implementation is superior to previously proposedsimilar implementations of fun
tional logi
 languages in Prolog and is
ompetitive w.r.t. lower-level implementations of Curry in other targetlanguages.An noteworthy advantage of our implementation is the ability to immedi-ately employ in Curry existing 
onstraint solvers for logi
 programming.In this way, we obtain with a relatively modest e�ort the implement-ation of a de
larative language 
ombining lazy evaluation, 
on
urren
yand 
onstraint solving for a variety of 
onstraint systems.1 Introdu
tionThe multi-paradigm language Curry [12, 18℄ seamlessly 
ombines features fromfun
tional programming (nested expressions, lazy evaluation, higher-order fun
-tions), logi
 programming (logi
al variables, partial data stru
tures, built-insear
h), and 
on
urrent programming (
on
urrent evaluation of expressions withsyn
hronization on logi
al variables). Moreover, the language provides both themost important operational prin
iples developed in the area of integrated fun
-tional logi
 languages: \residuation" and \narrowing" (see [10℄ for a survey onfun
tional logi
 programming).Curry's operational semanti
s (�rst des
ribed in [12℄) 
ombines lazy redu
-tion of expressions with a possibly non-deterministi
 binding of free variableso

urring in expressions. To provide the full power of logi
 programming, (equa-tional) 
onstraints 
an be used in the 
onditions of fun
tion de�nitions. Basi
? This resear
h has been partially supported by the DAAD/NSF under grant INT-9981317, the German Resear
h Coun
il (DFG) under grant Ha 2457/1-1, and by agrant from Portland State University.




onstraints 
an be 
ombined into 
omplex 
onstraint expressions by a 
on
ur-rent 
onjun
tion operator that evaluates 
onstraints 
on
urrently. Thus, purelyfun
tional programming, purely logi
 programming, and 
on
urrent (logi
) pro-gramming are obtained as parti
ular restri
tions of this model [12℄.In this paper, we propose a high-level implementation of this 
omputationmodel in Prolog. This approa
h avoids the 
omplex implementation of an ab-stra
t ma
hine (e.g., [16℄) and is able to reuse existing 
onstraint solvers availablein Prolog systems. In the next se
tion, we review the basi
 
omputation modelof Curry. The transformation s
heme for 
ompiling Curry programs into Pro-log programs is presented in Se
tion 3. Se
tion 4 
ontains the results of ourimplementation. Se
tion 5 dis
usses related work and 
ontains our 
on
lusions.2 The Computation Model of CurryThis se
tion outlines the 
omputation model of Curry. A formal de�nition 
anbe found in [12, 18℄.The basi
 
omputational domain of Curry is, similarly to fun
tional or logi
languages, a set of data terms 
onstru
ted from 
onstants and data 
onstru
tors.These are introdu
ed by data type de
larations su
h as:1data Bool = True | Falsedata List a = [℄ | a : List aTrue and False are the Boolean 
onstants. [℄ (empty list) and : (non-emptylist) are the 
onstru
tors for polymorphi
 lists (a is a type variable rangingover all types and the type List a is usually written as [a℄ for 
onformity withHaskell). A data term is a well-formed expression 
ontaining variables, 
onstantsand data 
onstru
tors, e.g., True:[℄ or [x,y℄ (the latter stands for x:(y:[℄)).Fun
tions are operations on data terms whose meaning is spe
i�ed by(
onditional) rules of the general form \l | 
 = r where vs free". l has theform f t1 : : : tn, where f is a fun
tion, t1; : : : ; tn are data terms and ea
h variableo

urs only on
e. The 
ondition 
 is a 
onstraint. r is a well-formed expressionthat may also 
ontain fun
tion 
alls. vs is the list of free variables that o

urin 
 and r, but not in l. The 
ondition and the where part 
an be omitted if
 and vs are empty, respe
tively. A 
onstraint is any expression of the built-intype Constraint. Primitive 
onstraints are equations of the form e1 =:= e2. A
onditional rule is applied only if its 
ondition is satis�able. A Curry program isa set of data type de
larations and rules.Example 1. Together with the above data type de
larations, the following rulesde�ne operations to 
on
atenate lists and to �nd the last element of a list:
on
 [℄ ys = ys
on
 (x:xs) ys = x : 
on
 xs ys1 Curry has a Haskell-like syntax [25℄, i.e., (type) variables and fun
tion names startwith lower
ase letters and the names of type and data 
onstru
tors start with anupper
ase letter. Moreover, the appli
ation of f to e is denoted by juxtaposition(\f e"). 2



