
A denotational semanti
s for needed narrowing

Mi
hael Hanus

�

Salvador Lu
as

y

In Pro
. of the 1996 Joint Conferen
e on De
larative Programming

(APPIA-GULP-PRODE'96), pp. 259{270, San Sebastian, 1996

Abstra
t

Needed narrowing [2℄ is
urrently the best (lazy) narrowing strategy for fun
-

tional logi
 programs. In order to automati
ally improve
ompilation, it is essen-

tial to rely on an adequate semanti
 framework. The denotational semanti
s of

a programming language is its standard semanti
s and
an be used as a formal

basis to improve implementations. In this work we introdu
e a denotational

semanti
s whi
h is adequate to express needed narrowing.

1

Keywords: denotational semanti
s, fun
tional logi
 languages, lazy narrowing

strategies.

1 Introdu
tion

Lazy narrowing strategies in fun
tional logi
 programming are important in avoiding

unne
essary
omputations and enabling the use of in�nite data stru
tures. In order

to have a good framework to implement lazy languages and automati
ally improve

ompilation, we need to rely on an adequate semanti
 de�nition. The denotational

semanti
s of a programming language maps synta
ti

onstru
ts in the program to

the abstra
t values whi
h they denote [15℄. It is often
onsidered as the standard

semanti
s of programming languages and
an be used as a suitable basis for analyses

and implementations.

The denotational de�nition of a programming language may be more or less
lose

to the operational prin
iple of the language. In the setting of fun
tional logi
 lan-

guages, this is to say that the parti
ular narrowing strategy used in the operational

semanti
s
an be more or less re
e
ted in the denotational des
ription of the language.

Some denotational approa
hes to the semanti
s of fun
tional logi
 languages
an be

found in [11, 13℄. However, these semanti
 de�nitions do not re
e
t the strategy used

for narrowing and, therefore, they are not
onsidered here.

In this paper we introdu
e a denotational semanti
s for term rewriting systems

whi
h allows us express the needed narrowing strategy. The needed narrowing strategy

is
onsidered as a
ombination of program transformation and spe
ialization of the

general narrowing me
hanism.

�

Informatik II, RWTH Aa
hen, Germany, hanus�informatik.rwth-aa
hen.de.

y

DSIC, U.P. de Valen
ia, Spain, slu
as�dsi
.upv.es. Work partially supported by Ban
aixa

(Ban
aja-Europa grant) and CICYT (under grant TIC 95-0433-C03-03).

1

This work is a short version of [6℄ whi
h we refer to �nd out the missing details and proofs.

1

In the semanti
 des
ription of the
omputation, we work with �nite substitutions

in representing the solutions of narrowing evaluations thus borrowing the treatment

of [3℄ from the logi
 programming setting. The formalization here is slightly di�erent.

We de�ne a suitable notion of �nite substitution and use them to deal with renaming

as well as for the solutions of evaluations.

We give the main properties of the semanti
 de�nition and prove the adequa
y of

this semanti
s to express needed narrowing.

In Se
tion 2, we brie
y re
all the te
hni
al
on
epts and results used in the re-

mainder of the paper. In Se
tion 3, we des
ribe the notion of �nite substitution that

we deal in the semanti
s. In Se
tion 4, we summarize the notion of needed narrowing.

In Se
tion 5, the denotational semanti
s and its basi
 properties are given. We also

give the adequa
y result. Finally, Se
tion 6 points to
on
lusions and future work.

2 Preliminaries

We introdu
e the most important notations used in the paper. For full de�nitions we

refer to [4℄.

The set of terms T (�; V) is
onstru
ted w.r.t. a given many-sorted signature �

and variables from V . We denote by ar(f) the number of argument positions of a

symbol f 2 �. We write Var(t) for the set of variables o

urring in a term t, and t

n

for a tuple t

1

; : : : ; t

n

of terms (where we sometimes omit the subs
ript n). Fun
tional

logi
 programs are generally
onstru
tor-based [5℄, i.e., the signature is the disjoint

union � = C ℄ F of two
lasses of symbols:
onstru
tors
 2 C that
onstru
t data

terms, and de�ned fun
tions or operations f 2 F that operate on data terms. We

denote by HNF

�

the set of terms in T (�; V) whi
h are in head normal form (hnf),

i.e., terms where the root symbol is not a de�ned fun
tion.

Terms are viewed as labelled trees in the usual way. An o

urren
e or position p

is a path identifying a subterm in a term. tj

p

denotes the subterm of t at position p,

and t[s℄

p

denotes the result of repla
ing tj

p

with s in t.

