ICurry

Sergio Antoy!, Michael Hanus?, Andy Jost!, and Steven Libby!

1 Computer Science Dept., Portland State University, Oregon, U.S.A.
2 Institut fiir Informatik, Kiel University, D-24098 Kiel, Germany

Abstract. FlatCurry is a well-established intermediate representation
of Curry programs used in compilers that translate Curry code into Pro-
log or Haskell code. Some FlatCurry constructs have no direct translation
into imperative code. These constructs must be each handled differently
when translating Curry code into, e.g., C, C++ or Python code. We intro-
duce a new representation of Curry programs, called ICurry, and derive
a translation from all FlatCurry constructs into ICurry. We present the
syntax and semantics of ICurry and the translation from FlatCurry to
ICurry. We present a model of functional logic computations as graph
rewriting and show how this model can be implemented with ICurry in
a low-level imperative language.

1 Introduction

Functional logic languages [8] provide fast software prototyping and develop-
ment, simple elegant solutions to otherwise complicated problems, a tight in-
tegration between specifications and code [9], and an ease of provability [10,
20] unmatched by other programming paradigms. Not surprisingly, these advan-
tages place heavy demands on their implementation. Theoretical results must be
proven and efficient models of execution must be developed. For these reasons,
the efficient implementation of functional logic languages is an active area of
research with contributions from many sources. This paper is one such contri-
bution.

Compilers of high-level languages transform a source program into a target
program which is in a lower-level language. This transformation maps constructs
available in the source program language into simpler, more primitive, constructs
available in the target program language. For example, pattern matching can be
translated into a sequence of switch and assignment statements available in C,
C++ and Python. We use this idea to map Curry into a C-like language. Our
target language is not standard C, but a more abstract language that we call
ICurry. The “I” in ICurry stands for “imperative”, since a design goal of the
language is to be easily mappable into an imperative language.

There are advantages in choosing ICurry over C. ICurry is simpler than C.
It has no arrays, typedef declarations, types, explicit pointers, or dereferencing
operations. ICurry is more abstract than concrete low level languages. Because
of its simplicity and abstraction, it has been mapped with a modest effort to C,
C++, and Python.

Section 2 is a brief overview of Curry, with focus on the features relevant to
[Curry or to the examples. Section 3 discusses an operational model of execution
for functional logic computations. This model can be implemented relatively
easily in Curry or in common imperative languages. Section 4 presents FlatCurry,
a format of Curry programs similar to ICurry. FlatCurry has been used in the
translation of Curry into other, non-imperative, languages, but it is not suitable
for the translation of Curry into an imperative language. Section 5 defines ICurry
and its semantics, and discusses its generation and use. Section 6 addresses
related work and offers our conclusion.

2 Curry

Curry is a declarative language that joins the most appealing features of func-
tional and logic programming. A Curry program declares data types, which de-
scribe how information is structured, and defines functions or operations, which
describe how information is manipulated. For example:

data List a = Nil | Cons a (List a)

declares a polymorphic type List in which a is a type parameter standing for the
type of the list elements. The symbols Nil and Cons are the constructors of List.
The values of a list are either Nil, the empty list, or Cons e [, a pair in which e
is an element and [is a list.

Since lists are ubiquitous, a special notation eases writing and understand-
ing them. Curry uses [] to denote the empty list and e : [to denote the pair,
where the infix constructor “:” associates to the right. A finite list is written
[e1,...,en], Where ¢; is a list element. For example, [1,2,3] = 1:2:3:[].

Functions are defined by rewrite rules of the form:

fplea=el

|cn:en

where f is a function symbol, p stands for a sequence of zero or more expressions
made up only of constructor symbols and variables, “| ¢;” is a condition, and e;
is an expression. Conditions in rules are optional. The expressions in p are called
patterns. For example, consider:

abs x | x < 0 = -x
| x >= 0= x
(2)
length [] =0

length (_:xs) = 1 + length xs

where abs computes the absolute value of its argument and shows some condi-
tions, and length computes the length of its argument and shows some patterns.

In contrast to most other languages, the textual order of the rewrite rules in
a program is irrelevant—all the rules that can be applied to an expression are
applied. An emblematic example is a function, called choice, and denoted by the
infix operator “?”, which chooses between two alternatives:

X ?7y =X

xX?7y =y
Therefore, 071 is an expression that produces 0 and 1 non-deterministically. In
Curry, there are many other useful syntactic and semantic features, for example,
rewrite rules can have nested scopes with local definitions. We omit their descrip-
tion here, since they are largely irrelevant to our discussion, with the exception
of let blocks and free variables.

Let blocks support the definition of circular expressions which allows the
construction of cyclic graphs. Fig. 1 shows an example of a let block and the
corresponding graph. Expression oneTwo evaluates to the infinite list 1:2:1:2:...

oneTwo = let x =
y=2:x
in x

|
[y
<

Fig. 1. Example of a let block with mutually recursive variables and the graph it
defines.

Free variables abstract unknown information and are “computationally inert”
until the information they stand for is required during a computation. When this
happens, plausible values for a variable are non-deterministically produced by
narrowing [6,29]. Free variables might occur in initial expressions, conditions,
and the right-hand side of rules, and need to be declared by the keyword free,
unless they are anonymous (denoted by “_"). For instance, the following program
defines list concatenation which is exploited to define an operation that returns
some element of a list having at least two occurrences:

(++) :: [al] — [a]l — [al
(] ++ ys = ys
(x:x8) ++ ys = x : (xs ++ ys)

someDup :: [a] — a
someDup xs | xs == _ ++ [x] ++ _ ++ [x] ++ _

= x where x free

3 The Execution Model

A program is a graph rewriting system [16,28] over a signature, partitioned
into constructor and operation symbols. We briefly and informally review the
underlying theory. A graph is a set of nodes, where a node is an object with some
attributes, and an identity by virtue of being an element in a set. Key attributes
of a node are a label and a sequence of successors. A label is either a symbol
of the signature or a variable. A successor is another node, and the sequence
of successors may be empty. Exactly one node of a graph is designated as the

+

+
coin coin coin

coin+coin x+x where x=coin

Fig. 2. Graphical and textual representation of expressions. In Curry, all the occur-
rences of the same variable are shared. Hence, the two occurrences of x stand for the
same node. The expression coin is conventionally an integer constant with two val-
ues, 0 and 1, non-deterministically chosen. The sets of values produced by the two
expressions differ.

graph’s root. Each node of a graph corresponds to an expression in the Curry
program.

