(©Springer-Verlag
In Proc. of the 5th International Symposium on Functional and Logic
Programming (FLOPS 2001), Tokyo (Japan).
Springer LNCS 2024, pp. 326 342, 2001

A Practical Partial Evaluator for a
Multi-Paradigm Declarative Language*

Elvira Albert!, Michael Hanus?, and Germén Vidal!

! DSIC, UPV, Camino de Vera s/n, E-46022 Valencia, Spain
{ealbert,gvidal }@dsic.upv.es
? Institut fiir Informatik, CAU Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
mh@informatik.uni-kiel.de

Abstract. Partial evaluation is an automatic technique for program op-
timization which preserves program semantics. The range of its potential
applications is extremely large, as witnessed by successful experiences in
several fields. This paper summarizes our findings in the development of
partial evaluation tools for Curry, a modern multi-paradigm declarative
language which combines features from functional, logic and concurrent
programming. From a practical point of view, the most promising ap-
proach appears to be a recent partial evaluation framework which trans-
lates source programs into a maximally simplified representation. We
support this statement by extending the underlying method in order
to design a practical partial evaluation tool for the language Curry. The
process is fully automatic and can be incorporated into a Curry compiler
as a source-to-source transformation on intermediate programs. An im-
plementation of the partial evaluator has been undertaken. Experimental
results confirm that our partial evaluator pays off in practice.

1 Introduction

Curry [13,15] is a modern multi-paradigm declarative language which integrates
features from functional, logic and concurrent programming. The most impor-
tant features of the language include lazy evaluation, higher-order functions,
non-deterministic computations, concurrent evaluation of constraints with syn-
chronization on logical variables, and a unified computation model which inte-
grates narrowing and restduation. Furthermore, Curry is a complete program-
ming language which has been used to implement distributed applications (e.g.,
Internet servers [14], dynamic web pages [17]) or graphical user interfaces [16].
Several efficient implementations of the language already exist (see, e.g., [7, 18,
25]), although there is still room for further improvements. Existing compilers for
pure functional languages have been successfully improved by semantics-based
program transformation techniques. For instance, the Glasgow Haskell Compiler
includes a number of source-to-source program transformations which are able

* This work has been partially supported by CICYT TIC 98-0445-C03-01, by Accién
Integrada hispano-alemana HA1997-0073, and by the DFG under grant Ha 2457/1-2.

to optimize the quality of code in many different aspects [27]. Encouraged by
these successful experiences, we develop an automatic program transformation
technique to improve the efficiency of Curry functional logic programs.

For instance, consider functions defined by higher-order combinators such as
map, foldr, etc. Although such functions can be simply defined in a concise way,
some overhead is introduced at runtime which can be eliminated by program
transformation techniques. As an example, consider the following function foo:

foo xs = foldr (4) O (map (+1) xs)

to add 1 to the elements of a given list xs and then compute their total sum.
From the programmer point of view, this definition is perfectly right, but there
exist more efficient definitions for foo, like the following one:

foo [] =0
(x +1) + (foo xs)

In contrast to the original definition, it is a first-order function and, over ex-
isting functional logic compilers, it can be executed more efficiently (since it is
completely “deforested” [30]). Therefore, we are concerned with program trans-
formations which, given a program, output a residual program from which the
overhead has been removed at compile time. Partial evaluation (PE) is an auto-
matic technique for program optimization which preserves program semantics.
Optimization is achieved by specializing programs w.r.t. parts of their input
(hence also called program specialization). We note that several PE techniques

foo (x : xs)

are able to perform deforestation automatically and, thus, they can be useful
to optimize functions like the above one. Informally, a partial evaluator is a
mapping which takes a program P and a function call C' and derives a more
efficient, specialized program P which gives the same answers for C' (and any
of its instances) as P does.

PE techniques have been intensively studied in the context of a wide vari-
ety of declarative programming paradigms, specially in both the functional and
logic programming communities (see, e.g., [9,11,20, 23] and references herein).
Recently, a unified framework for the PE of languages which integrate features
from functional and logic programming has been introduced in [4]. The original
framework is defined for languages whose operational semantics is based solely
on narrowing, although it has been extended to deal with residuation in [2]. The
INDY partial evaluator [1] is a prototype implementation based on the above
framework. The system is written in Prolog and accepts unconditional term
rewriting systems as programs. The narrowing-driven approach to PE has the
same potential for specialization as positive supercompilation [29] of functional
programs and conjunctive partial deduction [10] of logic programs (it has been
experimentally tested in [2,4]).

Unfortunately, the use of INDY within a realistic functional logic language
(e.g., Curry [15], Escher [22] or Toy [24]) becomes impractical since there are
many facilities of these languages (e.g., higher-order functions, constraints, I/0,
built-in’s, etc.) which are not covered neither by INDY nor by the underlying PE
framework. For instance, INDY cannot be used to optimize the above function

foo due to occurrences of the built-in function + and the higher-order func-
tions map and foldr. Furthermore, the PE framework of [4] suffers from some
limitations, e.g., within a lazy (call-by-name) semantics, terms in head normal
form (i.e., rooted by a constructor symbol) cannot be evaluated during the PE
process. This can drastically reduce the optimization power of the method in
many cases. To overcome this problem, [3] introduces a novel approach for the
PE of functional logic languages. The new scheme considers a maximally simpli-
fied representation into which programs written in a higher-level language (i.e.,
inductively sequential programs [5] with evaluation annotations) can be auto-
matically translated. The restriction to not evaluate terms in head normal form
is avoided by defining a non-standard semantics which is well-suited to perform
computations at PE time.