A term rewriting system (TRS) is a pair R = (�; R) where R is a set of rewrite

rules. Sin
e fun
tional logi
 programs are
onstru
tor-based, we assume that a pro-

gram R is a
onstru
tor-based term rewriting system
onsisting of rewrite rules l ! r,

where l is a pattern, i.e., the root of l is an operation and the arguments of l do not

ontain any operation symbols.

A substitution is a mapping � : V ! T (�; V) whi
h is the identity mapping at

all but �nitely many points. We denote by � the identity substitution. We write

substitutions in the form fx

1

7! t

1

; : : : ; x

n

7! t

n

g. Terms t; s unify if there exists a

substitution � su
h that �(t) = �(s). In this
ase, � is
alled a uni�er of t and s. If

W is a set of variables, we denote by � =

W

�

0

that �(x) = �

0

(x) for all x 2 W . A

term t is a variant of s if it is obtained from s by a unique repla
ement of variables

by new variables.

Fun
tional logi
 programs
ompute with partial information, i.e., a fun
tional

expression may
ontain logi
al variables. The goal is to
ompute values for these

variables su
h that the expression is evaluable to a parti
ular normal form, e.g., a

2

onstru
tor term [11℄. This is done by narrowing. A term t is narrowable to a term

s if there exist a non-variable position p in t (i.e., tj

p

is not a variable), a variant

� : l ! r of a rewrite rule in R with Var(t) \ Var(l ! r) = � and a uni�er � of tj

p

and l su
h that s = �(t[r℄

p

). In this
ase we write t ;

p;�;�

s. If � is a most general

uni�er of tj

p

and l, the narrowing step is
alled most general.

2

We write t

0

;

�

�

t

n

if there is a narrowing derivation t

0

;

p

1

;�

1

;�

1

t

1

;

p

2

;�

2

;�

2

� � � ;

p

n

;�

n

;�

n

t

n

with

� = �

n

Æ� � �Æ�

2

Æ�

1

. The renamings in the i-th narrowing step must be also performed

apart of all variables appearing in the previous narrowing steps j < i.

Narrowing solves equations, i.e.,
omputes values for the variables in an equation

su
h that the equation be
omes true, where an equation is a pair t � t

0

of terms of

the same sort. Sin
e we do not require terminating term rewriting systems, normal

forms may not exist. Hen
e, we de�ne the validity of an equation as a stri
t equality

on terms in the spirit of fun
tional logi
 languages with a lazy operational semanti
s

su
h as BABEL [11℄. Thus, a substitution � is a solution for an equation t � t

0

i�

�(t) and �(t

0

) are redu
ible to a same ground
onstru
tor term. Equations
an also

be interpreted as terms by de�ning the symbol � as a binary operation symbol, more

pre
isely, one operation symbol for ea
h sort. Therefore, all notions for terms, su
h

as substitution, narrowing et
., will also be used for equations. The semanti
s of �

is de�ned by the following rules, where ^ is assumed to be a right-asso
iative in�x

symbol, and
 is a
onstru
tor of arity 0 in the �rst rule and arity k > 0 in the se
ond

rule.

 �
 ! true

(x

1

; : : : ; x

k

) �
(y

1

; : : : ; y

k

) ! x

1

� y

1

^ � � � ^ x

k

� y

k

true ^ x ! x

These are the equality rules of a signature. By adding the equality rules to the rewrite

system, equation solving
an be done by narrowing equations to \true" [2, 11℄.

3 Finite substitutions

3.1 Formalization of �nite substitutions

In this se
tion we formalize the notion of �nite substitution whi
h we need in this

work. The de�nition is very
lose to the one in [3℄. Nevertheless, some di�eren
es

arise in the detail and meaning of involved operations.

De�nition 3.1 (Finite substitution) Let V be an in�nite set of variables and D �

V a �nite subset of variables. A �nite substitution (f:s:) � is a mapping � : D !

T (�; V). The set of all �nite substitutions is denoted as FSubst. Some basi
 fun
tions

in FSubst! V are used to des
ribe the �nite substitutions.

Dom(�) = D Rng(�) = [

x2Dom(�)

Var(�(x)) Var(�) = Dom(�) [Rng(�)

Ide(�) = fx 2 Dom(�) j �(x) = xg DOM(�) = Dom(�)nIde(�)

2

Narrowing is often identi�ed with most general narrowing. However, it is shown in [2℄ that

dropping the requirement for most general narrowing steps is
ru
ial for optimal evaluation strategies.

