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Abstrat. We introdue a denotational haraterization of narrowing,the omputational engine of many funtional logi languages. We use afuntional domain for giving a denotation to the narrowing spae assoi-ated to a given initial expression under an arbitrary narrowing strategy.Suh a semanti desription highlights (and favours) the operational no-tion of evaluation instead of the more usual model-theoreti notion ofinterpretation as the basis for the semanti desription. The motivationis to obtain an abstrat semantis whih enodes information about thereal operational framework used by a given (narrowing-based) funtionallogi language. Our aim is to provide a general, suitable, and aurateframework for the analysis of funtional logi programs.Keywords: domain theory, funtional logi languages, narrowing, pro-gram analysis, semantis.1 IntrodutionThe ability of reasoning about program properties is essential in software design,implementations, and program manipulation. Program analysis is the task ofproduing (usually approximated) information about a program without atu-ally exeuting it. The analysis of funtional logi programs is one of the mosthallenging problems in delarative programming. Many works have already ad-dressed the analysis of ertain run-time properties of programs (e.g., [3, 11, 13,15, 23℄). Nevertheless, most of these approahes have been done in a rather adho setting, gearing the analysis towards the appliation on hand. Up to now,there is no general approah for formulating and analyzing arbitrary propertiesof funtional logi programs in an arbitrary operational framework. In this paperwe address this problem.The key of our approah is domain theory [19, 20℄ sine it provides a juntionbetween semantis (spaes of points = denotations of omputational proesses)? Partially supported by the German Researh Counil (DFG) grant Ha 2457/1-1.?? Partially supported by EEC-HCM grant ERBCHRXCT940624, Spanish CICYTgrant TIC 98-0445-C03-01, and Ai�on Integrada hispano{alemana HA1997-0073.



and logis (latties of properties of proesses) [2, 20, 22℄. The omputational pro-ess we are interested in is evaluation. In a programming language, the notion ofevaluation emphasizes the idea that there exists a distinguished set of syntatielements (the values) whih have a prede�ned mathematial interpretation [10℄.The other syntati elements take meaning from the program de�nitions and theoperational framework for the program's exeution. In this way, the evaluationproess (under a given operational framework) maps general input expressions(having an a priori unknown meaning) to values. This point of view favoursthe operational notion of evaluation instead of the more usual model-theoretinotion of interpretation as the basis for the semanti desription.Sine funtional logi languages with a omplete operational semantis arebased on narrowing, we enter our attention on it. The idea of using narrowing asan evaluation mehanism for integrated languages omes from Reddy's [18℄: nar-rowing is the operational priniple whih omputes the non-ground value (ngv)of an input expression. Given a domain D, a ngv is a mapping from valuations(on D) to values (in D). In moving valuations from being parameters of semantifuntions (as usual in many approahes, e.g., [9, 16℄) to be omponents of a se-manti domain, we understand narrowing as an evaluation mehanism whihinorporates the instantiation of variables as a part of suh evaluation meh-anism. Sine ngv's are funtional values, we use the domain-theoreti notion ofapproximable mapping [19, 20℄ to give them a omputable representation. Weargue that this is a good starting point for expressing and managing observableproperties of funtional logi programs (along the lines of [2, 22℄). Moreover, itreveals that, within an integrated framework, there exist semanti onnetionsbetween purely funtional and logi properties of programs. Termination andgroundness are examples of suh related properties. On the other hand, thanksto inluding operational information into the semanti desription, we are ableto derive interesting optimizations for program exeution.Setion 2 gives some preliminary de�nitions. Setion 3 introdues a domaintheoreti approah to pure rewriting and narrowing omputations. Setion 4disusses a semanti-based analysis framework for funtional logi languages.Setion 5 ontains our onlusions.2 PreliminariesIn this setion, we give some preliminary de�nitions (further details in [6, 21℄).Given sets A;B, BA is the set of mappings from A to B and P(A) denotesthe set of all subsets of A. An order v on a set A is a reexive, transitive andantisymmetri relation. An element ? of an ordered set (A;v) is alled a leastelement (or a minimum) if ? v a for all a 2 A. If suh an element exists, then(A;v;?) is alled a pointed ordered set. Given S � A, an element a 2 A is anupper bound of S if x v a for all x 2 S. In this ase we also say that S is aonsistent set. An upper bound of S is a least upper bound (or lub, written FS)if, for all upper bounds b of S, we have FS v b. A set S � A is downward(upward) losed if whenever a 2 S and b v a (a v b), we have that b 2 S. If



