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Abstrat. Partial evaluation is an automati tehnique for program op-timization whih preserves program semantis. The range of its potentialappliations is extremely large, as witnessed by suessful experienes inseveral �elds. This paper summarizes our �ndings in the development ofpartial evaluation tools for Curry, a modern multi-paradigm delarativelanguage whih ombines features from funtional, logi and onurrentprogramming. From a pratial point of view, the most promising ap-proah appears to be a reent partial evaluation framework whih trans-lates soure programs into a maximally simpli�ed representation. Wesupport this statement by extending the underlying method in orderto design a pratial partial evaluation tool for the language Curry. Theproess is fully automati and an be inorporated into a Curry ompileras a soure-to-soure transformation on intermediate programs. An im-plementation of the partial evaluator has been undertaken. Experimentalresults on�rm that our partial evaluator pays o� in pratie.1 IntrodutionCurry [13, 15℄ is a modern multi-paradigm delarative language whih integratesfeatures from funtional, logi and onurrent programming. The most impor-tant features of the language inlude lazy evaluation, higher-order funtions,non-deterministi omputations, onurrent evaluation of onstraints with syn-hronization on logial variables, and a uni�ed omputation model whih inte-grates narrowing and residuation. Furthermore, Curry is a omplete program-ming language whih has been used to implement distributed appliations (e.g.,Internet servers [14℄, dynami web pages [17℄) or graphial user interfaes [16℄.Several eÆient implementations of the language already exist (see, e.g., [7, 18,25℄), although there is still room for further improvements. Existing ompilers forpure funtional languages have been suessfully improved by semantis-basedprogram transformation tehniques. For instane, the Glasgow Haskell Compilerinludes a number of soure-to-soure program transformations whih are able? This work has been partially supported by CICYT TIC 98-0445-C03-01, by Ai�onIntegrada hispano-alemana HA1997-0073, and by the DFG under grant Ha 2457/1-2.



to optimize the quality of ode in many di�erent aspets [27℄. Enouraged bythese suessful experienes, we develop an automati program transformationtehnique to improve the eÆieny of Curry funtional logi programs.For instane, onsider funtions de�ned by higher-order ombinators suh asmap, foldr, et. Although suh funtions an be simply de�ned in a onise way,some overhead is introdued at runtime whih an be eliminated by programtransformation tehniques. As an example, onsider the following funtion foo:foo xs = foldr (+) 0 (map (+1) xs)to add 1 to the elements of a given list xs and then ompute their total sum.From the programmer point of view, this de�nition is perfetly right, but thereexist more eÆient de�nitions for foo, like the following one:foo [℄ = 0foo (x : xs) = (x + 1) + (foo xs)In ontrast to the original de�nition, it is a �rst-order funtion and, over ex-isting funtional logi ompilers, it an be exeuted more eÆiently (sine it isompletely \deforested" [30℄). Therefore, we are onerned with program trans-formations whih, given a program, output a residual program from whih theoverhead has been removed at ompile time. Partial evaluation (PE) is an auto-mati tehnique for program optimization whih preserves program semantis.Optimization is ahieved by speializing programs w.r.t. parts of their input(hene also alled program speialization). We note that several PE tehniquesare able to perform deforestation automatially and, thus, they an be usefulto optimize funtions like the above one. Informally, a partial evaluator is amapping whih takes a program P and a funtion all C and derives a moreeÆient, speialized program PC whih gives the same answers for C (and anyof its instanes) as P does.PE tehniques have been intensively studied in the ontext of a wide vari-ety of delarative programming paradigms, speially in both the funtional andlogi programming ommunities (see, e.g., [9, 11, 20, 23℄ and referenes herein).Reently, a uni�ed framework for the PE of languages whih integrate featuresfrom funtional and logi programming has been introdued in [4℄. The originalframework is de�ned for languages whose operational semantis is based solelyon narrowing, although it has been extended to deal with residuation in [2℄. TheIndy partial evaluator [1℄ is a prototype implementation based on the aboveframework. The system is written in Prolog and aepts unonditional termrewriting systems as programs. The narrowing-driven approah to PE has thesame potential for speialization as positive superompilation [29℄ of funtionalprograms and onjuntive partial dedution [10℄ of logi programs (it has beenexperimentally tested in [2, 4℄).Unfortunately, the use of Indy within a realisti funtional logi language(e.g., Curry [15℄, Esher [22℄ or Toy [24℄) beomes impratial sine there aremany failities of these languages (e.g., higher-order funtions, onstraints, I/O,built-in's, et.) whih are not overed neither by Indy nor by the underlying PEframework. For instane, Indy annot be used to optimize the above funtion2