last xs | 
on
 ys [x℄ =:= xs = x where x,ys freeIf \
on
 ys [x℄ =:= xs" is solvable, then x is the last element of list xs. 2Fun
tional programming: In fun
tional languages, the interest is in 
omputingvalues of expressions, where a value does not 
ontain fun
tion symbols (i.e., itis a data term) and should be equivalent (w.r.t. the program rules) to the initialexpression. The value 
an be 
omputed by repla
ing instan
es of rules' left sideswith 
orresponding instan
es of right sides. For instan
e, we 
ompute the valueof \
on
[1℄[2℄" by repeatedly applying the rules for 
on
atenation to thisexpression:
on
 [1℄ [2℄ ! 1:(
on
 [℄ [2℄) ! [1,2℄Curry is based on a lazy (outermost) strategy, i.e., the sele
ted fun
tion 
all inea
h redu
tion step is outermost among all redu
ible fun
tion 
alls. This strategysupports 
omputations with in�nite data stru
tures and a modular programmingstyle with separation of 
ontrol aspe
ts. Moreover, it yields optimal 
omputations[5℄ and a demand-driven sear
h method [15℄ for the logi
 part of a program whi
hwill be dis
ussed next.Logi
 programming: In logi
 languages, an expression (or 
onstraint) may 
ontainfree variables. A logi
 programming system should 
ompute solutions, i.e., �ndvalues for these variables su
h that the expression (or 
onstraint) is redu
ibleto some value (or satis�able). Fortunately, this requires only a minor extensionof the lazy redu
tion strategy. The extension deals with non-ground expressionsand variable instantiation: if the value of a free variable is demanded by theleft-hand sides of some program rules in order to 
ontinue the 
omputation (i.e.,no program rule is appli
able if the variable remains unbound), the variable isbound to all the demanded values. For ea
h value, a separate 
omputation isperformed. For instan
e, if the fun
tion f is de�ned by the rulesf 0 = 2f 1 = 3(the integer numbers are 
onsidered as an in�nite set of 
onstants), then theexpression \f x", with x a free variable, is evaluated to 2 by binding x to 0, or itis evaluated to 3 by binding x to 1. Thus, a single 
omputation step may yield asingle new expression (deterministi
 step) or a disjun
tion of new expressions to-gether with the 
orresponding bindings (non-deterministi
 step). For indu
tivelysequential programs [3℄ (these are, roughly speaking, fun
tion de�nitions withone demanded argument), this strategy is 
alled needed narrowing [5℄. Needednarrowing 
omputes the shortest su

essful derivations (if 
ommon subtermsare shared) and minimal sets of solutions. Moreover, it is fully deterministi
 forexpressions that do not 
ontain free variables.Constraints: In fun
tional logi
 programs, it is ne
essary to solve equationsbetween expressions 
ontaining de�ned fun
tions (see Example 1). In general,an equation or equational 
onstraint e1=:= e2 is satis�ed if both sides e1 and e2are redu
ible to the same value (data term). As a 
onsequen
e, if both sides are3



unde�ned (non-terminating), then the equality does not hold.2 Operationally,an equational 
onstraint e1=:= e2 is solved by evaluating e1 and e2 to uni�abledata terms, where the lazy evaluation of the expressions is interleaved with thebinding of variables to 
onstru
tor terms [21℄. Thus, an equational 
onstrainte1=:= e2 without o

urren
es of de�ned fun
tions has the same meaning (uni-�
ation) as in Prolog. Curry's basi
 kernel only provides equational 
onstraints.Constraint solvers for other 
onstraint stru
tures 
an be 
on
eptually integratedwithout diÆ
ulties. The pra
ti
al realization of this integration is one of thegoals of this work.Con
urrent 
omputations: To support 
exible 
omputation rules and avoid anun
ontrolled instantiation of free argument variables, Curry gives the optionto suspend a fun
tion 
all if a demanded argument is not instantiated. Su
hfun
tions are 
alled rigid in 
ontrast to 
exible fun
tions|those that instantiatetheir arguments when the instantiation is ne
essary to 
ontinue the evaluationof a 
all. As a default easy to 
hange, Curry's 
onstraints (i.e., fun
tions withresult type Constraint) are 
exible whereas non-
onstraint fun
tions are rigid.Thus, purely logi
 programs (where predi
ates 
orrespond to 
onstraints) behaveas in Prolog, and purely fun
tional programs are exe
uted as in lazy fun
tionallanguages, e.g., Haskell.To 
ontinue a 
omputation in the presen
e of suspended fun
tion 
alls, 
on-straints are 
ombined with the 
on
urrent 
onjun
tion operator &. The 
onstraint
1 & 
2 is evaluated by solving 
1 and 
2 
on
urrently.A design prin
iple of Curry is the 
lear separation of sequential and 
on
ur-rent a
tivities. Sequential 
omputations, whi
h form the basi
 units of a pro-gram, are expressed as usual fun
tional (logi
) programs and are 
omposed into
on
urrent 
omputation units via 
on
urrent 
onjun
tions of 
onstraints. Thisseparation supports the use of eÆ
ient and optimal evaluation strategies for thesequential parts. Similar te
hniques for the 
on
urrent parts are not available.This is in 
ontrast to other more �ne-grained 
on
urrent 
omputation modelslike AKL [19℄, CCP [27℄, or Oz [28℄.Monadi
 I/O: To support real appli
ations, the monadi
 I/O 
on
ept of Haskell[29℄ has been adapted to Curry to perform I/O in a de
larative manner. Inthe monadi
 approa
h to I/O, an intera
tive program is 
onsidered as a fun
-tion 
omputing a sequen
e of a
tions whi
h are applied to the outside world.An a
tion has type \IO �", whi
h means that it returns a result of type �whenever it is applied to a parti
ular state of the world. For instan
e, getChar,of type \IO Char", is an a
tion whose exe
ution, i.e., appli
ation to a world,reads a 
hara
ter from the standard input. A
tions 
an be 
omposed only se-quentially in a program and their 
omposition is exe
uted whenever the mainprogram is exe
uted. For instan
e, the a
tion getChar 
an be 
omposed withthe a
tion putChar (whi
h has type Char -> IO () and writes a 
hara
terto the terminal) by the sequential 
omposition operator >>= (whi
h has type2 This notion of equality, known as stri
t equality [9, 22℄, is the only reasonable notionof equality in the presen
e of non-terminating fun
tions.4



