
Integration of
Parallel and Fair Search Strategies
for Non-Deterministic Programs
into the Curry System KiCS2

Bastian Holst

Master’s thesis
submi琀�ed in May 2014

Christian-Albrechts-Universität zu Kiel
Institut für Informatik

Arbeitsgruppe für Programmiersprachen und Übersetzerkonstruktion
Advised by: Prof. Dr. Michael Hanus

Eidessta琀�liche Erklärung

Hiermit erkläre ich an Eides sta琀�, dass ich die vorliegende Arbeit selbstständig verfasst und
keine anderen als die angegebenen Hilfsmi琀�el verwendet habe.

Kiel, 27.05.2014

Abstract

Evaluating non-deterministic expressions in functional logic programming languages like
Curry can be implemented as a search on binary search trees. 吀�e Curry implementation
KiCS2 is wri琀�en in Haskell and allows the definition of various search strategies on such
trees. In this thesis, we integrate various parallel search strategies in KiCS2, which are based
on depth-first search and breadth-first search as well as a different search technique, which is
more complete compared to breadth-first search.

We use three approaches of parallelism: using semi-explicit parallelism, using a bag of
tasks approach, and starting individual computation threads for each branch of the search
tree. We implement these approaches in multiple ways and discuss their advantages and
limitations, especially in terms of resource consumption. In particular, we present vari-
ous approaches limiting the communication overhead and memory consumption. In order
to confirm or refute our considerations, we perform benchmarks using multiple example
programs.

Contents

1. Introduction 6
1.1. Notation of Source Code . 7
1.2. Motivation . 7
1.3. Outline . 8

2. Technologies 9
2.1. Functional Logic Programming with Curry 9

2.1.1. Expressions . 9
2.1.2. Types . 10
2.1.3. Global Definitions . 11
2.1.4. Constraints . 12
2.1.5. Call-Time Choice Semantics . 13
2.1.6. Set Functions . 14

2.2. Haskell . 15
2.2.1. Semi-Explicit Parallelism . 17
2.2.2. Concurrent Haskell . 19
2.2.3. Runtime System . 25

2.3. KiCS2 . 25
2.3.1. Representing Non-Determinism in Data Structures 25
2.3.2. Search Tree . 28

3. Evaluation Criteria 30
3.1. Resource Consumption . 30
3.2. Completeness . 30
3.3. Stopping the Computation . 32

4. Search Strategies 33
4.1. Search Strategies as Part of the KiCS2 System 33
4.2. Sequential Search Strategies . 35

4.2.1. Depth-First Search . 35
4.2.2. Breadth-First Search . 36

4.3. Order-Preserving Parallel Search Strategies 37
4.3.1. Original Approach to Deterministic Parallel Depth-First Search . . . 37
4.3.2. Deterministic Parallel Depth-First Search with Strategies 38
4.3.3. Reducing the Number of Sparks for Parallel Depth-First Search . . . 40
4.3.4. Deterministic Parallel Breadth-First Search with Strategies 44

4

4.4. Bag of Tasks . 47
4.4.1. General idea . 48
4.4.2. Depth-First Search . 49
4.4.3. Breadth-First Search . 51

4.5. Fair Search . 53
4.5.1. Primitive Fair Search . 53
4.5.2. Fair Search with Chained 吀�reads . 56
4.5.3. Using Exceptions for Communication between Search 吀�reads . . . 61

5. Technical Details 64
5.1. Stopping Parallel Evaluation . 64

5.1.1. Stopping 吀�reads Explicitly . 65
5.1.2. Using Finalisers on Weak Pointers 66

5.2. Bag of Tasks Implementation . 68

6. Evaluation 74
6.1. Completeness . 74
6.2. Abortion Behaviour . 75
6.3. Performance Analysis . 77

6.3.1. Benchmark Programs . 77
6.3.2. Benchmarking System . 83
6.3.3. Results . 83

6.4. Summary . 106

7. Usage of Parallel Search 108

8. Future Work 111
8.1. Manual and Automatic Annotation . 111
8.2. Prolog’s AND-Parallelism . 112
8.3. Parallel Iterative Deepening Search . 114

9. Conclusion 116

Index 118

Bibliography 118

A. Wrong Divisor Implementation as an Application of Fair Search Strategies 121

B. Benchmark Results of a Selection of Search Strategies 122

C. Contents of the Data Medium 128

5

1. Introduction

Improving the performance of single processor cores has become harder and harder in the last
years. Instead, hardware developers chose to add more and more cores to single processors.
As a consequence, parallel programming is becoming more relevant.