A graph rewriting system is a set of rewrite rules following the constructor
discipline [27]. A rule is a pair of graphs, | — r, called the left- and right-
hand sides, respectively. Rules are unconditional without loss of generality [3]. A
rewrite step of a graph e first identifies both a subgraph t of e, and a rule [— r
in which ¢ is an instance of [, then replaces ¢t with the corresponding instance of
r. The identification of the subgraph ¢ and the rule I — r is accomplished by a
strategy [4]. For example, given the rules (2), a step of length [3,4] produces
1+length[4] where the subgraph reduced in the step is the whole graph, and the
rule applied in the step is the second one.

A computation of an expression e is a sequence of rewrite steps starting with
e, e = ey — ey — ... Expression e is referred to as top-level, and each e; as
a state of the computation of e. A wvalue of a computation is a state in which
every node is labeled by a constructor symbol. Such expression is also called a
constructor normal form. Not every computation has values.

We have modeled a functional logic program as a graph rewriting system
[16,28]. Functional logic computations are executed in this model by rewriting
which consists of two relatively simple operations: the construction of graphs
and the replacement of subgraphs with other graphs. The most challenging part
is selecting the subgraph to be replaced in a way that does not consume com-
putational resources unnecessarily. This is a well-understood problem [4] which
is largely separated from the model.

In an implementation of the model, the expressions are objects of a compu-
tation and are represented by dynamically linked structures. These structures
are similar to those used for computing with lists and trees. The nodes of such
a structure are in a bijection with the nodes of the graph they represent. Un-
less a distinction is relevant, we do not distinguish between a graph and its
representation.

The occurrence of a symbol, or variable, in the textual representation of an
expression stands for the node labeled by the occurrence. Distinct occurrences
may stand for the same node, in which case we say that the occurrences are
shared. The textual representation accommodates this distinction, therefore it
is a convenient, linear notation for a graph. Fig. 2 shows two graphs and their
corresponding textual expressions.

4 FlatCurry

FlatCurry [17] is an intermediate language used in a variety of applications.
These applications include implementing Curry by compiling into other lan-
guages, like Prolog [21] or Haskell [12]. FlatCurry is also the basis for specifying
the operational semantics of Curry programs [1], building generic analysis tools
[22], or verifying properties of Curry programs [19, 20]. The FlatCurry format of
a Curry program removes some syntactic constructs, such as nested scopes and
infix notation, that make source programs more human readable. This removal
still preserves the program’s meaning. We ignore some elements of FlatCurry,
such as imported modules or exported symbols, which are not directly related
to the execution model presented in Section 3. Instead, we focus on the dec-
laration of data constructors, the definition of functions, and the construction
of expressions. These are the elements that play a central role in our execution
model.

FlatCurry is a machine representation of Curry programs. As such, it is not
intended to be read by human. For example, each variable is identified by an
integer, function application is only prefix, and pattern matching is broken down
into a cascade of case distinctions. In the examples that follow, we present a
sugared version of FlatCurry in which variables have symbolic names, typically
the same as in Curry; the application of familiar infix operators is infix; and
indentation, rather than parentheses and commas, show structure and grouping.
The intent is to make the examples easier to read without altering the essence
of FlatCurry.

In FlatCurry, data constructors are introduced by a type declaration. A type
t has attributes such as a name and a visibility, and chief among these attributes
is a set of constructors ¢y, ca,...c,. Each constructor ¢; has similar attributes,
along with an arity and type of each argument, which are not explicitly used
in our discussion. The same information is available for operation symbols. Ad-
ditionally, any operation f has an attribute that abstracts the set of the rules
defining f.

The abstract syntax of FlatCurry operations is summarized in Fig. 3.3 Each
operation is defined by a single rule with a linear left-hand side, i.e., the ar-
gument variables x1,...,x, are pairwise different. The right-hand side of the
definition consists of (1) variables introduced by the left-hand side or by a let
block or by a case pattern, (2) constructor or function calls, (3) case expressions,
(4) disjunctions, (5) let bindings, or (6) introduction of free variables. The pat-
terns p; in a case expression must be pairwise different constructors applied to
variables. Therefore, deep patterns in source programs are represented by nested
case expressions.

Case expressions closely resemble definitional trees [2]. We recall that a defi-
nitional tree of some operation f, of arity n, is a hierarchical structure of expres-
sions of the form f p; ... p,, where each p; is a pattern. Since f is constant and

3 In contrast to some other presentations of FlatCurry (e.g., [1,18]), we omit the
difference between rigid and flexible case expressions.

D := f(z1,...,zn) =€ (function definition)
e ==z (variable)

| cler,...,en) (constructor call)

| flei,...,en) (function call)

| case e of {p1 — e1;...;pn — e} (case expression)

| e1 ores (disjunction)

| let {x1 =e1;...;2n =€n}tine (let binding)

| let x1,...,xn free in e (free variables)
p u=c(z1,...,%n) (pattern)

Fig. 3. Abstract syntax of function definitions in FlatCurry

provides no information, except to ease readability, we also call these expres-
sions patterns. The pattern at the root of the tree is f xy ... x,, where the x;’s
are distinct variables. The patterns at the leaves are the left-hand sides of the
rules of f, except from the names of the variables. For ease of understanding, in
pictorial representations of definitional trees we add the right-hand side of the
rules too. If f p1 ... pn is a branch node, 3, of the tree, a variable z in some
p; is singled out. We call the variable x inductive. The pattern in a child of 3 is
fp1...¢q ... pn where g; is obtained from p; by replacing « with cy1 ... i,
where ¢ is a constructor of the type of z and each y; is a fresh variable. For
example, consider the usual operation zip for zipping two lists:

zip [] y = [
zip (x1:x2) [] =0 (3)
zip (x1:x2) (yl:y2) (x1,y1) : zip x2 y2

The corresponding definitional tree is shown below where the inductive variable
is boxed.

zip y
— T
zip [1 y zip (x1:x2)
/ \
zip (x1:x2) [] zip (x1:x2) (yl:y2)
0 (] (x1,y1) : zip x2 y2

The FlatCurry code of the rules of operation zip, closely corresponds to the
code in (4). This would be harder for the programmer to write than (3) and
less readable, but is semantically equivalent. Every program can be transformed
into an equivalent program in which every operation has a definitional tree [3].