foo due to ourrenes of the built-in funtion + and the higher-order fun-tions map and foldr. Furthermore, the PE framework of [4℄ su�ers from somelimitations, e.g., within a lazy (all-by-name) semantis, terms in head normalform (i.e., rooted by a onstrutor symbol) annot be evaluated during the PEproess. This an drastially redue the optimization power of the method inmany ases. To overome this problem, [3℄ introdues a novel approah for thePE of funtional logi languages. The new sheme onsiders a maximally simpli-�ed representation into whih programs written in a higher-level language (i.e.,indutively sequential programs [5℄ with evaluation annotations) an be auto-matially translated. The restrition to not evaluate terms in head normal formis avoided by de�ning a non-standard semantis whih is well-suited to performomputations at PE time.The aim of this work is to show how|in ontrast to [4℄ and Indy|the frame-work of [3℄ an be suessfully applied in pratie. To this end, we �rst enrihthe intermediate representation onsidered in [3℄ in order to over all the faili-ties of the language Curry. The resulting representation is essentially equivalentto the standard intermediate language FlatCurry [18℄, whih has been proposedto provide a ommon interfae for onneting di�erent tools working on Curryprograms, e.g., bak ends for various ompilers [7℄. Then, the non-standard se-mantis of [3℄ is arefully extended in order to over the additional languagefeatures. This extension is far from trivial, sine the underlying alulus doesnot ompute bindings but represents them by \residual" ase expressions. How-ever, there are a number of funtions, like equalities, (onurrent) onjuntions,some arithmeti funtions, et., in whih the propagation of bindings betweentheir arguments is ruial to ahieve a good level of speialization. Therefore, weare onstrained to de�ne a spei� treatment for these important features. Fi-nally, in order to make the resulting framework pratially appliable, we de�neappropriate ontrol strategies whih take into aount the partiularities of theonsidered language and (non-standard) semantis. The resulting method is ableto transform realisti Curry programs in ontrast to other existing partial eval-uators. For instane, the \higher-order" de�nition of foo an be automatiallytransformed into the more eÆient version (see Set. 5).The struture of this paper is as follows. Setion 2 realls the basi notionsand tehniques assoiated to the PE of funtional logi programs. Setion 3extends the previous approah in order to over all the failities provided by thelanguage Curry. A desription of the ontrol issues involved in the PE proess ispresented in Set. 4. Some experiments with the partial evaluator are desribedin Set. 5 before we onlude in Set. 6.2 The Basi ApproahFor the sake of ompleteness, in this setion we briey reall the approah pre-sented in [3℄ for the PE of funtional logi programs. Informally speaking, theproess is based on two steps: �rstly, the soure program is translated into amaximally simpli�ed representation (Set. 2.1); then, funtion alls are partially3



evaluated using a non-standard semantis, the RLNT alulus, whih is speiallywell-suited for performing omputations at PE time (Set. 2.2). To be preise,for eah �nite (possibly partial) omputation of the form e1 )+ e2 performedwith the RLNT alulus, we generate a residual rule|a resultant|of the form:e1 = e2. Additionally, a post-proessing of renaming is often required to reoverthe same lass of programs.2.1 The Flat RepresentationFollowing [13℄, we onsider indutively sequential rewrite systems [5℄ (with eval-uation annotations) as programs and an operational semantis whih integrates(needed) narrowing and residuation. In order to simplify the underlying seman-tis, a at representation for programs is introdued. This representation is basedon the formulation of [19℄ to express pattern-mathing by ase expressions. Asit will beome apparent in Set. 3, it orresponds to a subset of the FlatCurrysyntax [18℄, a standard intermediate representation for Curry programs.R ::= D1 : : :Dm e ::= x (variable)D ::= f(x1; : : : ; xn) = e j (e1; : : : ; en) (onstrutor)j f(e1; : : : ; en) (funtion all)p ::= (x1; : : : ; xn) j ase e0 of fp1 ! e1 ; : : : ; pn ! eng (rigid ase)j fase e0 of fp1 ! e1; : : : ; pn ! eng (exible ase)A program R onsists of a sequene of funtion de�nitions D suh that eahfuntion is de�ned by one rule whose left-hand side ontains only variables asparameters. The right-hand side is an expression e omposed by variables, on-strutors, funtion alls, and ase expressions for pattern-mathing. The form ofa ase expression is:1(f )ase e of f1(xn1)! e1; : : : ; k(xnk)! ekgwhere e is an expression, 1; : : : ; k are di�erent onstrutors of the type of e,and e1; : : : ; ek are expressions (possibly ontaining (f)ase's). The variables xniare loal variables whih our only in the orresponding subexpression ei. Thedi�erene between ase and fase only shows up when the argument e is a freevariable: ase suspends (whih orresponds to residuation) whereas fase nonde-terministially binds this variable to a pattern in a branh of the ase expression(whih orresponds to narrowing). Funtions de�ned only by fase (resp. ase)expressions are alled exible (resp. rigid). Thus, exible funtions at as genera-tors (like prediates in logi programming) and rigid funtions at as onsumers.For example, onsider the rules de�ning the (rigid) funtion \ 6 ":20 6 n = True(Su m) 6 0 = False(Su m) 6 (Su n) = m 6 nUsing ase expressions, they an be represented by the following rewrite rule:1 We write on for the sequene of objets o1; : : : ; on.2 Although we onsider in this work a �rst-order representation for programs, we usea urried notation in onrete examples (as usual in funtional languages).4



