
A Pra
ti
al Partial Evaluator for aMulti-Paradigm De
larative Language?Elvira Albert1, Mi
hael Hanus2, and Germ�an Vidal11 DSIC, UPV, Camino de Vera s/n, E-46022 Valen
ia, Spainfealbert,gvidalg�dsi
.upv.es2 Institut f�ur Informatik, CAU Kiel, Olshausenstr. 40, D-24098 Kiel, Germanymh�informatik.uni-kiel.de

Springer-VerlagIn Pro
. of the 5th International Symposium on Fun
tional and Logi
Programming (FLOPS 2001), Tokyo (Japan).Springer LNCS 2024, pp. 326{342, 2001

Abstra
t. Partial evaluation is an automati
 te
hnique for program op-timization whi
h preserves program semanti
s. The range of its potentialappli
ations is extremely large, as witnessed by su

essful experien
es inseveral �elds. This paper summarizes our �ndings in the development ofpartial evaluation tools for Curry, a modern multi-paradigm de
larativelanguage whi
h
ombines features from fun
tional, logi
 and
on
urrentprogramming. From a pra
ti
al point of view, the most promising ap-proa
h appears to be a re
ent partial evaluation framework whi
h trans-lates sour
e programs into a maximally simpli�ed representation. Wesupport this statement by extending the underlying method in orderto design a pra
ti
al partial evaluation tool for the language Curry. Thepro
ess is fully automati
 and
an be in
orporated into a Curry
ompileras a sour
e-to-sour
e transformation on intermediate programs. An im-plementation of the partial evaluator has been undertaken. Experimentalresults
on�rm that our partial evaluator pays o� in pra
ti
e.1 Introdu
tionCurry [13, 15℄ is a modern multi-paradigm de
larative language whi
h integratesfeatures from fun
tional, logi
 and
on
urrent programming. The most impor-tant features of the language in
lude lazy evaluation, higher-order fun
tions,non-deterministi

omputations,
on
urrent evaluation of
onstraints with syn-
hronization on logi
al variables, and a uni�ed
omputation model whi
h inte-grates narrowing and residuation. Furthermore, Curry is a
omplete program-ming language whi
h has been used to implement distributed appli
ations (e.g.,Internet servers [14℄, dynami
 web pages [17℄) or graphi
al user interfa
es [16℄.Several eÆ
ient implementations of the language already exist (see, e.g., [7, 18,25℄), although there is still room for further improvements. Existing
ompilers forpure fun
tional languages have been su

essfully improved by semanti
s-basedprogram transformation te
hniques. For instan
e, the Glasgow Haskell Compilerin
ludes a number of sour
e-to-sour
e program transformations whi
h are able? This work has been partially supported by CICYT TIC 98-0445-C03-01, by A

i�onIntegrada hispano-alemana HA1997-0073, and by the DFG under grant Ha 2457/1-2.

to optimize the quality of
ode in many di�erent aspe
ts [27℄. En
ouraged bythese su

essful experien
es, we develop an automati
 program transformationte
hnique to improve the eÆ
ien
y of Curry fun
tional logi
 programs.For instan
e,
onsider fun
tions de�ned by higher-order
ombinators su
h asmap, foldr, et
. Although su
h fun
tions
an be simply de�ned in a
on
ise way,some overhead is introdu
ed at runtime whi
h
an be eliminated by programtransformation te
hniques. As an example,
onsider the following fun
tion foo:foo xs = foldr (+) 0 (map (+1) xs)to add 1 to the elements of a given list xs and then
ompute their total sum.From the programmer point of view, this de�nition is perfe
tly right, but thereexist more eÆ
ient de�nitions for foo, like the following one:foo [℄ = 0foo (x : xs) = (x + 1) + (foo xs)In
ontrast to the original de�nition, it is a �rst-order fun
tion and, over ex-isting fun
tional logi

ompilers, it
an be exe
uted more eÆ
iently (sin
e it is
ompletely \deforested" [30℄). Therefore, we are
on
erned with program trans-formations whi
h, given a program, output a residual program from whi
h theoverhead has been removed at
ompile time. Partial evaluation (PE) is an auto-mati
 te
hnique for program optimization whi
h preserves program semanti
s.Optimization is a
hieved by spe
ializing programs w.r.t. parts of their input(hen
e also
alled program spe
ialization). We note that several PE te
hniquesare able to perform deforestation automati
ally and, thus, they
an be usefulto optimize fun
tions like the above one. Informally, a partial evaluator is amapping whi
h takes a program P and a fun
tion
all C and derives a moreeÆ
ient, spe
ialized program PC whi
h gives the same answers for C (and anyof its instan
es) as P does.PE te
hniques have been intensively studied in the
ontext of a wide vari-ety of de
larative programming paradigms, spe
ially in both the fun
tional andlogi
 programming
ommunities (see, e.g., [9, 11, 20, 23℄ and referen
es herein).Re
ently, a uni�ed framework for the PE of languages whi
h integrate featuresfrom fun
tional and logi
 programming has been introdu
ed in [4℄. The originalframework is de�ned for languages whose operational semanti
s is based solelyon narrowing, although it has been extended to deal with residuation in [2℄. TheIndy partial evaluator [1℄ is a prototype implementation based on the aboveframework. The system is written in Prolog and a

epts un
onditional termrewriting systems as programs. The narrowing-driven approa
h to PE has thesame potential for spe
ialization as positive super
ompilation [29℄ of fun
tionalprograms and
onjun
tive partial dedu
tion [10℄ of logi
 programs (it has beenexperimentally tested in [2, 4℄).Unfortunately, the use of Indy within a realisti
 fun
tional logi
 language(e.g., Curry [15℄, Es
her [22℄ or Toy [24℄) be
omes impra
ti
al sin
e there aremany fa
ilities of these languages (e.g., higher-order fun
tions,
onstraints, I/O,built-in's, et
.) whi
h are not
overed neither by Indy nor by the underlying PEframework. For instan
e, Indy
annot be used to optimize the above fun
tion2

foo due to o

urren
es of the built-in fun
tion + and the higher-order fun
-tions map and foldr. Furthermore, the PE framework of [4℄ su�ers from somelimitations, e.g., within a lazy (
all-by-name) semanti
s, terms in head normalform (i.e., rooted by a
onstru
tor symbol)
annot be evaluated during the PEpro
ess. This
an drasti
ally redu
e the optimization power of the method inmany
ases. To over
ome this problem, [3℄ introdu
es a novel approa
h for thePE of fun
tional logi
 languages. The new s
heme
onsiders a maximally simpli-�ed representation into whi
h programs written in a higher-level language (i.e.,indu
tively sequential programs [5℄ with evaluation annotations)
an be auto-mati
ally translated. The restri
tion to not evaluate terms in head normal formis avoided by de�ning a non-standard semanti
s whi
h is well-suited to perform
omputations at PE time.The aim of this work is to show how|in
ontrast to [4℄ and Indy|the frame-work of [3℄
an be su