There is a relatively simple algorithm [4] to construct a definitional tree from
the operation’s rules.

zip x y = case x of

{0 — 0 ;
(x1:x2) — case y of (4)
{1 - [1;

(y1:y2) — (x1,y1) : zip x2 y2 }}

Expressions are the final relevant element of FlatCurry. As the code of zip shows,
an expression can be a literal, like [1; an application of constructors and opera-
tions to expressions possibly containing variables, like (x1,y1) : zip x2 y2; or a
case expression, like case y of ... FlatCurry also has let blocks to support the
construction of cyclic graphs, as shown in Fig. 1.

FlatCurry programs cannot be directly mapped to code in a C-like target
language. There are two problems: case expressions as arguments of a symbol
application, and let blocks with shared or mutually recursive variables. A con-
trived example of the first is:

3+ casex of { [] — 0; (y:ys) — vy 1}

Since the evaluation of the scrutinee of a case expression might yield a non-
deterministic result, it cannot be directly mapped into imperative language con-
structs. An example of the second is shown in Fig. 1. ICurry proposes a solution
to these problems in a language-independent form which is suitable for the im-
perative paradigm.

5 ICurry

In this section we define ICurry, discuss how to map it to imperative code that
implements our earlier model of computation, and show how to obtain it from
FlatCurry.

5.1 ICurry Definition

ICurry is a format of Curry programs similar in intent to FlatCurry. The purpose
of both is to represent a Curry program into a format with a small number of
simple constructs. Properties and manipulations of programs can be more easily
investigated and executed in these formats. ICurry is specifically intended for
compilation into a low-level language. Each ICurry construct can be translated
into a similar construct of languages such as C, Java or Python. This should
become apparent once we describe the constructs.

ICurry’s data consists of nested applications of symbols represented as graphs.
ICurry’s key constructs provide the declaration or definition of symbols and vari-
ables, construction of graph nodes, assignment, and conditional executions of
these constructs. Rewriting steps are implemented in two phases, once the redex
and rule are determined. First, the replacement of the redex is constructed. This
is defined by the right-hand side of the rule. Then, the successors pointing to

D = f=blck (function definition)
blck ::=decly ...decly asgni ...asgn, stm (block)
decl ::= declare x (local variable declaration)
| free (free variable declaration)
asgn ::= v = exp (variable assignment)
stm = return exp (return statement)
| exempt (failure statement)
| case z of {c1 — blcki;...;cn — blck,} (case statement)
erp u=wv (variable)
| NODE(l,expi,...,expn) (node construction)
| exp or exps (disjunction)
v n=z (local variable)
| w[d] (node access)
| ROOT (root of function call)
l n=c (constructor symbol)
| f (function symbol)

Fig. 4. Abstract syntax of function definitions in ICurry

the root of the redex are redirected [16, Def. 8], through assignments, to point
to the root of the replacement.

The declaration of data constructors in ICurry is identical to that in FlatCurry
as described earlier. However, the constructors of a type are in an arbitrary, but
fixed, order. Therefore, we can talk of the first, second, etc., constructor of a
type. This index is an attribute of constructor symbols which we call the tag.
The tag is used to provide efficient pattern matching. We will return to this topic
in Sect. 5.4.

The abstract syntax of operations in ICurry is summarized in Fig. 4. In
FlatCurry, the body of a function is an expression. In ICurry, it is a block
consisting of optional declarations and/or assignments and a final statement
returning an expression. We describe expressions first.

Expressions are nested symbol applications represented as graphs. Therefore,
an expression is either a variable or a symbol application. ICurry makes an appli-
cation explicit with a directive, NODE, that constructs a graph node from its label
(1st argument) and its successors (remaining arguments), and returns a refer-
ence to the node. Accordingly, there is a directive to access node components:
assuming z is a variable referring to a node, x[k] retrieves the k-th successor of
the node. An ICurry variable v is a reference to a node n in a graph. When n is a
Curry free variable, v is called free as well. Otherwise, v is called a local variable.
The ICurry format distinguishes between constructor and function application,
and between full and partial application. We do not discuss these details in this
paper. It is expected that by providing this additional information, processors
will be able to generate low-level code more easily, and the generated code should
be easier to optimize.

In ICurry, there are only a handful of statement kinds: declaration of a
variable, and assignment to a variable, return, and case expressions. Follow-
ing FlatCurry, variables are represented by integers. A declaration introduces a
variable which is a reference to a graph node. Successors of a node referenced
by x are accessed through the z[...] construct. Arguments passed to functions
are accessed through local variables. The return statement is intended to re-
turn an expression, the result of a function call. Case expressions in ICurry are
structurally similar to those in FlatCurry, but with two differences for alge-
braically defined types, which have a finite number of data constructors. First,
the branches of a case expression are in tag order. We will justify this decision
in Sect. 5.4. Second, the set of branches of a case expression is complete, i.e.,
there is a branch for each constructor of the type.

ICurry code begins with a declaration, and possible assignment, of some
variables. It is then followed by either a case statement, or a return statement.
Each branch of the case expression may declare and assign variables, and may
lead to either another case statement, or a return statement.