x 6 y = ase x of f0 ! True;(Su x1)! ase y of f0! False;(Su y1)! x1 6 y1g gAn automati transformation from indutively sequential programs [5℄ to pro-grams using ase expressions is introdued in [19℄.2.2 The Residualizing SemantisThe operational semantis of at programs beomes simpler, sine de�nitionaltrees [5℄ (used to guide the needed narrowing strategy [6℄) have been ompiled inthe program by means of ase expressions. The LNT alulus [19℄ (Lazy Narrow-ing with de�nitional Trees) is an operational semantis for indutively sequentialprograms expressed in terms of ase expressions, whih has been proved equiva-lent to needed narrowing. This alulus has been also extended to over programsontaining evaluation annotations in [3℄; namely, exible (resp. rigid) funtionsare translated by using only fase (resp. ase) expressions. In the following, werefer to the LNT alulus to mean the LNT alulus of [3℄.In [3℄, it was shown that, by using the standard semantis during PE, onewould have the same problems of previous approahes. In partiular, one of themain problems omes from the bakpropagation of variable bindings to the left-hand sides of residual rules (see Example 2 of [3℄). Therefore, they propose aresidualizing version of the LNT alulus whih avoids this restrition. In thisalulus, variable bindings are enoded by ase expressions (and are onsid-ered \residual" ode). The inferene rules of the residualizing alulus, RLNT(Residualizing LNT), an be seen in Fig. 1. In the following, we onsider a (many-sorted) signature partitioned into a set C of onstrutors and a set F of de�nedfuntions or operations.Let us reall the six inferene rules de�ning the one-step relation ).3(1) HNF. The HNF (Head Normal Form) rules are used to evaluate terms inhead normal form. If the expression is a variable or a onstrutor onstant, thesquare brakets are removed and the evaluation proess stops. Otherwise, theevaluation proeeds with the arguments.(2) Case Funtion. This rule an be only applied when the argument of the aseis operation-rooted. In this ase, it allows the unfolding of the funtion all.(3) Case Selet. This rule selets the appropriate branh of a ase expressionand ontinues with the evaluation of this branh.(4) Case Guess. The treatment of ase expressions with variable arguments dis-tinguishes it from the LNT alulus. In the standard semantis, these expressionsare evaluated by means of the following rules:{ fase: [[fase x of fpk ! ekg℄℄)� [[�(ei)℄℄ if � = fx 7! pig; i = 1; : : : ; k{ ase: [[ase x of fpk ! ekg℄℄ )fg ase x of fpk ! ekg3 The symbols \[[" and \℄℄" in an expression like [[e℄℄ do not denote a semanti funtionbut are only used to identify whih part of an expression should be still evaluated.5



HNF [[t℄℄ ) t if t 2 V or t = () with =0 2 C[[(t1; : : : ; tn)℄℄ ) ([[t1℄℄; : : : ; [[tn℄℄)Case-of-Case[[(f )ase ((f )ase t of fpk ! tkg) of fp0j ! t0jg℄℄) [[(f )ase t of fpk ! (f )ase tk of fp0j ! t0jgg℄℄Case Funtion[[(f )ase g(tn) of fpk ! t0kg℄℄ ) [[(f )ase �(r) of fpk ! t0kg℄℄if g(xn) = r 2 R is a rule with fresh variablesand � = fxn 7! tngCase Selet[[(f )ase (tn) of fpk ! t0kg℄℄ ) [[�(t0i)℄℄ if pi = (xn);  2 C; � = fxn 7! tngCase Guess[[(f )ase x of fpk ! tkg℄℄ ) (f )ase x of fpk ! [[�k(tk)℄℄gif �i = fx 7! pig, i = 1; : : : ; kFuntion Eval [[g(tn)℄℄ ) [[�(r)℄℄ if g(xn) = r 2 R is a rule with freshvariables and � = fxn 7! tngFig. 1. RLNT CalulusHowever, in this ase, one would inherit the limitations of previous approahes.Therefore, it has been modi�ed in order not to bakpropagate the bindings ofvariables. In partiular, the new Case Guess rule \residualizes" the ase stru-ture and ontinues with the evaluation of the di�erent branhes (by applyingthe orresponding substitution in order to propagate bindings forward in theomputation). It imitates the instantiation of variables in the standard evalua-tion of a exible ase but keeps the ase struture. Due to this modi�ation, nodistintion between exible and rigid ase expressions is needed in the RLNTalulus. Moreover, the resulting alulus does not ompute \answers". Rather,they are represented in the derived expressions by means of ase expressionswith variable arguments. Also, the alulus beomes deterministi, i.e., there isno don't know nondeterminism involved in the omputations. This means thatonly one derivation an be issued from a given expression (thus, there is no needto introdue a notion of RLNT \tree").(5) Case-of-Case. An undesirable e�et of the Case Guess rule is that nested aseexpressions may suspend unneessarily. Take, for instane, the expression:[[ase (ase x of f 0! True(Su y)! Falseg) of fTrue! C xg℄℄The evaluation of this expression suspends sine the outer ase an be only eval-uated if the argument is a variable (Case Guess), a funtion all (Case Eval) ora onstrutor-rooted term (Case Selet). To avoid suh premature suspensions,the Case-of-Case rule moves the outer ase inside the branhes of the inner oneand, thus, the evaluation of some branhes an now proeed (similar rules anbe found in the Glasgow Haskell Compiler as well as in Wadler's deforestation6