S = fx; yg, we write x t y instead of FS. A non-empty set S � A is direted if,for all a; b 2 S, there is an upper bound  2 S of fa; bg. An ideal is a downwardlosed, direted set and Id(A) is the set of ideals of an ordered set A. A pointedordered set (A;v;?) is a omplete partial order (po) if every direted set S � Ahas a lub FS 2 A. An element a 2 A of a po is alled ompat (or �nite) if,whenever S � A is a direted set and a v FS, then there is x 2 S suh thata v x. The set of ompat elements of a po A is denoted as K(A). A po A isalgebrai if for eah a 2 A, the set approx(a) = fx 2 K(A) j x v ag is diretedand a = F approx(a). An algebrai po D is a domain if, whenever the setfx; yg � K(D) is onsistent, then xt y exists in D. Given ordered sets (A;vA),(B;vB), a funtion f : A! B is monotoni if 8a; b 2 A, a vA b) f(a) vB f(b);f : A! A is idempotent if 8a 2 A; f(f(a)) = f(a).By V we denote a ountable set of variables; � denotes a signature, i.e., aset of funtion symbols ff; g; : : :g, eah with a �xed arity given by a funtionar : � ! IN. We assume � \ V = �. We denote by T (�; V ) the set of (�nite)terms built from symbols in the signature � and variables in V . A k-tuplet1; : : : ; tk of terms is denoted as t, where k will be lari�ed from the ontext.Given a term t, Var(t) is the set of variable symbols in t. Sometimes, we onsidera fresh onstant ? and �? = � [ f?g. Terms from T (�?; V ) are ordered bythe usual approximation ordering whih is the least ordering v satisfying ? v tfor all t and f(t) v f(s) if t v s, i.e., ti v si for all 1 � i � ar(f).Terms are viewed as labeled trees in the usual way. Positions p; q; : : : arerepresented by hains of positive natural numbers used to address subterms oft. By �, we denote the empty hain. The set of positions of a term t is denotedby Pos(t). A linear term is a term having no multiple ourrenes of the samevariable. The subterm of t at position p is denoted by tjp. The set of positions ofnon-variable symbols in t is Pos�(t), and PosV (t) is the set of variable positions.We denote by t[s℄p the term t with the subterm at the position p replaed by s.A substitution is a mapping � : V ! T (�; V ) whih homomorphially ex-tends to a mapping � : T (�; V ) ! T (�; V ). We denote by " the \identity"substitution: "(x) = x for all x 2 V . The set Dom(�) = fx 2 V j �(x) 6= xgis alled the domain of � and Rng(�) = [x2Dom(�)Var(�(x)) its range. �jU de-notes the restrition of a substitution � to a subset of variables U � Dom(�).We write � � �0 if there is � suh that �0 = � Æ �. A uni�er of two terms t1; t2is a substitution � with �(t1) = �(t2). A most general uni�er (mgu) of t1; t2 is auni�er � with � � �0 for all other uni�ers �0 of t1; t2.A rewrite rule (labeled �) is an ordered pair (l; r), written � : l ! r (orjust l ! r), with l; r 2 T (�; V ), l 62 V and Var(r) � Var(l). l and r arealled left-hand side (lhs) and right-hand side (rhs) of the rule, respetively. Aterm rewriting system (TRS) is a pair R = (�;R) where R is a set of rewriterules. A TRS (�;R) is left-linear, if for all l ! r 2 R, l is a linear term.Given R = (�;R), we onsider � as the disjoint union � = C ℄ F of symbols 2 C, alled onstrutors, and symbols f 2 F , alled de�ned funtions, whereF = ff j f(l)! r 2 Rg and C = � �F . A onstrutor-based TRS (CB-TRS) isa TRS with l1; : : : ; ln 2 T (C; V ) for all rules f(l1; : : : ; ln)! r.



For a given TRS R = (�;R), a term t rewrites to a term s (at position p),written [p;�℄! R (or just t p!R s, t!R s, or t! s) if tjp = �(l) and s = t[�(r)℄p, forsome rule � : l ! r 2 R, position p 2 Pos(t) and substitution �. A term t is innormal form if there is no term s with t!R s. A TRS R (or the rewrite relation!R) is alled onuent if for all terms t; t1; t2 with t!�R t1 and t!�R t2, thereexists a term t3 with t1 !�R t3 and t2 !