essfully applied in pra
ti
e. To this end, we �rst enri
hthe intermediate representation
onsidered in [3℄ in order to
over all the fa
ili-ties of the language Curry. The resulting representation is essentially equivalentto the standard intermediate language FlatCurry [18℄, whi
h has been proposedto provide a
ommon interfa
e for
onne
ting di�erent tools working on Curryprograms, e.g., ba
k ends for various
ompilers [7℄. Then, the non-standard se-manti
s of [3℄ is
arefully extended in order to
over the additional languagefeatures. This extension is far from trivial, sin
e the underlying
al
ulus doesnot
ompute bindings but represents them by \residual"
ase expressions. How-ever, there are a number of fun
tions, like equalities, (
on
urrent)
onjun
tions,some arithmeti
 fun
tions, et
., in whi
h the propagation of bindings betweentheir arguments is
ru
ial to a
hieve a good level of spe
ialization. Therefore, weare
onstrained to de�ne a spe
i�
 treatment for these important features. Fi-nally, in order to make the resulting framework pra
ti
ally appli
able, we de�neappropriate
ontrol strategies whi
h take into a

ount the parti
ularities of the
onsidered language and (non-standard) semanti
s. The resulting method is ableto transform realisti
 Curry programs in
ontrast to other existing partial eval-uators. For instan
e, the \higher-order" de�nition of foo
an be automati
allytransformed into the more eÆ
ient version (see Se
t. 5).The stru
ture of this paper is as follows. Se
tion 2 re
alls the basi
 notionsand te
hniques asso
iated to the PE of fun
tional logi
 programs. Se
tion 3extends the previous approa
h in order to
over all the fa
ilities provided by thelanguage Curry. A des
ription of the
ontrol issues involved in the PE pro
ess ispresented in Se
t. 4. Some experiments with the partial evaluator are des
ribedin Se
t. 5 before we
on
lude in Se
t. 6.2 The Basi
 Approa
hFor the sake of
ompleteness, in this se
tion we brie
y re
all the approa
h pre-sented in [3℄ for the PE of fun
tional logi
 programs. Informally speaking, thepro
ess is based on two steps: �rstly, the sour
e program is translated into amaximally simpli�ed representation (Se
t. 2.1); then, fun
tion
alls are partially3

evaluated using a non-standard semanti
s, the RLNT
al
ulus, whi
h is spe
iallywell-suited for performing
omputations at PE time (Se
t. 2.2). To be pre
ise,for ea
h �nite (possibly partial)
omputation of the form e1)+ e2 performedwith the RLNT
al
ulus, we generate a residual rule|a resultant|of the form:e1 = e2. Additionally, a post-pro
essing of renaming is often required to re
overthe same
lass of programs.2.1 The Flat RepresentationFollowing [13℄, we
onsider indu
tively sequential rewrite systems [5℄ (with eval-uation annotations) as programs and an operational semanti
s whi
h integrates(needed) narrowing and residuation. In order to simplify the underlying seman-ti
s, a
at representation for programs is introdu
ed. This representation is basedon the formulation of [19℄ to express pattern-mat
hing by
ase expressions. Asit will be
ome apparent in Se
t. 3, it
orresponds to a subset of the FlatCurrysyntax [18℄, a standard intermediate representation for Curry programs.R ::= D1 : : :Dm e ::= x (variable)D ::= f(x1; : : : ; xn) = e j
(e1; : : : ; en) (
onstru
tor)j f(e1; : : : ; en) (fun
tion
all)p ::=
(x1; : : : ; xn) j
ase e0 of fp1 ! e1 ; : : : ; pn ! eng (rigid
ase)j f
ase e0 of fp1 ! e1; : : : ; pn ! eng (
exible
ase)A program R
onsists of a sequen
e of fun
tion de�nitions D su
h that ea
hfun
tion is de�ned by one rule whose left-hand side
ontains only variables asparameters. The right-hand side is an expression e
omposed by variables,
on-stru
tors, fun
tion
alls, and
ase expressions for pattern-mat
hing. The form ofa
ase expression is:1(f)
ase e of f
1(xn1)! e1; : : : ;
k(xnk)! ekgwhere e is an expression,
1; : : : ;
k are di�erent
onstru
tors of the type of e,and e1; : : : ; ek are expressions (possibly
ontaining (f)
ase's). The variables xniare lo
al variables whi
h o

ur only in the
orresponding subexpression ei. Thedi�eren
e between
ase and f
ase only shows up when the argument e is a freevariable:
ase suspends (whi
h
orresponds to residuation) whereas f
ase nonde-terministi
ally binds this variable to a pattern in a bran
h of the
ase expression(whi
h
orresponds to narrowing). Fun
tions de�ned only by f
ase (resp.
ase)expressions are
alled
exible (resp. rigid). Thus,
exible fun
tions a
t as genera-tors (like predi
ates in logi
 programming) and rigid fun
tions a
t as
onsumers.For example,
onsider the rules de�ning the (rigid) fun
tion \ 6 ":20 6 n = True(Su

 m) 6 0 = False(Su

 m) 6 (Su

 n) = m 6 nUsing
ase expressions, they
an be represented by the following rewrite rule:1 We write on for the sequen
e of obje
ts o1; : : : ; on.2 Although we
onsider in this work a �rst-order representation for programs, we usea
urried notation in
on
rete examples (as usual in fun
tional languages).4