[30℄). By using the Case-of-Case rule, the above expression an be redued to:[[ase x of f0! ase True of fTrue! C xg(Su y)! ase False of fTrue! C xg℄℄(whih an be further simpli�ed with the Case Guess and Case Selet rules). Rig-orously speaking, this rule an be expanded into four rules (with the di�erentombinations for ase and fase), but we keep the above (less formal) presen-tation for simpliity. Observe that the outer ase expression may be dupliatedseveral times, but eah opy is now (possibly) srutinizing a known value, andso the Case Selet rule an be applied to eliminate some ase onstruts.(6) Funtion Eval. This rule performs the unfolding of a funtion all. As inproof proedures for logi programming, we assume that we take a program rulewith fresh variables in eah suh evaluation step.The orretness of the PE sheme for at programs based on the RLNT alulusan be found in [3℄.3 Extending the Basi FrameworkThe aim of this setion is to extend the basi approah in order to over thefailities of a realisti multi-paradigm language: Curry [15℄. To this end, we �rstenrih the at representation of Set. 2.1 with some additional features whihonstitute the most useful failities of the language. Then, we orrespondinglyextend the rules of the RLNT alulus to properly deal with these new features.3.1 An Intermediate Representation for Curry ProgramsOur extended at representation essentially oinides with the standard inter-mediate representation, FlatCurry [18℄, used during the ompilation of Curryprograms. It ontains all the neessary information about a Curry program withall \syntati sugar" ompiled out and type-heking and lambda-lifting per-formed. In the extended representation, we allow the following expressions:e ::= x (variable)j (e1; : : : ; en) (onstrutor)j f(e1 ; : : : ; en) (funtion all)j (f)ase e0 of fp1 ! e1; : : : ; pn ! eng (ase expression)j external(e) (external funtion all)j partall(f; e1; : : : ; ek) (partial appliation)j apply(e1; e2) (appliation)j onstr(fx1; : : : ; xng; e) (onstraint)j or(e1 ; e2) (disjuntion)j guarded(fx1; : : : ; xng; e1 ; e2) (guarded expression)The right-hand side of eah funtion de�nition is now an expression e om-posed by variables, onstrutors, funtion alls, ase expressions, and additionalfeatures like: non user-de�ned (\external") funtions, higher-order features likepartial appliation and an appliation of a funtional expression to an argument,7



onstraints (like equational onstraints e1 =:= e2, possibly ontaining existen-tially quanti�ed variables), disjuntions (to represent funtions with overlappingleft-hand sides), and guarded expressions (to represent onditional rules, i.e.,the �rst expression is always a onstraint and the list of variables are the loalvariables whih are visible in the onstraint and the right-hand side). A detaileddesription of these features and their intended semantis an be found in [15℄.3.2 Extending the RLNT CalulusIn priniple, one ould extend the RLNT alulus in order to deal with all thefailities of FlatCurry in a simple way. The naive idea is to treat all the additionalfeatures of the language as onstrutor symbols at PE time. This means that theyare never partially evaluated but their original de�nitions are returned by the PEproess. However, in realisti Curry programs, the presene of these additionalfeatures is perfetly ommon, hene it is an unaeptable restrition just toresidualize them. Our experimental tests have shown that no speialization isobtained in most ases if we follow this simple approah.On the other hand, extending the RLNT alulus of Set. 2.2 with the stan-dard semantis for the additional features of FlatCurry is not a good solutioneither. The problem stems from the fat that the RLNT alulus only propagatesbindings forward into the branhes of a ase expression. However, there are anumber of funtions, like equalities, (onurrent) onjuntions, some arithmetifuntions, et., in whih the propagation of bindings between their arguments isruial to ahieve a good level of speialization. In order to propagate bindings4between di�erent arguments, we permit to lift some ase expressions from argu-ment positions to the top level while propagating the orresponding bindings tothe remaining arguments. For example, the expression5[[(x =:= 1) & (fase x of f1! suessg)℄℄an be transformed into[[fase x of f1! (x =:= 1 & suess)g℄℄The transformed expression an be now evaluated by the Case Guess rule, thuspropagating the binding fx 7! 1g to the �rst onjunt:fase x of f1! [[1 =:= 1 & suess℄℄gWe notie that this transformation annot be applied over arbitrary expressionssine the intended (lazy) semantis is only preserved when the given funtionis strit in the position of the ase expression. Nevertheless, typial FlatCurryprograms ontain many elements where the evaluation order is �xed. For in-stane, the ondition of a guard is strit, sine it must be redued to True (or\suess") before applying a onditional rule, the arguments of most externalfuntions are also strit, beause they must be redued to ground onstrutorterms before exeuting the external all, et.4 Reall that bindings are represented by ase expressions with a variable argument.5 Following [15℄, \suess" denotes a onstraint whih is always solvable.8