�R t3. A term t narrows to a term s,written t ;[p;�;�℄ s (or just t ;� s), if there is p 2 Pos�(t) and a variant (i.e., arenamed version) of a rule � : l ! r suh that tjp and l unify with (idempotent)mgu �, and s = �(t[r℄p). A narrowing derivation t;�� s is suh that either t = sand � = " or t ;�0 t1 ;�1 � � � tn�1 ;�n�1 s and � = �n�1Æ� � �Æ�1Æ�0. In orderto show the progress of a narrowing derivation w.r.t. the omputed answer andthe evaluated goal, we also de�ne the narrowing relation on substitution/termpairs by h�; ti; h�0; si if t ;� s and �0 = �jVar(t) Æ� (i.e., we onsider only thesubstitution of goal variables).3 The Semanti ApproahA (�rst-order) program P = (R; t) onsists of a TRS R (whih establishes thedistintion between onstrutor and de�ned symbols of the program), and aninitial expression t to be fully evaluated. We make t expliit sine the di�erenesbetween the purely funtional and funtional logi styles arise in the di�erentstatus of the variables ourring in the initial expression: in funtional program-ming, those variables are not allowed (or they are onsidered as onstants andannot be instantiated). Funtional logi languages deal with expressions havinglogi variables and narrowing provides for the neessary instantiations.We haraterize the information whih is urrently ouhed by a term bymeans of a mapping (j j) from terms to (partial) values (remind that values areexpeted to be espeial syntati objets). We all (j j) an observation mapping.The adequay of a given mapping (j j) for observing omputations performedby a given operational mehanism should be ensured by showing that (j j) is ahomomorphism between the relation among syntati objets indued by theoperational mehanism and the approximation ordering on values. This meansthat the operational mehanism re�nes the meaning of an expression as theomputation ontinues.As a preliminary, simple example, onsider pure rewriting omputations:The syntati objets are terms t 2 T (�?; V ) and the values are taken from(T 1(C?);v;?), the domain of in�nite, ground onstrutor (partial) terms1.(T 1(C?; V );v;?) is the domain (T 1(C? [ V );v;?), where 8x 2 V; ar(x) = 0.For funtional omputations, we use (j j)F : T (�?; V )! T (C?; V ) given by(jxj)F = x (j?j)F = ?(j(t)j)F = ((jtj)F ) if  2 C (jf(t)j)F = ? if f 2 F1 Formally, (T 1(C?);v;?) is obtained from T (C?), whih is not even a po, as (iso-morphi to) its ideal ompletion (Id(T (C?));�; f?g) (see [21℄).



Proposition 1 (Redution inreases information). Let R be a TRS andt; s 2 T (�?; V ). If t!� s, then (jtj)F v (jsj)F .The funtion Rew : T (�?; V ) ! P(T (C?; V )) gives a representation Rew(t) =f(jsj)F j t!� sg of the rewriting spae of a given term t.Proposition 2. Let R be a onuent TRS. For all t 2 T (�?; V ), Rew(t) is adireted set.The semanti funtion CRew1 : T (�?; V ) ! T 1(C?; V ) gives the meaning ofa term under evaluation by rewriting: CRew1(t) = FRew(t). Thus, CRew1(t)is the most de�ned (possibly in�nite) value whih an be obtained (or approx-imated) by issuing rewritings from t. Note that the use of in�nite terms in theodomain of CRew1 is neessary for dealing with non-terminating programs.3.1 Narrowing as the Evaluation MehanismIn the ontext of a program, a term t with variables denotes a ontinuous funtiontD 2 [DV ! D℄ whih yields the evaluation of t under eah possible valuation2� 2 DV of its variables on a domain D. This is alled a non-ground value (ngv)in [18℄ and a derived operator in [8℄.Given domains D and E, the set [D ! E℄ of (strit) ontinuous funtionsfrom D to E (pointwise) ordered by f v g i� 8x 2 V; f(x) v g(x), is a domain[10, 21℄. For proving that [DV ! D℄ is a domain whenever D is, assume thatV ontains a distinguished (unused) variable ?. Thus, V supplied by the leastordering v suh that ? v x and x v x for all x 2 V is a domain. The setDV�f?g of arbitrary valuations from V �f?g to D is isomorphi to the domain[V !? D℄ of ontinuous, strit valuations. We assume this fat from now on byremoving ? from V and onsidering that DV is a domain. Therefore, [DV ! D℄is a domain and, in partiular, [T 1(C?)V ! T 1(C?)℄ also is.Our syntati objets, now, are substitution/term pairs h�; ti. We ouldna��vely extend (j j)F to deal with those pairs: (jh�; sij)F = h(j�j)F ; (jsj)F i where(j�j)F is a substitution given by (j�j)F (x) = (j�(x)j)F for all x 2 V . Unfortunately,the semanti progress of a narrowing evaluation might not be aptured by theomputational ordering v (extended by (�; Æ) v (�0; Æ0) i� 8x 2 V:�(x) v �0(x)and Æ v Æ0) and suh an extension of (j j)F .Example 1. Consider the TRS0+x ! x 0 � x ! trues(x)+y ! s(x+y) s(x) � s(y) ! x � yand the narrowing step h"; [x,x+y℄i ; hfx 7!0g; [0,y℄i ([�,�℄ denotes a 2-element list). We have (jh"; [x,x+y℄ij)F = h"; [x,?℄i and (jhfx 7!0g; [0,y℄ij)F =hfx 7!0g; [0,y℄i. Therefore, we do not get the desired inreasing omputation,beause " 6v fx 7!0g and [x,?℄ 6v [0,y℄.2 By abuse, we say that the `domain' of a valuation � 2 DV is Dom(�) = fx 2V j �(x) 6= ?g.