Below, we present two examples. The first example is the code of function
oneTwo, a constant, of Fig. 1:

function oneTwo
declare x
declare y
x = NODE(:, NODE(1), y)
y = NODE(:, NODE(2), x)
x[2] =y
return x

Symbol application is explicit through NODE. In the above example, the definitions
of the nodes referenced by x and y are mutually recursive, thus either node cannot
be completely constructed before constructing the other. We resolve the impasse
by partially constructing the node referenced by x (starting with y would be
symmetric), constructing the node referenced by y, and finally coming back to
x and finish the job. The missing information when the node referenced by x is
constructed is the value of the node’s second successor, which is addressed by
x[2]. This value becomes known when the node referenced by y is constructed.
At that point, the missing information is filled in with the assignment to x[2].

The second example is the code of head, the usual function returning the
head of a non-empty list:

head (x:_) = x (5)

The rule of head for the argument [] is missing in the Curry source code. Conse-
quently, the case branch for the argument [is missing in FlatCurry, too. ICurry
has a distinguished statement, exempt, to capture the absence of a rule:

function head
declare arg
arg = ROOT[1]
case arg of

[l — exempt
— return arg(1]

where ROOT is a reference to the root of the expression being evaluated. This
expression is rooted by head, which is the reason why it is passed to function
head.

5.2 Operational Semantics of ICurry

In this section, we define a small-step semantics for ICurry programs. We are mo-
tivated by the fact that ICurry is very similar to a simple imperative language,
but has primitives to support non-deterministic computations. These primitives
are the or expression, used to introduce non-determinism, and the exempt state-
ment, used to express a failing branch of a computation.

Non-deterministic choices in a program execution require copying a compu-
tation into two branches. In order to reduce the effort for copying, pull-tabbing
[5] can be used. Fundamentally, a pull-tab step moves a choice occurring in a
demanded argument of an operation outside this operation. For instance, if f
demands the value of its single argument, then the following is a pull-tab step.

fler?e) — (fer)?(fe2)

Although ICurry’s non-determinism can also be implemented with other strate-
gies such as stack copying, we use pull-tabbing here due to its limited demand
to copy structures. For this purpose, we make the following assumptions:

1. Each ICurry function contains at most one case statement. This can be ob-
tained by replacing nested case statements by auxiliary operations.* There-
fore, we denote by f* an ICurry function which demands its i-th argument
in a case statement, otherwise the superscript is omitted.

2. A graph might also contain choice nodes of the form ?¢(ni,ns). The ex-
pressions nq,ng are the alternatives, and c is a choice identifier which is an
integer uniquely determined when the choice node is created. Choice identi-
fiers are necessary to distinguish choices in different computation branches
[5,12].

As discussed in Sect. 3, the execution model of Curry is based on graph rewriting.
Therefore, the main component of ICurry’s run-time system is a graph G. In
the subsequent description, we use the following notation. We write G[n| =

s(ny,...,ng) if n is a node of G with label s and successor nodes nq, ..., ng.
The update of a node n of G is denoted by G[n < s(ni,...,ng)]. The label
of n is replaced by s and the successors of n are set to ny,...,ng. In order to

implement sharing, it is sometimes necessary to redirect a graph node n to a
node n’ of a graph G. We denote this by G[n < n’]. This can be implemented
either by a specific “redirection node” or by redirecting all edges pointing to n
so that they point to n’. Finally, we denote the extension of a graph G with a

* Some implementations of Curry, e.g., [21] perform this transformation.

10

new node n by GW{n : s(ni,...,nk)}. The node n does not exist in G and has
label s and successors ny, ..., ngk.

In order to deal with non-deterministic computations, the run-time system
manages a queue of computation tasks, where each task consists of a control
block, a stack of pending computations, and a fingerprint [11] managing the
consistency of non-deterministic choices for the task. To be more precise, the
state of an ICurry computation is a triple (G, @, R) where the components have
the following structure:

— G is graph where each node is labeled with a function, constructor, or the
choice symbol, “?”. As discussed above, a choice node n has the form G[n] =
?c(nl R ’I’LQ).

— @ is a queue (list) of tasks where each task is a triple (C, S, F) with:

e (' is the control which is either a graph node n to be evaluated or a pair
(b, E) consisting of a block of ICurry (see Fig. 4) and an environment E
(a mapping from local variables to graph nodes).

e S is a stack where each stack element is a node n labeled by a function
symbol. The stack contains the functions to be evaluated by a task.

e Fis a fingerprint, which is a (partial) mapping from choice identifiers to
indexes of alternatives.

— R is the set of computed results, which are graph nodes. Note that ICurry
evaluates expressions to head normal forms, that is graphs with a constructor
at the root. This is sufficient since the evaluation to normal form can be
implemented by auxiliary operations.

In the following, we use ¢[x — v] to denote an update of a mapping ¢ for some
argument v. If ¢’ = ¢l — v], then ¢'(z) = v and ¢'(y) = ¢(y) for all y # .
Furthermore, we use Curry’s list notation for states. Thus, an initial state of an
[Curry computation has the form

(@ [(n, [, DAY

where the graph G contains the initial expression with root node n. Thus, there
is only one task with an empty stack and fingerprint and an empty set of results.
A final computation state has the form:

(G [, R)

There are no tasks left and the set R contains the root nodes of all computed
results.