Furthermore, there are a number of situations in whih an expression annotbe evaluated until all (or some) of its arguments have some partiular form. Forexample, a all of the form apply(e1; e2) an be only redued if the �rst argu-ment e1 is of the form partall(: : :). In these ases, we will try to evaluate thearguments of the funtion to ahieve the required form. For the sake of a simplerpresentation, we introdue the auxiliary funtion try eval. Given a funtion allf(en) and a set of natural numbers I whih represents the set of strit argumentsof funtion f , we de�ne try eval as follows:try eval(f(en); I) =8>>>><>>>>: [[(f)ase x of fpk ! f(e1; : : : ; ei�1; e0k; ei+1; : : : ; en)g℄℄if ei = (f)ase x of fpk ! e0kg for some i 2 I[[f(e1; : : : ; ei�1; e0i; ei+1; : : : ; en)℄℄if 9i 2 f1; : : : ; ng: [[ei℄℄) e00i ; e0i = delsq(e00i ); ei 6= e0if(en) otherwiseHere we denote by delsq(e) the expression whih results from deleting all o-urrenes of \[[" and \℄℄" from e. We use it to test syntati equality betweenexpressions without taking into aount the relative positions of \[[" and \℄℄".Let us informally explain the funtion above. First, try eval tries to oat a aseexpression in the i-th argument (with i 2 I) out of this argument. If this isnot possible, it tries to evaluate some argument and, if this does not lead toa progress, the expression is just residualized. Sine this de�nition of try evalis ambiguous, we additionally require that the di�erent ases are tried in theirtextual order and the arguments are evaluated from left to right.Non User-De�ned Funtions. FlatCurry programs often ontain funtionswhih are not de�ned in Curry but implemented in another language (exter-nal funtions, like arithmeti operators, basi input/output failities, et). Suhfuntions are exeuted only if all arguments are evaluated to ground onstrutorterms.6 The same restrition seems reasonable when omputing the PE of anexternal funtion. This implies that all arguments of external funtions are as-sumed to be strit and, thus, the all to try eval is performed with the ompleteset of argument positions:[[external(f(en))℄℄) 8<: ext all(f(en)) if e1; : : : ; en are ground onstrutor[[external(e0 )℄℄ if try eval(f(en); f1; : : : ; ng) = [[e0℄℄external(f(en)) otherwisewhere ext all(e) evaluates e aording to its prede�ned semantis. Basially,the partial evaluator �rst tries to exeute the external funtion and, if this is notpossible beause all arguments are not ground onstrutor terms, then it triesto evaluate its arguments. Furthermore, we need to add the rule:[[external((f)ase x of fpk ! ekg)℄℄ ) [[(f)ase x of fpk ! external(ek )g℄℄to move a ase expression obtained by try eval outside the external all (in orderto allow further evaluation of the branhes).6 There are few exeptions to this general rule but typial external funtions (likearithmeti operators) ful�ll this ondition. We assume it for the sake of simpliity.9



The only exeption to the above rule are I/O ations, for whih Curry followsthe monadi approah to I/O. These funtions at on the urrent \state of theoutside world". They are residualized sine this state is not known at PE time.Constraints. The treatment for onstraints heavily depends on the assoiatedonstraint solver. In the following, we only onsider equational onstraints. Anelementary onstraint is an equation e1 =:= e2 between two expressions whihis solvable if both sides are reduible to uni�able onstrutor terms. This notionof equality, the so-alled strit equality, is inorporated in our alulus by[[e1 =:= e2℄℄ ) 8<: ase�(suess) if � = mgu(e1; e2) and e1; e2are onstrutor termstry eval(e1 =:= e2; f1; 2g) otherwiseNote that we all to try eval with the set of positions f1; 2g sine funtion \=:="is strit in its two arguments. Here, we use ase�(suess) as a shorthand fordenoting the enoding of � by nested (exible) ase expressions with suess atthe �nal branh. For example, the expression [[C x 2 =:= C 1 y℄℄, whose mgu isfx 7! 1; y 7! 2g is evaluated to: fase x of f1! fase y of f2! suessgg.This simple treatment of onstraints is not suÆient in pratial programs sinethey are often used in onurrent onjuntions, written as 1 & : : :& n (\&"is a built-in operator whih evaluates its arguments onurrently). In this ase,onstraints may instantiate variables and the orresponding bindings should bepropagated to the remaining onjunts. The problemati point is that we annotmove arbitrary ase expressions to the top level, but only exible ase expressions(otherwise, we ould hange the oundering behavior of the program). Consider,for instane, the following simple funtions:f x = ase x of f1! suessgg x = fase x of f1! suessgwhere f is rigid and g is exible. Given the expression [[f x & g x℄℄, if we allow tooat out arbitrary ase expressions, we ould perform the following evaluation:[[f x & g x℄℄) [[ase x of f1! suessg & g x℄℄) [[ase x of f1! suess & g xg℄℄) ase x of f1! [[suess & g 1℄℄gwhih ends up in ase x of f1! suessg. Note that this residual expressionsuspends if variable x is not instantiated, whereas the original expression ouldbe redued by evaluating �rst funtion g and then funtion f. Therefore, wehandle onurrent onjuntions as follows:[[1 & : : : & n℄℄ )8>>>>>><>>>>>>: suess if i = suess for all i 2 f1; : : : ; ng[[fase x of fpk ! (1 & : : : & i�1 & e0k & i+1 & : : : & n)g℄℄if i = fase x of fpk ! e0kg for some i 2 f1; : : : ; ng[[1 & : : : & i�1 & 0i & i+1 & : : : & n℄℄if 9i 2 f1; : : : ; ng: [[i℄℄) 00i ; 0i = delsq(00i ); i 6= 0i1 & : : : & n otherwise 10