3

A f:s: � su
h that Ide(�) = � is
alled a stri
t �nite substitution (s:f:s:).

In [3℄ is
alled Dom(�) what we refer as Var(�). In [3℄ Dom(�) is a
tually the do-

main of the substitution, but it is (impli
itly) also the range and
ontains (ne
essarily,

to be
onsistent with the de�nition) identity bindings for some variables. Therefore,

impli
it assumptions on the identity bindings in the f:s: are taken. We feel that this

does not aid the formal treatment of the f:s: Our de�nition is based on the standard

intuitive notion of (partial) fun
tion, where domain and range are not ne
essarily

overlapping.

We apply a �nite substitution � (whi
h is not de�ned for some variables) to any

term t 2 T (�; V) by means of the lifting � : FSubst ! Subst whi
h is de�ned as

�

�(x) = �(x) if x 2 Dom(�) and

�

�(x) = x otherwise. Then �(t) =

�

�(t). This is ne
es-

sary if we use �nite substitutions to `
olle
t' the
omputed answers in the narrowing

pro
ess. The following example shows that the
omposition of �nite substitutions

based on the
omposition of partial fun
tions is not adequate to express the
ompos-

ition of partial solutions.

Example 3.2 Let � = fx

0

7! 0g and � = fx 7! f(x

0

; y

0

)g be f:s's. Then, if

we
onsider the appli
ation of f:s:'s to terms in the standard treatment of partially

de�ned fun
tions, we
an not obtain the
omposite substitution, sin
e f(x

0

; y

0

) is not

in T (�; fx

0

g) whi
h is the (extended to terms) domain of �. Therefore, the binding

for x will not be
orre
tly established. With the previous de�nition of appli
ation we

would obtain the binding x 7! f(0; y

0

), as expe
ted.

The (in�x) restri
tion operation (#: FSubst� }(V)! FSubst)
ombines the proje
-

tion and extension operations in [3℄ as follows.

De�nition 3.3 (Restri
tion of �nite substitutions) Let �; � be f:s's. and W be

a �nite set. � #

W

is a f:s su
h that Dom(� #

W

) = W , � #

W

(x) = �(x) if x 2

Dom(�) \W and �#

W

(x) = x if x 2WnDom(�).

The Example 3.2 points out that, in spite of the fa
t that the f:s:'s are partially

de�ned fun
tions w.r.t. the set of variables V , it is desirable to have a me
hanism to

ompose two f:s:'s. We de�ne the
omposition operation by lifting f:s:'s to the spa
e

of substitutions.

De�nition 3.4 (Composition of �nite substitutions) Let �; � be f:s's. De�ne

� Æ � = (

�

� Æ

�

�)#

Dom(�)[Dom(�)

. This amounts to say that Dom(� Æ �) = Dom(�) [

Dom(�).

3.2 Narrowing and �nite substitutions

Managing the renaming in the narrowing pro
ess leads to new
onsiderations
on
ern-

ing �nite substitutions. By following [3℄, the renaming pro
ess is guided in part by

the `
urrent'
omputed f:s. The requirement of joining domains in the
omposition of

f:s:'s (see De�nition 3.4) is needed if we use f:s's to propagate the renaming-apart re-

stri
tions in the narrowing pro
ess [14℄. We rename terms apart of the set of variables

4

appearing in a given f:s. Therefore, we must distinguish even between the f:s: � and

� Æ � or � Æ �

0

provided that � and �

0

are di�erent identity f:s: (i.e. Dom(�) 6= Dom(�

0

)

and not
ontained in �), sin
e rename a term l

0

out of Var(�) is not the same that

renaming it out of Var(�) [Var(�). Thus, the domains of f:s:'s must be
arefully

managed in the operations
on
erning them.

The following proposition expresses an important property of partial solutions in

a narrowing derivation.

Proposition 3.5 Let t ;

+

�

00

t

00

;

�

�

0

t

0

be a narrowing derivation. Then �#

Var(t)

=

(�

0

Æ �

00

)#

Var(t)

= (�

0

#

Var(t

00

)

Æ�

00

)#

Var(t)

.

4 Needed narrowing

4.1 De�nitional trees

Needed narrowing relies on the
on
ept of de�nitional trees of [1℄. A de�nitional tree

an be used as a representation of the rules de�ning a given fun
tion symbol. T is a

partial de�nitional tree (pdt) i� one of the following
ases holds:

3

T = rule(� ! r) where � ! r is a variant of a rule in R.