We specify the small-step semantics of ICurry by a set of transformation
rules on states. Some of the rules use an auxiliary operation extend to extend
a graph by adding the graph representation of an expression occurring in an
ICurry program. Informally, extend(G, E,e) extends a graph G with an ICurry
expression e w.r.t. an environment E and returns the pair (G',n) consisting
of the extended graph and the root node n of the added expression. To define

11

ertend, we use an auxiliary function lookup to retrieve a graph node w.r.t. an
environment:

E(v) ifv=xorv=ROOT
lookup(G, E,v) = 4 if v = V'[d], lookup(G, E,v") =n
i and G[n] =1l(nq,...,nk)

If e is a variable, its binding is looked up in the environment E and returned as
n without extending the graph:

extend(G, E,v) = (G, lookup(G, E, v))

A disjunction ey or e; creates new subgraphs for the arguments e; and ey and
connects them by a new choice node:

extend(G,E, ey or e3) = G"W{n: ?¢(n1,n2)}
if extend(G, E,e1) = (G',n1) and extend(G', E,e2) = (G”, n2)

Here, ¢ is a new choice identifier. We assume the existence of a global set of choice
identifiers so that new unique identifiers can be obtained during the computation.
Similarly, a node constructor creates new subgraphs for the argument expressions
and a new node connecting these subgraphs. We assume that n; is the root node
for the subgraph created for e¢; and G’ is the graph containing G' and the new
subgraphs:

extend(G, E, NODE(l,e1,...,e;)) = G W{n:l(ny,...,ng)}
Now we can specify a small-step semantics of ICurry by the following transfor-

mation rules:

Function node: If the control contains a graph node labeled with a defined
function whose i-th argument is demanded, the function node is put onto the
stack and the control is replaced by the i-th argument:

(G,(n,S,F):Q,R) —» (G,(ni,n:S,F):Q,R)
if G[n] = fi(ny,...,nx)

If the control contains a graph node labeled with a defined function which does
not demand an argument, the function’s body is put into the control together
with an environment initialized with the graph node:

(G,(n,S, F):Q,R) — (G,((b,{ROOT — n}),S,F):Q,R)
if G[n] = f(...) and f = b is a declaration of the ICurry program

Variable declaration: If the control starts with a declaration of a local variable,
it is initialized as a null pointer in the environment:

(G, ((declare x;b,E),S,F): Q,R) — (G, ((b, E[x — null]), S, F) : Q,R)
Free variables can be handled in various ways. For the sake of simplicity, we im-

plement free variables as non-deterministic generator operations. This technique

12

is also used in KiCS2 [12] and stems from the equivalence of logic variables and
non-determinism [7]. For instance, a generator for a Boolean free variable can

be defined as:
gen_Bool = False 7 True

Since free variables of different types will have a different generator operation,
we denote by gen, the generator operation of the free variable x.> Then a free
variable is introduced by initializing it with a node representing the generator
operation:

(G, ((free x;b, E),

), S, F
(GW{n:gen, ()},

S, F):Q,R) —
((b, E[z = n]), S, F) : Q, R)

Assignment: If the control starts with an assignment to a local variable, the
graph is extended with the expression and the environment is updated:

(G,((r=¢;b,E),S,F):Q,R) — (G',((b,E[x—n]),S,F):Q,R)
if extend(G, E,e) = (G',n)

If the control starts with an assignment to successor of a node, the graph is
extended with the expression and the successor is set to the created subgraph:

(G, ((vli] =€;b,E),5,F): Q,R) —
(G'n«1lny,...,ni—1,n' ;njy1,...,nx)], (b,E), S, F) : Q,R)
if lookup(G, E,v) =n, Gln| =1(n1,...,n), extend(G,E,e) = (G',n')

Return statement: If the control contains a return statement, the graph is ex-
tended with the returned graph and the root of the current function is updated
with the returned node:

(G, ((return e, E),S,F): Q,R) — (G'[E(ROOT) < n],(n,S,F):Q,R)
if extend(G, E,e) = (G',n)

Exempt statement: If the control contains an exempt statement, the current
computation is removed from the list of tasks:

(G, ((exempt, E), S, F): Q,R) — (G,Q,R)

Case statement: If the control contains a case statement, the corresponding
branch is selected (this is always possible since the case argument is demanded
and was evaluated before invoking the function):

(G, ((case x of {c1 = b1;...;¢n > b}, E),S,F):Q,R) —
(Gv((bsz) : S7F) : Q?R)
if E(z) =n and G[n] = ¢(...)

5 Type-based generators can be implemented with type classes, as described in [23].
Thus, a compiler can easily attach appropriate generators to free variables in ICurry.

13

Constructor node: If the control contains a graph node labeled with a construc-
tor symbol, we distinguish two cases. If the stack is empty, a result has been
computed:

(G ([, F):Q,R) — (G,Q,RU{n})

if G[n] = ¢(...) for some constructor ¢

If the stack is not empty, then it contains a function where an argument is
demanded. Since this argument, which is the node in control, is evaluated, we
invoke this function by putting its body into the control:

(G,(n,(n':S,F):Q,R) — (G,((b,{ROOT —n'}),S,F):Q,R)

if G[n] = ¢(...) for some constructor ¢, G[n'] = fi(...),
and f' = b is a declaration in the ICurry program

Choice node: If the control contains a choice node, we distinguish three cases.
If the stack is empty, i.e., the choice is at the top, and the fingerprint already
selects a branch for this choice, the choice node is replaced by the corresponding
branch:

(G, (n, [, F):Q,R) = (G,(ni,[|,F) : Q,R)
if G[n] = 7¢(n1,n2) and F(c) =i

If the stack is empty and the fingerprint does not contain a selection for this
choice, we split the current task into two new tasks where the fingerprint is
extended in each task:

(G, (n, [, F): Q,R) — (G,Q ++ [(n1,[], Fle = 1]), (n2, [|, Fle — 2])], R)
if G[n] = 7°(n1,n2) and F(c) is undefined

Note that we can use any strategy to add the new tasks to the existing ones.
Here we put them at the end which corresponds to a breadth-first strategy in the
search tree. Putting them at the front of @ corresponds to a depth-first search
strategy. Some Curry implementations, like KiCS2 [12], allow the user to select
different search strategies.

The final case is a pull-tab step. If the choice is at a demanded argument
position, then the stack is not empty, and the graph node identified by the top
of the stack is replaced by a choice:

(G, (ng,n:S,F):Q,R) = (G'[n+ 7¢(n},nb)],(n,S, F):Q,R)
if Gno| = 7°(n1,n2), Gln] = f'(n1,...,n4),
and G' =Gy {n] : fz_(nl, e Ty T Ty - - e)
ny (e, M1, M2, Ny, M)}
Since each transformation step performs only local changes, the implementa-
tion effort for these steps is limited when mapping ICurry into an imperative

language. This will be shown in Sect. 5.4 where implementations of ICurry in
various imperative languages are summarized.