The problem is that narrowing introdues a new omputational mehanism forinreasing the information assoiated to a given term, i.e., instantiation of logivariables. Thus, we introdue the observation mapping (j j)FL : T (�?; V ) !T (C?) whih interprets uninstantiated variables as least de�ned elements:(jxj)FL = ? (j?j)FL = ?(j(t)j)FL = ((jtj)FL) if  2 C (jf(t)j)FL = ? if f 2 FNote that (jtj)FL = ?Subst((jtj)F ) and (j�j)FL = ?Subst Æ (j�j)F .Example 2. Now, (jh"; [x,x+y℄ij)FL = h?Subst; [?,?℄i v hfx 7!0g; [0,?℄i =(jhfx 7!0g; [0,y℄ij)FL, i.e., (j j)FL satis�es the desired property.Narrowing omputations are ompatible with the new observation mapping.Proposition 3. LetR be a TRS. If h�; ti ;� h�0; si, then (jh�; tij)FL v (jh�0; sij)FL.3.2 The Narrowing Spae as an Approximable MappingAnalogously to Rew(t), we an build a semanti desription Narr(t) of thenarrowing evaluation of t. Nevertheless, sine Narr(t) is intended to be a rep-resentation of a ngv, i.e., a funtional value, we need to use the orrespondingstandard Sott's onstrution of approximable mappings [20, 21℄.A preusl is a struture P = (P;v;t;?) where v is a preorder, ? is adistinguished minimal element, and t is a partial binary operation on P suhthat, for all a; b 2 P , a t b is de�ned if and only if fa; bg is onsistent in Pand then a t b is a (distinguished) supremum of a and b [21℄. Approximablemappings allow us to represent arbitrary ontinuous mappings between domainson the representations of those domains (their ompat elements) as relationsbetween approximations of a given argument and approximations of its value atthat argument [21℄.De�nition 1. [21℄ Let P = (P;v;t;?); P 0 = (P 0;v0;t0;?0) be preusl's. Arelation f � P � P 0 is an approximable mapping from P to P 0 if1. ? f ?0.2. a f b and a f b0 imply a f (b t b0).3. a f b, a v a0, and b0 v0 b imply a0 f b0.The ideal ompletion (Id(P );�; f?g) of a preusl is a domain (see [21℄). Anapproximable mapping de�nes a ontinuous funtion between Id(P ) and Id(P 0):f : Id(P )! Id(P 0) is given by f(I) = fb 2 P 0 j 9a 2 I with a f bg.Proposition 4. Let P = (P;v;t;?); P 0 = (P 0;v0;t0;?0) be preusl's, andf; f 0 � P � P 0 be approximable mappings from P to P 0. If f � f 0, then f v f 0.Given a term t, NDeriv(t) is the set of narrowing derivations issued from t. Weassoiate an approximable mapping NarrA(t) to a given narrowing derivationA 2 NDeriv(t).



De�nition 2. Given a term t 2 T (�?; V ) and a narrowing derivationA : h"; ti = h�0; t0i; h�1; t1i; � � �; h�n�1; tn�1i; h�n; tniwe de�ne NarrA(t) = [0�i�nNarrAi (t) where:NarrAi (t) = fh&; Æi j 9� 2 T (C?)V :(j� Æ �ij)FL v & ^ Æ v (j�(ti)j)FLgProposition 5. Let R be a TRS, t be a term, and A be a narrowing derivationstarting from t. Then, NarrA(t) is an approximable mapping.De�nition 3. Given a term t 2 T (�?; V ), we de�ne the relation Narr(t) �T (C?)V � T (C?) to be Narr(t) = SA2NDeriv(t)NarrA(t).Unfortunately, these semanti de�nitions are not onsistent w.r.t. rewriting.Example 3. Consider the TRSf(f(x)) ! a ! band A : h"; ti = h"; f(x)i ; hfx 7! f(x')g; ai. If m = NarrA(t), then fx 7!agm a (we take � = ?Subst , � = fx 7! f(x')g in De�nition 2; hene, (j� Æ �j)FL =?Subst v fx 7! ag = &). Thus, NarrA(t)(fx 7! ag) = a. However, fx 7! ag(t) =f(a) 6!� a.The problem here is that (j j)FL identi�es (as ?) parts of the bindings �(x) of aomputed substitution � whih an be semantially re�ned by instantiation (ofthe variables in �(x)) and other whih annot be further re�ned by instantiation(the operation-rooted subterms in �(x)). If we deal with left-linear CB-TRS'sand hoose (idempotent) mgu's as uni�ers for the narrowing proess, the sub-stitutions whih we deal with are linear onstrutor substitutions, i.e., for allnarrowing derivations h"; ti ;� h�; si and all x 2 V , �(x) is a onstrutor termand f�(x) j x 2 Dom(�)g is a linear set of terms (i.e., no variable appearstwie within them). Hene, the substitutions omputed by narrowing have nopartial information apart from the variable ourrenes. In this ase, (j�j)F = �,(j�j)FL = ?Subst Æ (j�j)F = ?Subst Æ �, and we have the following result.Proposition 6. Let � be a linear onstrutor substitution and �; & 2 T (C?)V .If � Æ � v &, then there exists �0 2 T (C?)V suh that � v �0 and �0 Æ � = &.Thus, we obtain a simpler, more readable expression for the approximable map-ping whih is assoiated to a given left-linear CB-TRS by noting thatNarrAi (t) = fh&; Æi j 9� 2 T (C?)V :(j� Æ �ij)FL v & ^ Æ v (j�(ti)j)FLg= fh&; Æi j 9� 2 T (C?)V :� Æ �i = & ^ Æ v (j�(ti)j)FLgThe union of approximable mappings (onsidered as binary relations) need notto be an approximable mapping. Nevertheless, we have the following result.