x 6 y =
ase x of f0 ! True;(Su

 x1)!
ase y of f0! False;(Su

 y1)! x1 6 y1g gAn automati
 transformation from indu
tively sequential programs [5℄ to pro-grams using
ase expressions is introdu
ed in [19℄.2.2 The Residualizing Semanti
sThe operational semanti
s of
at programs be
omes simpler, sin
e de�nitionaltrees [5℄ (used to guide the needed narrowing strategy [6℄) have been
ompiled inthe program by means of
ase expressions. The LNT
al
ulus [19℄ (Lazy Narrow-ing with de�nitional Trees) is an operational semanti
s for indu
tively sequentialprograms expressed in terms of
ase expressions, whi
h has been proved equiva-lent to needed narrowing. This
al
ulus has been also extended to
over programs
ontaining evaluation annotations in [3℄; namely,
exible (resp. rigid) fun
tionsare translated by using only f
ase (resp.
ase) expressions. In the following, werefer to the LNT
al
ulus to mean the LNT
al
ulus of [3℄.In [3℄, it was shown that, by using the standard semanti
s during PE, onewould have the same problems of previous approa
hes. In parti
ular, one of themain problems
omes from the ba
kpropagation of variable bindings to the left-hand sides of residual rules (see Example 2 of [3℄). Therefore, they propose aresidualizing version of the LNT
al
ulus whi
h avoids this restri
tion. In this
al
ulus, variable bindings are en
oded by
ase expressions (and are
onsid-ered \residual"
ode). The inferen
e rules of the residualizing
al
ulus, RLNT(Residualizing LNT),
an be seen in Fig. 1. In the following, we
onsider a (many-sorted) signature partitioned into a set C of
onstru
tors and a set F of de�nedfun
tions or operations.Let us re
all the six inferen
e rules de�ning the one-step relation).3(1) HNF. The HNF (Head Normal Form) rules are used to evaluate terms inhead normal form. If the expression is a variable or a
onstru
tor
onstant, thesquare bra
kets are removed and the evaluation pro
ess stops. Otherwise, theevaluation pro
eeds with the arguments.(2) Case Fun
tion. This rule
an be only applied when the argument of the
aseis operation-rooted. In this
ase, it allows the unfolding of the fun
tion
all.(3) Case Sele
t. This rule sele
ts the appropriate bran
h of a
ase expressionand
ontinues with the evaluation of this bran
h.(4) Case Guess. The treatment of
ase expressions with variable arguments dis-tinguishes it from the LNT
al
ulus. In the standard semanti
s, these expressionsare evaluated by means of the following rules:{ f
ase: [[f
ase x of fpk ! ekg℄℄)� [[�(ei)℄℄ if � = fx 7! pig; i = 1; : : : ; k{
ase: [[
ase x of fpk ! ekg℄℄)fg
ase x of fpk ! ekg3 The symbols \[[" and \℄℄" in an expression like [[e℄℄ do not denote a semanti
 fun
tionbut are only used to identify whi
h part of an expression should be still evaluated.5

HNF [[t℄℄) t if t 2 V or t =
() with
=0 2 C[[
(t1; : : : ; tn)℄℄)
([[t1℄℄; : : : ; [[tn℄℄)Case-of-Case[[(f)
ase ((f)
ase t of fpk ! tkg) of fp0j ! t0jg℄℄) [[(f)
ase t of fpk ! (f)
ase tk of fp0j ! t0jgg℄℄Case Fun
tion[[(f)
ase g(tn) of fpk ! t0kg℄℄) [[(f)
ase �(r) of fpk ! t0kg℄℄if g(xn) = r 2 R is a rule with fresh variablesand � = fxn 7! tngCase Sele
t[[(f)
ase
(tn) of fpk ! t0kg℄℄) [[�(t0i)℄℄ if pi =
(xn);
 2 C; � = fxn 7! tngCase Guess[[(f)
ase x of fpk ! tkg℄℄) (f)
ase x of fpk ! [[�k(tk)℄℄gif �i = fx 7! pig, i = 1; : : : ; kFun
tion Eval [[g(tn)℄℄) [[�(r)℄℄ if g(xn) = r 2 R is a rule with freshvariables and � = fxn 7! tngFig. 1. RLNT Cal
ulusHowever, in this
ase, one would inherit the limitations of previous approa
hes.Therefore, it has been modi�ed in order not to ba
kpropagate the bindings ofvariables. In parti
ular, the new Case Guess rule \residualizes" the
ase stru
-ture and
ontinues with the evaluation of the di�erent bran
hes (by applyingthe
orresponding substitution in order to propagate bindings forward in the
omputation). It imitates the instantiation of variables in the standard evalua-tion of a
exible
ase but keeps the
ase stru
ture. Due to this modi�
ation, nodistin
tion between
exible and rigid
ase expressions is needed in the RLNT
al
ulus. Moreover, the resulting
al
ulus does not
ompute \answers". Rather,they are represented in the derived expressions by means of
ase expressionswith variable arguments. Also, the
al
ulus be
omes deterministi
, i.e., there isno don't know nondeterminism involved in the
omputations. This means thatonly one derivation
an be issued from a given expression (thus, there is no needto introdu
e a notion of RLNT \tree").(5) Case-of-Case. An undesirable e�e
t of the Case Guess rule is that nested
aseexpressions may suspend unne
essarily. Take, for instan
e, the expression:[[
ase (
ase x of f 0! True(Su

 y)! Falseg) of fTrue! C xg℄℄The evaluation of this expression suspends sin
e the outer
ase
an be only eval-uated if the argument is a variable (Case Guess), a fun
tion
all (Case Eval) ora
onstru
tor-rooted term (Case Sele
t). To avoid su
h premature suspensions,the Case-of-Case rule moves the outer
ase inside the bran
hes of the inner oneand, thus, the evaluation of some bran
hes
an now pro
eed (similar rules
anbe found in the Glasgow Haskell Compiler as well as in Wadler's deforestation6

[30℄). By using the Case-of-Case rule, the above expression
an be redu
ed to:[[
ase x of f0!
ase True of fTrue! C xg(Su

 y)!
ase False of fTrue! C xg℄℄(whi
h
an be further simpli�ed with the Case Guess and Case Sele
t rules). Rig-orously speaking, this rule
an be expanded into four rules (with the di�erent
ombinations for
ase and f
ase), but we keep the above (less formal) presen-tation for simpli
ity. Observe that the outer
ase expression may be dupli
atedseveral times, but ea
h
opy is now (possibly) s
rutinizing a known value, andso the Case Sele
t rule
an be applied to eliminate some
ase
onstru
ts.(6) Fun
tion Eval. This rule performs the unfolding of a fun
tion
all. As inproof pro
edures for logi
 programming, we assume that we take a program rulewith fresh variables in ea
h su
h evaluation step.The
orre
tness of the PE s
heme for
at programs based on the RLNT
al
ulus
an be found in [3℄.3 Extending the Basi
 FrameworkThe aim of this se
tion is to extend the basi
 approa
h in order to
over thefa
ilities of a realisti
 multi-paradigm language: Curry [15℄. To this end, we �rstenri
h the
at representation of Se
t. 2.1 with some additional features whi
h
onstitute the most useful fa
ilities of the language. Then, we
orrespondinglyextend the rules of the RLNT
al
ulus to properly deal with these new features.3.1 An Intermediate Representation for Curry ProgramsOur extended
at representation essentially
oin
ides with the standard inter-mediate representation, FlatCurry [18℄, used during the
ompilation of Curryprograms. It
ontains all the ne
essary information about a Curry program withall \synta
ti
 sugar"
ompiled out and type-
he
king and lambda-lifting per-formed. In the extended representation, we allow the following expressions:e ::= x (variable)j
(e1; : : : ; en) (
onstru
tor)j f(e1 ; : : : ; en) (fun
tion
all)j (f)
ase e0 of fp1 ! e1; : : : ; pn ! eng (
ase expression)j external(e) (external fun
tion
all)j part
all(f; e1; : : : ; ek) (partial appli
ation)j apply(e1; e2) (appli
ation)j
onstr(fx1; : : : ; xng; e) (
onstraint)j or(e1 ; e2) (disjun
tion)j guarded(fx1; : : : ; xng; e1 ; e2) (guarded expression)The right-hand side of ea
h fun
tion de�nition is now an expression e
om-posed by variables,
onstru
tors, fun
tion
alls,
ase expressions, and additionalfeatures like: non user-de�ned (\external") fun
tions, higher-order features likepartial appli
ation and an appli
ation of a fun
tional expression to an argument,7