However, writing parallel programs is still a challenge. Implementing parallelism manually
based on threads and locking is o昀�en expensive and error-prone. Using transactional memory
systems like so昀�ware transactional memory in Haskell [11] reduces the difficulty of imple-
menting parallelism, but it is primarily targeted at concurrent programming. Additionally,
functional programming languages offer primitives allowing the programmer to write parallel
programs without reasoning about threads and locking [31].

吀�e referential transparency of declarative programming languages encourages relying on
the compiler and the runtime system. Unfortunately, this has not been proven to be fruit-
ful for large-scale functional programs [31]. Non-deterministic programs benefit from this
more, which has been shown for the logic programming language Prolog. 吀�ere are two
types of parallelism exploited by Prolog implementations: AND-parallelism [6] and OR-
parallelism [32]. AND-parallelism means resolving multiple subgoals for one result in parallel
whereas OR-parallelism is the parallel computation of multiple results in a non deterministic
computation.

吀�e programming language Curry [10] combines aspects of functional and logic programming,
so it might be reasonable to try parallelisation techniques from functional and from logic
programming. Nevertheless, this thesis is focused on one of the parallelisation techniques
known from logic programming: OR-parallelism.

吀�e Curry system KiCS2 implements Curry’s non-determinism in the functional programming
language Haskell [4]. In KiCS2 it is possible to choose between multiple search strategies.
Reck and Fischer [30] presented a first approach towards parallel search for non-deterministic
solutions in Haskell in 2009. While Reck and Fischer concentrated on strategies resulting in
a be琀�er performance, it is also possible to implement fair search strategies in parallel. Fair
search strategies allow the computation of results even if the program contains a deterministic
loop in a branch.

For this thesis, we integrated various search strategies into KiCS2 and compared their be-
haviour using various benchmark programs. 吀�ese integrated search strategies can be used
as a top-level search strategy to automatically use parallel evaluation on the whole program
but also to be used inside a complete program to parallelise certain expensive computa-
tions.

6

1.1. Notation of Source Code

吀�e code examples in this paper use the functional language Haskell [20] and the functional
logic language Curry [10]. 吀�e syntax of Haskell and Curry programs is quite similar, so it
may be hard to distinguish Curry from Haskell programs. Unless noted otherwise, search
strategies are implemented in Haskell whereas program examples and examples of usage are
wri琀�en in Curry.

Both Haskell and Curry code is layouted using lhs2TeX 1 and thus contains beautifications
such as arrows → (->) and ← (<-), lambda symbols λ (\), and certain relation symbols ≢
(/=), ≡ (==), ≤ (<=), ≥ (>=), and ∧ (&&).

1.2. Motivation

While other Curry implementations only offer one search strategy, in KiCS2 the user can
choose between multiple search strategies. 吀�e parallel search strategies, implemented as
part of this master’s thesis, may be selected as a top-level search strategy. To use a parallel
search strategy, the user first sets the number of system threads; for example when using a 12
processor system, the user sets the number of system threads to 12. A昀�er that, it is possible
to enable parallel evaluation according to the selected strategy.