Proposition 7. Let R be a left-linear, onuent CB-TRS and t be a term. ThenNarr(t) is an approximable mapping.We de�ne the semanti funtion CNarr1 : T (�?; V )! [T 1(C?)V ! T 1(C?)℄as follows: CNarr1(t) = Narr(t), i.e., CNarr1(t) is the ontinuous mappingassoiated to the approximable mappingNarr(t) whih represents the narrowingderivations starting from t. This semantis is onsistent w.r.t. rewriting.Theorem 1. Let R be a left-linear, onuent CB-TRS. For all t 2 T (�?; V ),� 2 T (C?)V , CNarr1(t) � = CRew1(�(t)).Narrowing strategies. A narrowing strategy N is a restrition on the set ofpossible narrowing steps. Given a narrowing strategy N and a term t, we anonsider the set NDerivN (t) � NDeriv(t) of derivations whih start from t andonform to N . By Proposition 5, eah A 2 NDerivN (t) de�nes an approximablemapping NarrA(t) whih is obviously ontained in Narr(t). By Proposition 4,NarrA(t) v Narr(t) = CNarr1(t). Therefore, fNarrA(t) j A 2 NDerivN (t)gis bounded by CNarr1(t). Sine [T 1(C?)V ! T 1(C?)℄ is a domain, it is on-sistently omplete, i.e., the lub of every bounded subset atually exists (Theorem3.1.10 in [21℄). Thus, for left-linear CB-TRSs, we �xCNarr1N (t) =GfNarrA(t) j A 2 NDerivN (t)gto be the meaning of t when it is evaluated under the narrowing strategy N .Clearly, for all narrowing strategies N , CNarr1N v CNarr1. Thus, CNarr1provides a semanti referene for narrowing strategies. Strategies that satisfyCNarr1N = CNarr1 an be thought of as orret strategies.Remark 1. Narrowing is able to yield the graph of a funtion f by omputingCNarr1(f(x)), where x1; : : : ; xar(f) are di�erent variables. This gives an in-teresting perspetive of narrowing as an operational mehanism whih omputesdenotations of funtions as a whole, rather than only values of partiular funtionalls. A similar observation an be made for narrowing strategies.3.3 Computational Interpretation of the Semanti DesriptionsOur semanti desriptions are intended to provide a lear omputational inter-pretation of the semanti information. This is essential for de�ning aurateanalyses by using the semanti desription.Proposition 8. Let R be a onuent TRS, t 2 T (�?; V ), and Æ = CRew1(t).If Æ 2 T (C; V ), then t!� Æ.Conerning narrowing omputations, we have the following result.Proposition 9. Let R be a left-linear, onuent CB-TRS. Let t be a term,& 2 T (C?)V , m = CNarr1(t), and Æ = m(&).