T = bran
h(�; o; T

1

; : : : ; T

n

) where � is a pattern, o is the o

urren
e of a variable of

�,

1

; : : : ;

n

are
onstru
tors of the sort of �j

o

for some n > 0, and for all i in

f1; : : : ; ng, T

i

is a pdt with pattern �[

i

(x

1

; : : : ; x

ar(

i

)

)℄

o

where x

1

; : : : ; x

ar(

i

)

are new variables. Moreover, T

i

must be of �nite depth.

A de�nitional tree of a k-ary fun
tion f is a pdt T with pattern f(x), where x is

an ar(f)-tuple of distin
t variables. A fun
tion f with de�nitional tree T is
alled

indu
tively sequential if T
ontains all and only the rules de�ning f in the term

rewriting system R whi
h we
all the `program'.

Example 4.1 Let us
onsider the following program:

from(N)! [Njfrom(s(N))℄

first(0; L)! [℄

first(s(N); [EjL℄)! [Ejfirst(N; L)℄

Then

rule(from(N)! [Njfrom(s(N))℄)

is a de�nitional tree for the fun
tion from, and

bran
h(first(X; Y); 1;

rule(first(0; Y)! [℄);

bran
h(first(s(N); Y); 2;

rule(first(s(N); [EjL℄)! [Ejfirst(N; L)℄)))

is a de�nitional tree for the fun
tion first.

3

We ignore the exempt nodes whi
h are in the original de�nition of [1℄.

5

A TRS is
alled indu
tively sequential if all fun
tion symbols are indu
tively sequen-

tial. An indu
tively sequential TRS
an be viewed as a set of de�nitional trees, ea
h

de�ning a fun
tion symbol.

A de�nitional tree determines a narrowing strategy, namely the needed narrowing

strategy. Roughly speaking, given a term t = f(t), the needed narrowing strategy

looks in the de�nitional tree of f for a rule node whi
h applies to t dire
tly or after

redu
ing some of its subterms to head normal form.

More formally, if T is a node rule(l ! r), then we apply the rule l ! r to t. If

T is a node bran
h(�; o; T

1

; : : : ; T

n

), then we
onsider the subterm tj

o

. If tj

o

has a

fun
tion symbol at the top, this subterm is redu
ed to a head normal form by applying

re
ursively the strategy to tj

o

. If tj

o

has a
onstru
tor symbol at the top, we narrow t

with a subtree T

i

whose pattern uni�es with t, or fail otherwise. If tj

o

is a variable, we

(nondeterministi
ally) sele
t a subtree T

i

, unify t with the pattern of T

i

, and narrow

this instan
e of t with T

i

.

4.2 Term Rewriting Systems and
ase expressions

It is possible to integrate the de�nitional trees into the term rewriting system by

using
ase expressions. In this way, ea
h fun
tion symbol has just one asso
iated rule

whi
h
ompletely de�nes the meaning of the fun
tion. Using
ase expressions as a

represention of the equations whi
h de�ne a fun
tion is a
ommon transformation

te
hnique in fun
tional programming. The syntax of a
ase expression is as follows:

ase X of

1

(x) : X

1

: : :

n

(y) : X

n

where X is a variable,

1

: : :

n

are di�erent
onstru
tors of the sort of X, x; : : : ; y

are tuples of new variables, and X

1

: : : ;X

n

are terms, possibly
ontaining
ase ex-

pressions. We interpret su
h a
ase expression with n patterns and n a
tions as a

2n+ 1-ary fun
tion
ase(X;

1

(x);X

1

; : : : ;

n

(y);X

n

).

In this way, we
an put together the rules de�ning a fun
tion f in the original

program into a single (
ase) rule in a transformed TRS. A more
omplete treatment

of
ase expressions in the setting of the de�nitional trees
an be found in [7℄.

Example 4.2 The TRS of the Example 4.1 is transformed into the following TRS:

from(N) ! [N|from(s(N))℄

first(X,Y) !
ase(X,0,[℄,s(N),
ase'(Y,[E|L℄,[E|first(N,L)℄))

The semanti
s of the fun
tions
ase and
ase'
an be simply de�ned by the following

rewrite rules:

ase(0 ,0,X,s(N),Y) ! X

ase(s(N),0,X,s(N),Y) ! Y

ase'([E|L℄,[E|L℄,X) ! X

In general, a
ase expression with patterns �

1

; : : : ; �

n

an be viewed as a fun
tion

ase

�

1

;:::;�

n

whi
h is de�ned by the following set of rules:

6

ase

�

1

;:::;�

n

(�

1

; �

1

; X; ; : : : ;) ! X

: : :

ase

�

1

;:::;�

n

(�

n

; ; : : : ; ; �

n

; X) ! X

We often omit the index �

1

; : : : ; �

n

and abbreviate a `pattern/a
tion' pair (�;X) as

� and a tuple of these pairs as �.