IO � -> (� -> IO �) -> IO �). Thus, \getChar >>= putChar" is a 
om-posed a
tion whi
h prints the next 
hara
ter of the input stream on the s
reen.The se
ond 
omposition operator, >>, is like >>=, but ignores the result of the�rst a
tion. Furthermore, done is the \empty" a
tion whi
h does nothing (see[29℄ for more details). For instan
e, a fun
tion whi
h takes a string (list of 
har-a
ters) and produ
es an a
tion that prints the string to the terminal followed bya new line is de�ned as follows:putStrLn [℄ = putChar '\n'putStrLn (
:
s) = putChar 
 >> putStrLn 
sIn the next se
tion, we will des
ribe a transformation s
heme to implement this
omputation model in Prolog.3 A Transformation S
heme for Curry ProgramsAs mentioned above, the evaluation of nested expressions is based on a lazystrategy. The exa
t strategy is spe
i�ed via de�nitional trees [3℄, a data stru
-ture for the eÆ
ient sele
tion of the outermost redu
ible expressions. Dire
ttransformations of de�nitional trees into Prolog (without an implementation of
on
urren
y features) have been proposed in [2, 4, 11, 21℄. De�nitional trees dealwith arbitrarily large patterns and use the notion of \position" (i.e., a sequen
e ofpositive integers) to spe
ify the subterm where the next evaluation step must beperformed. We avoid this 
ompli
ation and obtain a simpler transformation by�rst 
ompiling de�nitional trees into 
ase expressions as des
ribed, e.g., in [14℄.Thus, ea
h fun
tion is de�ned by exa
tly one rule in whi
h the right-hand side
ontains 
ase expressions to spe
ify the pattern mat
hing of a
tual arguments.For instan
e, the fun
tion 
on
 in Example 1 is transformed into:
on
 xs ys = 
ase xs of [℄ -> ys(z:zs) -> z : 
on
 zs ysA 
ase expression is evaluated by redu
ing its �rst argument to a head normalform, i.e., a term whi
h has no de�ned fun
tion symbol at the top, and mat
hingthis redu
ed term with one of the patterns of the 
ase expression. Case expres-sions are used for both rigid and 
exible fun
tions. Operationally, 
ase expres-sions are used for rigid fun
tions only, whereas flex
ase expressions are usedfor 
exible fun
tions. The di�eren
e is that a 
ase expression suspends if thehead normal form is a free variable, whereas a flex
ase expression (don't knownon-deterministi
ally) instantiates the variable to the di�erent 
onstru
tors inthe subsequent patterns.To implement fun
tions with overlapping left-hand sides (where there is nosingle argument on whi
h a 
ase distin
tion 
an be made), there is also a dis-jun
tive expression \e1 or e2" meaning that both alternatives are don't knownon-deterministi
ally evaluated.3 For instan
e, the fun
tion0 * x = 03 In the implementation des
ribed in this paper, don't know non-determinism is im-plemented via ba
ktra
king as in Prolog.5