1. If Æ 2 T (C?), there exists a narrowing derivation h"; ti ;� h�; si suh that� Æ � = & and Æ = (j�(s)j)FL.2. For every narrowing derivation h"; ti ;� h�; si suh that � Æ � = &, it is(j�(s)j)FL v Æ.3. If Æ 2 T (C), then there exists a narrowing derivation h"; ti ;� h�; si suhthat s 2 T (C; V ), � Æ � = &, and Æ = �(s).We are able to re�ne the omputational information ouhed by the narrowingsemantis by introduing a small modi�ation on it.De�nition 4. Given a term t 2 T (�?; V ), and a narrowing derivationA : h"; ti = h�0; t0i; h�1; t1i; � � �; h�n�1; tn�1i; h�n; tniwe de�ne BNarrA(t) = [0�i�nBNarrAi (t) where:BNarrAi (t) = fh&; Æi j (j�ij)FL v & ^ Æ v (jtij)FLgProposition 10. Let R be a TRS, t be a term and A be a narrowing derivationstarting from t. Then BNarrA(t) is an approximable mapping.If we de�ne BNarr(t) = SA2NDeriv(t)BNarrA(t), we have the following result.Proposition 11. Let R be a left-linear, onuent CB-TRS and t be a term.Then BNarr(t) is an approximable mapping.The basi desription BNarr1(t) = BNarr(t) is loser to the omputationalmehanism of narrowing. The following proposition formalizes this laim.Proposition 12. Let R be a left-linear, onuent CB-TRS, t be a term, & 2T (C?)V , m = BNarr1(t), and Æ = m(&).1. If Æ 2 T (C?), there exists a narrowing derivation h"; ti ;� h�; si suh that� Æ � = & and Æ = (jsj)FL.2. For every narrowing derivation h"; ti ;� h�; si suh that (j�j)FL v &, it is(jsj)FL v Æ.Proposition 13. Let R be a left-linear, onuent CB-TRS, t be a term, andm = BNarr1(t). If h"; ti;� h�; Æi and Æ 2 T (C), then m((j�j)FL) = Æ.Sine eah BNarrAi (t) is a speial ase of NarrAi (t), by Proposition 11 andProposition 4, BNarr1(t) v CNarr1(t).4 A Semantis-Based Analysis FrameworkDomain theory provides a framework for formulating properties of programs anddisussing about them [2, 20℄: A property � of a program P whose denotation[[P ℄℄ is taken from a domain D (i.e., [[P ℄℄ 2 D) an be identi�ed with a prediate� : D ! 2, where 2 is the two point domain 2 = f?;>g ordered by ? v >



(where ? an be thought of as false and > as true). A program P satis�es �if �([[P ℄℄) = > (alternatively, if [[P ℄℄ 2 ��1(>)). As usual in domain theory, werequire ontinuity of � for ahieving omputability (or observability, see [22℄).The set [D ! 2℄ of observable properties is (isomorphi to) the family of opensets of the Sott's topology assoiated to D [2℄. A topology is a pair (X; �) whereX is a set and � � P(X) is a family of subsets of X (alled the open sets) suhthat [21℄: X;� 2 � ; if U; V 2 � , then U \ V 2 � ; and if Ui 2 � for i 2 I , thenSi2I Ui 2 � . The Sott's topology assoiated to a domain D is given by the setof upward losed subsets U � D suh that, whenever A � D is direted andFA 2 U , then 9x 2 A:x 2 U [21℄.The family � of open sets of a given topology (X; �) ordered by inlusion is aomplete lattie. The top element of the lattie is X . Note that, when onsideringthe Sott's topology (D; �D) of a domain D, the open set D denotes a trivialproperty whih every program satis�es; �, the least element of lattie �D, denotesthe `impossible' property, whih no program satis�es.4.1 Analysis of Funtional Logi ProgramsA program analysis onsists in the de�nition of a ontinuous funtion � : D !A between topologi spaes (D; �D) and (A; �A) whih expresses onrete andabstrat properties, respetively. By the topologial de�nition of ontinuity, eahopen set V 2 �A maps to an open set U 2 �D via ��1, i.e., ��1 : �A ! �D is amapping from abstrat properties (open sets of �A) to onrete properties (opensets of �D). It is easy to see that (D; f��1(V ) j V 2 �Ag) is a subtopology of D(i.e., f��1(V ) j V 2 �Ag � �D). Therefore, eah analysis distinguishes a subsetof properties of D whih is itself a topology. For instane, the Sott's topologyof 2 is given by �2 = f�; f>g;2g. Suh a topology permits to express only onenon-trivial property, namely, the one whih orresponds to the open set f>g.In funtional logi languages, the semanti domain under observation is[DV ! D℄. Observable properties of funtional logi programs are open setsof its Sott's topology. Approximations to suh properties an be obtained byabstrating [DV ! D℄ into a suitable abstrat domain (see below).Every ontinuous funtion f : D ! E maps observable properties of theodomain E into observable properties of D (by f�1 : �E ! �D). In partiu-lar, elements of [DV ! D℄, i.e., denotations of funtional logi programs, mapproperties of D (we all them `funtional' properties) into properties of DV (`lo-gi' properties). This provides an additional, interesting analyti perspetive:By rephrasing Dybjer [7℄, we an omputationally interpret this orrespondeneas establishing the extent that a `logi property' (onerning valuations) needsto be ensured to guarantee a property of its funtional part (omputed value).There is a simple way to obtain an abstration of the logi part DV of [DV ! D℄from an abstration of its funtional part D.De�nition 5. Let D;V;A be sets. Let �F : D ! A be a mapping. Then, �L :DV ! AV given by �L(�) = �F Æ�, for all � 2 DV , is alled the logi abstrationindued by �F .