:set threads 12
:set +parallel

Furthermore, it is possible to use parallel search strategies in a program to evaluate only parts
of it in parallel. 吀�erefore, we made parallel search strategies available as a Curry library
module. 吀�is module contains the parallel search strategies and the functions getAllValues
and getOneValue.

getAllValues ∶∶ Strategy → a → IO [a]
getOneValue ∶∶ Strategy → a → IO (Maybe a)

Both functions take a strategy and an arbitrary expression. getAllValues returns all values of
the expression and getOneValues returns Nothing if it has no values and otherwise any of the
values. 吀�e following example program computes all values of the expression e and prints
the minimum. splitAll is one of the parallel search strategies.

main = do
results ← getAllValues splitAll e
let m = minimum results
putStrLn (”Minimum: ” ++ show m)

1http://www.andres-loeh.de/lhs2tex/ [accessed 25-May-2014] by Andres Löh

7

http://www.andres-loeh.de/lhs2tex/

1.3. Outline

吀�is section gives a short outline of the remainder of this thesis. A昀�er this introduction,
chapter 2 gives a short insight in the technologies used throughout this thesis. 吀�ese tech-
nologies include the functional logic programming language Curry, which is explained in
section 2.1, and the parallelisation features of the functional programming language Haskell
used for the implementation of search strategies, section 2.2. Furthermore, we outline the
basic implementation of the Curry system KiCS2 in section 2.3.

Chapter 3 then gives an overview on the requirements we have on parallel search strategies.
吀�is can be used as a foundation for the chapter 4, which shows the implementation of the
search strategies and how these are integrated in KiCS2.

Chapter 5 then presents various details of the implementation. 吀�ese are not necessarily
needed to understand the remainder of the thesis, but give an overview of technical obstacles,
which occurred during the implementation.

Having explained the major parts of the implementation, the following chapter 6 contains the
comparison and evaluation of the search strategies. Besides presenting benchmark results in
section 6.3, we talk about to which degree other requirements are held.

A昀�er the evaluation, chapter 7 contains further information on how to use the parallel search
strategies in a Curry program. Chapter 8 then introduces possible other ways of parallelisation
and possible improvements of the given strategies. Finally, chapter 9 concludes the results of
this thesis.

8

2. Technologies

Before starting to implement parallel search strategies for the functional logic programming
language Curry, we have to lay some foundations. As a part of this, section 2.1 first gives
a short introduction into Curry. To implement parallel search strategies, we make use of
Haskell’s concurrency and parallelisation features. 吀�e section 2.2 gives a short introduction
on these. Furthermore, the basic implementation of non-determinism in KiCS2 is explained
in section 2.3.

2.1. Functional Logic Programming with Curry

Curry is a multi-paradigm language combining important features of functional languages
with features of logic languages in a single language. In particular, it provides functional pro-
gramming features like higher-order functions, parametric polymorphism and demand-driven
evaluation and features from logic programming languages like computing with built-in
search, free variables, and partial data structures as well as computing with constraints [10].
In fact, Curry is in many ways similar to the functional programming language Haskell, which
is now widely used in academics but also in the industry.

A Curry program consists of the definition of data types and operations on these types. 吀�e
syntax of Curry resembles the syntax of the functional programming language Haskell. Names
of variables and operations usually start with a lowercase le琀�er whereas type constructors
and constructors start with an uppercase le琀�er.

2.1.1. Expressions

An important component of Curry programs are expressions. Expressions are:

• basic values like numbers (−2, 3.141),

• an application of an operation f to an expression ε wri琀�en as the juxtaposition f ε,

• an application of an infix operator, for example the arithmetic operators + or ∗ (42 + 1,
2 ∗ 1),

• a data constructor C applied to other expressions ε1, ε2, ..., εn wri琀�en as the juxtaposition
C ε1 ε2…εn (True, Nothing, Just 2),

• conditional expressions if εb then ε1 else ε2,

9

• let expressions let {x1 = ε1; x2 = ε2;…; xn = εn } in ε, where ε, ε1, ε2,…, εn are expres-
sions,

• functions, which can be wri琀�en analogous to the λ-Calculus [8] as (λx → ε), where ε
has to be an expression.

2.1.2. Types

Curry is statically typed with a type system inspired by the type system presented by Milner
in 1978 [27]. Its type system is, therefore, very similar to that of Haskell. Each expression
in the program has an unique type which, in most cases, is inferred automatically by the
compiler. 吀�e programmer can provide type signatures, but in general he does not have to.
It features parametric polymorphism as well as type inference at compile time. Currently
there are a琀�empts to extend Curry’s type system by type classes [5], designed for functional
programming languages by Wadler and Blo琀� in 1989 [34]. Several types are predefined, but it
is also possible to define data types yourself.