The aim of this work is to show how—in contrast to [4] and INDY—the frame-
work of [3] can be successfully applied in practice. To this end, we first enrich
the intermediate representation considered in [3] in order to cover all the facili-
ties of the language Curry. The resulting representation is essentially equivalent
to the standard intermediate language FlatCurry [18], which has been proposed
to provide a common interface for connecting different tools working on Curry
programs, e.g., back ends for various compilers [7]. Then, the non-standard se-
mantics of [3] is carefully extended in order to cover the additional language
features. This extension is far from trivial, since the underlying calculus does
not compute bindings but represents them by “residual” case expressions. How-
ever, there are a number of functions, like equalities, (concurrent) conjunctions,
some arithmetic functions, etc., in which the propagation of bindings between
their arguments is crucial to achieve a good level of specialization. Therefore, we
are constrained to define a specific treatment for these important features. Fi-
nally, in order to make the resulting framework practically applicable, we define
appropriate control strategies which take into account the particularities of the
considered language and (non-standard) semantics. The resulting method is able
to transform realistic Curry programs in contrast to other existing partial eval-
uators. For instance, the “higher-order” definition of foo can be automatically
transformed into the more efficient version (see Sect. 5).

The structure of this paper is as follows. Section 2 recalls the basic notions
and techniques associated to the PE of functional logic programs. Section 3
extends the previous approach in order to cover all the facilities provided by the
language Curry. A description of the control issues involved in the PE process is
presented in Sect. 4. Some experiments with the partial evaluator are described
in Sect. 5 before we conclude in Sect. 6.

2 The Basic Approach

For the sake of completeness, in this section we briefly recall the approach pre-
sented in [3] for the PE of functional logic programs. Informally speaking, the
process is based on two steps: firstly, the source program is translated into a
maximally simplified representation (Sect. 2.1); then, function calls are partially

evaluated using a non-standard semantics, the RLNT calculus, which is specially
well-suited for performing computations at PE time (Sect. 2.2). To be precise,
for each finite (possibly partial) computation of the form e; =7 ey performed
with the RLNT calculus, we generate a residual rule—a resultant—of the form:
€1 = ey. Additionally, a post-processing of renaming is often required to recover
the same class of programs.

2.1 The Flat Representation

Following [13], we consider inductively sequential rewrite systems [5] (with eval-
uation annotations) as programs and an operational semantics which integrates
(needed) narrowing and residuation. In order to simplify the underlying seman-
tics, a flat representation for programs is introduced. This representation is based
on the formulation of [19] to express pattern-matching by case expressions. As
it will become apparent in Sect. 3, it corresponds to a subset of the FlatCurry
syntax [18], a standard intermediate representation for Curry programs.

Ruo=Dy...D,, en=ua (Variable)
D= f(er,...,20) =€ | cler,... en) (constructor)
| f(ery-..,€n) (function call)
p n=c(er,...,2n) | case eq of {p1 = e1;...;pn — en} (rigid case)
| fease ey of {p1 — e1;...;pn — en} (flexible case)

A program R consists of a sequence of function definitions D such that each
function is defined by one rule whose left-hand side contains only variables as
parameters. The right-hand side is an expression e composed by variables, con-
structors, function calls, and case expressions for pattern-matching. The form of
a case expression is:'

(f)case € of {c1(Tny) = €13 s ¢k(Tn,) — €k}
where e is an expression, ¢y,...,c; are different constructors of the type of e,
and eg,..., € are expressions (possibly containing (f)case’s). The variables T,

are local variables which occur only in the corresponding subexpression ¢;. The
difference between case and fease only shows up when the argument e is a free
variable: case suspends (which corresponds to residuation) whereas fcase nonde-
terministically binds this variable to a pattern in a branch of the case expression
(which corresponds to narrowing). Functions defined only by fcase (resp. case)
expressions are called flezible (vesp. rigid). Thus, flexible functions act as genera-
tors (like predicates in logic programming) and rigid functions act as consumers.
For example, consider the rules defining the (rigid) function “ < ”:?

0<n = True
(Succm) < 0 = False
(Succm) < (Succn) = m<n

Using case expressions, they can be represented by the following rewrite rule:

' We write o, for the sequence of objects o01,..., 0.
2 Although we consider in this work a first-order representation for programs, we use
a curried notation in concrete examples (as usual in functional languages).

x <y= casexof {0 — True;
(Succ x1) — case y of {0 — False;
(Succ y1) = =1 <yi}f }

An automatic transformation from inductively sequential programs [5] to pro-
grams using case expressions is introduced in [19].

2.2 The Residualizing Semantics

The operational semantics of flat programs becomes simpler, since definttional
trees [5] (used to guide the needed narrowing strategy [6]) have been compiled in
the program by means of case expressions. The LNT calculus [19] (Lazy Narrow-
ing with definitional Trees) is an operational semantics for inductively sequential
programs expressed in terms of case expressions, which has been proved equiva-
lent to needed narrowing. This calculus has been also extended to cover programs
containing evaluation annotations in [3]; namely, flexible (resp. rigid) functions
are translated by using only fcase (resp. case) expressions. In the following, we
refer to the LNT calculus to mean the LNT calculus of [3].