14

5.3 ICurry Generation

Current Curry distributions such as PAKCS [21] or KiCS2 [12] provide a pack-
age with the definition of FlatCurry and a rich API for its construction and
manipulation. Therefore, the ICurry format of a Curry program is conveniently
obtained from the FlatCurry format of that program.

A fundamental difference between the two formats concerns expressions. Ex-
pressions in FlatCurry may contain cases and lets as the arguments of a function
application. These are banned in ICurry which allows only nested functional ap-
plication. The reason is that the latter can be directly translated into various
imperative languages, where the former cannot. Therefore, any case and let con-
structs that are the arguments of a function application are replaced by calls to
newly created functions. Thus, in ICurry, the replaced constructs are executed
at the top level. We replace these constructs during the transformation from
FlatCurry into ICurry. However, the same transformation could be performed
from FlatCurry into itself, or even from source Curry into itself. Our contrived
example below shows the latter for ease of understanding. The code of function
g is irrelevant, therefore, it is not shown:

f x =g x (case x of ...)
is transformed into:

fx=gzx (hx)
h x = case x of

The offending case, as an argument of the application of g, has been replaced
by a call to a newly created function, h. In function h, the case is no longer an
argument of a function application.

The second major difference between FlatCurry and ICurry concerns case ex-
pressions. FlatCurry matches a selector against shallow constructor expressions,
where ICurry matches against constructor symbols. Furthermore, the set of these
symbols is complete and ordered in ICurry. The transformation is relatively sim-
ple, except it may require non-local information. A function in a module M may
pattern match on some instance of a type t that is not declared in M. Therefore,
the constructors of ¢ must be accessed in some module different from that being
compiled.

A third significant difference between FlatCurry and ICurry concerns let
blocks. They are banned in ICurry, and replaced by the explicit construction of
nodes, and by the assignment of these nodes’ references to local variables.

In the following, we show an algorithm to translate FlatCurry into ICurry.
For this purpose, we define a pure expression as an expression that only con-
tains literals, variables, constructor applications, and function applications. Any
or expression and function application may only contain pure expressions. The
scrutinee of a case expression must be a variable, literal, or constructor appli-
cation. An assignment in a let expression must be a pure expression or an or
expression. The branches of a case expression must match all constructors of a
data type in an order fixed by the definition of that data type. Branches missing
in the original Curry program contain L in their right-hand side.

15

F(f(z1,...,zn) =¢€) := f = B(z1,...,Tn,e, ROOT)

B(zi,...,%n, L,ro0t) := exempt
B(z1,...,2Tn,e,root) :=
declare x1

declare T,
D(e)
x1 = root[1]

:cn = root[n|
Ale)

return £(e) (omit return if £(e) is a case)

D(let z1,...,Tn free in e) :=
free x1
free xn,

D(let {z1=e€1;...;zn =€n} in €)=
declare 11

declare x,
D(case e of {p1 = e1;...;pn — en}) := declare z.

A(let {z1=e1;...5zn =€n} ine) =
T :6'(61)

zn = E(en)
z1[p] = x; (for each occurrence of x;,% > 1, in e; at position p)

xn[p] = z; (for each occurrence of z;,i > n, in e, at position p)
A(case e of {p1 — e1;...;0n = en}) =z = E(€)

E(x) =z

E(cler,-.-,en)) := NODE(c,E(e1),...,E(en))
E(f(er,...,en)) := NODE(f,E(e1),...,E(en))
E(e1 or ez) = E(e1) or E(ez2)

E(let {z1=e1;...52n=en}t ine) := E(e)

E(let {z1,... xn} free in e) = &(e)

E(case e of {c(acu, cey Tim) = €153 C(Tnt, o, Tnk) —> €n})

case E(e) of { B(z11,...,T1m, €1, Te);
o
B($n17~~'7xnkyen7xe); }

Fig. 5. Algorithm for translating FlatCurry into ICurry

16

The algorithm is divided into five functions which are described in Fig. 5. F
translates a FlatCurry function into an ICurry function. B translates a FlatCurry
expression into an ICurry block. D extracts all of the variables declared in a
FlatCurry expression. A generates necessary assignments for ICurry variables.
& translates a FlatCurry expression into an ICurry expression.

The functions F and £ are straightforward translations. F simply makes a
block, with the root of the block being set to the root of the function. & is
almost entirely a straight translation, but there is one technical point. In a case
expression, each branch must be translated into its own block. However, each of
the variables in the pattern of a branch need to be related to the scrutinee of
the case. This is achieved by setting the root of the block to the scrutinee of the
case.

The function B creates an ICurry block. Blocks are more complicated to
construct. Each block will have a root and a list of variables. The root is the
root of the expression that created the block. For a function, the root is the
root of the function expression. For a case branch, the root is the root of the
scrutinee of the case. The variables of a block are the parameters of a function, or
the pattern variables of a branch. After declaring variables, all variables in any
let expressions are declared with D. Then each variable is assigned an expression
with A. If either D or A is undefined for some expression, their application does
not generate ICurry code. Finally, we translate the expression into an ICurry
statement with £.

The function D declares variables declared in a let or free expression. If there
is a case expression, then a new variable x. is declared.

The function A assigns variables in a let or free expression. The expression
for all variables in a let is translated with £. Next, if there are any variables
declared in the let block that are used in one of the expressions, they need to be
filled in. Finally, if there is a case expression, we assign x. to be the root of the
scrutinee.

A compiler from FlatCurry to ICurry implementing these translation rules
is available as package icurry. It can easily be installed with the Curry pack-
age manager.® The tool provided by this package also contains an interpreter
for ICurry, based on the small-step semantics specified in Sect. 5.2, which can
visualize the graph and machine state during a computation.