If �F : D ! A is strit (surjetive, ontinuous), then �L is strit (surjetive,ontinuous). Whenever �F is a ontinuous mapping from a domain D to 2, �Fexpresses, in fat, a single observable property ��1(f>g) of D. We an thoughtof �F as a funtional property. Thus, De�nition 5 assoiates an abstration �L ofDV to a given property identi�ed by �F . Thus, eah funtional property induesa related set of logi properties whih is a subtopology of �DV . In Setion 4.3 weshow that groundness (a logi property), is indued by the funtional propertyof termination.4.2 Approximation of FuntionsAbstrations �D : D ! A and �E : E ! B (A and B being algebrai latties),indue safety and liveness abstrations �SD!E ; �LD!E : (D ! E)! (A! B), ofontinuous mappings by [1℄�SD!E(f)(d) = tf(�E Æ f)(d0) j �D(d0) v dg; and�LD!E(f)(d) = uf(�E Æ f)(d0) j �D(d0) w dgwhere the following orretness result holds:Theorem 2 (The semi-homomorphism property [1℄). Let f : D ! E,fS = �SD!E(f), and fL = �LD!E(f). Then, fL Æ �D v �E Æ f v fS Æ �D.Consider an abstration �E : E ! 2 whih an be thought of as a property ofelements of the odomain E of f : D ! E. For analyti purposes, the orretnessondition fS Æ �D w �E Æ f ensures that, for all x 2 D, whenever the abstratomputation fS(�D(x)) yields ?, the onrete omputation f(x) does not sat-isfy the property �E , i.e., �E(f(x)) = ?. On the other hand, the orretnessondition fL Æ �D v �E Æ f ensures that, whenever fL(�D(x)) yields >, theonrete omputation f(x) atually satis�es �E , i.e., �E(f(x)) = >. We use thisomputational interpretation later.4.3 Termination Analysis and Groundness AnalysisThe funtional struture of the semanti domain of ngv's reveals onnetionsbetween apparently unrelated analyses. Consider ht : T 1(C?)! 2 de�ned byht(Æ) = �> if Æ 2 T (C)? otherwiseand let hg : T 1(C?)V ! 2V be the logi abstration indued by ht. Note thatboth ht and hg are strit and ontinuous. Abstrations ht and hg express theobservable properties of termination and groundness, respetively: Reall thatthe only nontrivial open set of the Sott's topology of 2 is f>g. By ontinuityof ht, h�1t (f>g) is the (open) set of �nite, totally de�ned values whih atually



orresponds to terminating suessful evaluations3. On the other hand, eahopen set of 2V is (isomorphi to) an upward losed olletion of sets of variablesordered by inlusion. In this ase, h�1g (F ) for a given open set F is a set ofsubstitutions whose bindings for variables belonging to X 2 F are ground. Thisformally relates groundness and termination: groundness is the `logi' propertywhih orresponds to the `funtional' property of termination. In fat, 2V is thestandard abstrat domain for groundness analysis in logi programming.4.4 Using Semanti Information for Improving the EvaluationGroundness information an be used to improve the narrowing evaluation of aterm t = C[t1; : : : ; tn℄: if we know that every suessful evaluation of ti groundsthe variables of tj , for some 1 � i; j � n, i 6= j, then it is sensible to evaluatet by �rst narrowing ti (up to a value) and next evaluating t0j (i.e., tj afterinstantiating its variables using the bindings reated by the evaluation of ti) byrewriting beause, after evaluating ti, we know that t0j is ground and we do notneed to provide ode for uni�ation, instantiation of other variables, et.Example 4. Consider the following TRS:0+x ! x if(true,x,y) ! xs(x)+y ! s(x+y) if(false,x,y) ! yeven(0) ! true even(s(s(x))) ! even(x)even(s(0)) ! falseFor an initial (onditional) expression \if even(x) then x+x else s(x+x)"(we use the more familiar notation if then else for if expressions), it is learthat x beomes ground after every suessful narrowing evaluation of the ondi-tion even(x). Thus, we an evaluate x+x by rewriting instead of narrowing.Additionally, we need to ensure that the evaluation of ti is safe under the ontextC (i.e., that failing evaluations of ti do not prevent the evaluation of t). Eventu-ally, we should also ensure that the omplete evaluation of t0j is safe. Stritnessinformation an be helpful here: if the (normalizing) narrowing strategy is notable to obtain any value, this means that the whole expression does not have avalue. However, we should only use non-ontextual stritness analyses (like My-roft's [17℄ is). In this way, we ensure that the strit harater of an argumentis not altered after a possible instantiation of its surrounding ontext.In order to ensure that every suessful narrowing derivation grounds a givenvariable x 2 Var(t), we use the safety abstration mS 2 2V ! 2 of m =BNarr1(t) (based on ht and hg).3 ht and Myroft's abstration: halt(d) = �> if d 6= ?? if d = ? for termination analysis [17℄are similar. However, halt only expresses termination if C only ontains onstantsymbols. It is easy to see that, in this ase, ht = halt.