Among the predefined types are types for numbers, boolean values, tuples, lists, characters,
strings, operations, and constraints.
吀�e type for integers is called Int . Integral numbers are constructed by values like 42 or −15.
Typical operators for integers are +, −, and ∗, which are evaluated only when both arguments
have been evaluated to values. Otherwise the function calls are suspended. 吀�e type for
floating point numbers is called Float and its constructors are values like 3.14159 and −5.0e−4.
吀�e arithmetic functions are called differently compared to those on integers (+., −., ∗., /.),
but they have a similar behaviour.

In addition to predefined data types, data types can be declared in the following form. τij are
types which may itself contain the type parameters α1 to αn and C1 to Ck are the constructors
of the newly defined type.

data T α1…αn = C1 τ11…τ1n1
∣ … ∣ Ck τk1…τknk

Although the type for boolean values is predefined, it could be defined in the following
form.

data Bool = True ∣ False

吀�e definition can be read as: A boolean can be True or False. Consider the definition of two
other commonly used types.

data Maybe a = Nothing ∣ Just a
data Either a b = Le昀� a ∣ Right b

In contrast to Bool, Maybe and Either are not types standing for its own, Maybe and Either
are type constructors. A type constructor has to be applied to one or multiple types to get a
type. An application of a type constructor T to a type τ is wri琀�en as the juxtaposition T τ .
吀�e application of a type constructor to a type forms a type (likeMaybe Bool) or another type

10

constructor (like Either Int) which has to be applied to another type to instantiate a type (for
example Either Int Float).
吀�e definition of Maybe can be read as: Nothing is a value of type Maybe τ and, given x is of
type τ , Just x is a value of type Maybe τ . Maybe is a type o昀�en used for optional parameters
or functions which return values only under certain conditions.

Lists of values of type τ have the type [τ]. As a result, [⋅] is a type constructor as well. 吀�e
constructors of lists are [], which is an empty list, and the infix operator ∶, which prepends
a value to an existing list. Let x be an expression of the type τ and xs a list of values of
type τ , then x ∶ xs is a non-empty list of type [τ]. 吀�e list x1 ∶ x2 ∶ … ∶ [] can also be
wri琀�en in the convenient notation [x1, x2,…]. A type, of which values are o昀�en stored in lists,
are characters. Characters like ’a’ or ’9’ are constructors of the type Char . Strings are
represented as lists of characters and thus can be wri琀�en as ’H’∶’e’∶’l’∶’l’∶’o’∶ []
or [’H’,’e’,’l’,’l’,’o’], but there is also the more convenient notation ”Hello”. In
addition to lists, tuples are available to structure data. If τ1, τ2,…, τn are types and n ≥ 2, then
(τ1, τ2,…, τn) is the type of all n-tuples. Let xi be an element of type τi for i ∈ {1, 2,…, n} then
(x1, x2,…, xn) is an element of type (τ1, τ2,…, τn). 吀�e unit type () has only a single element ()
and can be interpreted as the type of 0-tuples.

Another type is the type of functions or operations τ1 → τ2, where τ1 and τ2 are types. For
example the type of the operator + is Int → Int . A function of type τ1 → τ2 can be wri琀�en
analogous to the λ-Calculus [8] as (λx → e), while x is a parameter of type τ1 and e is an
expression of τ2.

吀�e types introduced so far are all available in Haskell as well showing the similarity between
both type systems. But one type specific to and characteristic for Curry is Success.

data Success = Success

吀�is is the type of successful evaluation. Although the type Success is similar to the previ-
ously described unit type as it has only one value, both are different in regard to their use.
Expressions of the type Success are used as conditions for defining rules and are also called
constraints.

2.1.3. Global Definitions

An operation f with the formal parameters x1,…, xn defined by the expression e is wri琀�en as
f x1…xn = e. For example we can define the square operation as:

square x = x ∗ x

A constant is an operationwith zero parameters and can be defined in a similar way.

answer = 42

In functional logic languages expressions can yield zero, one, or multiple results. A simple
example for an operation yielding multiple results is coin, the operation simulating a coin
flip.