4.3 Narrowing with
ase expressions

Given a term rewriting system R = (�; R), let R

0

= (� [�

; R

0

[R

) be the trans-

formed TRS where �

is the set of
ase fun
tion symbols, R

0

ontains the
ase version

of rules in R, and R

is the set of additional
ase rules whi
h must be
onsidered.

Remark 4.3 The transformation of R into R

0

have some
onsequen
es:

1. For ea
h de�ned fun
tion f there is only one rule f(x) ! r 2 R

0

. The right-

hand side r of the rule is a (normal) term or a
ase expression.

2. Given a term t = f(t), it is always possible to apply a rule. No evaluation of

arguments in t is required for this appli
ation.

3. All rules in R

have the form
ase(

i

(x); X

1

; X

0

1

; : : : ;

i

(x); X

0

i

; : : : ; X

n

; X

0

n

) !

X

0

i

, where x;X

1

; X

0

1

; : : : ; X

n

; X

0

n

are distin
t variables.

4. Given a term t =
ase(s; �

1

;X

1

; : : : ; �

n

;X

n

), only the �rst argument of this

ase term must be evaluated up to a head normal form in order to apply some

ase rule. Evaluations in the remaining arguments of a
ase expressions are not

ne
essary.

In expressing the de�nitional trees by means of
ase expressions, we
an evaluate

the goals by using a simpler narrowing strategy, namely leftmost-outermost narrow-

ing.

4

Evaluating goals by needed narrowing w.r.t. R is equivalent to evaluating goals

by leftmost-outermost narrowing w.r.t. R

0

in the following sense.

Theorem 4.4 ([7℄) Let t be a term with a fun
tion symbol at the top and T a de�n-

itional tree for this fun
tion symbol. For ea
h needed narrowing derivation t

N

;

�

�

w.r.t. R, there exists a leftmost-outermost narrowing derivation t

L

;

�

�

0

 w.r.t. R

0

with � =

V ar(t)

�

0

and vi
e versa.

4

A position p is leftmost-outermost in a set P of positions if there is no p

0

2 P with p

0

pre�x of

p, or p

0

= q � i � q

0

and p = q � j � q

00

and i < j. A narrowing step is leftmost-outermost if the sele
ted

subterm is the leftmost-outermost one among all possible narrowing positions.

7

5 Lazy denotational semanti
s

5.1 Preliminary de�nitions

In fun
tional logi
 programming, given a goal t, we are interested in two
lasses of

observable information: the evaluated expression(s)
orresponding to this goal and

the solution (or set of solutions) leading to this
omputed expression. Therefore,

the answer for a goal is a fun
tion : Term ! }(FSubst) whi
h maps (possible

evaluated) results to sets of substitutions.

5

Example 5.1 Consider the rules of Example 4.1 and the term first(X,from(0)).

Then the answer representing all possible evaluations of this term has the property

 ([℄) = ffX 7! 0gg, ([0℄) = ffX 7! s(0)gg, ([0,s(0)℄) = ffX 7! s(s(0))gg,

and so on. Thus, has a non-empty denotation
ontaining a single substitution on

lists of as
ending natural numbers starting from 0.

In the following, we use some operations on answers:

� The bottom answer

?

is de�ned by

?

(t) = � for all term t.

This is the bottom element in the domain of answers.

� The additive
omposition � : Answer �Answer ! Answer is de�ned by

(�

0

)(t) = (t) [

0

(t) :

Sin
e � is a
ommutative and asso
iative operation, we extend it to a set of

answers 	 in the obvious way, and write � 	. In parti
ular, if 	 = � we de�ne

� 	 =

?

.

� The non-trivial domain � : Answer ! }(T (�; V)), de�ned by

�() = ft 2 T (�; V) j (t) 6= �g ;

denotes the set of all terms whi
h are
omputable by applying some substitution.

� We denote by t 7! � a unique-valued answer whi
h has the property (t) = �

and (t

0

) = � for all t

0

6= t.

� The restri
tion (in�x operator) #: Answer � }(V) ! Answer is de�ned by

 #

W

(t) = (t)#

W

.