x * 0 = 0is transformed into the single rulex * y = or (flex
ase x of 0 -> 0)(flex
ase y of 0 -> 0)under the assumption that \*" is a 
exible operation.Transformation s
hemes for programs where all the fun
tions are 
exible havebeen proposed in [2, 4, 11, 21℄. These proposals are easily adaptable to our rep-resentation using 
ase and or expressions. The 
hallenge of the implementationof Curry is the development of a transformation s
heme that provides both thesuspension of fun
tion 
alls and the 
on
urrent evaluation of 
onstraints (whi
hwill be dis
ussed later).3.1 Implementing Con
urrent EvaluationsMost of the 
urrent Prolog systems support 
oroutining and the delaying of liter-als [23℄ if some arguments are not suÆ
iently instantiated. One 
ould use thesefeatures to provide the suspension, when required, of 
alls to rigid fun
tions.However, in 
onditional rules it is not suÆ
ient to delay the literals 
orrespond-ing to suspended fun
tion 
alls. One has to wait until the 
ondition has been
ompletely proved to avoid introdu
ing unne
essary 
omputations or in�niteloops. The following example helps in understanding this problem.Example 2. Consider the fun
tion de�nitionsf x y | g x =:= y = h yg [℄ = [℄h [℄ = [℄h (z:zs) = h zswhere g is rigid and h is 
exible. To evaluate the expression \f x y" (wherex and y are free variables), the 
ondition \g x =:= y" must be proved. Sin
eg is rigid, this evaluation suspends and the right-hand side is not evaluated.However, if we only delay the evaluation of the 
ondition and pro
eed with theright-hand side, we run into an in�nite loop by applying the last rule forever.This loop is avoided if x is eventually instantiated by another thread of the entire
omputation. 2To explain how we solve this problem we distinguish between sequential and
on
urrent 
omputations. A sequential 
omputation is a sequen
e of 
alls topredi
ates. When a 
all is a
tivated, it may return for two reasons: either the
all's 
omputation has 
ompleted or the 
all's 
omputation has been suspendedor delayed. In a sequential 
omputation, we want to exe
ute a 
all only if theprevious 
all has 
ompleted. Thus, we add an input argument and an outputargument to ea
h predi
ate. Ea
h argument is a variable that is either unin-stantiated or bound to a 
onstant|by 
onvention the symbol eval that standfor \fully evaluated". We use these arguments as follows. In a sequential 
om-putation, the 
all to a predi
ate is exe
uted if and only if its input argument6



is instantiated to eval. Likewise, a 
omputation has 
ompleted if and only ifits output argument is instantiated to eval. As one would expe
t, we 
hain theoutput argument of a 
all to the input argument of the next 
all to ensure thesequentiality of a 
omputation.The a
tivation or delay of a 
all is easily and eÆ
iently 
ontrolled by blo
kde
larations.4 For instan
e, the blo
k de
laration \:- blo
k f(?,?,?,-,?)"spe
i�es that a 
all to f is delayed if the fourth argument is a free variable.A

ording to the s
heme just des
ribed, we obtain the following 
lauses for therules de�ning the fun
tions f and g above:5:- blo
k f(?,?,?,-,?).f(X,Y,Result,Ein,Eout) :- eq(g(X),Y,Ein,E1), h(Y,Result,E1,Eout).:- blo
k g(?,?,-,?).g(X,Result,Ein,Eout) :- hnf(X,HX,Ein,E1), g_1(HX,Result,E1,Eout).:- blo
k g_1(-,?,?,?), g_1(?,?,-,?).g_1([℄,[℄,E,E).The predi
ate hnf 
omputes the head normal form of its �rst argument. If ar-gument HX of g is bound to the head normal form of X, we 
an mat
h this headnormal form against the empty list with the rule for g_1.We use blo
k de
larations to 
ontrol the rigidity or 
exibility of fun
tions,as well. Sin
e g is a rigid fun
tion, we add the blo
k de
laration g_1(-,?,?,?)to avoid the instantiation of free variables. A 
omputation is initiated by set-ting argument Ein to a 
onstant, i.e., expression (f x y) is evaluated by goalf(X,Y,Result,eval,Eout). If Eout is bound to eval, the 
omputation has 
om-pleted and Result 
ontains the 
omputed result (head normal form).Based on this s
heme, the 
on
urrent 
onjun
tion operator & is straightfor-wardly implemented by the following 
lauses (the 
onstant su

ess denotes theresult of a su

essful 
onstraint evaluation):&(A,B,su

ess,Ein,Eout) :- hnf(A,HA,Ein,E1), hnf(B,HB,Ein,E2),wait
onj(HA,HB,E1,E2,Eout).?- blo
k wait
onj(?,?,-,?,?), wait
onj(?,?,?,-,?).wait
onj(su

ess,su

ess,_,E,E).As one 
an see, predi
ate wait
onj waits for the solution of both 
onstraints.The elements of our approa
h that most 
ontribute to this simple trans-formation of Curry programs into Prolog programs are the implementation of
on
urren
y and the use of both 
ase and or expressions. Ea
h fun
tion is trans-formed into a 
orresponding predi
ate to 
ompute the head normal form of a4 An alternative to blo
k is freeze whi
h leads to a simpler transformation s
heme.However, our experiments indi
ate that freeze is a more expensive operation (atleast in Si
stus-Prolog Version 3#5). Using freeze, the resulting Prolog programswere approximately six times slower than using the s
heme presented in this paper.5 As usual in the transformation of fun
tions into predi
ates, we transform n-aryfun
tions into n+1-ary predi
ates where the additional argument 
ontains the resultof the fun
tion 
all. 7