11

coin = 0
coin = 1

吀�is example reveals an important semantic difference compared to Haskell. In Haskell
the operation coin will always yield the result of its first rule 0 whereas in Curry it non-
deterministically yields both values: 0 and 1.

Another non-deterministic operation is the predefined infix operator ?, called choice, which
may be defined as:

x ? = x
? y = y

According to the definition, the expression 0 ? 1 has two values: 0 and 1, similar to the
operation coin.

2.1.4. Constraints

Given the possibility of multiple values from one expression, we o昀�en want to select specific
values. 吀�is can be done by constrained operation definitions. An operation definition is
constrained by the constraint c with f x1…xn ∣ c = ε. 吀�e constraint c is an expression with
the type Success.

An elementary constraint is the strict equality =∶=. 吀�e expression ε1 =∶= ε2 yields Success if
and only if both ε1 and ε2 can be evaluated to the same ground data term. If one or both sides
is non-terminating, the strict equality would not hold and the evaluation of ε1 =∶= ε2 would
also be non-terminating. Using this equality constraint we can define a simple definition of
the function last which returns the last element of a given list.

List a = [] ∣ a ∶ (List a)
append ∶∶ [a] → [a] → [a]
append [] ys = ys
append (x ∶ xs) ys = x ∶ (append xs ys)
last ∶∶ [a] → a
last zs ∣ append xs [x] =∶= zs = x where x , xs free

In addition to the constraint, the definition of last makes use of free variables. 吀�e Curry
system searches in all possible values for the variables x and xs and then returns the value
for the variable x .

12

2.1.5. Call-Time Choice Semantics

Using the choice operator, we can define the non-deterministic operation aBool , the exclusive
disjunction xor on boolean values, and xorSelf [4]:

aBool = True ? False
True ‵xor ‵ True = False
True ‵xor ‵ False = True
False ‵xor ‵ x = x
xorSelf x = x ‵xor ‵ x

Now consider the expression xorSelf aBool. Interpreting the program as a term rewriting
system, we could have the following reduction:

xorSelf aBool → aBool ‵xor ‵ aBool → True ‵xor ‵ aBool
→ True ‵xor ‵ False → True

吀�e given outermost reduction results in the unintended result True, which would not be
possible using a strict evaluation strategy. To exclude such unintended results, Curry does not
allow this reduction by using a call-time choice semantics [13]: the values of non-deterministic
expressions are determined at the time of the application of an operation. 吀�is results in
the same reductions as strict evaluation, but it does not require an eager evaluation of the
arguments. In fact there is a lazy evaluation strategy for functional logic languages with
call-time choice semantics using sharing between the arguments of an operation [1]. 吀�us, we
can assume that we can evaluate this expression lazily with the occurrences of aBool shared
a昀�er the application of xorSelf , so that both occurrences of aBool are either evaluated to True
or False. 吀�us, the expression only has the expected result False. 吀�e evaluation of the above
expression can be visualised in the following way:

xorSelf aBool → ⋅ ‵xor‵ ⋅

aBool
⋅ ‵xor‵ ⋅ → False

True

⋅ ‵xor‵ ⋅ → False

False

→
→

13

data Person = Ada ∣ Bernhard ∣ Camelia ∣ Kofi ∣ Husain ∣ Hikari ∣ Rayen ∣ Gaurav
mother Rayen = Hikari
mother Gaurav = Hikari
mother Hikari = Ada
mother Kofi = Ada
father Rayen = Husain
father Gaurav = Husain
father Hikari = Bernhard
father Kofi = Bernhard
parent x = father x
parent x = mother x
child x ∣ parent y =∶= x = y where y free

Figure 2.1.: A variant of the classic family relations program in Curry.

2.1.6. Set Functions

Figure 2.1 shows a variant of the classic family tree example. 吀�e data type Person defines a
set of people which can be the mother or the father of a child. Furthermore, we define the
operation parent , which denotes non-deterministically the parents of a child. In the definition
of the operation child we make use of free variables to invert the definition of parent . Note
that child may also yield multiple values non-deterministically.