� The right substitution
omposition / : FSubst�Answer ! Answer is de�ned

by (� /)(t) = ((t)) Æ �. Note that (� Æ �) / = � / (� /).

5

Other representations of answers, like sets of pairs of terms and substitutions sets, are also

possible. However, our representation leads to a
on
ise denotational semanti
s.

8

5.2 Denotational semanti
s

For a
omplete presentation of the denotational semanti
s, we introdu
e the denota-

tional domains and the signatures of the semanti
 fun
tions.

� Domains:

Program = Rule

�

(R) Rule = Rule (�)

Den = Term! FSubst! Answer (Æ) FSubst = FSubst (�; �; �)

Goal = Term (t) Term = T (�; V) (t)

Answer = Term! }(FSubst) ()

� Semanti
 fun
tions:

P[[℄℄ : Program! Den! Den

R[[℄℄ : Rule! Den! Den

G[[℄℄ : Goal ! Den! FSubst! Answer

� De�nition of semanti
s fun
tions:

P[[�℄℄ Æ = Æ

?

P[[f�g [R℄℄ Æ = R[[�℄℄ Æ } P[[R℄℄ Æ

R[[l ! r℄℄ Æ t � = if � = fail _ �(t) 2 V then

?

else (G[[�(r

0

)℄℄ Æ (�Æ�))#

Var(�)

where l

0

! r

0

= ren(l ! r;Var(�) [Var(t)) and � = unif(�(t); l

0

)

G[[x℄℄ Æ � = x 7! f�g

G[[
(t)℄℄ Æ � =
(t) 7! f�g

G[[f(t)℄℄ Æ � = Æ(f(t)) �

G[[
ase(s;�)℄℄ Æ � =

let

s

= G[[s℄℄ Æ � in �

s

0

2 �(

s

)

�

0

2

s

(s

0

)

(Æ(
ase(s

0

;�)) (�

0

Æ �))#

Var(�)

A program is a sequen
e of rewrite rules (of the spe
ial form dis
ussed in Se
tion 4.2).

The meaning of a program is a fun
tion whi
h maps denotations into denotations.

A denotation Æ 2 Den maps ea
h term instantiated by some substitution into an

answer. It des
ribes the `transformation power' of a program. Hen
e, Æ(t) � expresses

the (dire
t) evaluation (by means of the program) of t in the
ontext of the substitution

�.

The meaning of an empty program is the bottom denotation Æ

?

: P[[�℄℄ Æ = Æ

?

where Æ

?

is de�ned as follows: Æ

?

(t) � =

?

for all t and �. Thus, an empty program

annot
ompute any value for all possible input terms and substitutions.

The meaning of a non-empty program is the
ombination of all answers obtained by

the di�erent rules of the program. For this purpose, we have to de�ne the
omposition

of denotations whi
h
an be done by extending the additive
omposition � of answers

to the
orresponding operation on denotations. } : Den � Den ! Den is de�ned

as (Æ}Æ

0

)(t) � = (Æ(t) �) � (Æ

0

(t) �). Now, the meaning of a (non-empty) program is

obtained by adding the denotations assigned to the rules
ontained in the program:

P[[f�g [R℄℄ Æ = R[[�℄℄ Æ } P[[R℄℄ Æ.

9

A rewrite rule is an evaluation
omponent of the program. If a rule l! r applies

(with uni�er �) to an (instantiated) term �(t), then, to evaluate �(t), just evaluate

�(r):

6

R[[l ! r℄℄ Æ t � = if � = fail _ �(t) 2 V then

?

else (G[[�(r

0

)℄℄ Æ (� Æ �))#

Var(�)

where l

0

! r

0

= ren(l ! r;Var(�) [Var(t)) and � = unif(�(t); l

0

)

The meaning of a goal or term is given as a fun
tion that, for some denotation

Æ of the program and a

umulated partial solution �, yields the answer fun
tion for

this goal. However, in lazy languages, we are not interested in a total evaluation

of the arguments of a given fun
tion symbol. Sin
e the arguments in the left-hand

sides of rules are
at
onstru
tor terms or variables (see Se
tion 4.3), we evaluate the

expressions up to head normal form in order to apply some rule. Therefore, when a

goal is a head normal form, we stop the (lazy) evaluation: G[[t℄℄ Æ � = t 7! f�g if t is

a variable or a
onstru
tor-rooted term.