all to this fun
tion. As shown above, this predi
ate 
ontains additional argu-ments for storing the head normal form and 
ontrolling the suspension of fun
tion
alls. Case expressions are implemented by evaluating the 
ase argument to headnormal form. We use an auxiliary predi
ate to mat
h the di�erent 
ases. Thedi�eren
e between flex
ase and 
ase is only in the blo
k de
laration for the
ase argument. \or" expressions are implemented by alternative 
lauses and allother expressions are implemented by 
alls to predi
ate hnf, whi
h 
omputesthe head normal form of its �rst argument. Thus, fun
tion 
on
 in Example 1is transformed into the following Prolog 
lauses::- blo
k 
on
(?,?,?,-,?).
on
(A,B,R,Ein,Eout) :- hnf(A,HA,Ein,E1), 
on
_1(HA,B,R,E1,Eout).:- blo
k 
on
_1(-,?,?,?,?), 
on
_1(?,?,?,-,?).
on
_1([℄ ,Ys,R,Ein,Eout) :- hnf(Ys ,R,Ein,Eout).
on
_1([Z|Zs℄,Ys,R,Ein,Eout) :- hnf([Z|
on
(Zs,Ys)℄,R,Ein,Eout).Should 
on
 be a 
exible fun
tion, the blo
k de
laration 
on
_1(-,?,?,?,?)would be omitted, but the rest of the 
ode would be un
hanged. The de�nitionof hnf is basi
ally a 
ase distin
tion on the di�erent top-level symbols that 
ano

ur in an expression and a 
all to the 
orresponding fun
tion if there is ade�ned fun
tion at the top (
ompare [11, 21℄).Although this 
ode is quite eÆ
ient due to the �rst argument indexing ofProlog implementations, it 
an be optimized by partially evaluating the 
alls tohnf, as dis
ussed in [4, 11℄. Further optimizations 
ould be done if it is knownat 
ompile time that the evaluation of expressions will not 
ause any suspension(e.g., when all arguments are ground at run time). In this 
ase, the additionaltwo arguments in ea
h predi
ate and the blo
k de
larations 
an be omitted andwe obtain the same s
heme as proposed in [11℄. This requires stati
 analysiste
hniques for Curry whi
h is an interesting topi
 for further resear
h.3.2 Implementing SharingEvery serious implementation of a lazy language must implement the sharing of
ommon subterms. For instan
e, 
onsider the ruledouble x = x + xand the expression \double (1+2)". If the two o

urren
es of the argumentx in the rule's right-hand side are not shared, the expression 1+2 is evaluatedtwi
e. Thus, sharing the di�erent o

urren
es of a same variable avoids unne
es-sary 
omputations and is the prerequisite for optimal evaluation strategies [5℄.In low level implementations, sharing is usually obtained by graph stru
turesand destru
tive assignment of nodes [26℄. Sin
e a destru
tive assignment is notavailable in Prolog, we resort to Prolog's sharing of logi
 variables. This ideahas been applied, e.g., in [8, 11, 20℄ where the predi
ates implementing fun
tionsare extended by a free variable that, after the evaluation of the fun
tion 
all,is instantiated to the 
omputed head normal form. Although this avoids themultiple evaluation of expressions, it introdu
e a 
onsiderable overhead when no8




ommon subterms o

ur at run time|in some 
ases more than 50%, as reportedin [11℄. Therefore, we have developed a new te
hnique that 
auses no overhead inall pra
ti
al experiments we performed. As seen in the example above, sharingis only ne
essary if terms are dupli
ated by a variable having multiple o

ur-ren
es in a 
ondition and/or right-hand side. Thus, we share these o

urren
esby a spe
ial share stru
ture 
ontaining the 
omputed result of this variable. Forinstan
e, the rule of double is translated intodouble(X,R,E0,E1) :- hnf(share(X,EX,RX)+share(X,EX,RX),R,E0,E1).In this way, ea
h o

urren
e of a left-hand side variable X with multiple o

ur-ren
es in the right-hand side is repla
ed by share(X,EX,RX), where RX 
ontainsthe result 
omputed by evaluating X. EX is bound to some 
onstant if X has beenevaluated. EX is ne
essary be
ause expressions 
an also evaluate to variables ina fun
tional logi
 language. Then, the de�nition of hnf is extended by the rule:hnf(share(X,EX,RX),RX,E0,E1) :- !,(nonvar(EX) -> E1=E0; hnf(X,HX,E0,E1), EX=eval, propagateShare(HX,RX)).where propagateShare(HX,RX) puts share stru
tures into the arguments of HX(yielding RX) if HX is bound to a stru
ture and the arguments are not alreadyshared.This implementation s
heme has the advantage that the Prolog 
ode forrules without multiple variable o