With this definition it is possible to define the predicate hasChild in the followingway:

hasChild x ∣ child x =∶= = success

A person has a child if there is a child of this person. 吀�e name of the child is a free
variable like y in the operation child , but it was omi琀�ed as the name of the child is not
needed.

吀�e operation hasChild works as expected: the evaluation of hasChild Camelia fails and the
evaluation of hasChild Husain evaluates to Success. In fact, hasChild Husain evaluates to
Success in two ways: one time through the child Gaurav and one time with the help of Rayen.
As a result, we get the value Success two times. 吀�is may be undesired; we may just like two
know if there is any child of Husain.

We can use set functions [2] in this case. For any operation f , fS is called its set function. fS is
used to compute a set of values given by f . Using this concept, we capture the non-determinism
of the function f , but not the non-determinism origination from its arguments. In Curry, we
can get the set function of isChild with the operation set1 as isChild has one argument. 吀�ere
are corresponding set operations for other numbers of arguments.

set1 ∶∶ (a1 → b) → a1 → Values b

14

吀�e result type Values b is a multiset of the result values. As it has an arbitrary order, there
are some operations on it, which do not depend on its order.

isEmpty ∶∶ Values → Bool
sortValues ∶∶ Values a → [a]

吀�e operation isEmpty checks whether the set of values is empty and the operation sortValues
sorts all values of the set in ascending order.

With the help of isEmpty, we can define hasChild again. A person has a child if and only if
the set of children is not empty.

hasChild x ∣ ¬ (isEmpty ((set1 child) x)) = success

With this definition of hasChild , the evaluation of hasChild Husain only yields one Success
as expected.

吀�e call of hasChild (Husain ? Hikari) still yields two values, because the non-determinism
originating in the arguments of the set function is not captured and both Husain and Hikari
have children.

2.2. Haskell

吀�e Curry compiler KiCS2 compiles the functional logic language Curry (section 2.1) to
Haskell reusing the given implementations of demand-driven evaluation and higher-order
functions. 吀�e implementation of the non-deterministic operations is explained in section 2.3.
As Haskell is widely known in academics and the syntax of Haskell is similar to that of
Curry, an introductive characterisation of the language is omi琀�ed here. Instead, this section
describes certain library modules, which have to be understood to implement various parallel
search strategies. Additionally, it describes some specifics related to the runtime system of the
Glasgow Haskell Compiler (GHC) [23]. 吀�e GHC is the most important Haskell implementation
and it is also used by KiCS2 to compile the generated Haskell code. Readers looking for a
definition of Haskell are encouraged to read the Haskell 2010 Report [20] whereas readers
looking for a gentle introduction to Haskell may consider the book Learn You a Haskell for
Great Good [16].

Reachability

吀�e runtime system of the Glasgow Haskell Compiler includes a garbage collector to free
memory occupied by objects that are not longer accessible from the program. GHC’s garbage
collector is a tracing garbage collector and thus determines which objects are reachable. A
reachable object is, informally defined, an object that can still be accessed from the program.
More formally, an object is reachable if and only if at least one of the following statements is
true:

15

• 吀�e object is in the root set . 吀�e root set is a set of objects which are assumed to be
reachable. In Haskell, these are all global objects and objects, which are referenced in
the call stack of each Haskell thread as a local variable or function argument.

• 吀�e object is referenced from another object that is reachable.

All objects which are not reachable are garbage and the memory they occupy can be recovered.
吀�e implementation of the garbage collector in GHC is described by Marlow et al. [7, 21,
22].

Weak References

Sometimes it is necessary to hold a reference to an object without keeping it reachable.
吀�e standard solution for this problem are weak references [15]. Consider the following
interface.

data Weak v
mkWeakPtr ∶∶ v → Maybe (IO ()) → IO (Weak v)
deRefWeak ∶∶Weak v → IO (Maybe v)

吀�e function mkWeakPtr creates a weak reference to the object given as the first argument.
吀�e IO action provided as the second argument is an optional finaliser. For as long as this
object is reachable by other means than through weak references, the function deRefWeak
will return this object. When this object is not reachable anymore, it may be finalised by the
garbage collector. Finalizing means making deRefWeak called on weak reference to this object
return Nothing and then run the finaliser. A昀�er the finalisation, the object may be discarded.
Note that the reachability of the weak reference object does not affect the reachability of its
value and neither a reference in the finaliser nor in the weak reference itself keeps the value
reachable.

