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Abstract: A constraint programming system usually consists of two main compo-
nents: a modelling language used to describe a constraint satisfaction problem and
a constraint solver searching for solutions to the given problem by applying specific
algorithms. As constraint programming and functional logic languages share some
common features, like computing with logic variables or the use of backtracking for
non-deterministic search, it is reasonable to embed a modelling language for finite do-
main constraints in a functional logic language like Curry. Due to the absence of side
effects or global state over non-deterministic computations in Curry, the implementa-
tion of a stateful constraint solver is rather difficult. In this paper we consider KiCS2,
a Curry compiler translating Curry programs into Haskell programs. In order to em-
bed finite domain constraints in KiCS2, we propose a new implementation technique
compatible with the purely functional nature of its back end. Our implementation col-
lects finite domain constraints occurring during a program run and passes them to a
constraint solver available in Haskell whenever solutions are requested.

1 Introduction

Functional logic languages combine the most important features of functional and logic
languages (more information can be found in recent surveys [AH10, Han13]). They sup-
port functional concepts like higher-order functions and lazy evaluation as well as logic
programming concepts like non-deterministic search and computing with partial informa-
tion. This combination allows better abstractions for application programming and has
also led to new design patterns [AH11] and language extensions [AH05, AH09]. The ob-
jective of such developments is the support of a high-level and declarative programming
style.

Another approach to solve complex problems in a declarative manner is constraint pro-
gramming [MS98]. It is based on the idea to describe the problem to be solved by proper-
ties, conditions, and dependencies (i.e., constraints) between the parameters of the prob-
lem. Based on this declarative description, a constraint solver tries to find one or all
solutions satisfying these constraints. Although the problem description is declarative,
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the constraint solver usually works in a stateful manner by manipulating an internal con-
straint store. The constraint store is initially filled with the constraints specified by the
programmer. The solver then searches for solutions by iteratively simplifying constraints
and making guesses until it reaches either a solution or an unsatisfiable constraint. In the
latter case, the solver will recover to a consistent state to explore the remaining alterna-
tives (backtracking). A special but practically relevant case of constraint programming is
finite domain (FD) constraint programming where variables range over a finite domain,
like Boolean values or a finite subset of integer values.

Functional logic languages like Curry [He12] or TOY [LFSH99] allow a declarative style
of programming and support logic variables and non-deterministic search. Thus, it is rea-
sonable to embed FD constraints in these languages. Actually, this has already been pro-
posed [FHGSPdVV07] and implemented in Curry [AH00] as well as in TOY [FHGSP03].
These implementations exploit FD constraint solvers in Prolog, i.e., they are limited to
implementations with a Prolog-based back end.

In this paper, we are interested in the support of FD constraints in a non-Prolog-based
implementation of Curry. In particular, we consider KiCS2 [BHPR11], a recent compiler
translating Curry programs into purely functional Haskell programs using the Glasgow
Haskell Compiler (GHC) as its back end. The motivation to use KiCS2 is the fact that
it produces much more efficient target programs (see the benchmarks of Brassel et al.
[BHPR11]) and supports more flexible search strategies [HPR12] than Prolog-based im-
plementations of Curry.

Due to the absence of side effects and a global state over non-deterministic computations,
it is not obvious how to implement an FD constraint solver in this environment. However,
the monadic constraint programming (MCP) framework [SSW09] provides an implemen-
tation of a stateful FD constraint solver in Haskell using the concept of monads. In order to
reuse this framework to offer FD constraints in KiCS2, we extend the compilation scheme
of KiCS2 to collect FD constraints occurring during a (potentially non-deterministic) pro-
gram run and solve them using the MCP framework as the solver back end.

The rest of the paper is structured as follows. We review the source language Curry in
Sect. 2 and the features of FD constraints considered in this paper in Sect. 3. Sect. 4
introduces the implementation scheme of KiCS2, whereas Sect. 5 presents our implemen-
tation of an FD constraint library in KiCS2 and the integration of the solvers of the MCP
framework. We evaluate our implementation in Sect. 6 before we conclude in Sect. 7.

2 Curry

The syntax of the functional logic language Curry [He12] is close to Haskell [PJ03], i.e.,
type variables and names of defined operations usually start with lowercase letters and the
names of type and data constructors start with an uppercase letter. The application of an
operation f to an expression e is denoted by juxtaposition (“f e”). In addition to Haskell,
Curry allows free (logic) variables in conditions and right-hand sides of defining rules.
Hence, an operation is generally defined by conditional rewrite rules of the form



f t1 . . . tn | c = e where vs free

where the condition c is optional and vs is the list of variables occurring in c or e but
not in the left-hand side f t1 . . . tn. The condition c is a constraint, i.e., an expression of
type Success. An elementary constraint is an equational constraint of the form e1 =:= e2
which is satisfiable if both sides e1 and e2 are reducible to unifiable data terms. Further-
more, “c1 & c2” denotes the conjunction of the constraints c1 and c2. For instance, the
following program defines a few operations on Boolean values and a relation between four
inputs describing the functionality of a half adder circuit:

not True = False xor True x = not x and False x = False
not False = True xor False x = x and True x = x

halfAdder x y sum carry = sum =:= xor x y & carry =:= and x y

With these definitions, the evaluation of the goal “halfAdder x y sum True” yields
the single solution {x = True, y = True, sum = False}.
In contrast to functional programming and similarly to logic programming, operations can
be defined by overlapping rules so that they might yield more than one result on the same
input. Such operations are also called non-deterministic. For instance, Curry offers a
choice operation that is predefined by the following rules:

x ? _ = x
_ ? y = y

Thus, we can define a non-deterministic operation aBool by
aBool = True ? False

so that the expression aBool has two values: True and False. If non-deterministic
operations are used as arguments in other operations, a semantical ambiguity might occur.
Consider the operation

xorSelf x = xor x x

and the expression “xorSelf aBool”. If we interpret the program as a term rewriting
system, we could have the reduction

xorSelf aBool → xor aBool aBool → xor True aBool
→ xor True False → not False → True

leading to the unintended result True. Note that this result cannot be obtained if we use a
strict strategy where arguments are evaluated prior to the function calls. In order to avoid
dependencies on the evaluation strategies and exclude such unintended results, the rewrit-
ing logic CRWL is proposed by González-Moreno et al. [GMHGLFRA99] as a logical
(execution- and strategy-independent) foundation for declarative programming with non-
strict and non-deterministic operations. This logic specifies the call-time choice semantics
[Hus92], where values of the arguments of an operation are determined before the oper-
ation is evaluated. In a lazy strategy, this can be enforced by sharing actual arguments.
For instance, the expression above can be lazily evaluated provided that all occurrences of
aBool are shared so that all of them reduce to either True or False consistently.



3 Finite Domain Constraint Programming

Finite domain (FD) constraint programming aims to solve complex combinatorial prob-
lems in a high-level manner [MS98]. The problems to be solved are specified by prop-
erties and conditions (constraints). These constraints are typically defined by declarative
rules and relations for variables that range over a finite domain of values. Due to its
declarative nature, constraint programming can be naturally integrated into declarative
programming languages, like logic programming [JL87] or functional logic programming
[FHGSPdVV07] languages.

A constraint programming system usually consists of two main components: a modelling
language used to describe a constraint satisfaction problem and a constraint solver search-
ing for solutions to the given problem by applying specific algorithms. The solver has an
internal state which is determined by the satisfiability of the constraints in its constraint
store. One technique to simplify these constraints is called constraint propagation: The
solver tries to enforce a form of local consistency on a subset of constraints in its store,
which may reduce the domains of variables associated with these constraints. If the domain
sizes cannot be further decreased using constraint propagation, the solver will start guess-
ing by assigning all possible values for a variable regarding its domain. These assignments
are then propagated, possibly leading to a further reduction of the variable domains. This
technique is called labeling. Both techniques, i.e., constraint propagation and labeling, are
applied iteratively until the constraint solver either finds a variable assignment satisfying
all given constraints or reaches an inconsistent state, meaning that the constraints in its
store are unsatisfiable. In the latter case, a form of backtracking is used to restore the last
consistent state and continue the search with a different variable assignment.

FD constraint programming can be used in many application areas where scheduling or
optimization problems should be solved, like work assignments or transportation schedul-
ing. Another application of FD constraints is solving mathematical puzzles, like crypto-
arithmetic puzzles where an injective assignment from symbols to digits should be found
such that a given calculation becomes valid. For instance, the well-known “send-more-
money” puzzle is given by the following equation:

SEND +MORE = MONEY

The goal is to assign a different decimal digit to each letter in such a way that the equation
is fulfilled. Additionally, the values for the letters S and M are constrained to be greater
than 0.

Using a suitable modelling language, one can specify this puzzle as an FD constraint
problem and apply a constraint solver on this specification. Since we are interested in the
integration of functional logic programming and finite domain constraint programming,
we show a solution to this puzzle in Curry. Prolog-based implementations of functional
logic languages often exploit the constraint solvers available in Prolog [AH00, FHGSP03].
For instance, PAKCS [HAB+13], a Curry implementation which translates Curry to Pro-
log, provides a library CLPFD containing the usual FD constraints and operations (standard
relational and arithmetic operators are suffixed by the character “#” in order to distinguish
them from the prelude operations on numbers). Using this library, the “send-more-money”



puzzle can be specified as follows:
smm xs = xs =:= [s, e, n, d, m, o, r, y]

& domain xs 0 9
& s ># 0 & m ># 0
& allDifferent xs
& 1000 *# s +# 100 *# e +# 10 *# n +# d

+# 1000 *# m +# 100 *# o +# 10 *# r +# e
=# 10000 *# m +# 1000 *# o +# 100 *# n +# 10 *# e +# y

& labeling xs
where s, e, n, d, m, o, r, y free

This model captures all the terms of the “send-more-money” puzzle representing each let-
ter by a logic variable and connecting them with constraints like allDifferent. The
equation is represented by arithmetic and relational constraints, and the different con-
straints are combined using the constraint conjunction operator “&”. When we solve the
goal smm xs, we obtain the single solution xs = [9,5,6,7,1,0,8,2] within a few
milliseconds.

4 The Compilation Scheme of KiCS2

To understand the extensions described in the subsequent sections, we review the trans-
lation of Curry programs into Haskell programs as performed by KiCS2. More details
about this translation scheme can be found in previous articles about KiCS2 [BHPR11,
BHPR13].

Since KiCS2 compiles Curry programs into Haskell programs, the non-deterministic fea-
tures of Curry must be “simulated” in some way in Haskell. For this purpose, KiCS2 rep-
resents the potential non-deterministic values of an expression in a data structure. Thus,
each data type of the source program is extended by constructors to represent a choice
between two values and a failure, respectively. For instance, the data type for Boolean
values defined in a Curry program by

data Bool = False | True

is translated into the Haskell data type
data C_Bool = C_False | C_True | ChoiceBool ID C_Bool C_Bool | FailBool

where FailBool represents a failure and (ChoiceBool i t1 t2) a non-deterministic
value, i.e., a selection of two values t1 and t2 that can be chosen by some search strategy.