urren
es remains un
hanged and 
onsequentlyavoids the overhead for su
h rules (in 
ontrast to [8, 11, 20℄). The following tableshows the speedup (i.e., the ratio of runtime without sharing over runtime withsharing), the number of redu
tion steps without (RS1) and with sharing (RS2),and the number of shared variables (SV) in the right-hand side of rules of pro-grams we ben
hmarked. It is worth to noti
e that the speedup for the �rst twogoals reported in [11℄, whi
h uses a di�erent te
hnique, is 0.64 (i.e., a slowdown)and 3.12. These values show the superiority of our te
hnique.Example: Speedup RS1 RS2 # SV10000�10000+10000 =:= True 1.0 20002 20002 0double(double(one 100000)) =:= x 4.03 400015 100009 1take 25 fibs 6650.0 196846 177 3take 50 primes 15.8 298070 9867 2qui
ksort (qui
ksort [...℄) 8.75 61834 3202 2mergesort [...℄ 91.5 303679 1057 14Program analysis te
hniques are more promising with our s
heme than with[8, 11, 20℄. For instan
e, no share stru
tures must be introdu
ed for argumentvariables that de�nitely do not 
ontain fun
tion 
alls at run time, e.g., argumentsthat are always uninstantiated or bound to 
onstru
tor terms.3.3 ConstraintsEquational 
onstraints, denoted e1=:= e2, are solved by lazily evaluating ea
hside to uni�able data terms. In our translation, we adopt the implementation of9



this me
hanism in Prolog presented in [21℄. Basi
ally, equational 
onstraints aresolved by a predi
ate, eq, whi
h 
omputes the head normal form of its argumentsand performs a variable binding if one of the arguments is a variable.:- blo
k eq(?,?,-,?).eq(A,B,Ein,Eout) :- hnf(A,HA,Ein,E1), hnf(B,HB,E1,E2),eq_hnf(HA,HB,E2,Eout).:- blo
k eq_hnf(?,?,-,?).eq_hnf(A,B,Ein,Eout) :- var(A), !, bind(A,B,Ein,Eout).eq_hnf(A,B,Ein,Eout) :- var(B), !, bind(B,A,Ein,Eout).eq_hnf(
(X1,...,Xn),
(Y1,...,Yn),Ein,Eout) :- !,hnf((X1=:=Y1)&...&(Xn=:=Yn),_,Ein,Eout). % 8n-ary 
onstr. 
bind(X,Y,E,E) :- var(Y), !, X=Y.bind(X,
(Y1,...,Yn),Ein,Eout) :- !, % 8n-ary 
onstru
tors 
o

urs_not(X,Y1),..., o

urs_not(X,Yn), X=
(X1,...,Xn),hnf(Y1,HY1,Ein,E1), bind(X1,HY1,E1,E2),...hnf(Yn,HYn,E2n�2,E2n�1), bind(Xn,HYn,E2n�1,Eout).Due to the lazy semanti
s of the language, the binding is performed in
rement-ally. We use an auxiliary predi
ate, bind, whi
h performs an o

ur 
he
k followedby an in
remental binding of the goal variable and the binding of the arguments.Similarly, the evaluation of an expression e to its normal form, whi
h isthe intended meaning of e, is implemented by a predi
ate, nf, that repeatedlyevaluates all e's subexpressions to head normal form.Apart from the additional arguments for 
ontrolling suspensions, this s
hemeis identi
al to the s
heme proposed in [21℄. Unfortunately, this s
heme generally
auses a signi�
ant overhead when one side of the equation is a variable and theother side evaluates to a large data term. In this 
ase, the in
remental instan-tiation of the variable is unne
essary and 
auses the overhead, sin
e it 
reatesa new data stru
ture and performs an o

ur 
he
k. We avoid this overhead byevaluating to normal form, if possible, the term to whi
h the variable must bebound. To this aim, we repla
e bind with bind_trynf in the 
lauses of eq_hnftogether with the following new 
lause:bind_trynf(X,T,Ein,Eout) :- nf(T,NT,Ein,E1),(nonvar(E1) -> o

urs_not(X,NT), X=NT, Eout=E1; bind(X,T,Ein,Eout)).If the evaluation to normal form does not suspend, the variable X is bound to thenormal form by X=NT, otherwise the usual predi
ate for in
remental binding is
alled. Although this new s
heme might 
ause an overhead due to potential re-evaluations, this situation did not o

ur in all our experiments. In some pra
ti
alben
hmarks, we have measured a speedup up to a fa
tor of 2.The 
ompilation of Curry programs into Prolog greatly simpli�es the integra-tion of 
onstraint solvers for other 
onstraint stru
tures, if the underlying Prologsystem o�ers solvers for these stru
tures. For instan
e, Si
stus-Prolog in
ludes asolver for an arithmeti
 
onstraint over reals, whi
h is denoted by en
losing the10




onstraint between 
urly bra
kets. E.g., goal {3.5=1.7+X} binds X to 1.8. Wemake these 
onstraints available in Curry by translating them into the 
orres-ponding 
onstraints of Si
stus-Prolog. For instan
e, the inequational 
onstrainte1<e2 is translated as follows. First, e1 and e2, whi
h might 
ontain user-de�nedfun
tions or might be variables, are evaluated to their (head) normal forms, saye01 and e02. Then, the goal {e01<e02} is 
alled. With this te
hnique, all 
onstraintsolvers available in Si
stus-Prolog be
ome available in Curry.3.4 Further FeaturesCurry supports standard higher-order 
onstru
ts su
h as lambda abstra
tionsand partial appli
ations. In Prolog, the higher-order features of Curry are im-plemented a