Haskell’s weak pointers are in fact key/value weak references and therefore have an even more
general constructor.

mkWeak ∶∶ k → v → Maybe (IO ()) → IO (Weak v)

吀�e function mkWeak takes, besides the finaliser, a key of type k and a value of type v and
creates a weak pointer of type Weak v . 吀�is means for the reachability that the value of the
weak reference is reachable if the key of the weak reference is reachable1. Again, neither the
reachability of the weak reference object nor a reference in the finaliser affects the reachability
of the key or value.

For weak references the above definition of reachability can be extended in the following way.
An object is reachable if at least one of the following statements holds true [18]:

• It is in the root set.

• It is directly referenced by another reachable object, apart from a weak reference.

1Note that this statement says “if” and not “if and only if”.

16

• It is a weak reference object whose key is reachable.

• It is a value or a finaliser of a weak reference whose key is reachable.

2.2.1. Semi-Explicit Parallelism

While completely implicit parallelism is not profitable enough yet, Trinder et al. introduced
a runtime supported semi-explicit parallelism interface for Haskell with Glasgow parallel
Haskell in 1998 [31]. Based upon this, Marlow et al. presented a more flexible formulation
of strategies for semi-explicit parallelism in 2010 [25]. For both interfaces, the runtime sys-
tem manages most of the parallel execution, requiring the programmer to indicate these
expressions that might be usefully evaluated in parallel. Both interfaces describe deter-
ministic parallelism, meaning that the parallelisation does not affect the behaviour of the
program.

Basic Combinators

In Haskell parallelism is introduced by the combinator par .

par ∶∶ a → b → b

吀�e evaluation of the expression p ‵par ‵ e allows the evaluation of p in parallel and then
evaluates e. O昀�en, p itself appears somewhere in the expression e. 吀�ereby, par is only
strict in its second argument; ⊥ ‵par ‵ e, with ⊥ being a failure, would thus be evaluated to
e. When p ‵par ‵ e is evaluated, we say that p becomes sparked . It is added to the spark pool,
which is a buffer of sparked computations. If a processor becomes idle, it starts to evaluate a
spark from the spark pool. However, sparked expressions are not necessarily evaluated in
parallel if their evaluation is requested earlier by the main evaluation. Sparks have very li琀�le
overhead compared to the evaluation in a separate Haskell thread. Note that par does not
affect the semantics of the expression and it can, therefore, be omi琀�ed to retrieve a sequential
program.

Similar to par , the Haskell Prelude contains the function seq.

seq ∶∶ a → b → b

s ‵seq‵ e denotes the evaluation of the first argument s to weak head normal form2 before
returning the result of the second argument e. In contrast to par , seq is strict in both arguments
so that the compiler may rewrite the above expression to e ‵seq‵ s ‵seq‵ e. Although, this usually
is not a problem when expressing strictness, it may be a problem when annotating code for
parallelism: we may want to evaluate s before e, because e has already been annotated for
evaluation in parallel. For this, we have the function pseq.

pseq ∶∶ a → b → b

2Weak head normal form means that the head of an expression cannot be evaluated any further.

17

pseq is only strict in its first argument and therefore s ‵pseq‵ e may not be rewri琀�en as de-
scribed above. pseq and par are both part of the original Glasgow parallel Haskell. 吀�is
interface has been used in the original parallel search strategy for KiCS2 by Reck and Fis-
cher [30].

Eval Monad

Based on the original strategies from [31], Marlow et al. introduced a new formulation of
parallelisation strategies in 2010 [25]. It is based on the type Strategy, which is a function
that embodies a parallel evaluation strategy.

data Eval
type Strategy a = a → Eval a
runEval ∶∶ Eval a → a

A strategy does an arbitrary amount of evaluation on its argument in parallel or in se-
quence and it has to return the argument itself. Eval is a monad and is called the evalu-
ation order monad . It is used to define new strategies by combining existing ones. Eval
is a strict identity monad and therefore can be used to control the evaluation order [25,
33].