The first argument i of type ID of a ChoiceBool constructor is used to implement the
call-time choice semantics discussed in Sect. 2. Since the evaluation of xorSelf aBool

duplicates the argument operation aBool, we have to ensure that both duplicates, which
later evaluate to a non-deterministic choice between two values, yield either C True or
C False consistently. This is obtained by assigning a unique identifier (of type ID) to each
ChoiceBool constructor. To avoid unsafe features with side effects, KiCS2 uses the idea
presented by Augustsson, Rittri and Synek [ARS94] and passes a (conceptually infinite)



set of identifiers, also called identifier supply (of type IDSupply), to each operation so that
a Choice can pick its unique identifier from this set. For instance, the operation aBool

defined in Sect. 2 is translated into:
aBool :: IDSupply → C_Bool
aBool s = ChoiceBool (thisID s) C_True C_False

The operation thisID takes some identifier from the given identifier supply. Furthermore,
there are operations leftSupply and rightSupply to split an identifier supply into two
disjoint subsets without the identifier obtained by thisID. These are necessary to provide
several operations occurring in the right-hand side of a rule with disjoint identifier supplies.
For instance, the operation

main :: Bool
main = xorSelf aBool

is translated into
main :: IDSupply → C_Bool
main s = xorSelf (aBool (leftSupply s)) (rightSupply s)

so that the set s is split into a set (leftSupply s) containing identifiers for the evalu-
ation of the argument aBool and a set (rightSupply s) containing identifiers for the
evaluation of the operation xorSelf.1

Note that it is not possible to assign the identifiers by a custom monad which manages a
set of fresh identifiers as its internal state. If we would follow this approach, we would
have to determine a fixed order in which fresh identifiers are supplied to subexpressions.
If we now consider the operations

id x = x loop = loop snd (x, y) = y

and would decide to provide identifiers to subexpressions in the order of their occurence,
for the expression “snd (loop, id True)” we will have to provide an identifier for
loop first. But because loop is a recursive operation, we will either have to provide
identifiers for the recursive calls or defer and assign them when needed. Unfortunately,
the first approach requires the evaluation of loop and, thus, destroys laziness. For the
other solution, we either cannot guarantee the uniqueness of deferred identifiers or would
again require unsafe features against our intention.

Because all data types defined in the source program are extended with additional construc-
tors to represent the potential non-determinism, one can overload these constructors using
a type class. This improves readability and is also required to construct non-deterministic
values of a polymorphic type. Therefore, each data type also provides an instance of the
following type class:

class NonDet a where
choice :: ID → a → a → a
fail :: a
try :: a → Try a

While the first two functions allow the generic construction of a non-derministic choice

1A possible implementation of IDSupply are unbounded integers [BHPR11], which are used in subse-
quent examples.



and a failure, respectively, the third function allows the generic deconstruction of non-
deterministic values by representing them using the following uniform wrapper:

data Try a = Value a | Choice ID a a | Fail

Note that the data constructor Choice is applied to values of type a and not to values
of type Try a. In consequence, applying nondet to a given value e only requires the
evaluation of e to head normal form. For the Curry type Bool, we get the following
implementation of the type class NonDet:

instance NonDet C_Bool where
choice = ChoiceBool

fail = FailBool

try (ChoiceBool i a b) = Choice i a b
try FailBool = Fail
try x = Value x

Since all data types are extended by additional constructors, KiCS2 also extends the defi-
nition of operations performing pattern matching. For instance, the partially defined oper-
ation

ifTrue :: Bool → a → a
ifTrue True x = x

is extended by an identifier supply and further matching rules:
ifTrue :: NonDet a ⇒ C_Bool → a → IDSupply → a
ifTrue C_True x _ = x
ifTrue (ChoiceBool i a b) x s = choice i (ifTrue a x s) (ifTrue b x s)
ifTrue _ _ _ = fail

The second rule transforms a non-deterministic argument into a non-deterministic result
and the final rule returns fail in all other cases, i.e., if ifTrue is applied to C False

as well as if the matching argument is already a failed computation (failure propagation).
Since deterministic operations do not introduce new Choice constructors, ifTrue does
not actually use the identifier supply s (KiCS2 analyzes such situations and removes su-
perfluous IDSupply arguments).

If we apply the same transformation to the rules defining xor and evaluate main, we obtain
the result

ChoiceBool 2 (ChoiceBool 2 C_False C_True) (ChoiceBool 2 C_True C_False)

Thus, the result is non-deterministic and contains three choices, where all of them have the
same identifier. To extract all values from such a Choice structure, we have to traverse
it and compute all possible choices but consider the choice identifiers to make consistent
(left/right) decisions. Thus, if we select the left branch as the value of the outermost
ChoiceBool , we also have to select the left branch in the selected argument (ChoiceBool

2 C False C True) so that C False is the only value possible for this branch. Similarly,
if we select the right branch as the value of the outermost ChoiceBool , we also have
to select the right branch in its selected argument (ChoiceBool 2 C True C False),
which again yields C False as the only possible value. In consequence, the unintended
value C True is not extracted as a result.