onstraints (like equational
onstraints e1 =:= e2, possibly
ontaining existen-tially quanti�ed variables), disjun
tions (to represent fun
tions with overlappingleft-hand sides), and guarded expressions (to represent
onditional rules, i.e.,the �rst expression is always a
onstraint and the list of variables are the lo
alvariables whi
h are visible in the
onstraint and the right-hand side). A detaileddes
ription of these features and their intended semanti
s
an be found in [15℄.3.2 Extending the RLNT Cal
ulusIn prin
iple, one
ould extend the RLNT
al
ulus in order to deal with all thefa
ilities of FlatCurry in a simple way. The naive idea is to treat all the additionalfeatures of the language as
onstru
tor symbols at PE time. This means that theyare never partially evaluated but their original de�nitions are returned by the PEpro
ess. However, in realisti
 Curry programs, the presen
e of these additionalfeatures is perfe
tly
ommon, hen
e it is an una

eptable restri
tion just toresidualize them. Our experimental tests have shown that no spe
ialization isobtained in most
ases if we follow this simple approa
h.On the other hand, extending the RLNT
al
ulus of Se
t. 2.2 with the stan-dard semanti
s for the additional features of FlatCurry is not a good solutioneither. The problem stems from the fa
t that the RLNT
al
ulus only propagatesbindings forward into the bran
hes of a
ase expression. However, there are anumber of fun
tions, like equalities, (
on
urrent)
onjun
tions, some arithmeti
fun
tions, et
., in whi
h the propagation of bindings between their arguments is
ru
ial to a
hieve a good level of spe
ialization. In order to propagate bindings4between di�erent arguments, we permit to lift some
ase expressions from argu-ment positions to the top level while propagating the
orresponding bindings tothe remaining arguments. For example, the expression5[[(x =:= 1) & (f
ase x of f1! su

essg)℄℄
an be transformed into[[f
ase x of f1! (x =:= 1 & su

ess)g℄℄The transformed expression
an be now evaluated by the Case Guess rule, thuspropagating the binding fx 7! 1g to the �rst
onjun
t:f
ase x of f1! [[1 =:= 1 & su

ess℄℄gWe noti
e that this transformation
annot be applied over arbitrary expressionssin
e the intended (lazy) semanti
s is only preserved when the given fun
tionis stri
t in the position of the
ase expression. Nevertheless, typi
al FlatCurryprograms
ontain many elements where the evaluation order is �xed. For in-stan
e, the
ondition of a guard is stri
t, sin
e it must be redu
ed to True (or\su

ess") before applying a
onditional rule, the arguments of most externalfun
tions are also stri
t, be
ause they must be redu
ed to ground
onstru
torterms before exe
uting the external
all, et
.4 Re
all that bindings are represented by
ase expressions with a variable argument.5 Following [15℄, \su

ess" denotes a
onstraint whi
h is always solvable.8

Furthermore, there are a number of situations in whi
h an expression
annotbe evaluated until all (or some) of its arguments have some parti
ular form. Forexample, a
all of the form apply(e1; e2)
an be only redu
ed if the �rst argu-ment e1 is of the form part
all(: : :). In these
ases, we will try to evaluate thearguments of the fun
tion to a
hieve the required form. For the sake of a simplerpresentation, we introdu
e the auxiliary fun
tion try eval. Given a fun
tion
allf(en) and a set of natural numbers I whi
h represents the set of stri
t argumentsof fun
tion f , we de�ne try eval as follows:try eval(f(en); I) =8>>>><>>>>: [[(f)
ase x of fpk ! f(e1; : : : ; ei�1; e0k; ei+1; : : : ; en)g℄℄if ei = (f)
ase x of fpk ! e0kg for some i 2 I[[f(e1; : : : ; ei�1; e0i; ei+1; : : : ; en)℄℄if 9i 2 f1; : : : ; ng: [[ei℄℄) e00i ; e0i = delsq(e00i); ei 6= e0if(en) otherwiseHere we denote by delsq(e) the expression whi
h results from deleting all o
-
urren
es of \[[" and \℄℄" from e. We use it to test synta
ti
 equality betweenexpressions without taking into a

ount the relative positions of \[[" and \℄℄".Let us informally explain the fun
tion above. First, try eval tries to
oat a
aseexpression in the i-th argument (with i 2 I) out of this argument. If this isnot possible, it tries to evaluate some argument and, if this does not lead toa progress, the expression is just residualized. Sin
e this de�nition of try evalis ambiguous, we additionally require that the di�erent
ases are tried in theirtextual order and the arguments are evaluated from left to right.Non User-De�ned Fun
tions. FlatCurry programs often
ontain fun
tionswhi
h are not de�ned in Curry but implemented in another language (exter-nal fun
tions, like arithmeti
 operators, basi
 input/output fa
ilities, et
). Su
hfun
tions are exe
uted only if all arguments are evaluated to ground
onstru
torterms.6 The same restri
tion seems reasonable when
omputing the PE of anexternal fun
tion. This implies that all arguments of external fun
tions are as-sumed to be stri
t and, thus, the
all to try eval is performed with the
ompleteset of argument positions:[[external(f(en))℄℄) 8<: ext
all(f(en)) if e1; : : : ; en are ground
onstru
tor[[external(e0)℄℄ if try eval(f(en); f1; : : : ; ng) = [[e0℄℄external(f(en)) otherwisewhere ext
all(e) evaluates e a

ording to its prede�ned semanti
s. Basi
ally,the partial evaluator �rst tries to exe
ute the external fun
tion and, if this is notpossible be
ause all arguments are not ground
onstru
tor terms, then it triesto evaluate its arguments. Furthermore, we need to add the rule:[[external((f)
ase x of fpk ! ekg)℄℄) [[(f)
ase x of fpk ! external(ek)g℄℄to move a
ase expression obtained by try eval outside the external
all (in orderto allow further evaluation of the bran
hes).6 There are few ex
eptions to this general rule but typi
al external fun
tions (likearithmeti
 operators) ful�ll this
ondition. We assume it for the sake of simpli
ity.9