Note that, in ontrast to external funtions, only exible ase expressions aremoved to the top level. Equational onstraints an also ontain loal existen-tially quanti�ed variables. In this ase they take the form onstr(vars; ), wherevars are the existentially quanti�ed variables in the onstraint . We treat theseonstraints as follows:[[onstr(vars; )℄℄ ) �suess if  = suesstry eval(onstr(vars; ); f2g) otherwiseNote that the above rule moves all bindings to the top level, even those forthe loal variables in vars. In pratie, ase expressions denoting bindings forthe variables in vars are removed sine they are loal, but we keep the aboveformulation for simpliity.Guarded Expressions. In Curry, funtions an be de�ned by onditional rulesof the formf e1 : : : en j  = ewhere  is a onstraint (rules with multiple guards are also allowed but onsid-ered as syntati sugar for denoting a sequene of rules). Conditional rules arerepresented in FlatCurry by the guarded onstrut. At PE time, we are inter-ested in inspeting not only the guard but also the right-hand side of the guard.However, only bindings produed from the evaluation of the guard an be oatedout (sine this is the unique strit argument):[[guarded(vars; g; e)℄℄ ) � [[e℄℄ if g = suesstry eval(guarded(vars; g; e); f2g) otherwiseAs in the ase of onstraints, the appliation of try eval an unneessarily movesome bindings (i.e., those for the variables in vars) outside the guarded ex-pression. A preise treatment an be easily de�ned, but we preserve the abovepresentation for the sake of readability.Higher-Order Funtions. The higher-order features of funtional program-ming are implemented in Curry by providing a (�rst-order) de�nition of theappliation funtion (apply). Sine Curry exludes higher-order uni�ation, theoperational semantis of Curry overs the usual higher-order features of fun-tional languages by adding the following axiom [15℄:[[apply(f(e1; : : : ; em); e)℄℄) f(e1; : : : ; em; e)if f has arity n > m. Thus, an appliation is evaluated by simply adding the ar-gument to a partial all. In FlatCurry, we distinguish partial appliations fromtotal funtions; namely, partial appliations are represented by means of thepartall symbol. We treat higher-order features as follows:[[apply(e1; e2)℄℄ ) 8<: [[f(k; e2)℄℄ if e1 = partall(f; k); k + 1 = ar(f)partall(f; k ; e2) if e1 = partall(f; k); k + 1 < ar(f)try eval(apply(e1; e2); f1g) otherwisewhere ar(f) denotes the arity of the funtion f . Roughly speaking, we allow apartial funtion to beome a total funtion by adding the missing argument,if possible. If the funtion does not have the right number of arguments after11



adding the new argument, we maintain it as a partial funtion. In the remainingases, we evaluate the apply arguments in hopes of ahieving a partial all afterevaluation. Note that try eval is alled with the set f1g in order to avoid thepropagation of bindings from the evaluation of non-strit arguments (i.e., fromthe seond argument of apply).Overlapping Left-Hand Sides. Overlapping left-hand sides in Curry pro-grams produe a disjuntion where the di�erent alternatives have to be onsid-ered. Similarly, we treat or expressions in FlatCurry as follows:[[or(e1; e2)℄℄ ) or([[e1℄℄; [[e2℄℄)4 The Partial Evaluator in PratieIn this setion, we desribe the struture of a simple on-line partial evaluator inthe style of [11℄ whih follows the ideas presented so far. Essentially, the partialevaluator proeeds as follows:Unfolding phase. Firstly, given a program and a set of funtion alls, weompute a �nite (possibly inomplete) RLNT derivation for eah all of the setaording to an unfolding rule U . Roughly speaking, the unfolding rule deter-mines how to stop RLNT derivations in order to avoid in�nite omputations.Formally, given a program R and a set of funtion alls T = ft1; : : : ; tng, U isa (total) funtion suh that, whenever U(T;R) = S, then S = fs1; : : : ; sng andthere exist �nite RLNT derivations of the form [[ti℄℄)+ si inR, with i = 1; : : : ; n.Abstration phase. Sine some of the derived expressions S = fs1; : : : ; sngmay ontain funtion alls whih are not overed by the already (partially) eval-uated alls T , this proess is iteratively repeated for any term of S whih is notlosed w.r.t. the set T . Informally, a term s is losed w.r.t. a set of terms T (or,simply, T -losed) if the maximal operation-rooted subterms of s are instanesof some terms in T and the terms in the mathing substitution are reursivelyT -losed (see [4℄ for a preise de�nition). In order to avoid repeating this proessin�nitely, an abstration operator is ommonly used. In partiular, we onsider amapping abstrat whih takes two sets of terms T and S (whih represent the setof terms already evaluated and the set of terms to be added to this set, respe-tively) and returns a safe approximation abstrat(T; S) of T [S. Here, by \safe"we mean that eah term in T [S is losed w.r.t. the result of abstrat(T; S) (i.e.,no funtion all is lost during the abstration proess).Following the struture of many on-line partial evaluators (see, e.g., [11℄), wesketh a PE algorithm whih is parametri w.r.t. an unfolding rule U and anabstration operator abstrat:Input: a program R and a set of terms T / Output: a set of terms SInitialization: i := 0; T0 := TRepeat S := U(Ti;R); Ti+1 := abstrat(Ti ; S); i := i+ 1Until Ti = Ti�1 (modulo renaming)Return S := Ti 12