If the goal is an operation-rooted term f(t), then a rule dire
tly applies and we

use the denotation of the program to obtain the meaning of the goal: G[[f(t)℄℄ Æ � =

Æ(f(t)) �.

If the goal is a
ase expression
ase(s;�), we may need some evaluation of the

sele
tion argument s. In this
ase, we evaluate s up to a hnf, thus obtaining the

answer

s

= G[[s℄℄ Æ �. Next, we apply the denotation of the program to the
ase

expression with s repla
ed by all its possible evaluations s

0

2 �(

s

):

G[[
ase(s;�)℄℄ Æ � = �

s

0

2 �(

s

)

�

0

2

s

(s

0

)

(Æ(
ase(s

0

;�)) (�

0

Æ �))#

var(�)

As usual, the denotation Æ

0

of a program is de�ned as the least �xpoint

7

of the

de�ning equations, i.e., Æ

0

= �x P[[R [E℄℄ where R
ontains the rewrite rules for

operations and
ase fun
tions and E is the set of equality rules of the given signature.

Now, we
an dire
tly obtain the meaning of a given equation e by means of the

fun
tion G[[℄℄ as follows: = G[[e℄℄ Æ

0

�, where � is the identity substitution with

Dom(�) = Var(e). We
an also obtain the result of the
omplete evaluation of

a given term t as follows: let

0

= G[[X � t℄℄ Æ

0

�, where X is a fresh variable

and � is the identity substitution with Dom(�) = Var(t) [fXg. If

0

=

?

, then

 =

?

. Otherwise,

0

must be a unique answer of the form true 7! f�

1

fX 7!

t

1

g; : : : ; �

n

fX 7! t

n

g; : : :g, sin
e equalities
an only be derived to the
onstant true.

Then = t

1

7! f�

1

g � � � � � t

n

7! f�

n

g � � � �.

5.3 Properties of the semanti
 fun
tions

The following proposition allows us to express a solution � obtained from the evalu-

ation of either an operation rooted term or a
ase expression with evaluated sele
tion

6

ren(s;W) denotes the renaming of s so that the new variant of s has no variables in
ommon

with W . By introdu
ing a total ordering on V , it is easy to de�ne ren as a fun
tion.

7

We
onsider the standard ordering in the domains, e.g., � is the least element in sets and

fun
tions are ordered pointwise on their domains.

10

argument, as a
ombination of the �rst mgu � used to narrow the term and the answer

whi
h
orresponds to the evaluation of the rhs instantiated by �.

Proposition 5.2 Let t be either an operation rooted term t = f(t) or t =
ase(s;�)

where s is a hnf su
h that there is a variant �

�

: l

0

! r

0

of a rule whi
h
an be

applied to t with mgu �. Let � be the set of all of su
h uni�ers. Let = G[[t℄℄ Æ �

with Var(�) = Var(t) and

0

�

= G[[�(r

0

)℄℄ Æ �

0

with Var(�

0

) = Var(�(r

0

)). Then

 = �

�2�

(� /

0

�

)#

Var(t)

.

Roughly speaking, the following proposition amounts to say that we
an express a

solution � of a
ase expression
ase(s;�) with a non evaluated sele
tion argument s

as a
ombination of the solutions � of the evaluation s

0

of s and the answers
orres-

ponding to the partially evaluated goal
ase(s

0

;�).

Proposition 5.3 Let t =
ase(s;�), where s is not a hnf. Let �

s

su
h that Var(�

s

) =

Var(s). Then

 = G[[
ase(s;�)℄℄ Æ � = �

s

0

2 �(

0

s

)

� 2

0

s

(s

0

)

(� /

�

)#

Var(�)

where

0

s

=G[[s℄℄ Æ �

s

,

�

= G[[�(
ase(s

0

;�))℄℄ Æ �

0

, Var(�

0

) = Var(�(
ase(s

0

;�))).

These propositions express the
ompositional behavior of the semanti
 evaluations.

Note the similarities with the result shown in Proposition 3.5 for the operational

setting.

The main result of the paper is given now. It expresses that the semanti
 de�nition

re
e
ts the operational behavior of the needed narrowing strategy.

Theorem 5.4 (Adequa
y of the semanti
s w.r.t. needed narrowing)

Let R = (�; R) be an indu
tively sequential TRS and R

0

= (� [�

; R

0

[R

) be the

ase version of R. Let t 2 T (�; V) and t

0

2 HNF

�

. Let � be the identity substitution

with Dom(�) = Var(t). If = G[[t℄℄ Æ �, then

t

N

;

�

�

t

0

, �#

Var(t)

2 (t

0

):

6 Con
lusions and further work

We have presented a denotational semanti
s for lazy fun
tional logi
 languages based

on the needed narrowing strategy. Our semanti
s is the �rst denotational de�nition

of needed narrowing.