The requirement to make consistent decisions can be implemented by storing the decisions
already made for some choices during the traversal. For this purpose, KiCS2 uses the type

data Decision = NoDecision | ChooseLeft | ChooseRight

where NoDecision represents the fact that the value of a choice has not been decided yet.
Furthermore, there are operations to look up the current decision for a given identifier or
change it, like:

lookupDecision :: ID → IO Decision
setDecision :: ID → Decision → IO ()

Now the top-level operation that prints all values contained in a generic choice structure
in a depth-first manner can be defined as follows: 2

printValsDFS :: (Show a, NonDet a) ⇒ Try a → IO ()
printValsDFS (Value v) = print v
printValsDFS Fail = return ()
printValsDFS (Choice i a b) = lookupDecision i >>= follow
where follow ChooseLeft = printValsDFS (try a)

follow ChooseRight = printValsDFS (try b)
follow NoDecision = do newDecision ChooseLeft a

newDecision ChooseRight b
newDecision d x = do setDecision i d

printValsDFS (try x)
setDecision i NoDecision

This operation ignores failures and prints all values not rooted by a Choice construc-
tor. For a Choice constructor, it checks whether a decision for this identifier has already
been made (note that the initial value for all identifiers is NoDecision). If a decision has
been made for this choice, it follows the corresponding path. Otherwise, the left alterna-
tive is used and this decision is stored. After printing all values w.r.t. this decision, it is
undone (like in backtracking) and the right alternative is used and stored. Besides sim-
ple depth-first-search, there are also more advanced search implementations for different
strategies based on state monads which are also capable of passing a tree-like data struc-
ture of the non-deterministic results back to the user for further processing (encapsulated
search) [HPR12].

In general, this operation is applied to the normal form of the main expression. The normal
form computation is necessary for structured data, like lists, so that a failure or choice in
some part of the data is moved to the root.

To handle logic variables, KiCS2 uses a “generator approach”. Hence, logic variables are
replaced by generators, i.e., operations that non-deterministically evaluate to all possible
ground values of the type of the logic variable. This is justified by the fact that computing
with logic variables by narrowing [Red85] and computing with generators by rewriting
are equivalent, i.e., yield the same values [AH06]. For instance, the expression “not
x”, where x is a logic variable, is translated into “not aBool”. The latter expression is
evaluated by reducing the argument aBool to a choice between True or False followed

2The type class Show is required to be able to print out the computed results. As Curry does not support the
concept of type classes, all data types are provided with a generated instance of Show.



by applying not to this choice. This is similar to a narrowing step [Red85] on “not x”
that instantiates the variable x to True or False. Since such generators are standard
non-deterministic operations, they are translated like any other operation and, therefore,
do not require any additional run-time support. However, in the presence of (equational)
constraints, there are more efficient methods than generating all values.

Since an equational constraint e1 =:= e2 is satisfied iff e1 and e2 are reducible to unifiable
constructor terms, the operation “=:=” could be considered to be defined by the following
rules (we only present the rules for the Boolean type, where Success denotes the only
constructor of the type Success of constraints):

True =:= True = Success
False =:= False = Success

Unfortunately, solving equational constraints with this implementation might result in an
unnecessarily large search space. For instance, solving x =:= y leads to two different
solutions, {x 7→ True, y 7→ True} and {x 7→ False, y 7→ False}. Using the well-
known unification principle [Rob65] as in logic programming, these different solutions can
be jointly represented by the single binding {x 7→ y} without guessing concrete values.

To implement such bindings without side effects, KiCS2 adds binding constraints to com-
puted results. These are considered by the search strategy (like printValsDFS) when
values are extracted from choice structures. For this purpose, KiCS2 distinguishes free
(logic) variables from “standard choices” (introduced by overlapping rules) in the target
code by the following refined definition of the type ID:

data ID = ChoiceID Integer | FreeID Integer

The new constructor FreeID identifies a choice corresponding to a free variable, e.g., the
generator for Boolean variables is redefined as

aBool s = ChoiceBool (FreeID (thisID s)) C_True C_False

If an operation is applied to a free variable and requires its value, the free variable is
transformed into a standard choice by the following transformation:

narrow :: ID → ID
narrow (FreeID i) = ChoiceID i
narrow x = x

This operation is used in narrowing steps, i.e., in all rules operating on Choice construc-
tors. For instance, the second rule in the implementation of the operation ifTrue is re-
placed by

ifTrue (ChoiceBool i x1 x2) x s
= choice (narrow i) (ifTrue x1 x s) (ifTrue x2 x s)

to ensure that the resulting choice is not considered a free variable.

The consideration of free variables is relevant in equational constraints if variable bindings
should be generated. For this purpose, there is a type EQConstraint to represent a single
binding constraint as a pair of a choice identifier and a decision for this identifier, and a
type Constraints to represent complex bindings for structured data as a list of binding
constraints:



data EQConstraint = ID :=: Decision
data Constraints = EQC [EQConstraint]

Furthermore, each data type is extended by the possibility to include binding constraints:
data C_Bool = . . . | GuardBool Constraints C_Bool

In the same manner, the type class NonDet and the type Try are extended:
data Try a = . . . | Guard Constraints a

class NonDet a where
. . .
guard :: Constraints → a → a

Thus, (guard cs v) represents a constrained value, i.e., the value v is only valid if the
constraints cs are consistent with the decisions previously made during search. To prop-
agate the constraints in guarded expressions, operations that use pattern matching are ex-
tended by another rule. For instance, the operation ifTrue is extended by the additional
rule

ifTrue (GuardBool cs e) x s = guard cs (ifTrue e x s)

The binding constraints are created by the equational constraint operation “=:=”: The
binding of a free variable to a constructor is represented by constraints to make the same
decisions as it would be done in the successful branch of the corresponding generator
operation. In case of Boolean values, this can be implemented by the following additional
rules for “=:=”:

ChoiceBool (FreeID i) _ _ =:= C_True
= guard (EQC [i :=: ChooseLeft ]) C_Success

ChoiceBool (FreeID i) _ _ =:= C_False
= guard (EQC [i :=: ChooseRight]) C_Success

Hence, the binding of a variable to some known value is implemented as a binding con-
straint for the choice identifier for this variable. However, the binding of one variable to
another variable cannot be represented in this way. Instead, the information that the deci-
sions for both variables must be identical when extracting the values is represented by a
final extension to the Decision type:

data Decision = . . . | BindTo ID

Furthermore, the definition of “=:=” contains the following rule so that an equational
constraint between two variables yields a binding for these variables:

ChoiceBool (FreeID i) _ _ =:= ChoiceBool (FreeID j) _ _
= guard (EQC [i :=: BindTo j]) C_Success

The consistency of constraints is later checked when values are extracted from a choice
structure, e.g., by the operation printValsDFS. For this purpose, its definition is extended
by a rule handling constrained values:

printValsDFS (Guard (EQC cs) x) = do
consistent ← add cs
if consistent then do printValsDFS (try x)

remove cs
else return ()



The operation add checks the consistency of the constraints cs with the decisions made
so far and, in case of consistency, stores the decisions made by the constraints. In this
case, the constrained value is evaluated before the constraints are removed to allow back-
tracking. Furthermore, the operations lookupDecision and setDecision are extended
to deal with bindings between two variables, i.e., they follow variable chains in case of
BindTo constructors.

As shown in this section, KiCS2 has already some infrastructure to deal with (equational)
constraints so that further constraint structures could be implemented by extending the
type of constraints and implementing a specific constraint solver. However, implementing
good constraint solvers for FD constraints is an expensive task. Thus, we present in the
following a technique to reuse existing solvers inside KiCS2 by slightly extending the
current run-time system of KiCS2.

5 Implementation of Finite Domain Constraints

The objective of this work is to support FD constraints in KiCS2. Thus, we want to imple-
ment a library CLPFD containing constraints and operations like:

(+#), (-#), (*#) :: Int → Int → Int
(=#), (/=#), (<#), (>#), (<=#), (>=#) :: Int → Int → Success
domain :: [Int] → Int → Int → Success
allDifferent :: [Int] → Success
sum :: [Int] → Int
. . .

To ensure compatibility with the Curry system PAKCS, we adopt its library CLPFD so
that existing programs can be compiled using KiCS2 without further modification. Our
implementation is based on the idea to collect FD constraints occurring during program
execution and pass them to an external FD constraint solver when answers to a given
goal should be computed. Thus, we incrementally construct the constraint model during
program execution and pass it to a dedicated solver as a whole. This approach is reasonable
since FD constraint programming usually consists of two phases (also shown in the “send-
more-money” puzzle above): The definition of the domains and all constraints, followed
by a non-deterministic labeling, i.e., variable assignment [MS98].

In order to avoid changing the standard KiCS2 compilation scheme for passing FD con-
straints, we exploit the fact that KiCS2 already supports equational constraints (see Sect. 4)
which are collected and solved when a value of an expression should be computed. Hence,
we extend the type Constraints to include FD constraints so that guarded expressions
can also be used to pass FD constraints to the constraint solver:

data Constraints = . . . | FDC [FDConstraint]

The various kinds of FD constraints are represented in Haskell by the following data types:
data ArithOp = Plus | Minus | Mult
data RelOp = Equal | Diff | Less

| LessEqual | Greater | GreaterEqual



data FDConstraint = FDArith ArithOp FDTerm FDTerm FDTerm
| FDRel RelOp FDTerm FDTerm
| FDDomain [FDTerm] FDTerm FDTerm
| FDAllDiff [FDTerm]
| FDSum [FDTerm]
| . . .

Note that some of these constraints could also be expressed by simpler ones, for instance,
the constraint FDAllDiff ts could also be expressed by combining the terms of ts pair-
wisely using FDRel Diff. However, the MCP framework provides efficient implemen-
tations for more complex constraints like allDifferent or sum so that we explicitly
handle those constraints.

Furthermore, we define a type FDTerm to represent the arguments of FD constraints, which
are either constants (integer values) or FD variables:

data FDTerm = Const Int | FDVar ID

As a unique identifier for FD variables, we reuse the ID type already available in KiCS2
(see Sect. 4). Thus, we can map logic variables in Curry to FD variables in Haskell us-
ing the same identifier. In fact, this representation is similar to the internal representa-
tion of Curry’s Int type but lacks the additional constructors introduced by the compi-
lation scheme. Consequently, we will have to deal with non-determinism before creating
FDTerms but gain the advantage that the FDConstraints themselves are deterministic.
Using these data types, we can represent an FD constraint of our CLPFD library as a data
term of type FDConstraint. For instance, the constraint “x <# 3” is represented by the
Haskell term

FDRel Less (FDVar ~x) (Const 3)

where we denote by ~x the identifier (i.e., the value of type ID) of logic variable x.