5.4 ICurry Use

The stated goal of ICurry is to be a format of Curry programs suitable for
translation into an imperative language. Below, we briefly report our experience
in translating ICurry into various target languages. Table 1 shows the size of
a Curry program that translates ICurry into a target language. The numerical
values in the table, extracted from Wittorf’s thesis [30], count the lines of code
of the translator. The table is only indicative since “lines of code” is not an accu-
rate measure, and some earlier compilers use older variants of ICurry that have

S http://curry-lang.org/tools/cpm

17

evolved over time. Each ICurry construct has a direct translation into the tar-

C 441
Python 342
Java 790
JavaScript | 632

Table 1. Number of Curry source lines of code for various translators from ICurry to
a target language.

get language. The following details refer to the translation into C. Declarations
and assignments are the same as in C. The ICurry statements are translated as
follows: (1) the ICurry return is the same as in C, (2) an ICurry case statement
is translated into a C switch statement where the case selector is the tag of a
node, and (3) the ICurry ezempt statement is translated into code that, when
executed, terminates the executing computation without producing any result.
This is justified by the facts that the evaluation strategy executes only needed
steps, and that failures in non-deterministic programs are natural and expected,
therefore they should be silently ignored.

The ICurry case expressions of a function’s code contain a branch for each
constructor in the argument’s type and a branch for each of the following: the
choice symbol, the failure symbol, any function symbol [11, Fig. 2], and any
free variable. A dispatch table, which is addressed by the argument’s label’s
tag, efficiently selects the branch to be executed. The behavior of the additional
branches is described below, and is the same across all the functions of a program.
A choice symbol in a pattern matched position results in the execution of a pull-
tabbing step [5,13]. A failure is propagated to the context. A function symbol
triggers the evaluation of the expression rooted by this symbol. Finally, a free
variable is instantiated to a choice of shallow patterns of the same type as the
variable. As an example, the evaluation of:

head x where x free

instantiates x to [1 ? (y:ys) where y and ys are free variables. The alternative
[0 will result in failure. This can be determined at compile time and removed
during optimizations.

Compilers from Curry to Python and other imperative languages can be
implemented as described above. As Table 1 indicates, the compilers (written
in Curry) are quite compact. We observe that FlatCurry covers the complete
language, since it is the basis for robust Curry implementations, like PAKCS and
KiCS2, and the natural/operational semantics of Curry is defined in FlatCurry
[1]. ICurry contains the same information as FlatCurry except type information,
since the type correctness of a program has been verified at the point of the
compilation process in which ICurry is used.

18

We have also implemented a translator from ICurry programs into the JSON
format. This translator is simpler and shorter than all the translators into im-
perative languages of Table 1. The translation into JSON is used by Sprite [11],
a Curry system under development, whose target language is C++. The JSON
format is more convenient than ICurry when the client of the ICurry format
is not coded in Curry, hence it cannot read and parse ICurry program using
Curry’s library functions.

6 Concluding Remarks

Our work is centered on the compilation of Curry programs. As in many com-
pilers, our approach is transformational. To compile a Curry program P, we
translate P into a language, called target, for which a compiler already exists.
This is the same route followed by other Curry compilers like PAKCS [21] and
KiCS2 [12].

PAKCS translates source Curry code into Prolog, leveraging the existence
of native free variables and non-determinism in Prolog. KiCS2 translates source
Curry code into Haskell, leveraging the existence of first-class functions and
their efficient demand-driven execution in Haskell. Both of these compilers use
FlatCurry as an intermediate language. They have the same front end which
translates Curry into FlatCurry. The use of FlatCurry simplifies the translation
process, but is still appropriate to express Curry computations without much
effort. FlatCurry has some relatively high-level constructs that can be mapped
directly into Prolog and Haskell, because these languages are high-level, too.

In order to provide a better basis to compile Curry into low-level imperative
languages, we presented ICurry as an intermediate language for this purpose.
Before ICurry, a Curry compiler targeting a C-like language would handle certain
high-level constructs of FlatCurry in whichever way each programmer would
choose. This led to both duplications of code and unnecessary differences. ICurry
originates from these efforts. It abstracts the ideas that, over time, proved to be
simple and effective in a language-independent way. With ICurry, the effort to
produce a Curry compiler targeting an imperative language is both shortened,
because more of the front end can be reused, and simplified, because the starting
point of the translation is independent of the target and is well understood.

Our work is complementary to, but independent of, other efforts toward
the compilation of Curry programs. These efforts include the development of
evaluation strategies [6], or the handling of non-determinism [5, 13].

There exist other functional logic languages, e.g., TOY [15,25] whose opera-
tional semantics can be abstracted by needed narrowing steps of a constructor-
based graph rewriting system. Some of our ideas seem applicable with little to
no changes to the implementation of these languages.

Graph rewriting, often supported by graph machines [14,24, 26], has been
used for the implementation of functional languages. A comparison with these
efforts is problematic at best. Despite the remarkable syntactic similarities—
Curry’s syntax extends Haskell’s with a single construct, a free variable decla-

19

ration—the semantic differences are profound. In particular, there is no textual
order among the rewrite rules of a functional logic program, and the notion
of laziness is based on needed steps modulo non-deterministic choices. As a
consequence, there are purely functional programs whose execution produces a
result as Curry but does not terminate as Haskell [8, Sect. 3]. Furthermore, most
steps of a functional logic computation are functional steps, but the computation
must be prepared to encounter non-determinism and/or free variables. Hence,
situations and goals significantly differ.

Future work should investigate ICurry to ICurry transformations that are
likely to optimize the generated code. For example, different orders of the decla-
ration of variables in a let block lead to different numbers of assignments. Also,
case expressions as arguments of function call can be moved outside the call in
some situations rather than be replaced by a call to a new function.

Acknowledgments The authors are grateful to the anonymous reviewers for their
helpful comments to improve the paper. This material is based in part upon work
supported by the National Science Foundation under Grant No. 1317249.