Some abstra
t interpretation frameworks reinfor
e the use of denotational se-

manti
s as the formal basis for data-
ow program analysis by giving an intermediate

meta-language able to
ou
h the program as a set of semanti
 equations [10, 12℄. In

this way, a given analysis
an be de�ned as a parti
ular interpretation of the lan-

guage. Therefore, this is a reusable framework for program analysis. We plan to

apply this kind of strategy for the analysis of fun
tional logi
 programs based on

needed narrowing strategy.

11

Referen
es

[1℄ S. Antoy. De�nitional Trees. In H. Kir
hner and G. Levi, editors, Pro
. of Int'l Conf.

on Algebrai
 and Logi
 Programming, ALP'92, LNCS 632:143-157, Springer-Verlag,

Berlin, 1992.

[2℄ S. Antoy R. E
hahed, and M. Hanus. A needed narrowing strategy. In Pro
 of the 21st

ACM Symposium on Prin
iples of Programming Languages, POPL'94, pages 268-279,

ACM Press, 1994.

[3℄ S.K. Debray and P. Mishra. Denotational and operational semanti
s for Prolog.

Journal of Logi
 Programming 5:61-91, 1988.

[4℄ N. Dershowitz and J.P. Jouannaud. Rewrite Systems. In J. van Leeuwen, editor,

Handbook of Theoreti
al Computer S
ien
e, volume B: Formal Models and Semanti
s,

pages 243-320. Elsevier, Amsterdam and The MIT Press, Cambridge, MA, 1990.

[5℄ M. Hanus. The integration of fun
tions into logi
 programming: From theory to

pra
ti
e. Journal of Logi
 Programming 19&20:583-628, 1994.

[6℄ M. Hanus and S. Lu
as. De�nition and analysis of a denotational semanti
s for needed

narrowing. Te
hni
al Report, DSIC II/2/96, Universidad Polit�e
ni
a de Valen
ia,

1996. Also available by URL http://www.dsi
.upv.es/users/elp/papers.html.

[7℄ M. Hanus and C. Prehofer. Higher-Order Narrowing with De�nitional Trees. Pro
.

of RTA'96. To appear in Springer LNCS.

[8℄ G. Huet and J.J. L�evy. Computations in orthogonal term rewriting systems. In

J.L. Lassez and G. Plotkin, editors, Computational logi
: essays in honour of Alan

Robinson, MIT Press, Cambridge, MA, 1991.

[9℄ N.D. Jones and A. My
roft. Stepwise Development of Operational and Denotational

Semanti
s for PROLOG. In Pro
. of the 1984 International Symposium on Logi

Programming, pages 289-298, IEEE Computer So
., Atlanti
 City, N.J., 1988.

[10℄ K. Marriott. Frameworks for abstra
t interpretation. A
ta Informati
a 30:103-129,

1993.

[11℄ J.J. Moreno-Navarro and M. Rodr��guez-Artalejo. Logi
 programming with fun
tions

and predi
ates: the language BABEL. Journal of Logi
 Programming, 12:191-223,

1992.

[12℄ F. Nielson. Towards a denotational theory of abstra
t interpretation. In S. Abramsky

and C. Hankin, editors, Abstra
t Interpretation of De
larative Languages, Ellis Hor-

wood Ltd., John Wiley and sons, pages 218-245, 1987.

[13℄ U.S. Reddy. Fun
tional Logi
 Languages Part I (Preliminary Report). In J.H. Fasel

and R.M. Keller, editors, Pro
. of a Workshop on Graph Redu
tion, LNCS 279:401-

425, Springer-Verlag, Berlin, 1987.

[14℄ J.C. Shepherdson. Mistakes in Logi
 Programming: the Role of Standarising Apart,

manus
ript, University of Bristol, 1991.

[15℄ J.E. Stoy. Denotational semanti
s: the S
ott-Stra
hey approa
h to programming

language theory. The MIT Press, Cambridge MA, 1977.

[16℄ R.D. Tennent. Denotational Semanti
s. In S. Abramsky, D.M. Gabbay and T.S.E.

Maibaum, editors, Handbook of Logi
 in Computer S
ien
e, Volume 3, pages 169-322,

Oxford University Press, Oxford, 1992.

12