The only ex
eption to the above rule are I/O a
tions, for whi
h Curry followsthe monadi
 approa
h to I/O. These fun
tions a
t on the
urrent \state of theoutside world". They are residualized sin
e this state is not known at PE time.Constraints. The treatment for
onstraints heavily depends on the asso
iated
onstraint solver. In the following, we only
onsider equational
onstraints. Anelementary
onstraint is an equation e1 =:= e2 between two expressions whi
his solvable if both sides are redu
ible to uni�able
onstru
tor terms. This notionof equality, the so-
alled stri
t equality, is in
orporated in our
al
ulus by[[e1 =:= e2℄℄) 8<:
ase�(su

ess) if � = mgu(e1; e2) and e1; e2are
onstru
tor termstry eval(e1 =:= e2; f1; 2g) otherwiseNote that we
all to try eval with the set of positions f1; 2g sin
e fun
tion \=:="is stri
t in its two arguments. Here, we use
ase�(su

ess) as a shorthand fordenoting the en
oding of � by nested (
exible)
ase expressions with su

ess atthe �nal bran
h. For example, the expression [[C x 2 =:= C 1 y℄℄, whose mgu isfx 7! 1; y 7! 2g is evaluated to: f
ase x of f1! f
ase y of f2! su

essgg.This simple treatment of
onstraints is not suÆ
ient in pra
ti
al programs sin
ethey are often used in
on
urrent
onjun
tions, written as
1 & : : :&
n (\&"is a built-in operator whi
h evaluates its arguments
on
urrently). In this
ase,
onstraints may instantiate variables and the
orresponding bindings should bepropagated to the remaining
onjun
ts. The problemati
 point is that we
annotmove arbitrary
ase expressions to the top level, but only
exible
ase expressions(otherwise, we
ould
hange the
oundering behavior of the program). Consider,for instan
e, the following simple fun
tions:f x =
ase x of f1! su

essgg x = f
ase x of f1! su

essgwhere f is rigid and g is
exible. Given the expression [[f x & g x℄℄, if we allow to
oat out arbitrary
ase expressions, we
ould perform the following evaluation:[[f x & g x℄℄) [[
ase x of f1! su

essg & g x℄℄) [[
ase x of f1! su

ess & g xg℄℄)
ase x of f1! [[su

ess & g 1℄℄gwhi
h ends up in
ase x of f1! su

essg. Note that this residual expressionsuspends if variable x is not instantiated, whereas the original expression
ouldbe redu
ed by evaluating �rst fun
tion g and then fun
tion f. Therefore, wehandle
on
urrent
onjun
tions as follows:[[
1 & : : : &
n℄℄)8>>>>>><>>>>>>: su

ess if
i = su

ess for all i 2 f1; : : : ; ng[[f
ase x of fpk ! (
1 & : : : &
i�1 & e0k &
i+1 & : : : &
n)g℄℄if
i = f
ase x of fpk ! e0kg for some i 2 f1; : : : ; ng[[
1 & : : : &
i�1 &
0i &
i+1 & : : : &
n℄℄if 9i 2 f1; : : : ; ng: [[
i℄℄)
00i ;
0i = delsq(
00i);
i 6=
0i
1 & : : : &
n otherwise 10

Note that, in
ontrast to external fun
tions, only
exible
ase expressions aremoved to the top level. Equational
onstraints
an also
ontain lo
al existen-tially quanti�ed variables. In this
ase they take the form
onstr(vars;
), wherevars are the existentially quanti�ed variables in the
onstraint
. We treat these
onstraints as follows:[[
onstr(vars;
)℄℄) �su

ess if
 = su

esstry eval(
onstr(vars;
); f2g) otherwiseNote that the above rule moves all bindings to the top level, even those forthe lo
al variables in vars. In pra
ti
e,
ase expressions denoting bindings forthe variables in vars are removed sin
e they are lo
al, but we keep the aboveformulation for simpli
ity.Guarded Expressions. In Curry, fun
tions
an be de�ned by
onditional rulesof the formf e1 : : : en j
 = ewhere
 is a
onstraint (rules with multiple guards are also allowed but
onsid-ered as synta
ti
 sugar for denoting a sequen
e of rules). Conditional rules arerepresented in FlatCurry by the guarded
onstru
t. At PE time, we are inter-ested in inspe
ting not only the guard but also the right-hand side of the guard.However, only bindings produ
ed from the evaluation of the guard
an be
oatedout (sin
e this is the unique stri
t argument):[[guarded(vars; g
; e)℄℄) � [[e℄℄ if g
 = su

esstry eval(guarded(vars; g
; e); f2g) otherwiseAs in the
ase of
onstraints, the appli
ation of try eval
an unne
essarily movesome bindings (i.e., those for the variables in vars) outside the guarded ex-pression. A pre
ise treatment
an be easily de�ned, but we preserve the abovepresentation for the sake of readability.Higher-Order Fun
tions. The higher-order features of fun
tional program-ming are implemented in Curry by providing a (�rst-order) de�nition of theappli
ation fun
tion (apply). Sin
e Curry ex
ludes higher-order uni�
ation, theoperational semanti
s of Curry
overs the usual higher-order features of fun
-tional languages by adding the following axiom [15℄:[[apply(f(e1; : : : ; em); e)℄℄) f(e1; : : : ; em; e)if f has arity n > m. Thus, an appli
ation is evaluated by simply adding the ar-gument to a partial
all. In FlatCurry, we distinguish partial appli
ations fromtotal fun
tions; namely, partial appli
ations are represented by means of thepart
all symbol. We treat higher-order features as follows:[[apply(e1; e2)℄℄) 8<: [[f(
k; e2)℄℄ if e1 = part
all(f;
k); k + 1 = ar(f)part
all(f;
k ; e2) if e1 = part
all(f;
k); k + 1 < ar(f)try eval(apply(e1; e2); f1g) otherwisewhere ar(f) denotes the arity of the fun
tion f . Roughly speaking, we allow apartial fun
tion to be
ome a total fun
tion by adding the missing argument,if possible. If the fun
tion does not have the right number of arguments after11