In [3], it was shown that, by using the standard semantics during PE, one
would have the same problems of previous approaches. In particular, one of the
main problems comes from the backpropagation of variable bindings to the left-
hand sides of residual rules (see Example 2 of [3]). Therefore, they propose a
residualizing version of the LNT calculus which avoids this restriction. In this
calculus, variable bindings are encoded by case expressions (and are consid-
ered “residual” code). The inference rules of the residualizing calculus, RLNT
(Residualizing LNT), can be seen in Fig. 1. In the following, we consider a (many-
sorted) signature partitioned into a set C of constructors and a set F of defined
functions or operations.

Let us recall the six inference rules defining the one-step relation =.3

(1) HNF. The HNF (Head Normal Form) rules are used to evaluate terms in
head normal form. If the expression is a variable or a constructor constant, the
square brackets are removed and the evaluation process stops. Otherwise, the
evaluation proceeds with the arguments.

(2) Case Function. This rule can be only applied when the argument of the case
is operation-rooted. In this case, it allows the unfolding of the function call.

(3) Case Select. This rule selects the appropriate branch of a case expression
and continues with the evaluation of this branch.

(4) Case Guess. The treatment of case expressions with variable arguments dis-
tinguishes it from the LNT calculus. In the standard semantics, these expressions
are evaluated by means of the following rules:

— fease: [fcase v of {Pr = ex}] =7 [ole)] fo={a—p}, i=1...k
- case: [ease x of {pr = ex}] =Y case x of {7 —=ex}

3 The symbols “[” and “]” in an expression like [¢] do not denote a semantic function
but are only used to identify which part of an expression should be still evaluated.

HNF
[t] = t ifteVort=c() with ¢/0 €C
le(ti, . stn)] = c([ta]s. .., [tn])
Case-of-Case
[(f)case ((f)case t of {pr — tk}) of {p} — t}}]
= [(f)case t of {pr — (f)case ti of {p’7 — t;}}]]

Case Function
[(Fease g(n) of {pr = t,}] = [(f)case o(r) of {pr — t;}]
if g(n) =r € R is a rule with fresh variables
and o = {m}
Case Select
[(f)case c(tn) of {pr = t1}] = [oc()] fpi=c(@n), c€C,0={z, = in}
Case Guess
[(f)ease @ of {px = 1x}] = (f)case @ of {pr — [ok(tr)]}
ifoi={z—p}i=1,...,k
Function Eval
[o(tx)] = [o(r)] if g(Tn) =r € R is a rule with fresh
variables and o = {M}

Fig. 1. RLNT Calculus

However, in this case, one would inherit the limitations of previous approaches.
Therefore, it has been modified in order not to backpropagate the bindings of
variables. In particular, the new Case Guess rule “residualizes” the case struc-
ture and continues with the evaluation of the different branches (by applying
the corresponding substitution in order to propagate bindings forward in the
computation). It imitates the instantiation of variables in the standard evalua-
tion of a flexible case but keeps the case structure. Due to this modification, no
distinction between flexible and rigid case expressions is needed in the RLNT
calculus. Moreover, the resulting calculus does not compute “answers”. Rather,
they are represented in the derived expressions by means of case expressions
with variable arguments. Also, the calculus becomes deterministic, i.e., there is
no don’t know nondeterminism involved in the computations. This means that
only one derivation can be issued from a given expression (thus, there is no need
to introduce a notion of RLNT “tree”).

(5) Case-of-Case. An undesirable effect of the Case Guess rule is that nested case
expressions may suspend unnecessarily. Take, for instance, the expression:

[case (case x of { 0 — True
(Succ y) — False}) of {True — C x}]

The evaluation of this expression suspends since the outer case can be only eval-
uated if the argument is a variable (Case Guess), a function call (Case Eval) or
a constructor-rooted term (Case Select). To avoid such premature suspensions,
the Case-of-Case rule moves the outer case inside the branches of the inner one
and, thus, the evaluation of some branches can now proceed (similar rules can
be found in the Glasgow Haskell Compiler as well as in Wadler’s deforestation

[30]). By using the Case-of-Case rule, the above expression can be reduced to:

[case x of {0 — case True of {True — C x}
(Succ y) — case False of {True — C x}]

(which can be further simplified with the Case Guess and Case Select rules). Rig-
orously speaking, this rule can be expanded into four rules (with the different
combinations for case and fease), but we keep the above (less formal) presen-
tation for simplicity. Observe that the outer case expression may be duplicated
several times, but each copy is now (possibly) scrutinizing a known value, and
so the Case Select rule can be applied to eliminate some case constructs.

(6) Function Eval. This rule performs the unfolding of a function call. As in
proof procedures for logic programming, we assume that we take a program rule
with fresh variables in each such evaluation step.

The correctness of the PE scheme for flat programs based on the RLNT calculus
can be found in [3].

3 Extending the Basic Framework

The aim of this section is to extend the basic approach in order to cover the
facilities of a realistic multi-paradigm language: Curry [15]. To this end, we first
enrich the flat representation of Sect. 2.1 with some additional features which
constitute the most useful facilities of the language. Then, we correspondingly
extend the rules of the RLNT calculus to properly deal with these new features.