Example 5. (Continuing Example 4) For t = even(x), we have:BNarr1(t) = f fx 7! ?g 7! ?; fx 7! 0g 7! true;fx 7! s(?)g 7! ?; fx 7! s(0)g 7! false;fx 7! s(s(?))g 7! ?; fx 7! s(s(0))g 7! true; : : : gIn general, if we an prove that, for all abstrat substitutions �# 2 2V with�#(x) = ?, it is mS(�#) = ?, then we an ensure that x is grounded in everysuessful derivation from t. To see this point, onsider a suessful derivationh"; ti ;� h�; Æi suh that Æ 2 T (C) and �(x) 62 T (C), i.e., x is not grounded.By Proposition 13, m((j�j)FL) = Æ. By de�nition of mS , mS(hg((j�j)FL)) = >.Sine (j�j)FL(x) 62 T (C), we have hg((j�j)FL)(x) = ht((j�j)FL(x)) = ?, thusontraditing (a ase of) our initial assumption, mS(hg((j�j)FL)) = ?.Example 6. (Continuing Example 5) For t = even(x), we have mS = ffx 7!?g 7! ?; fx 7! >g 7! >g. Thus, x is grounded in every suessful derivation ofeven(x).The previous onsiderations make lear that the semanti dependeny expressedby the ngv's has the orresponding translation for the analysis questions.5 Related Work and Conluding RemarksThe idea of giving denotational desriptions of di�erent operational frameworksis not new. For instane, [5℄ assigns di�erent �xpoint semantis for a programunder either all-by-name or all-by-value strategies. This shows that, in somesense, the semanti desriptions also (silently) assume some underlying opera-tional approah (usually, all-by-name like).In [18℄, the notion of ngv as the semanti objet that a narrowing omputationshould ompute was already introdued. It was also noted that narrowing onlyomputes a representation of the objet, not the objet itself. However, it wasnot learly explained how this onnetion an be done.In [16℄, domains are used to give semantis to the funtional logi languageBABEL. However, the style of the presentation is model-theoreti: all symbolstake meaning from a given interpretation and the onnetion between the de-larative and operational semantis (lazy narrowing) are given by means of theusual ompleteness/orretness results. The semanti domain is di�erent fromours beause valuations are just a parameter of the semanti funtions ratherthan a omponent of the domain. Thus, the Herbrand domain T 1(C?) is thesemanti domain in [16℄.The semanti approah in [9℄ is muh more general than [16℄ (overing non-deterministi omputations), but the style of the presentation is model-theoretitoo. The basi semanti domain is also di�erent from ours: no funtional do-main for denotations is used and, in fat, bounded ompleteness, whih is essen-tial in our setting to deal with the funtional onstrution and with narrowingstrategies, is not required in [9℄.



In [23℄, a denotational desription of a partiular narrowing strategy (theneeded narrowing strategy [4℄) is given. The semantis is niely applied to de-mandedness analysis but nothing has been said about how to use it for moregeneral analysis problems. This question is important sine the notion of deman-dedness pattern is essential for the de�nition of the semantis itself.We have presented a domain-theoreti approah for desribing the semantisof integrated funtional logi languages based on narrowing. Our semantis isparameterized by the narrowing strategy whih is used by the language. Thesemantis is not `model-theoreti' in the sense that we let within the operationalmehanism (the narrowing strategy) to establish the `real' meaning of the fun-tions de�ned by the program rules. In this way, we are able to inlude more op-erational information into the semanti desription. As far as we know, previousworks have not expliitly onsidered di�erent arbitrary strategies for parameter-izing the semantis of funtional logi languages, that is, the operational-orienteddenotational desription formalized in this work is novel in the literature of thearea.Another interesting point of our work is its appliability to the analysis offuntional logi programs. Sine we use a funtional domain (the domain of non-ground-values), we are able to assoiate a denotation to a term with variables.Thus, narrowing is reformulated as an evaluation mehanism whih omputesthe denotation of the input expression. This was already suggested by Reddy[18℄ but it is only formally established in this paper by using approximablemappings. Thanks to this perspetive, we an easily use the standard frame-works for program analysis based on the denotational desription of programs.In other words, the approximation of the domain of non-ground values enablesthe analysis of funtional logi programs. Our desription also reveals unexploredonnetions between purely funtional and logi properties. These onnetionssuggest that, within the funtional logi setting, we have asertained a kind of`duality' between purely funtional and purely logi properties. As far as weknow, this had not been established before.Future work inludes a more detailed study about how to use this semantisto develop pratial methods for the analysis of funtional logi programs. An-other interesting task is to extend this semantis to more general omputationmodels for delarative languages [12℄.Referenes1. S. Abramsky. Abstrat Interpretation, Logial Relations, and Kan Extensions.Journal of Logi and Computation 1(1):5-40, 1990.2. S. Abramsky. Domain Theory in Logi Form. Annals of Pure and Applied Logi51:1-77, 1991.3. M. Alpuente, M. Falashi, and F. Manzo. Analyses of Unsatis�ability for Equa-tional Logi Programming. Journal of Logi Programming, 22(3):221-252, 1995.4. S. Antoy, R. Ehahed and M. Hanus. A needed narrowing strategy. In Confer-ene Reord of the ACM Symposium on Priniples of Programming Languages,POPL'94, pages 268-279. ACM Press, 1994.
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