adding the new argument, we maintain it as a partial fun
tion. In the remaining
ases, we evaluate the apply arguments in hopes of a
hieving a partial
all afterevaluation. Note that try eval is
alled with the set f1g in order to avoid thepropagation of bindings from the evaluation of non-stri
t arguments (i.e., fromthe se
ond argument of apply).Overlapping Left-Hand Sides. Overlapping left-hand sides in Curry pro-grams produ
e a disjun
tion where the di�erent alternatives have to be
onsid-ered. Similarly, we treat or expressions in FlatCurry as follows:[[or(e1; e2)℄℄) or([[e1℄℄; [[e2℄℄)4 The Partial Evaluator in Pra
ti
eIn this se
tion, we des
ribe the stru
ture of a simple on-line partial evaluator inthe style of [11℄ whi
h follows the ideas presented so far. Essentially, the partialevaluator pro
eeds as follows:Unfolding phase. Firstly, given a program and a set of fun
tion
alls, we
ompute a �nite (possibly in
omplete) RLNT derivation for ea
h
all of the seta

ording to an unfolding rule U . Roughly speaking, the unfolding rule deter-mines how to stop RLNT derivations in order to avoid in�nite
omputations.Formally, given a program R and a set of fun
tion
alls T = ft1; : : : ; tng, U isa (total) fun
tion su
h that, whenever U(T;R) = S, then S = fs1; : : : ; sng andthere exist �nite RLNT derivations of the form [[ti℄℄)+ si inR, with i = 1; : : : ; n.Abstra
tion phase. Sin
e some of the derived expressions S = fs1; : : : ; sngmay
ontain fun
tion
alls whi
h are not
overed by the already (partially) eval-uated
alls T , this pro
ess is iteratively repeated for any term of S whi
h is not
losed w.r.t. the set T . Informally, a term s is
losed w.r.t. a set of terms T (or,simply, T -
losed) if the maximal operation-rooted subterms of s are instan
esof some terms in T and the terms in the mat
hing substitution are re
ursivelyT -
losed (see [4℄ for a pre
ise de�nition). In order to avoid repeating this pro
essin�nitely, an abstra
tion operator is
ommonly used. In parti
ular, we
onsider amapping abstra
t whi
h takes two sets of terms T and S (whi
h represent the setof terms already evaluated and the set of terms to be added to this set, respe
-tively) and returns a safe approximation abstra
t(T; S) of T [S. Here, by \safe"we mean that ea
h term in T [S is
losed w.r.t. the result of abstra
t(T; S) (i.e.,no fun
tion
all is lost during the abstra
tion pro
ess).Following the stru
ture of many on-line partial evaluators (see, e.g., [11℄), wesket
h a PE algorithm whi
h is parametri
 w.r.t. an unfolding rule U and anabstra
tion operator abstra
t:Input: a program R and a set of terms T / Output: a set of terms SInitialization: i := 0; T0 := TRepeat S := U(Ti;R); Ti+1 := abstra
t(Ti ; S); i := i+ 1Until Ti = Ti�1 (modulo renaming)Return S := Ti 12

The above PE algorithm involves two
ontrol issues: the so-
alled lo
al
ontrol,whi
h
on
erns the de�nition of an unfolding rule U to
ompute �nite partialevaluations, and the global
ontrol, whi
h
onsists of de�ning a safe abstra
tionoperator abstra
t to ensure the termination of the iterative pro
ess.Lo
al Control. In the lo
al
ontrol, the main novelty w.r.t. previous partialevaluators for fun
tional logi
 programs is the use of a non-standard semanti
s,the RNLT
al
ulus, to perform
omputations at PE time. Sin
e RLNT
ompu-tations do not produ
e bindings, the restri
tion to not evaluate terms in headnormal form of previous partial evaluators is avoided.In order to ensure the �niteness of RLNT derivations, there exist a numberof well-known te
hniques in the literature, e.g., depth-bounds, loop-
he
ks, well-founded (or well-quasi) orderings (see, e.g., [8, 21, 28℄). For instan
e, an unfoldingrule based on the use of the homeomorphi
 embedding ordering was used in theIndy partial evaluator. Informally, expression e1 embeds expression e2 if e2
anbe obtained from e1 by deleting some operators. For example, Su

 (Su

 ((u+w)�(u+(Su

 v)))) embeds Su

 (u� (u + v)). However, in the presen
e of anin�nite signature (e.g., natural numbers in Curry), this unfolding rule
an leadto non-terminating
omputations. For example,
onsider the following Curryprogram whi
h generates a list of natural numbers within two given limits:enum a b = if a > b then [℄ else (a : enum (a + 1) b)During its spe
ialization w.r.t. the
all enum 1 n, the following
alls are produ
ed:enum 1 n; enum 2 n; enum 3 n; : : : ; and no
all embeds some previous
all.Therefore, in our partial evaluator we have
hosen a safe (and \
heap") un-folding rule: only the unfolding of one fun
tion
all is allowed (the positive super-
ompiler of [20℄ employs a similar strategy). The main advantage of this approa
his that expressions
an be \folded ba
k" (i.e.,
an be proved
losed) w.r.t. anypartially evaluated
all. In pra
ti
e, this generates optimal re
ursive fun
tions inmany
ases. As a
ounterpart, many (unne
essary) intermediate fun
tions mayappear in the residual program. This does not mean that we in
ur in a \
odeexplosion" problem sin
e this kind of redundant rules
an be easily removed bya post-unfolding phase (similarly to [20℄). Our experiments with the one-stepunfolding rule and the post-unfolding phase indi
ate that this leads to optimal(and
on
ise) residual fun
tions in many
ases.Global Control. As for global
ontrol, an abstra
tion operator usually relieson a
on
rete ordering over terms in order to keep the sequen
e of partially eval-uated terms �nite. As dis
ussed above, a well-quasi ordering like the homeomor-phi
 embedding ordering
annot be used sin
e we
onsider an in�nite signature.Therefore, we implement an abstra
tion operator whi
h uses a well-founded or-der to ensure termination and generalizes those
alls whi
h do not satisfy thisordering by using the msg (most spe
i�
 generalization). Abstra
tion operatorsbased on this relation are de�ned in, e.g., [26℄.The main novelty of our abstra
tion operator w.r.t. previous operators isthat it is guided by the RLNT
al
ulus. The key idea is to take into a

ount theposition of the square bra
kets of the
al
ulus in expressions; namely, subterms13