Note that the constructor FDArith, representing binary arithmetic operations in con-
straints, has three arguments. The third argument is used to identify the result of the arith-
metic operation represented by the constraint. Hence, we represent nested operations by
flattening, a technique also used to implement functional (logic) languages by compiling
them to Prolog [AH00, CCH06]. By flattening, we can collect all arithmetic constraints in
a list wrapped by the constructor FDC. For instance, the constraint “x *# (3 +# y) <#

42” is represented at run-time in Haskell by the following list of basic constraints (where
a and b are new logic variables):

[ FDArith Plus (Const 3) (FDVar ~y) (FDVar ~a)

, FDArith Mult (FDVar ~x) (FDVar ~a) (FDVar ~b)

, FDRel Less (FDVar ~b) (Const 42) ]

In order to generate the constraint terms during program execution, we implement the
constraints and operations of the CLPFD library to construct these terms. This is in contrast
to Prolog-based implementations of functional logic languages where FD constraints are
directly mapped into the constraints of the underlying (stateful) Prolog system [AH00,
LFSH99]. For instance, the operation (+#) is implemented as follows:



(+#) :: Int → Int → Int
x +# y = ((prim_FD_plus $!! x) $!! y) xPlusY where xPlusY free

prim_FD_plus :: Int → Int → Int → Int
prim_FD_plus external

The predefined Curry operator ($!!) applies a function to the normal form3 of the given
argument. Thus, f $!! e first evaluates the expression e before f is applied to the normal
form of e. In our case, the use of this operator is necessary to avoid passing expressions
containing user-defined operations into the constraint solver. As an example, assume that
fac is the factorial function implemented in a Curry program. Since the constraint solver
has no knowledge about the implementation of this function, in a constraint like “x +#

fac 4” the second argument is evaluated to its normal form 24 before it is passed to the
constraint solver. Similarly, non-deterministic choices or failures occurring in arguments
are also lifted to the level of results by applying the normal form operator.

The use of ($!!) in the implementation of (+#) ensures that prim FD plus will only
be applied to either integers or logic variables. Furthermore, a fresh logic variable is
added as the third argument to represent the result value in the flattened representation of
constraints, as discussed above. Operations marked by “external”, like prim FD plus,
are primitive or external operations, i.e., they are not compiled but defined in the code of
the run-time system. To continue our example, prim FD plus is implemented in Haskell
as follows:

prim_FD_plus :: C_Int → C_Int → C_Int → C_Int
prim_FD_plus x y xPlusY
| isFree x || isFree y = GuardInt (FDC fdcs) xPlusY
| otherwise = int_plus x y
where fdcs = [FDArith Plus (toFDTerm x) (toFDTerm y) (toFDTerm xPlusY)]

The implementation of prim FD plus first checks whether at least one argument is a
free integer variable. In this case, a new guarded expression of type C Int will be gener-
ated. This guarded expression constrains the given variable for the result, namely xPlusY,
with the appropriate arithmetic constraint. The constraints are generated by translating the
given arguments to FD terms and constructing an FDConstraint representing the FD
addition operation using FDArith Plus. If both arguments of prim FD plus are ground
values, i.e., integer constants, there is no need to generate a constraint, since the result can
be directly computed. Hence, the constants are added via the operation int plus as an
optimization. The auxiliary operation toFDTerm maps free (integer) variables and con-
stants into the corresponding FD structure (note that, due to the evaluation of the actual
arguments to normal form, other cases cannot occur here):4

toFDTerm :: C_Int → FDTerm
toFDTerm (Choice i _ _) = FDVar i
toFDTerm v = Const (fromCurry v)

3A Curry expression is in normal form if it does not contain any defined operation. Consequently, a logic
variable also is in normal form.

4The overloaded function fromCurry maps constant values of type C Int into the corresponding
Haskell values of type Int.



The other constraints and operations of the CLPFD library are implemented likewise, re-
turning guarded expressions where the guards contain the description of the constraint. In
order to show a slightly larger example, we consider the classic constraint problem to place
n queens on an n × n chessboard so that no queen can capture another. To keep the size
of the example within reasonable limits, we consider the degenerated case n = 2 which,
of course, has no solution. We can model this problem in Curry with the CLPFD library as
follows:

twoQueens = domain [p,q] 1 2 -- domain = valid rows
& p /=# q -- rows must be different
& p /=# q +# 1 & p /=# q -# 1 -- diagonals must be different
& labeling [p,q] -- labeling of FD variables

where p, q free

Using our implementation, the following guarded expression is generated in Haskell when
executing twoQueens:

1 GuardSuccess (FDC [FDDomain [FDVar ~p, FDVar ~q] (Const 1) (Const 2)])
2 (GuardSuccess (FDC [FDRel Diff (FDVar ~p) (FDVar ~q) ])
3 (GuardSuccess (FDC [FDArith Plus (FDVar ~q) (Const 1) (FDVar ~x) ])
4 (GuardSuccess (FDC [FDRel Diff (FDVar ~p) (FDVar ~x) ])
5 (GuardSuccess (FDC [FDArith Minus (FDVar ~q) (Const 1) (FDVar ~y) ])
6 (GuardSuccess (FDC [FDRel Diff (FDVar ~p) (FDVar ~y) ])
7 (GuardSuccess (FDC [FDLabeling InOrder [FDVar ~p, FDVar ~q] ])
8 C_Success))))))

As explained above, each call of a constraint relation or operation in Curry is mapped to a
guarded expression in Haskell containing a data term of type FDConstraint representing
the appropriate FD constraint. Arithmetic operations are flattened by introducing new
variables (in this example denoted by ~x and ~y) to which the intermediate results are bound
(see lines 3 and 5). These newly introduced variables are then used as arguments of further
constraints (lines 4 and 6).