3.1 An Intermediate Representation for Curry Programs

Our extended flat representation essentially coincides with the standard inter-
mediate representation, FlatCurry [18], used during the compilation of Curry
programs. It contains all the necessary information about a Curry program with
all “syntactic sugar” compiled out and type-checking and lambda-lifting per-
formed. In the extended representation, we allow the following expressions:

en=2x (variable)

cler, ... €n)

constructor)

| (

| fler,. .. en) (function call)

| (f)case eq of {p1 — e1;.. (case expression)

| externall(e) (external function call)
| partcall(f e, ... ex) (partial application)

| apply(er,es) (application)

| constr({z1,..., 24}, €) (constraint)

| or(er,es) (disjunction)

| guarded({z1,...,zn}, €1,€2) (guarded expression)

The right-hand side of each function definition is now an expression e com-
posed by variables, constructors, function calls, case expressions, and additional
features like: non user-defined (“external”) functions, higher-order features like
partial application and an application of a functional expression to an argument,

constraints (like equational constraints e; =:= ey, possibly containing existen-
tially quantified variables), disjunctions (to represent functions with overlapping
left-hand sides), and guarded expressions (to represent conditional rules, i.e.,
the first expression is always a constraint and the list of variables are the local
variables which are visible in the constraint and the right-hand side). A detailed
description of these features and their intended semantics can be found in [15].

3.2 Extending the RLNT Calculus

In principle, one could extend the RLNT calculus in order to deal with all the
facilities of FlatCurry in a simple way. The naive idea is to treat all the additional
features of the language as constructor symbols at PE time. This means that they
are never partially evaluated but their original definitions are returned by the PE
process. However, in realistic Curry programs, the presence of these additional
features is perfectly common, hence it is an unacceptable restriction just to
residualize them. Our experimental tests have shown that no specialization is
obtained in most cases if we follow this simple approach.

On the other hand, extending the RLNT calculus of Sect. 2.2 with the stan-
dard semantics for the additional features of FlatCurry is not a good solution
either. The problem stems from the fact that the RLNT calculus only propagates
bindings forward into the branches of a case expression. However, there are a
number of functions, like equalities, (concurrent) conjunctions, some arithmetic
functions, etc., in which the propagation of bindings between their arguments is
crucial to achieve a good level of specialization. In order to propagate bindings*
between different arguments, we permit to lift some case expressions from argu-
ment positions to the top level while propagating the corresponding bindings to
the remaining arguments. For example, the expression®

[(x =:=1) & (fcase x of {1 — success}]]
can be transformed into
[fcase x of {1 — (x =:= 1 & success)}]

The transformed expression can be now evaluated by the Case Guess rule, thus
propagating the binding {x — 1} to the first conjunct:

fcase x of {1 = [1 =:= 1 & success]}

We notice that this transformation cannot be applied over arbitrary expressions
since the intended (lazy) semantics is only preserved when the given function
is strict in the position of the case expression. Nevertheless, typical FlatCurry
programs contain many elements where the evaluation order is fixed. For in-
stance, the condition of a guard is strict, since it must be reduced to True (or
“success”) before applying a conditional rule, the arguments of most external
functions are also strict, because they must be reduced to ground constructor
terms before executing the external call, etc.

* Recall that bindings are represented by case expressions with a variable argument.
® Following [15], “success” denotes a constraint which is always solvable.

Furthermore, there are a number of situations in which an expression cannot
be evaluated until all (or some) of its arguments have some particular form. For
example, a call of the form apply(ey, ez) can be only reduced if the first argu-
ment e is of the form partcall(...). In these cases, we will try to evaluate the
arguments of the function to achieve the required form. For the sake of a simpler
presentation, we introduce the auxiliary function try_eval. Given a function call
f(€) and a set of natural numbers I which represents the set of strict arguments
of function f, we define try_eval as follows:

[(f)case x of {px — fle1, .., eim1,€}, €41, €n)}]
if e; = (f)case x of {pr — €}, } for some 1 € T
try_eval(f(&), 1) = § [fler, . ei1 € eivts. . en)]
if Fie{l,....n}. [e;] = €Y, el =delsy(e), €; # €}

79
f(en) otherwise

Here we denote by dels,(e) the expression which results from deleting all oc-
currences of “[” and “]” from e. We use it to test syntactic equality between
expressions without taking into account the relative positions of “[” and “J”.
Let us informally explain the function above. First, try_eval tries to float a case
expression in the i-th argument (with 7 € I) out of this argument. If this is
not possible, it tries to evaluate some argument and, if this does not lead to
a progress, the expression is just residualized. Since this definition of try_eval
is ambiguous, we additionally require that the different cases are tried in their
textual order and the arguments are evaluated from left to right.

Non User-Defined Functions. FlatCurry programs often contain functions
which are not defined in Curry but implemented in another language (ezter-
nal functions, like arithmetic operators, basic input/output facilities, etc). Such
functions are executed only if all arguments are evaluated to ground constructor
terms.5 The same restriction seems reasonable when computing the PE of an
external function. This implies that all arguments of external functions are as-
sumed to be strict and, thus, the call to try_eval is performed with the complete
set of argument positions:

ext_call(f(en)) ifer,...,e, are ground constructor

[external(f(€:))] = { [external(e’)] if try_eval(f(en),{1,...,n}) =[€']

external(f(e,)) otherwise

where ext_call(e) evaluates e according to its predefined semantics. Basically,
the partial evaluator first tries to execute the external function and, if this is not
possible because all arguments are not ground constructor terms, then it tries
to evaluate its arguments. Furthermore, we need to add the rule:

[external((f)case x of {Dr — ex})] = [(f)case x of {pr — external(er)}]

to move a case expression obtained by try_eval outside the external call (in order

to allow further evaluation of the branches).

® There are few exceptions to this general rule but typical external functions (like
arithmetic operators) fulfill this condition. We assume it for the sake of simplicity.

The only exception to the above rule are I/O actions, for which Curry follows
the monadic approach to I/O. These functions act on the current “state of the
outside world”. They are residualized since this state is not known at PE time.