within square bra
kets should be added to the set of partially evaluated terms (ifpossible, otherwise generalized) sin
e further evaluation is still required, whilesubterms whi
h are not within square bra
kets should be de�nitively residualized(i.e., ignored by the abstra
tion operator, ex
ept for operation-rooted terms).The
ombination of this strategy with the above unfolding rule gives rise toeÆ
ient residual programs in many
ases, while still guaranteeing termination.5 Experimental ResultsThis se
tion des
ribes some experiments with an implementation of a partialevaluator for Curry programs whi
h follows the guidelines presented in previousse
tions. Our PE tool is implemented in Curry itself and it is publi
ly availableat http://www.dsi
.upv.es/users/elp/soft.html. The implemented partialevaluator �rst translates the subje
t program into a FlatCurry program. To dothis, we use the module Flat for meta-programming in Curry (in
luded in the
urrent distribution of PAKCS [18℄). This module
ontains datatype de�nitionsto treat FlatCurry programs as data obje
ts (using a kind of ground represen-tation). In parti
ular, the I/O a
tion readFlatCurry reads a Curry program,translates it to the intermediate language FlatCurry, and �nally returns a datastru
ture representing the input program.The e�e
tiveness of the narrowing-driven approa
h to PE is out of question(see, e.g., [2{4℄ for typi
al PE ben
hmarks). Unfortunately, these ad-ho
 pro-grams do not happen very frequently in real Curry appli
ations. This motivatedus to ben
hmark more realisti
 examples where the most important featuresof Curry programs appear. One of the most useful features of fun
tional lan-guages are higher-order fun
tions sin
e they improve
ode reuse and modularityin programming. Thus, su
h features are often used in pra
ti
al Curry programs(mu
h more than in Prolog programs, whi
h are based on �rst-order logi
 ando�er only weak features for higher-order programming). Furthermore, almostevery pra
ti
al program uses built-in arithmeti
 fun
tions whi
h are availablein Curry as external fun
tions (but, for instan
e, not in purely narrowing-basedfun
tional logi
 languages). These pra
ti
al features were not treated in previousapproa
hes to PE of fun
tional logi
 languages.The following fun
tions map (for applying a fun
tion to ea
h element of alist) and foldr (for a

umulating all list elements) are often used in fun
tional(logi
) programs:map [℄ = [℄ foldr z [℄ = zmap f (x : xs) = f x : map f xs foldr f z (h : t) = f h (foldr f z t)For instan
e, the expression foldr (+) 0 [1; 2; 3℄ is the sum of all elementsof the list [1; 2; 3℄. Due to the spe
ial handling of higher-order features (applyand part
all) and built-in fun
tions (external), our partial evaluator is able toredu
e o

urren
es of this expression to 6. However, instead of su
h
onstantexpressions, realisti
 programs
ontain
alls to higher-order fun
tions whi
h arepartially instantiated. For instan
e, the expression foldr (+) 0 xs is spe
ialized14

Ben
hmark original spe
ialized speeduptime heap time heapfoldr (+) 0 xs 210 2219168 60 619180 3.5foldr (+) 0 (map (+1) xs) 400 4059180 100 859180 4.0foldr (+) 0 (map square xs) 480 4970716 170 1770704 2.8foldr (++) [℄ xs (
on
at) 290 2560228 110 560228 2.6filter (>100) (map (*3) xs) 750 6639908 430 3120172 1.7map (iterate (+1) 2) xs 1730 17120280 600 6720228 2.9Table 1. Ben
hmark resultsby our partial evaluator to f xs where f is a �rst-order fun
tion de�ned by:f [℄ = 0f (x : xs) = x+ f xsCalls to this residual fun
tion run 3:5 times faster (in the Curry!Prolog
om-piler [7℄ of PAKCS [18℄) than
alls to the original de�nitions; also, memory usagehas been redu
ed signi�
atively (see Table 1, �rst row). Similarly, the expres-sion foldr (+) 0 (map (+1) xs) has been su

essfully spe
ialized to the eÆ
ientversion of Se
t. 1. Note that our partial evaluator neither requires fun
tion de�-nitions in a spe
i�
 format (like \foldr/build" in short
ut deforestation [12℄) norit is restri
ted to \higher-order ma
ros" (as in [30℄), but
an handle arbitraryhigher-order fun
tions. For instan
e, the higher-order fun
tioniterate f n = if n == 0 then f else iterate (f:f) (n � 1)whi
h modi�es its higher-order argument in ea
h re
ursive
all (f:f denotes fun
-tion
omposition)
an be su

essfully handled by our partial evaluator. Table 1shows the results of spe
ializing some
alls to higher-order and built-in fun
tionswith our partial evaluator. For ea
h ben
hmark, we show the exe
ution time andheap usage for the original and spe
ialized
alls and the speedups a
hieved. Theinput list xs
ontains 20,000 elements in ea
h
all. Times are expressed in mil-lise
onds and measured on a 700 MHz Linux-PC (Pentium III, 256 KB
a
he).The programs were exe
uted with the Curry!Prolog
ompiler [7℄ of PAKCS.Another important feature of Curry is the use of (
on
urrent)
onstraints.Consider, for instan
e, the following fun
tion arith:digit 0 = su

ess: : :digit 9 = su

essarith x y = x + x =:= y & x � x =:= y & digit xCalls to \arith" might be
ompletely evaluated at PE time. A
tually, our partialevaluator returns the residual fun
tion arith0 for the
all arith x y :arith0 0 0 = su

essarith0 2 4 = su

essIn this se
tion, we have shown the spe
ialization of
alls to some small fun
tions.However, this does not mean that only the spe
ialization of small programs isfeasible in our PE tool. A
tually, in the spe
ialization of larger programs theprogrammer would in
lude some annotations indi
ating the fun
tion
alls to be15

spe
ialized (whi
h usually only involve
alls to small fun
tions). In this
ase,the same program would be returned by the system ex
ept for the annotated
alls, whi
h are repla
ed by new
alls to the spe
ialized fun
tions, together withthe de�nitions of su
h spe
ialized fun
tions. The PE tool is not fully integratedinto PAKCS yet and, thus, transformed programs
annot be dire
tly exe
utedin Curry (sin
e they are in FlatCurry format). Our aim is to in
orporate thepartial evaluator in PAKCS as a sour
e-to-sour
e transformation on FlatCurryprograms. The pro
ess would be automati
 and transparent to the user.6 Con
lusionsThis paper des
ribes a su

essful experien
e in the development of a programtransformation te
hnique for a realisti
 multi-paradigm de
larative language.Our method builds on the theoreti
al basis of [3℄ for the PE of fun
tional logi
languages. We have shown how this framework
an be su

