
Integration of Fun
tional and Logi
 Programming

Mi
hael Hanus Herbert Ku
hen

RWTH Aa
hen

�

In ACM Computing Surveys, Vol. 28, No. 2, 1996, pp. 306{308

During the last de
ade, many proposals have been made to 
ombine the most important de
lar-

ative programming paradigms, namely fun
tional and logi
 programming (see [2℄ for a survey).

Fun
tional logi
 languages o�er features from fun
tional programming (nested expressions, higher-

order fun
tions, lazy evaluation) and logi
 programming (logi
al variables, partial data stru
tures,

built-in sear
h). They subsume purely fun
tional languages as well as pure Prolog. An important

advantage of an integrated language is that it 
an help to bring the fun
tional and the logi
 pro-

gramming 
ommunities together, enabling them to share their developments and avoid a dupli
ation

of work on implementation te
hniques, program analysis, program transformation, graphi
al user

interfa
es, and many other tools. Moreover, this integration should lead to an in
reased a

eptan
e

of de
larative programming in general.

Compared to purely fun
tional languages, fun
tional logi
 languages mainly provide a built-in

sear
h me
hanism whi
h is 
apable of handling partial information. An expression 
ontaining logi


variables represents an arbitrarily large set of values. If the basi
 stru
ture of su
h an expression

allows to infer that there are no solutions no matter how the logi
 variables are bound, then a

whole subspa
e of the sear
h spa
e 
an be ignored (namely the subspa
e providing instantiations

of the logi
 variables). The purely fun
tional approa
h to sear
hing by (lazily) produ
ing a list of

su

esses [5℄ will 
onsider all values of this subspa
e one by one, sin
e an expression in a purely

fun
tional language represents only one value (regardless of the evaluation strategy!). Note that

a simulation of expressions 
ontaining logi
 variables by �-abstra
tions, e.g., a representation of

(
ons X Y ) by �X:�Y:(
ons X Y ) does not always work, sin
e this would �x the order in whi
h

the logi
 variables have to be bound. Moreover, in 
onstraint logi
 programming, an important

appli
ation domain of logi
 programming, logi
 variables are seldom bound to a distin
t value

but typi
ally 
onstrained to smaller and smaller subsets of the entire domain. This in
remental


onstraint solving is hard to des
ribe by fun
tional programs but a natural feature of fun
tional

logi
 languages.

Compared to purely logi
 languages, fun
tional logi
 languages provide more eÆ
ient evaluation

me
hanisms due to the (deterministi
!) redu
tion of fun
tional expressions. Thus, impure features

of Prolog to restri
t the sear
h spa
e, like the 
ut operator, 
an be avoided. Moreover, a simulation

of higher-order fun
tions by the (impure) 
all predi
ate is no longer ne
essary, sin
e su
h fun
tions

are dire
tly available. Further, lazy evaluation allows an elegant style of programming, in
luding

the treatment of in�nite data stru
tures.

Unfortunately, fun
tional logi
 languages did not have the desired su

ess up to now. Reasons

for this are the la
k of a \standard" fun
tional logi
 language and the fa
t that existing fun
tional

logi
 languages and their implementations are mainly experimental systems but not yet mature for

�

Informatik II, RWTH Aa
hen, D-52056 Aa
hen, Germany, fhanus,herbertg�informatik.rwth-aa
hen.de

1



real appli
ations. The development of a standard language is 
ompli
ated by the fa
t that there is

no agreement on the operational semanti
s. There are mainly two approa
hes, namely residuation

and narrowing.

Residuation is based on the idea to delay fun
tion 
alls until they are ready for deterministi


evaluation. Sin
e the residuation prin
iple evaluates fun
tion 
alls by deterministi
 redu
tion steps,

nondeterministi
 sear
h must be expli
itly en
oded by predi
ates or disjun
tions. The residuation

prin
iple is a reasonable integration of the fun
tional and the logi
 paradigm, sin
e it 
ombines

the deterministi
 redu
tion of fun
tions with partial data stru
tures (logi
al variables). Moreover,

it allows 
on
urrent 
omputation with syn
hronization on logi
al variables. Unfortunately, it is

in
omplete, sin
e it is unable to 
ompute solutions if arguments of fun
tions are not suÆ
iently

instantiated during the 
omputation.

Narrowing is a 
ombination of uni�
ation for parameter passing and redu
tion as evaluation

me
hanism. It is 
omplete in the sense of fun
tional programming (normal forms are 
omputed if

they exist) as well as logi
 programming (solutions are 
omputed if they exist). In order to get

an eÆ
ient implementation, sophisti
ated narrowing strategies are required. The strategy needed

narrowing [1℄ interleaves the evaluation of demanded arguments and an indexing me
hanism to

sele
t appli
able rules. It is optimal w.r.t. the length of derivations and the number of 
omputed

solutions. This 
learly shows the advantages of integrating fun
tions into logi
 programs: by

transferring results from fun
tional programming to logi
 programming, we obtain better and, for

parti
ular 
lasses of programs, optimal evaluation strategies without loosing the sear
h fa
ilities.