The above PE algorithm involves two ontrol issues: the so-alled loal ontrol,whih onerns the de�nition of an unfolding rule U to ompute �nite partialevaluations, and the global ontrol, whih onsists of de�ning a safe abstrationoperator abstrat to ensure the termination of the iterative proess.Loal Control. In the loal ontrol, the main novelty w.r.t. previous partialevaluators for funtional logi programs is the use of a non-standard semantis,the RNLT alulus, to perform omputations at PE time. Sine RLNT ompu-tations do not produe bindings, the restrition to not evaluate terms in headnormal form of previous partial evaluators is avoided.In order to ensure the �niteness of RLNT derivations, there exist a numberof well-known tehniques in the literature, e.g., depth-bounds, loop-heks, well-founded (or well-quasi) orderings (see, e.g., [8, 21, 28℄). For instane, an unfoldingrule based on the use of the homeomorphi embedding ordering was used in theIndy partial evaluator. Informally, expression e1 embeds expression e2 if e2 anbe obtained from e1 by deleting some operators. For example, Su (Su ((u+w)�(u+(Su v)))) embeds Su (u� (u + v)). However, in the presene of anin�nite signature (e.g., natural numbers in Curry), this unfolding rule an leadto non-terminating omputations. For example, onsider the following Curryprogram whih generates a list of natural numbers within two given limits:enum a b = if a > b then [℄ else (a : enum (a + 1) b)During its speialization w.r.t. the all enum 1 n, the following alls are produed:enum 1 n; enum 2 n; enum 3 n; : : : ; and no all embeds some previous all.Therefore, in our partial evaluator we have hosen a safe (and \heap") un-folding rule: only the unfolding of one funtion all is allowed (the positive super-ompiler of [20℄ employs a similar strategy). The main advantage of this approahis that expressions an be \folded bak" (i.e., an be proved losed) w.r.t. anypartially evaluated all. In pratie, this generates optimal reursive funtions inmany ases. As a ounterpart, many (unneessary) intermediate funtions mayappear in the residual program. This does not mean that we inur in a \odeexplosion" problem sine this kind of redundant rules an be easily removed bya post-unfolding phase (similarly to [20℄). Our experiments with the one-stepunfolding rule and the post-unfolding phase indiate that this leads to optimal(and onise) residual funtions in many ases.Global Control. As for global ontrol, an abstration operator usually relieson a onrete ordering over terms in order to keep the sequene of partially eval-uated terms �nite. As disussed above, a well-quasi ordering like the homeomor-phi embedding ordering annot be used sine we onsider an in�nite signature.Therefore, we implement an abstration operator whih uses a well-founded or-der to ensure termination and generalizes those alls whih do not satisfy thisordering by using the msg (most spei� generalization). Abstration operatorsbased on this relation are de�ned in, e.g., [26℄.The main novelty of our abstration operator w.r.t. previous operators isthat it is guided by the RLNT alulus. The key idea is to take into aount theposition of the square brakets of the alulus in expressions; namely, subterms13



within square brakets should be added to the set of partially evaluated terms (ifpossible, otherwise generalized) sine further evaluation is still required, whilesubterms whih are not within square brakets should be de�nitively residualized(i.e., ignored by the abstration operator, exept for operation-rooted terms).The ombination of this strategy with the above unfolding rule gives rise toeÆient residual programs in many ases, while still guaranteeing termination.5 Experimental ResultsThis setion desribes some experiments with an implementation of a partialevaluator for Curry programs whih follows the guidelines presented in previoussetions. Our PE tool is implemented in Curry itself and it is publily availableat http://www.dsi.upv.es/users/elp/soft.html. The implemented partialevaluator �rst translates the subjet program into a FlatCurry program. To dothis, we use the module Flat for meta-programming in Curry (inluded in theurrent distribution of PAKCS [18℄). This module ontains datatype de�nitionsto treat FlatCurry programs as data objets (using a kind of ground represen-tation). In partiular, the I/O ation readFlatCurry reads a Curry program,translates it to the intermediate language FlatCurry, and �nally returns a datastruture representing the input program.The e�etiveness of the narrowing-driven approah to PE is out of question(see, e.g., [2{4℄ for typial PE benhmarks). Unfortunately, these ad-ho pro-grams do not happen very frequently in real Curry appliations. This motivatedus to benhmark more realisti examples where the most important featuresof Curry programs appear. One of the most useful features of funtional lan-guages are higher-order funtions sine they improve ode reuse and modularityin programming. Thus, suh features are often used in pratial Curry programs(muh more than in Prolog programs, whih are based on �rst-order logi ando�er only weak features for higher-order programming). Furthermore, almostevery pratial program uses built-in arithmeti funtions whih are availablein Curry as external funtions (but, for instane, not in purely narrowing-basedfuntional logi languages). These pratial features were not treated in previousapproahes to PE of funtional logi languages.The following funtions map (for applying a funtion to eah element of alist) and foldr (for aumulating all list elements) are often used in funtional(logi) programs:map [℄ = [℄ foldr z [℄ = zmap f (x : xs) = f x : map f xs foldr f z (h : t) = f h (foldr f z t)For instane, the expression foldr (+) 0 [1; 2; 3℄ is the sum of all elementsof the list [1; 2; 3℄. Due to the speial handling of higher-order features (applyand partall) and built-in funtions (external), our partial evaluator is able toredue ourrenes of this expression to 6. However, instead of suh onstantexpressions, realisti programs ontain alls to higher-order funtions whih arepartially instantiated. For instane, the expression foldr (+) 0 xs is speialized14