essfully applied inpra
ti
e by extending the underlying method in order to
over the fa
ilities ofthe language Curry. A partial evaluator has been implemented whi
h is able togenerate eÆ
ient (and reasonably small) spe
ialized programs.Future work in partial evaluation of multi-paradigm fun
tional logi
 lan-guages should still address several issues. For a more e�e
tive deployment, o�-line partial evaluators perform a binding-time analysis whi
h annotates ea
hfun
tion
all in the sour
e program as either redu
ible or subje
t to residual-ize. Although our PE s
heme is essentially on-line, we think that it
ould bealso improved with the information gathered by a pre-pro
essing
onsisting ofa binding-time analysis. In parti
ular, this will allow us to use the standard se-manti
s of the language over those expressions whi
h
an be fully evaluated ina �nite number of steps, thus improving the e�e
tiveness of the PE pro
ess.Referen
es1. E. Albert, M. Alpuente, M. Falas
hi, and G. Vidal. Indy User's Manual. Te
hni
alReport DSIC-II/12/98, UPV, 1998. Available athttp://www.dsi
.upv.es/users/elp/papers.html.2. E. Albert, M. Alpuente, M. Hanus, and G. Vidal. A Partial Evaluation Frameworkfor Curry Programs. In Pro
. of LPAR'99, pages 376{395. Springer LNAI 1705,1999.3. E. Albert, M. Hanus, and G. Vidal. Using an Abstra
t Representation to Spe
ializeFun
tional Logi
 Programs. In Pro
. of LPAR'2000, pages 381{398. Springer LNAI1955, 2000.4. M. Alpuente, M. Falas
hi, and G. Vidal. Partial Evaluation of Fun
tional Logi
Programs. ACM Trans. on Programming Lang. and Systems, 20(4):768{844, 1998.5. S. Antoy. De�nitional trees. In Pro
. of the 3rd Int'l Conferen
e on Algebrai
 andLogi
 Programming, ALP'92, pages 143{157. Springer LNCS 632, 1992.6. S. Antoy, R. E
hahed, and M. Hanus. A Needed Narrowing Strategy. Journal ofthe ACM, 47(4):776{822, 2000. 16

7. S. Antoy and M. Hanus. Compiling Multi-Paradigm De
larative Programs intoProlog. In Pro
. of FroCoS'2000, pages 171{185. Springer LNCS 1794, 2000.8. M. Bruynooghe, D. De S
hreye, and B. Martens. A General Criterion for AvoidingIn�nite Unfolding. New Generation Computing, 11(1):47{79, 1992.9. C. Consel and O. Danvy. Tutorial notes on Partial Evaluation. In Pro
. ofPOPL'93, pages 493{501. ACM, New York, 1993.10. D. De S
hreye, R. Gl�u
k, J. J�rgensen, M. Leus
hel, B. Martens, and M.H.S�rensen. Conjun
tive Partial Dedu
tion: Foundations, Control, Algorihtms, andExperiments. Journal of Logi
 Programming, 41(2&3):231{277, 1999.11. J. Gallagher. Tutorial on Spe
ialisation of Logi
 Programs. In Pro
. of PEPM'93,pages 88{98. ACM, New York, 1993.12. A.J. Gill, J. Laun
hbury, and S.L. Peyton Jones. A Short Cut to Deforestation.In Pro
. of the FPCA'93, pages 223{232, New York, NY, USA, 1993. ACM Press.13. M. Hanus. A uni�ed
omputation model for fun
tional and logi
 programming. InPro
. of POPL'97, pages 80{93. ACM, New York, 1997.14. M. Hanus. Distributed Programming in a Multi-Paradigm De
larative Language.In Pro
. of PPDP'99, pages 376{395. Springer LNCS 1702, 1999.15. M. Hanus. Curry: An Integrated Fun
tional Logi
 Language. Available at:http://www.informatik.uni-kiel.de/~
urry/, 2000.16. M. Hanus. A Fun
tional Logi
 Programming Approa
h to Graphi
al User Inter-fa
es. In Pro
. of PADL'00, pages 47{62. Springer LNCS 1753, 2000.17. M. Hanus. High-Level Server Side Web S
ripting in Curry. In Pro
. of PADL'01,Springer LNCS (to appear), 2001.18. M. Hanus, S. Antoy, J. Koj, R. Sadre, and F. Steiner. PAKCS 1.3: The PortlandAa
hen Kiel Curry System User Manual. University of Kiel, Germany, 2000.19. M. Hanus and C. Prehofer. Higher-Order Narrowing with De�nitional Trees. Jour-nal of Fun
tional Programming, 9(1):33{75, 1999.20. N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Evaluation and Automati
 Pro-gram Generation. Prenti
e-Hall, Englewood Cli�s, NJ, 1993.21. M. Leus
hel. On the Power of Homeomorphi
 Embedding for Online Termination.In G. Levi, editor, Pro
. of SAS'98, pages 230{245. Springer LNCS 1503, 1998.22. J.W. Lloyd. Combining Fun
tional and Logi
 Programming Languages. In Pro
.of the International Logi
 Programming Symposium, pages 43{57, 1994.23. J.W. Lloyd and J.C. Shepherdson. Partial Evaluation in Logi
 Programming.Journal of Logi
 Programming, 11:217{242, 1991.24. F. L�opez-Fraguas and J. S�an
hez-Hern�andez. TOY: A Multiparadigm De
larativeSystem. In Pro
. of RTA'99, pages 244{247. Springer LNCS 1631, 1999.25. W. Lux and H. Ku
hen. An EÆ
ient Abstra
t Ma
hine for Curry. In Pro
. ofWFLP'99, pages 171{181, 1999.26. B. Martens and J. Gallagher. Ensuring Global Termination of Partial Dedu
tionwhile Allowing Flexible Polyvarian
e. In L. Sterling, editor, Pro
. of ICLP'95,pages 597{611. MIT Press, 1995.27. S.L. Peyton-Jones. Compiling Haskell by Program Transformation: a Report fromthe Tren
hes. In Pro
. of ESOP'96, pages 18{44. Springer LNCS 1058, 1996.28. M.H. S�rensen and R. Gl�u
k. An Algorithm of Generalization in Positive Super-
ompilation. In Pro
. of ILPS'95, pages 465{479. MIT Press, 1995.29. M.H. S�rensen, R. Gl�u
k, and N.D. Jones. A Positive Super
ompiler. Journal ofFun
tional Programming, 6(6):811{838, 1996.30. P.L. Wadler. Deforestation: Transforming programs to eliminate trees. Theoreti
alComputer S
ien
e, 73:231{248, 1990. 17