Using the normal treatment of constrained values sketched in Sect. 4, we are able to thread
the FD constraints throughout the evaluation. However, the above mentioned example
shows that the constraints can be spread over the resulting expression, whereas typical con-
straint solvers, like those from the monadic constraint programming framework, require
the entire constraint model in order to solve it. Therefore, we need a kind of preprocessing
to collect all FD constraints generated during program execution into a single guarded ex-
pression. For this purpose, we introduce a function collect which traverses the tree-like
structure of a non-deterministic expression and collects all FD constraints right before a
top-level search strategy is applied.

collect :: NonDet a ⇒ [FDConstraint] → Try a → a
collect cs (Choice i@(FreeID _) a b) = constrain cs (choice i a b)
collect cs (Choice i a b) = choice i (collect cs (try a))

(collect cs (try b))
collect _ Fail = fail
collect cs (Guard (FDC c) e) = collect (cs ++ c) (try e)
collect cs (Guard c e) = guard c (collect cs (try e))
collect cs (Value v) = constrain cs v



constrain :: NonDet a ⇒ [FDConstraint] → a → a
constrain cs x | null cs = x

| otherwise = guard (FDC cs) x

printDFS :: (Show a, NonDet a) ⇒ a → IO ()
printDFS x = printValsDFS (try (collect [] (try x)))

Note that the collection process generally preserves the structure of the given expression
and, thus, does not influence any search strategy applied thereafter. Only guarded expres-
sions containing FD constraints are removed and their constraints are collected. As soon
as a leaf of the given expression is reached, i.e., a deterministic value or a logic variable, a
new guarded expression is generated constraining the respective leaf with the collected FD
constraints.5 If the given expression contains no FD constraints, it will be left unchanged.

To pass the constraints to the external FD solver, we extend the implementation of the
KiCS2 top-level search by an additional case handling guarded expressions with FD con-
straints. As an example, we again consider the depth-first search strategy. To cover FD
constraints, its implementation is extended with the following rule:

printValsDFS (Guard (FDC fdcs) e) = do res ← runSolver (solver fdcs e)
printValsDFS res

where solver fdcs e = do model ← translate fdcs
solutions ← solve model
eqcs ← makeBindings solutions
return (makeChoiceStructure eqcs e)

The FD constraints are first converted to an internal model of the solver before this model
is solved. The solutions are then converted back into equational constraints to be fur-
ther processed by the regular search strategy. This is done by makeChoiceStructure

which converts the choice between different solutions into a structure of nested Choices,
whereas variable assignments are converted into equational constraints. For instance, if
we consider the constraints generated by

domain [x,y] 1 2 & x /=# y & labeling [x,y] where x, y free

the solver will produce the list [[1,2],[2,1]] of two solutions, containing the assign-
ments for x and y, respectively. These solutions will then be transformed into the same
structure that would have been generated by the following equational constraints:

(x =:= 1 & y =:= 2) ? (x =:= 2 & y =:= 1) where x, y free

That is, the solver will generate a Choice with underlying Guard constructors containing
the bindings for x and y, respectively. Consequently, an unsolvable constraint would result
in an empty list of solutions, which would then be converted to the Fail constructor.

To conclude this section, we take a closer look at the interface integrating FD constraint
solvers from the MCP framework into KiCS2. Our implementation is parametric w.r.t.
different solvers, and the solver interface is provided by a Haskell type class. Basically,
there are four functions which need to be implemented for a specific solver:

5Note that the actual implementation is slightly more evolved and avoids the quadratic run time arising from
the naive use of ++.



class Monad solver ⇒ FDSolver solver where
type SolverModel solver :: *
type Solutions solver :: *

translate :: [FDConstraint] → solver (SolverModel solver)
solve :: SolverModel solver → solver (Solutions solver)
makeBindings :: Solutions solver → solver [[EQConstraint]]
runSolver :: solver a → IO a

Since most constraint solver libraries use their own modelling language, we provide a
function to translate a constraint model given by constraints of type FDConstraint into
a semantically equivalent solver specific model. Furthermore, there is a function solve

to apply the solver to the translated model and initiate the search for solutions. To be able
to process the solutions gained by the solver, the function makeBindings is provided in
order to generate binding constraints for the logic variables contained in the model. Fi-
nally, we need a function runSolver to execute the solver, which potentially may require
some I/O interaction (e.g., calling a binary executable). Additionally, our interface permits
a specification of the type of modelling language and the representation of solutions used
by the solver using Haskell’s type families.

6 Benchmarks

In this section we evaluate our implementation of finite domain constraints by some bench-
marks. We consider the FD libraries of two Curry implementations, namely PAKCS (ver-
sion 1.11.3, based on SICStus Prolog 4.2.3) and KiCS2 (version 0.3.0) with the Glasgow
Haskell Compiler (GHC 7.6.3) as its back end and an efficient IDSupply implementation
based on IORefs. All benchmarks were executed on a Linux machine running Debian
Wheezy with an Intel Core i5-2400 (3.1GHz) processor and 4GB of memory. The timings
were performed with the time command measuring the execution time (in seconds) of a
compiled executable for each benchmark as a mean of three runs. The result “n/a” denotes
that the execution of the benchmark was not finished within 5 minutes, while “oom” (out
of memory) denotes a stack space overflow.

In the first benchmark, we consider several instances of the n-queens problem described
in the previous section measuring the execution time required to compute all solutions
and print them to the command line. We use the CLPFD libraries of PAKCS and KiCS2
to model the problem and compare these implementations to an implementation using a
generate-and-test algorithm. Regarding KiCS2, we solve the constraint model by applying
three of the solver back ends provided by the MCP framework [WS10]:

1. The Overton6 solver, solely written in Haskell.

2. The Gecode7 runtime solver, which uses the search transformers and strategies pro-
6This solver was initially written by David Overton (http://overtond.blogspot.de/2008/07/

pre.html) and later modified by the developers of the MCP framework.
7http://www.gecode.org

http://overtond.blogspot.de/2008/07/pre.html
http://overtond.blogspot.de/2008/07/pre.html
http://www.gecode.org


vided by the MCP framework applying Gecode only for constraint propagation.