ording to Warren's original proposal [30℄ to translate higher-order
onstru
ts into �rst-order logi
 programming. A lambda abstra
tion is elim-inated by transforming it into a top-level de�nition of a new fun
tion. Con-sequently, the fundamental higher-order 
onstru
t is a binary fun
tion, apply,whi
h applies its �rst argument, a fun
tion, to its se
ond argument, the fun
tion'sintended argument. For ea
h n-ary fun
tion or 
onstru
tor f, we introdu
e n�1
onstru
tors with the same name. This enables us to implement the appli
ationfun
tion with the following Prolog 
lauses:apply(f(X1,...,Xk),X,f(X1,...,Xk,X),E,E). % 0 � k < n� 1apply(f(X1,...,Xn�1),X,H,E0,E) :- hnf(f(X1,...,Xn�1,X),H,E0,E).Note that predi
ate apply should be 
alled only for partial appli
ations or ap-pli
ations where it is known at 
ompile time that the �rst argument is not ade�ned fun
tion or a 
onstru
tor. In other words, all �rst-order 
alls are dire
tlytranslated without using apply as shown in the previous se
tions. This imple-mentation of apply has the advantage that the unique mat
hing 
lause is foundin 
onstant time due to the �rst argument indexing of Prolog systems. Althoughthe number of apply 
lauses 
ould be high for large appli
ations, and there arealternative s
hemes that avoid this problem (e.g., [24℄), we have found that thiss
heme 
auses no problems for programs with several hundred fun
tions.Monadi
 I/O is easily implemented by introdu
ing a spe
ial 
onstru
tor (de-noted by \$io") to hold the result of an I/O a
tion. For instan
e, getChar isimplemented as a pro
edure whi
h reads a 
hara
ter, 
, from standard inputand returns the term \$io 
" whenever it is evaluated. With this approa
h,both sequential 
omposition operators >>= and >> for a
tions are de�ned by:($io x) >>= fa = fa x($io _) >> b = bThus, the �rst a
tion is evaluated to head normal form before the se
ond a
tionis applied. This simple implementation has, however, a pitfall. The result of anI/O a
tion should not be shared, otherwise I/O a
tions will not be exe
utedas intended. For instan
e, the expressions \putChar 'X' >> putChar 'X'" and\let a = putChar 'X' in a >> a" are equivalent but would produ
e di�erentresults with sharing. Lu
kily, the intended behavior 
an be obtained by a slight
hange of the de�nition of hnf so that terms headed by $io are not shared.11



The primitives of Curry to en
apsulate sear
h and de�ne new sear
hstrategies [17℄ 
annot be dire
tly implemented in Prolog due to its �xed ba
k-tra
king strategy. However, one 
an implement some standard depth-�rst sear
hstrategies of Curry via Prolog's findall and bagof primitives.4 Experimental ResultsWe have developed a 
ompiler from Curry programs into Prolog programs(Si
stus-Prolog Version 3#5) based on the prin
iples des
ribed in this paper.The pra
ti
al results are quite en
ouraging. For instan
e, the exe
ution of the
lassi
 \naive reverse" ben
hmark is exe
uted at the speed of approximately660,000 rule appli
ations per se
ond on a Linux-PC (Pentium II, 400 Mhz) withSi
stus-3 (without native 
ode). Note that Curry's exe
ution with a lazy strategyis 
ostlier than Prolog's exe
ution. Although the development of the 
ompiler isrelatively simple, due to the transformation s
hemes dis
ussed in the paper, ourimplementation is 
ompetitive w.r.t. other high-level and low-level implement-ations of Curry and similar fun
tional logi
 languages. We have 
ompared ourimplementation to a few other implementations of de
larative multi-paradigmlanguages available to us. The following table shows the results of ben
hmarksfor various features of the language.Program Prolog Toy Java-1 Java-2 UPV-Curryrev180 50 110 1550 450 43300twi
e120 30 60 760 190 40100qqsort20 20 20 230 45 72000primes50 80 90 810 190 >2000000lastrev120 70 160 2300 820 59700horse 5 10 50 15 200a