Constraints. The treatment for constraints heavily depends on the associated
constraint solver. In the following, we only consider equational constraints. An
elementary constraint is an equation e¢; =:= ey between two expressions which
is solvable if both sides are reducible to unifiable constructor terms. This notion
of equality, the so-called strict equality, is incorporated in our calculus by

casey(success) if o = mgu(er,e2) and e, €2
[er == e2] = are constructor terms
try_eval(e; =:= eq,{1,2}) otherwise

Note that we call to try_eval with the set of positions {1, 2} since function “=:="

is strict in its two arguments. Here, we use case,(success) as a shorthand for
denoting the encoding of ¢ by nested (flexible) case expressions with success at
the final branch. For example, the expression [C x 2 =:= C 1 y], whose mgu is
{x — 1,y — 2} is evaluated to: fcase x of {1 — fcase y of {2 — success}}.
This simple treatment of constraints is not sufficient in practical programs since
they are often used in concurrent conjunctions, written as ¢; &...& ¢, (“&”
is a built-in operator which evaluates its arguments concurrently). In this case,
constraints may instantiate variables and the corresponding bindings should be
propagated to the remaining conjuncts. The problematic point is that we cannot
move arbitrary case expressions to the top level, but only flexible case expressions
(otherwise, we could change the floundering behavior of the program). Consider,
for instance, the following simple functions:

f x = case x of {1 — success}
g x = fcase x of {1 — success}

where f is rigid and g is flexible. Given the expression [f x & g x], if we allow to
float out arbitrary case expressions, we could perform the following evaluation:

[f x & g x] = [case x of {1 — success} & g x]
= [case x of {1 — success & g x}]
= case x of {1 — [success & g 1]}

which ends up in case x of {1 — success}. Note that this residual expression
suspends if variable x is not instantiated, whereas the original expression could
be reduced by evaluating first function g and then function f. Therefore, we
handle concurrent conjunctions as follows:

[[Cl& &Cnﬂ =

success if ¢; = success for all 7 € {1,...,n}
[fease x of {pr = (1 &... & i1 &) &g & ... &)}
if ¢; = fease x of {pr — €} for some 1 € {1,...,n}

[[Cl & &Ci—l &Cg &Ci+1 &7 &Cn]]
ifdie{l,....n} [a] =, ¢ =delgy(c!),ei # ¢

1
c1 & ... & ¢, otherwise

10

Note that, in contrast to external functions, only flexible case expressions are
moved to the top level. Equational constraints can also contain local existen-
tially quantified variables. In this case they take the form constr(vars,c), where
vars are the existentially quantified variables in the constraint ¢. We treat these
constraints as follows:

[tr(vars,)] = success if ¢ = success
constrivars, ¢ try_eval(constr(vars,c),{2}) otherwise

Note that the above rule moves all bindings to the top level, even those for
the local variables in vars. In practice, case expressions denoting bindings for
the variables in vars are removed since they are local, but we keep the above
formulation for simplicity.

Guarded Expressions. In Curry, functions can be defined by conditional rules
of the form

fer...enlc = e
where ¢ is a constraint (rules with multiple guards are also allowed but consid-
ered as syntactic sugar for denoting a sequence of rules). Conditional rules are
represented in FlatCurry by the guarded construct. At PE time, we are inter-
ested in inspecting not only the guard but also the right-hand side of the guard.
However, only bindings produced from the evaluation of the guard can be floated
out (since this is the unique strict argument):

‘ 7 [€] if gc = success
lyuarded(vars. ge,)] = { try_eval(guarded(vars, ge, €),{2}) otherwise

As in the case of constraints, the application of try_eval can unnecessarily move
some bindings (i.e., those for the variables in vars) outside the guarded ex-
pression. A precise treatment can be easily defined, but we preserve the above
presentation for the sake of readability.

Higher-Order Functions. The higher-order features of functional program-
ming are implemented in Curry by providing a (first-order) definition of the
application function (apply). Since Curry excludes higher-order unification, the
operational semantics of Curry covers the usual higher-order features of func-
tional languages by adding the following axiom [15]:

lapply(fler,....em),e)] = fle1,... . em,€)
if f has arity n > m. Thus, an application is evaluated by simply adding the ar-
gument to a partial call. In FlatCurry, we distinguish partial applications from
total functions; namely, partial applications are represented by means of the
partcall symbol. We treat higher-order features as follows:

L7, e2)] if e1 = parteall(f,7), k+1= ar(f)
[apply(er,e2)] = parteall(f,ex,e2) if e1 = parteall(f,er), b+ 1 < ar(f)
try_eval(apply(er,e2),{1}) otherwise
where ar(f) denotes the arity of the function f. Roughly speaking, we allow a

partial function to become a total function by adding the missing argument,
if possible. If the function does not have the right number of arguments after

11

adding the new argument, we maintain it as a partial function. In the remaining
cases, we evaluate the apply arguments in hopes of achieving a partial call after
evaluation. Note that try_eval is called with the set {1} in order to avoid the
propagation of bindings from the evaluation of non-strict arguments (i.e., from
the second argument of apply).

Overlapping Left-Hand Sides. Overlapping left-hand sides in Curry pro-
grams produce a disjunction where the different alternatives have to be consid-
ered. Similarly, we treat or expressions in FlatCurry as follows:

[or(er,e2)] = or([ex], [e2])

4 The Partial Evaluator in Practice

In this section, we describe the structure of a simple on-line partial evaluator in
the style of [11] which follows the ideas presented so far. Essentially, the partial
evaluator proceeds as follows:

Unfolding phase. Firstly, given a program and a set of function calls, we
compute a finite (possibly incomplete) RLNT derivation for each call of the set
according to an unfolding rule U. Roughly speaking, the unfolding rule deter-
mines how to stop RLNT derivations in order to avoid infinite computations.
Formally, given a program R and a set of function calls T = {t1,...,t,}, U is
a (total) function such that, whenever (T, R) = S, then S = {s;,...,s,} and
there exist finite RLNT derivations of the form [t;] =% s; in R, with: = 1,... n.