3. The Gecode search solver, which delegates both constraint propagation and labeling
to Gecode applying a fixed search strategy implemented in C++.

In terms of the Overton and Gecode runtime solver, we apply MCP’s depth-first search
and its identity search transformer to compute all solutions. For the labeling of the FD
variables we use a first fail strategy, labeling the variable with the smallest domain first.
Furthermore, we utilize KiCS2’s depth-first search strategy to print all solutions.

n Gen. & Test PAKCS KiCS2

Overton Gecode Runtime Gecode Search

6 9.41 0.09 0.02 0.02 0.02
7 178.36 0.10 0.04 0.03 0.03
...

10 n/a 0.55 2.56 0.40 0.17
11 n/a 2.25 13.10 1.64 0.60
12 n/a 11.85 74.92 8.59 3.24
13 n/a 68.16 oom 50.66 17.75
14 n/a n/a oom n/a 95.94

Table 1: Run times of different instances of the n-queens problem (in seconds)

The results in Table 1 show that the naive generate-and-test approach is clearly outper-
formed by all other solutions that use a specific implementation of FD constraints. Con-
sidering the solver-based approaches, the Gecode solvers perform best. In particular, the
Gecode search solver using a fixed search strategy implemented in C++ is nearly four
times as fast as the Prolog-based implementation of PAKCS. Regarding smaller instances,
the Gecode runtime solver can compete with PAKCS as well. But for larger instances,
it is significantly slower than the Prolog-based approach and the Gecode search solver.
The reason for the worse performance is probably related to the overhead resulting from
conversions between Haskell and C++ data structures for each constraint to enable con-
straint propagation by Gecode. Comparing the three solver back ends provided by the
MCP framework, the benchmark clearly shows that the C++-based constraint solvers out-
perform the Overton solver written in Haskell.

In Table 2 we compare the run time of solving four selected FD problems by either

1. using the PAKCS implementation,

2. using the MCP framework and the KiCS2 implementation of FD constraints,

3. using the Gecode search solver provided by the MCP framework, or

4. directly calling an executable8 linked to the Gecode library.
8Note that we generated these executables using the code generator provided by the MCP framework.



In this benchmark, we measured the execution time required to compute and print only the
first solution. The “grocery” benchmark searches for four prices represented in US-Cent
which yield a total price of $7.11 regardless whether they are added or multiplied, “send-
more-money” is the cryptoarithmetic puzzle already described in Sect. 3 and “sudoku”
computes the solution of an 9 × 9 Sudoku puzzle initally filled with 25 numbers. Not
surprisingly, calling Gecode directly performs better than using it via the MCP framework
or KiCS2. As the results show, the integration of Gecode into Haskell (via MCP) already
leads to some overhead. Since our implementation of FD constraints in KiCS2 is built
upon the MCP framework with a preceeding translation process similar to the one inside
the MCP framework, the additional overhead indicated by the benchmarks seems reason-
able. Furthermore, the results demonstrate that our implementation can compete with the
Prolog-based approach of PAKCS which is outperformed by our approach in most cases.

Benchmark Size PAKCS KiCS2 Gecode MCP Gecode
Gecode Search Gecode Search binary

grocery — 0.14 0.08 0.08 0.08
nqueens 5 0.09 0.02 0.02 0.01

13 0.09 0.06 0.05 0.01
27 0.44 0.66 0.17 0.03
55 n/a 15.32 0.66 0.10

send-more-money — 0.09 0.03 0.02 0.01
sudoku — 0.10 0.04 0.06 0.01

Table 2: Run times of selected FD problems solved with PAKCS, KiCS2, the MCP search solver
and a Gecode executable (in seconds)

7 Conclusions and Future Work

We have presented an implementation of finite domain constraints in KiCS2, a purely func-
tional implementation of Curry. We proposed a new approach collecting all finite domain
constraints occuring during a program execution and applying a functional FD constraint
solver library to solve them. In order to pass the constraints to the dedicated solver, we
reused KiCS2’s concept of constrained values, i.e., guarded expressions. Therefore, we ex-
tended the constraint type for equational constraints to also cover the representation of FD
constraints. Furthermore, we implemented a type class providing an interface to integrate
functional constraint solver libraries into KiCS2. As our benchmarks demonstrate, our
implementation provides a considerable performance gain compared to equational con-
straints alone, and can compete with or even outperform Prolog-based implementations of
finite domain constraints.

For future work it might be interesting to generalize the integration of external constraint
solvers in such a way that new classes of constraint systems, like SAT solvers for Boolean



constraints or solvers for arithmetic constraints over real numbers, could be integrated
in KiCS2 using the same interface. Another aspect worth further investigations is the
integration of an incremental solver like the one developed by David Overton to overcome
the performance drawbacks resulting from complex intermediate constraint models and the
preprocessing phase. Furthermore, this might even enable the use of the different search
strategies already implemented in KiCS2 to investigate the constraint search space, thus,
generalizing from backtracking to arbitrary search strategies.
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[BHPR11] B. Braßel, M. Hanus, B. Peemöller, and F. Reck. KiCS2: A New Compiler from
Curry to Haskell. In Proc. of the 20th International Workshop on Functional and
(Constraint) Logic Programming (WFLP 2011), pages 1–18. Springer LNCS
6816, 2011.
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