ount 10 n.a. 450 670 2050
hords 220 n.a. 4670 1490 n.a.Average speedup: 1.77 23.39 13.55 1150.1All ben
hmarks are exe
uted on a Sun Ultra-2. The exe
ution times are measuredin millise
onds. The 
olumn \Prolog" 
ontains the results of the implementationpresented in this paper. \Toy" [7℄ is an implementation of a narrowing-basedfun
tional logi
 language (without 
on
urren
y) whi
h, like ours, 
ompiles intoProlog. This implementation is based on the ideas des
ribed in [21℄. \Java-1"is the 
ompiler from Curry into Java des
ribed in [16℄. It uses JDK 1.1.3 toexe
ute the 
ompiled programs. \Java-2" di�ers from the former by using JDK1.2. This system 
ontains a Just-in-Time 
ompiler. Finally, UPV-Curry [1℄ is animplementation of Curry based on an interpreter written in Prolog that employsan in
remental narrowing algorithm.Most of the programs, whi
h are small, test various features of Curry.\rev180" reverses a list of 180 elements with the naive reverse fun
tion.\twi
e120" exe
utes the 
all \twi
e (rev l)", where twi
e is de�ned by\twi
e xs = 
on
 xs xs" and l is a list of 120 elements. \qqsort20" 
alls12



qui
ksort (de�ned with higher-order fun
tions) twi
e on a list of 20 elements.\primes50" 
omputes the in�nite list of prime numbers and extra
ts the �rst50 elements. \lastrev120" 
omputes the last element x of a list by solving theequation \
on
 xs [x℄ =:= rev [...℄". \horse" is a simple puzzle that needssome sear
h. \a

ount" is a simulation of a bank a

ount that uses the 
on
ur-ren
y features of Curry. \
hords", the largest of our ben
hmarks, is a musi
alappli
ation [15℄ that uses en
apsulated sear
h, laziness, and monadi
 I/O.The 
omparison with Toy shows that our implementation of the 
on
urren
yfeatures does not 
ause a signi�
ant overhead 
ompared to a pure-narrowing-based language. Furthermore, the \a

ount" example, whi
h heavily uses 
on-
urrent threads, demonstrates that our implementation is 
ompetitive with animplementation based on Java threads. Although the table indi
ates that ourimplementation is superior to other available systems, implementations 
ompil-ing to C or ma
hine languages may be more eÆ
ient. However, the developmente�ort of these lower level implementations is mu
h higher.5 Related Work and Con
lusionsThe idea of implementing fun
tional logi
 programs by transforming them intologi
 programs is not new. An evaluation of di�erent implementations is presen-ted in [11℄, where it is demonstrated that fun
tional logi
 programs based onneeded narrowing are superior to other narrowing-based approa
hes. There areseveral proposals of 
ompilation of needed narrowing into Prolog [4, 11, 21℄. Allthese approa
hes la
k 
on
urrent evaluations. Moreover, the implementation ofsharing, similar in all these approa
hes, is less eÆ
ient than in our proposal, as
an be veri�ed in the 
omparison table (see 
olumns \Prolog" and \Toy").Naish [24℄ has proposed NUE-Prolog, an integration of fun
tions into Prologprograms obtained by transforming fun
tion de�nitions into Prolog 
lauses withadditional \when" de
larations. when de
larations, whi
h are similar in s
opeto the blo
k de
larations that we propose, suspend the fun
tion 
alls until thearguments are suÆ
iently instantiated. The e�e
t of this suspension is that allfun
tions are rigid|
exible fun
tions are not supported. Fun
tions intended tobe 
exible must be en
oded as predi
ates by 
attening. This approa
h has thedrawba
k that optimal evaluation strategies [5℄ 
annot be employed for the logi
programming part of a program. Stri
t and lazy fun
tions 
an be freely mixed,whi
h makes the meaning of programs harder to understand (e.g., the meaningof equality in the presen
e of in�nite data stru
tures). NUE-Prolog uses a form of
on
urren
y for suspending fun
tion 
alls, as we do. But it is more restri
tive inthat there is no possibility to wait for the 
omplete evaluation of an expression.This leads to the undesired behavior dis
ussed in Example 2.Apart from the eÆ
ien
y and simpli
ity of our transformation s
heme ofCurry into Prolog programs, the use of Prolog as a target language has furtheradvantages. A high-level implementation more easily a

omodates the in
lusionof additional features. For instan
e, the implementation of a standard programtra
er w.r.t. Byrd's box model [6℄ requires only the addition of four 
lauses to13



ea
h program and two predi
ate 
alls for ea
h implemented fun
tion. The mostimportant advantage is the reuse of existing 
onstraint solvers available in Pro-log, as shown in Se
tion 3.3. Thus, with a limited e�ort, we obtain a usableimplementation of a de
larative language that 
ombines 
onstraint solving overvarious 
onstraint domains, 
on
urrent evaluation and sear
h fa
ilities from logi
programming with higher-order fun
tions and laziness from fun
tional program-ming. The 
ombination of laziness and sear
h is attra
tive be
ause it o�ers amodular implementation of demand-driven sear
h strategies, as shown in [15℄.Sin
e the 
ompilation time of our implementation is reasonable,6 this Prolog-based implementation supports our 
urrent main development system for Curryprograms.7 This system has been used to develop large distributed appli
ationswith sophisti
ated graphi
al user interfa
es and Web-based information serversthat run for weeks without interruption (see [13℄ for more details). By takingadvantage of both the features of our system and already developed 
ode, we 
anmake available on the Internet 
onstraint programming appli
ations in minutes.Referen
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