Benhmark original speialized speeduptime heap time heapfoldr (+) 0 xs 210 2219168 60 619180 3.5foldr (+) 0 (map (+1) xs) 400 4059180 100 859180 4.0foldr (+) 0 (map square xs) 480 4970716 170 1770704 2.8foldr (++) [℄ xs (onat) 290 2560228 110 560228 2.6filter (>100) (map (*3) xs) 750 6639908 430 3120172 1.7map (iterate (+1) 2) xs 1730 17120280 600 6720228 2.9Table 1. Benhmark resultsby our partial evaluator to f xs where f is a �rst-order funtion de�ned by:f [℄ = 0f (x : xs) = x+ f xsCalls to this residual funtion run 3:5 times faster (in the Curry!Prolog om-piler [7℄ of PAKCS [18℄) than alls to the original de�nitions; also, memory usagehas been redued signi�atively (see Table 1, �rst row). Similarly, the expres-sion foldr (+) 0 (map (+1) xs) has been suessfully speialized to the eÆientversion of Set. 1. Note that our partial evaluator neither requires funtion de�-nitions in a spei� format (like \foldr/build" in short ut deforestation [12℄) norit is restrited to \higher-order maros" (as in [30℄), but an handle arbitraryhigher-order funtions. For instane, the higher-order funtioniterate f n = if n == 0 then f else iterate (f:f) (n � 1)whih modi�es its higher-order argument in eah reursive all (f:f denotes fun-tion omposition) an be suessfully handled by our partial evaluator. Table 1shows the results of speializing some alls to higher-order and built-in funtionswith our partial evaluator. For eah benhmark, we show the exeution time andheap usage for the original and speialized alls and the speedups ahieved. Theinput list xs ontains 20,000 elements in eah all. Times are expressed in mil-liseonds and measured on a 700 MHz Linux-PC (Pentium III, 256 KB ahe).The programs were exeuted with the Curry!Prolog ompiler [7℄ of PAKCS.Another important feature of Curry is the use of (onurrent) onstraints.Consider, for instane, the following funtion arith:digit 0 = suess: : :digit 9 = suessarith x y = x + x =:= y & x � x =:= y & digit xCalls to \arith" might be ompletely evaluated at PE time. Atually, our partialevaluator returns the residual funtion arith0 for the all arith x y :arith0 0 0 = suessarith0 2 4 = suessIn this setion, we have shown the speialization of alls to some small funtions.However, this does not mean that only the speialization of small programs isfeasible in our PE tool. Atually, in the speialization of larger programs theprogrammer would inlude some annotations indiating the funtion alls to be15



speialized (whih usually only involve alls to small funtions). In this ase,the same program would be returned by the system exept for the annotatedalls, whih are replaed by new alls to the speialized funtions, together withthe de�nitions of suh speialized funtions. The PE tool is not fully integratedinto PAKCS yet and, thus, transformed programs annot be diretly exeutedin Curry (sine they are in FlatCurry format). Our aim is to inorporate thepartial evaluator in PAKCS as a soure-to-soure transformation on FlatCurryprograms. The proess would be automati and transparent to the user.6 ConlusionsThis paper desribes a suessful experiene in the development of a programtransformation tehnique for a realisti multi-paradigm delarative language.Our method builds on the theoretial basis of [3℄ for the PE of funtional logilanguages. We have shown how this framework an be suessfully applied inpratie by extending the underlying method in order to over the failities ofthe language Curry. A partial evaluator has been implemented whih is able togenerate eÆient (and reasonably small) speialized programs.Future work in partial evaluation of multi-paradigm funtional logi lan-guages should still address several issues. For a more e�etive deployment, o�-line partial evaluators perform a binding-time analysis whih annotates eahfuntion all in the soure program as either reduible or subjet to residual-ize. Although our PE sheme is essentially on-line, we think that it ould bealso improved with the information gathered by a pre-proessing onsisting ofa binding-time analysis. In partiular, this will allow us to use the standard se-mantis of the language over those expressions whih an be fully evaluated ina �nite number of steps, thus improving the e�etiveness of the PE proess.Referenes1. E. Albert, M. Alpuente, M. Falashi, and G. Vidal. Indy User's Manual. TehnialReport DSIC-II/12/98, UPV, 1998. Available athttp://www.dsi.upv.es/users/elp/papers.html.2. E. Albert, M. Alpuente, M. Hanus, and G. Vidal. A Partial Evaluation Frameworkfor Curry Programs. In Pro. of LPAR'99, pages 376{395. Springer LNAI 1705,1999.3. E. Albert, M. Hanus, and G. Vidal. Using an Abstrat Representation to SpeializeFuntional Logi Programs. In Pro. of LPAR'2000, pages 381{398. Springer LNAI1955, 2000.4. M. Alpuente, M. Falashi, and G. Vidal. Partial Evaluation of Funtional LogiPrograms. ACM Trans. on Programming Lang. and Systems, 20(4):768{844, 1998.5. S. Antoy. De�nitional trees. In Pro. of the 3rd Int'l Conferene on Algebrai andLogi Programming, ALP'92, pages 143{157. Springer LNCS 632, 1992.6. S. Antoy, R. Ehahed, and M. Hanus. A Needed Narrowing Strategy. Journal ofthe ACM, 47(4):776{822, 2000. 16
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