References

1. E. Albert, M. Hanus, F. Huch, J. Oliver, and G. Vidal. Operational seman-
tics for declarative multi-paradigm languages. Journal of Symbolic Computation,
40(1):795-829, 2005.

2. S. Antoy. Definitional trees. In Proc. of the 3rd International Conference on
Algebraic and Logic Programming, pages 143-157. Springer LNCS 632, 1992.

3. S. Antoy. Constructor-based conditional narrowing. In Proc. of the 3rd Inter-
national ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming (PPDP 2001), pages 199-206. ACM Press, 2001.

4. S. Antoy. Evaluation strategies for functional logic programming. Journal of

Symbolic Computation, 40(1):875-903, 2005.

S. Antoy. On the correctness of pull-tabbing. TPLP, 11(4-5):713-730, 2011.

6. S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of
the ACM, 47(4):776-822, 2000.

7. S. Antoy and M. Hanus. Overlapping rules and logic variables in functional logic
programs. In Proceedings of the 22nd International Conference on Logic Program-
ming (ICLP 2006), pages 87-101. Springer LNCS 4079, 2006.

8. S. Antoy and M. Hanus. Functional logic programming. Communications of the
ACM, 53(4):74-85, 2010.

9. S. Antoy and M. Hanus. Contracts and specifications for functional logic pro-
gramming. In Proc. of the 14th International Symposium on Practical Aspects of
Declarative Languages (PADL 2012), pages 33-47. Springer LNCS 7149, 2012.

10. S. Antoy, M. Hanus, and S. Libby. Proving non-deterministic computations in
Agda. In Proc. of the 24th International Workshop on Functional and (Constraint)
Logic Programming (WFLP 2016), volume 234 of Electronic Proceedings in Theo-
retical Computer Science, pages 180-195. Open Publishing Association, 2017.

11. S. Antoy and A. Jost. A new functional-logic compiler for Curry: Sprite. In Pro-
ceedings of the 26th International Symposium on Logic-Based Program Synthesis
and Transformation (LOPSTR 2016), pages 97-113. Springer LNCS 10184, 2016.

ot

20

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

B. Braflel, M. Hanus, B. Peemdller, and F. Reck. KiCS2: A new compiler from
Curry to Haskell. In Proc. 20th International Workshop on Functional and (Con-
straint) Logic Programming (WFLP 2011), pages 1-18. Springer LNCS 6816, 2011.
B. Brassel and F. Huch. On a tighter integration of functional and logic program-
ming. In APLAS’07: Proceedings of the 5th Asian conference on Programming
languages and systems, pages 122—-138, Berlin, Heidelberg, 2007. Springer-Verlag.
G. L. Burn, S. L. Peyton Jones, and J. D. Robson. The spineless G-machine. In
Proceedings of the 1988 ACM Conference on LISP and Functional Programming,
pages 244-258. ACM, 1988.

R. Caballero and J. Sanchez, editors. TOY: A Multiparadigm Declarative Language
(version 2.3.1), 2007. Available at http://toy.sourceforge.net.

R. Echahed and J.-C. Janodet. On constructor-based graph rewriting systems.
Research report IMAG 985-1, IMAG-LSR, CNRS, Grenoble, 1997.

M. Hanus. FlatCurry: An intermediate representation for Curry programs, 2008.
Available at http://www.informatik.uni-kiel.de/~curry/flat/.

M. Hanus. Functional logic programming: From theory to Curry. In Programming
Logics - Essays in Memory of Harald Ganzinger, pages 123—-168. Springer LNCS
7797, 2013.

M. Hanus. Combining static and dynamic contract checking for Curry. In Pro-
ceedings of the 27th International Symposium on Logic-Based Program Synthesis
and Transformation (LOPSTR 2017), pages 323-340. Spriner LNCS 10855, 2017.
M. Hanus. Verifying fail-free declarative programs. In Proceedings of the 20th Inter-
national Symposium on Principles and Practice of Declarative Programming(PPDP
2018), pages 12:1-12:13. ACM Press, 2018.

M. Hanus, S. Antoy, B. Braflel, M. Engelke, K. Hoppner, J. Koj, P. Niederau,
R. Sadre, F. Steiner, and F. Teegen. PAKCS: The Portland Aachen Kiel Curry
System. Available at http://www.informatik.uni-kiel.de/~pakcs/, 2018.

M. Hanus and F. Skrlac. A modular and generic analysis server system for func-
tional logic programs. In Proc. ACM SIGPLAN 2014 Workshop on Partial Eval-
uation and Program Manipulation (PEPM’14), pages 181-188. ACM Press, 2014.
M. Hanus and F. Teegen. Adding Data to Curry. In Proceedings of the Conference
on Declarative Programming (Declare 2019). Springer LNCS, 2019.

R. Kieburtz. The G-machine: A fast, graph-reduction evaluator. In Functional
Programming Languages and Computer Architecture, volume LNCS 201, pages
400-413. Springer, 1985.

F. J. Lépez-Fraguas and J. Sanchez-Herndndez. TOY: A multiparadigm declar-
ative system. In Proceedings of the Tenth International Conference on Rewriting
Techniques and Applications (RTA’99), pages 244-247. Springer LNCS 1631, 1999.
J.J. Moreno-Navarro, H. Kuchen, R. Loogen, and M. Rodriguez-Artalejo. Lazy
narrowing in a graph machine. In Proc. Second International Conference on Alge-
braic and Logic Programming, pages 298-317. Springer LNCS 463, 1990.

M. J. O’Donnell. Equational Logic as a Programming Language. MIT Press, 1985.
D. Plump. Term graph rewriting. In H. Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg, editors, Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 2: Applications, Languages and Tools, pages 3—61. World
Scientific, 1999.

U.S. Reddy. Narrowing as the operational semantics of functional languages. In
Proc. IEEE Int. Symposium on Logic Programming, pages 138-151, Boston, 1985.
M.A. Wittorf. Generic translation of Curry programs into imperative programs
(in German). Master’s thesis, Kiel University, 2018.

21