Abstraction phase. Since some of the derived expressions S = {s1,...,s,}
may contain function calls which are not covered by the already (partially) eval-
uated calls T, this process is iteratively repeated for any term of S which is not
closed w.r.t. the set T. Informally, a term s is closed w.r.t. a set of terms T (or,
simply, T-closed) if the maximal operation-rooted subterms of s are instances
of some terms in T and the terms in the matching substitution are recursively
T-closed (see [4] for a precise definition). In order to avoid repeating this process
infinitely, an abstraction operator is commonly used. In particular, we consider a
mapping abstract which takes two sets of terms T" and S (which represent the set
of terms already evaluated and the set of terms to be added to this set, respec-
tively) and returns a safe approximation abstract(T,S) of TUS. Here, by “safe”
we mean that each term in TU S is closed w.r.t. the result of abstract(T,S) (i.e.,
no function call is lost during the abstraction process).

Following the structure of many on-line partial evaluators (see, e.g., [11]), we
sketch a PE algorithm which is parametric w.r.t. an unfolding rule &/ and an

abstraction operator abstract:

Input: a program R and a set of terms 7' / Owutput: a set of terms S
Initialization: ¢ :=0; Ty : =T

Repeat S :=U(T;, R); Tit1:= abstract(T;,S); i:=1+1

Until T; = T;—; (modulo renaming)

Return S := T

12

The above PE algorithm involves two control issues: the so-called local control,
which concerns the definition of an unfolding rule ¢ to compute finite partial
evaluations, and the global control, which consists of defining a safe abstraction
operator abstract to ensure the termination of the iterative process.

Local Control. In the local control, the main novelty w.r.t. previous partial
evaluators for functional logic programs is the use of a non-standard semantics,
the RNLT calculus, to perform computations at PE time. Since RLNT compu-
tations do not produce bindings, the restriction to not evaluate terms in head
normal form of previous partial evaluators is avoided.

In order to ensure the finiteness of RLNT derivations, there exist a number
of well-known techniques in the literature, e.g., depth-bounds, loop-checks, well-
founded (or well-quasi) orderings (see, e.g., [8, 21, 28]). For instance, an unfolding
rule based on the use of the homeomorphic embedding ordering was used in the
INDY partial evaluator. Informally, expression e; embeds expression eg if e9 can
be obtained from e; by deleting some operators. For example, Suce (Suce ((u +
w) X (u+(Succ v)))) embeds Suce (u X (v + v)). However, in the presence of an
infinite signature (e.g., natural numbers in Curry), this unfolding rule can lead
to non-terminating computations. For example, consider the following Curry
program which generates a list of natural numbers within two given limits:

enuma b = if a > b then [| else (a:enum (a+ 1) b)

During its specialization w.r.t. the call enum 1 n, the following calls are produced:
enum 1 n, enum 2 n, enum 3 n,..., and no call embeds some previous call.

Therefore, in our partial evaluator we have chosen a safe (and “cheap”) un-
folding rule: only the unfolding of one function call is allowed (the positive super-
compiler of [20] employs a similar strategy). The main advantage of this approach
is that expressions can be “folded back” (i.e., can be proved closed) w.r.t. any
partially evaluated call. In practice, this generates optimal recursive functions in
many cases. As a counterpart, many (unnecessary) intermediate functions may
appear in the residual program. This does not mean that we incur in a “code
explosion” problem since this kind of redundant rules can be easily removed by
a post-unfolding phase (similarly to [20]). Our experiments with the one-step
unfolding rule and the post-unfolding phase indicate that this leads to optimal
(and concise) residual functions in many cases.

Global Control. As for global control, an abstraction operator usually relies
on a concrete ordering over terms in order to keep the sequence of partially eval-
uated terms finite. As discussed above, a well-quasi ordering like the homeomor-
phic embedding ordering cannot be used since we consider an infinite signature.
Therefore, we implement an abstraction operator which uses a well-founded or-
der to ensure termination and generalizes those calls which do not satisfy this
ordering by using the msg (most specific generalization). Abstraction operators
based on this relation are defined in, e.g., [26].

The main novelty of our abstraction operator w.r.t. previous operators is
that it is guided by the RLNT calculus. The key idea is to take into account the
position of the square brackets of the calculus in expressions; namely, subterms

13

within square brackets should be added to the set of partially evaluated terms (if
possible, otherwise generalized) since further evaluation is still required, while
subterms which are not within square brackets should be definitively residualized
(i.e., ignored by the abstraction operator, except for operation-rooted terms).
The combination of this strategy with the above unfolding rule gives rise to
efficient residual programs in many cases, while still guaranteeing termination.

5 Experimental Results

This section describes some experiments with an implementation of a partial
evaluator for Curry programs which follows the guidelines presented in previous
sections. OQur PE tool is implemented in Curry itself and it is publicly available
at http://www.dsic.upv.es/users/elp/soft.html. The implemented partial
evaluator first translates the subject program into a FlatCurry program. To do
this, we use the module Flat for meta-programming in Curry (included in the
current distribution of PAKCS [18]). This module contains datatype definitions
to treat FlatCurry programs as data objects (using a kind of ground represen-
tation). In particular, the I/O action readFlatCurry reads a Curry program,
translates it to the intermediate language FlatCurry, and finally returns a data
structure representing the input program.