De�ning fun
tions is not a burden to the programmer, sin
e most predi
ates of (logi
) appli
ation

programs are fun
tions. Moreover, the knowledge about fun
tional dependen
ies 
an avoid use-

less 
omputations (of arguments whi
h are not needed) and in
rease the number of deterministi


evaluation steps.

A future fun
tional logi
 language 
ould o�er a 
ombination of residuation and narrowing: if the

user does not restri
t the appli
ability of a fun
tion, a 
omplete strategy will be used; however, the

user 
an add annotations whi
h allow to residuate for some arguments and/or to spe
ify another

evaluation order.

The se
ond problem for the 
urrently low a

eptan
e of fun
tional logi
 programming, namely

the toy 
hara
ter of existing systems, has to be solved by in
luding features whi
h are required

for programming serious appli
ations. This in
ludes a polymorphi
 type system, a module system,

and purely de
larative I/O. One possible 
hoi
e for the latter is to use monadi
 I/O [6℄ like in

Haskell. This for
es the main 
omputation thread to be a sequen
e of monad operations. Thus,

in a fun
tional logi
 setting, nondeterministi
 sear
h has to be en
apsulated su
h that unlimited

ba
ktra
king is ex
luded. One possibility for en
apsulating sear
h has been proposed in Oz [4℄.

The user gets expli
it a

ess to the sear
h spa
e as a data stru
ture and 
an explore it step by step

in the desired dire
tion (e.g., depth-�rst). Frequently used sear
h strategies like depth-�rst and

breadth-�rst 
an be des
ribed by higher-order fun
tions and used by simply 
alling these fun
tions

with the problem as parameter. En
apsulated sear
h provides also 
ontrol over the explored sear
h

spa
e.

Another desirable feature is a full integration of higher-order fun
tions (in
luding some sort of

higher-order uni�
ation rather than their limited use as in purely fun
tional languages). \Higher-

order narrowing" is espe
ially 
onvenient for handling appli
ations where the notion of s
ope is

important, like formulae and programs (see [3℄ for referen
es to su
h appli
ations). Moreover,

2



impli
ations and expli
it quanti�ers (as in �-Prolog [3℄) 
an be used to avoid (many) o

urren
es of

the impure Prolog-features assert and retra
t. While evaluating the su

edent e of an impli
ation

(
lause) e), the 
lause in the ante
edent is added to the program.

Logi
 languages have the advantage that they 
an easily be extended by 
onstraint solving and

thus allow to use domain spe
i�
, eÆ
ient sear
h strategies. Sin
e fun
tional logi
 languages also

allow an easy integration of 
onstraint solvers, important appli
ation areas of logi
 programming

are also 
overed by su
h integrated languages.

Existing implementations of fun
tional logi
 languages show that the integration need not 
ause

a (serious) performan
e penalty [2℄. If logi
 variables do not o

ur in a program, the evaluation

is identi
al to fun
tional languages. Similarly, it is identi
al to logi
 languages if fun
tions are not

used, i.e., there is no overhead due to the presen
e of the additional features. On the 
ontrary, if

logi
 variables are used in 
ombination with fun
tions, the deterministi
 behavior of fun
tions is

used to in
rease the eÆ
ien
y w.r.t. purely logi
 languages and the handling of partial information

enables more eÆ
ient sear
h than in purely fun
tional languages.

Referen
es

[1℄ S. Antoy, R. E
hahed, and M. Hanus. A needed narrowing strategy. In Pro
. 21st ACM Symposium on

Prin
iples of Programming Languages, pages 268{279, Portland, 1994.

[2℄ M. Hanus. The integration of fun
tions into logi
 programming: From theory to pra
ti
e. Journal of

Logi
 Programming, 19&20:583{628, 1994.

[3℄ G. Nadathur and D. Miller. An overview of �Prolog. In Pro
. 5th Conferen
e on Logi
 Programming &

5th Symposium on Logi
 Programming (Seattle), pages 810{827. MIT Press, 1988.

[4℄ G. Smolka. The Oz programming model. In J. van Leeuwen, editor, Current Trends in Computer S
ien
e.

Springer LNCS 1000, 1995.

[5℄ P. Wadler. How to repla
e failure by a list of su

esses. In Fun
tional Programming and Computer

Ar
hite
ture. Springer LNCS 201, 1985.

[6℄ P. Wadler. The essen
e of fun
tional programming. In Symposium on Prin
iples of Programming Lan-

guages, pages 1 { 14. ACM, 1992.

3