The effectiveness of the narrowing-driven approach to PE is out of question
(see, e.g., [2-4] for typical PE benchmarks). Unfortunately, these ad-hoc pro-
grams do not happen very frequently in real Curry applications. This motivated
us to benchmark more realistic examples where the most important features
of Curry programs appear. One of the most useful features of functional lan-
guages are higher-order functions since they improve code reuse and modularity
in programming. Thus, such features are often used in practical Curry programs
(much more than in Prolog programs, which are based on first-order logic and
offer only weak features for higher-order programming). Furthermore, almost
every practical program uses built-in arithmetic functions which are available
in Curry as external functions (but, for instance, not in purely narrowing-hased
functional logic languages). These practical features were not treated in previous
approaches to PE of functional logic languages.

The following functions map (for applying a function to each element of a
list) and foldr (for accumulating all list elements) are often used in functional
(logic) programs:

map - [] =] foldr _ z [] =z
map f (x:xs) =f x :map f xs foldrfz (h:t)=1f h (foldr f z t)

For instance, the expression foldr (+) 0 [1,2,3] is the sum of all elements
of the list [1,2,3]. Due to the special handling of higher-order features (apply
and partcall) and built-in functions (external), our partial evaluator is able to
reduce occurrences of this expression to 6. However, instead of such constant
expressions, realistic programs contain calls to higher-order functions which are
partially instantiated. For instance, the expression foldr (+) 0 xs is specialized

14

Benchmark original specialized |speedup
time heap|time heap
foldr (+) 0 xs 210| 2219168| 60| 619180 3.5
foldr (+) O (map (+1) xs) 400| 4059180| 100| 859180 4.0
foldr (+) O (map square xs)| 480 4970716| 1701770704 2.8
foldr (++) [] xs (concat) 290| 2560228| 110| 560228 2.6
filter (>100) (map (*3) xs)| 750| 6639908| 430(3120172| 1.7
map (iterate (+1) 2) xs 1730(17120280| 600(6720228 2.9
Table 1. Benchmark results

by our partial evaluator to £ xs where f is a first-order function defined by:

£ (] =0

f(x:xs) = x+°xs
Calls to this residual function run 3.5 times faster (in the Curry—Prolog com-
piler [7] of PAKCS [18]) than calls to the original definitions; also, memory usage
has been reduced significatively (see Table 1, first row). Similarly, the expres-
sion foldr (4) 0 (map (+1) xs) has been successfully specialized to the efficient
version of Sect. 1. Note that our partial evaluator neither requires function defi-
nitions in a specific format (like “foldr/build” in short cut deforestation [12]) nor
it is restricted to “higher-order macros” (as in [30]), but can handle arbitrary
higher-order functions. For instance, the higher-order function

iterate fn = if n==10 then f else iterate (f.f) (n —1)

which modifies its higher-order argument in each recursive call (£.f denotes func-
tion composition) can be successfully handled by our partial evaluator. Table 1
shows the results of specializing some calls to higher-order and built-in functions
with our partial evaluator. For each benchmark, we show the execution time and
heap usage for the original and specialized calls and the speedups achieved. The
input list xs contains 20,000 elements in each call. Times are expressed in mil-
liseconds and measured on a 700 MHz Linux-PC (Pentium III, 256 KB cache).

The programs were executed with the Curry—Prolog compiler [7] of PAKCS.
Another important feature of Curry is the use of (concurrent) constraints.

Consider, for instance, the following function arith:

digit 0 = success

digit 9 = success

arithxy=x+x ==y & x*x ==y & digit x
Calls to “arith” might be completely evaluated at PE time. Actually, our partial
evaluator returns the residual function arith’ for the call arith x y :

arith’ 0 0 = success
arith’ 2 4 = success

In this section, we have shown the specialization of calls to some small functions.
However, this does not mean that only the specialization of small programs is
feasible in our PE tool. Actually, in the specialization of larger programs the
programmer would include some annotations indicating the function calls to be

15

specialized (which usually only involve calls to small functions). In this case,
the same program would be returned by the system except for the annotated
calls, which are replaced by new calls to the specialized functions, together with
the definitions of such specialized functions. The PE tool is not fully integrated
into PAKCS yet and, thus, transformed programs cannot be directly executed
in Curry (since they are in FlatCurry format). Our aim is to incorporate the
partial evaluator in PAKCS as a source-to-source transformation on FlatCurry
programs. The process would be automatic and transparent to the user.

6 Conclusions

This paper describes a successful experience in the development of a program
transformation technique for a realistic multi-paradigm declarative language.
Our method builds on the theoretical basis of [3] for the PE of functional logic
languages. We have shown how this framework can be successfully applied in
practice by extending the underlying method in order to cover the facilities of
the language Curry. A partial evaluator has been implemented which is able to
generate efficient (and reasonably small) specialized programs.

Future work in partial evaluation of multi-paradigm functional logic lan-
guages should still address several issues. For a more effective deployment, off-
line partial evaluators perform a binding-time analysis which annotates each
function call in the source program as either reducible or subject to residual-
ize. Although our PE scheme is essentially on-line, we think that it could be
also improved with the information gathered by a pre-processing consisting of
a binding-time analysis. In particular, this will allow us to use the standard se-
mantics of the language over those expressions which can be fully evaluated in
a finite number of steps, thus improving the effectiveness of the PE process.

References

1. E. Albert, M. Alpuente, M. Falaschi, and G. Vidal. INDY User’s Manual. Technical
Report DSIC-11/12/98, UPV, 1998. Available at
http://www.dsic.upv.es/users/elp/papers.html.

2. E. Albert, M. Alpuente, M. Hanus, and G. Vidal. A Partial Evaluation Framework
for Curry Programs. In Proc. of LPAR’99, pages 376 395. Springer LNAI 1705,
1999.

3. E. Albert, M. Hanus, and G. Vidal. Using an Abstract Representation to Specialize
Functional Logic Programs. In Proc. of LPAR’2000, pages 381-398. Springer LNAI
1955, 2000.

4. M. Alpuente, M. Falaschi, and G. Vidal. Partial Evaluation of Functional Logic

Programs. ACM Trans. on Programming Lang. and Systems, 20(4):768-844, 1998.

S. Antoy. Definitional trees. In Proc. of the 3rd Int’l Conference on Algebraic and

Logic Programming, ALP’92, pages 143 157. Springer LNCS 632, 1992.

6. S. Antoy, R. Echahed, and M. Hanus. A Needed Narrowing Strategy. Journal of
the ACM, 47(4):776-822, 2000.

[

16

=l

10.

11.

12.

13.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

S. Antoy and M. Hanus. Compiling Multi-Paradigm Declarative Programs into
Prolog. In Proc. of FroCoS’2000, pages 171 185. Springer LNCS 1794, 2000.

M. Bruynooghe, D. De Schreye, and B. Martens. A General Criterion for Avoiding
Infinite Unfolding. New Generation Computing, 11(1):47 79, 1992.

C. Consel and O. Danvy. Tutorial notes on Partial Evaluation. In Proc. of
POPL’93, pages 493 501. ACM, New York, 1993.

D. De Schreye, R. Gliick, J. Jgrgensen, M. Leuschel, B. Martens, and M.H.
Serensen. Conjunctive Partial Deduction: Foundations, Control, Algorihtms, and
Experiments. Journal of Logic Programming, 41(2&3):231 277, 1999.

J. Gallagher. Tutorial on Specialisation of Logic Programs. In Proc. of PEPM’93,
pages 88 98. ACM, New York, 1993.

A.J. Gill, J. Launchbury, and S.L. Peyton Jones. A Short Cut to Deforestation.
In Proc. of the FPCA’93, pages 223-232, New York, NY, USA, 1993. ACM Press.
M. Hanus. A unified computation model for functional and logic programming. In
Proc. of POPL’97, pages 80-93. ACM, New York, 1997.

M. Hanus. Distributed Programming in a Multi-Paradigm Declarative Language.
In Proc. of PPDP’99, pages 376-395. Springer LNCS 1702, 1999.

M. Hanus. Curry: An Integrated Functional Logic Language. Available at:
http://www.informatik.uni-kiel.de/ curry/, 2000.

M. Hanus. A Functional Logic Programming Approach to Graphical User Inter-
faces. In Proc. of PADL’00, pages 47-62. Springer LNCS 1753, 2000.

. M. Hanus. High-Level Server Side Web Scripting in Curry. In Proc. of PADIL 01,

Springer LNCS (to appear), 2001.

M. Hanus, S. Antoy, J. Koj, R. Sadre, and F. Steiner. PAKCS 1.3: The Portland
Aachen Kiel Curry System User Manual. University of Kiel, Germany, 2000.

M. Hanus and C. Prehofer. Higher-Order Narrowing with Definitional Trees. Jour-
nal of Functional Programming, 9(1):33-75, 1999.

N.D. Jones, C.K. Gomard, and P. Sestoft. Partial Fvaluation and Automatic Pro-
gram Generation. Prentice-Hall, Englewood Cliffs; NJ, 1993.

M. Leuschel. On the Power of Homeomorphic Embedding for Online Termination.
In G. Levi, editor, Proc. of SAS’98, pages 230-245. Springer LNCS 1503, 1998.
J.W. Lloyd. Combining Functional and Logic Programming Languages. In Proc.
of the International Logic Programming Symposium, pages 43 57, 1994.

J.W. Lloyd and J.C. Shepherdson. Partial Evaluation in Logic Programming.
Journal of Logic Programming, 11:217 242, 1991.

F. Lépez-Fraguas and J. Sanchez-Herndandez. TOY: A Multiparadigm Declarative
System. In Proc. of RTA’99, pages 244-247. Springer LNCS 1631, 1999.

W. Lux and H. Kuchen. An Efficient Abstract Machine for Curry. In Proc. of
WFLP’99, pages 171-181, 1999.

B. Martens and J. Gallagher. Ensuring Global Termination of Partial Deduction
while Allowing Flexible Polyvariance. In L. Sterling, editor, Proc. of ICLP’95,
pages 597—611. MIT Press, 1995.

S.L. Peyton-Jones. Compiling Haskell by Program Transformation: a Report from
the Trenches. In Proc. of ESOP’96, pages 18-44. Springer LNCS 1058, 1996.
M.H. Sgrensen and R. Gliick. An Algorithm of Generalization in Positive Super-
compilation. In Proc. of ILPS’95, pages 465-479. MIT Press, 1995.

M.H. Sgrensen, R. Gliick, and N.D. Jones. A Positive Supercompiler. Journal of
Functional Programming, 6(6):811-838, 1996.

P.L. Wadler. Deforestation: Transforming programs to eliminate trees. Theoretical
Computer Science, 73:231-248, 1990.

17