Existing strategies encompass the following:

r0 performs no evaluation at all.

rseq evaluates its argument to weak head normal form.

rdeepseq fully evaluates its argument.

rpar sparks its argument for evaluation in parallel.

吀�e monadic notation gives us a concise way to express the evaluation order. Consider the
different formulation of the same rule of nfib as seen in figure 2.2.

nfib n =
let x = nfib (n − 1)

y = nfib (n − 2)
in x ‵par ‵ (y ‵pseq‵ x + y + 1)

nfib n = runEval $ do
x ← rpar (nfib (n − 1))
y ← rseq (nfib (n − 2))
return (x + y + 1)

Figure 2.2.: 吀�e parallel rule of nfib wri琀�en using basic combinators and rewri琀�en using
strategies.

18

We can think of the evaluationmonad as a embedded domain-specific language (EDSL), allowing
us to express evaluation order in the languageHaskell, which otherwise has no clear evaluation
order.

Fizzled Sparks

When an expression in the spark pool is required by the main evaluation during its normal
execution, it will be evaluated immediately by this thread. As a result, the spark pool may also
contain values instead of unevaluated expressions. We say, this spark is fizzled. As it is already
evaluated, there is no use in evaluating this spark in parallel. 吀�e runtime system removes
these fizzled sparks from the spark pool, consequently the garbage collector may remove the
values they refer to as long as they are not referenced elsewhere.

Speculative Parallelism

Using the new formulation, the runtime system also supports speculative parallelism where
an expensive evaluation is parallelised even though its value is not known to be required
later [25]. In its implementation, the spark pool contains weak references (section 2.2), so
the garbage collector only retains sparks that are otherwise reachable from the root of the
program.

2.2.2. Concurrent Haskell

Concurrent Haskell is an extension to Haskell adding support for explicitly threaded concurrent
programming [14, 17]. Concurrent Haskell was created to write concurrent applications such
as interactive and distributed systems in contrast to parallel applications. In these concurrent
applications, concurrency is o昀�en used to increase its responsiveness.

吀�e authors of Concurrent Haskell prefer implicitly threaded parallelisation from section 2.2.1
for parallelism which is increasing the performance by exploiting multiprocessors. However,
Concurrent Haskell has been proven useful to implement parallelism as well, because it
does not have Glasgow parallel Haskell’s limitation of being semantically deterministic (see
section 4.4).

Programming in ConcurrentHaskell is based upon the following two basic concepts.

• 吀�reads and a mechanism to initiate new threads.

• Atomically mutable state for communication between multiple threads.

Based on these foundations, more elaborate concepts have been developed, among which
are:

• Asynchronous exceptions were developed to cancel foreign threads [24].

19

• So昀�ware Transactional Memory (STM) allows safe compositions of access on shared
state using optimistic synchronisation [11].

All these concepts have been used for this thesis to implement parallel search strategies.
吀�reads and basic communication through mutable variables are used for the implementation
fair search strategies in section 4.5 and the bag of tasks in section 5.2. 吀�e implementa-
tion of the bag of tasks also uses STM for the communication between multiple worker
threads. Asynchronous exceptions are used to cancel foreign threads as described in sec-
tion 5.1 and for various inter thread communication of the fair search strategy defined in
section 4.5.3.

Threads

One basic concept of the explicit concurrency in Concurrent Haskell are threads. 吀�reads are
sequences of actions that can be executed independently; in Haskell actions are values of type
IO a and therefore actions that might perform input/output operations. Because threads are
independent from each other they may be executed in parallel. A new thread can be started
using forkIO:

forkIO ∶∶ IO () → IO 吀�readId

forkIO takes the action to be performed in parallel as its argument and returns the action
starting a new thread and delivering its unique identifier, its 吀�readId . When forkIO is
executed, a new thread will be started that runs concurrently with all other threads on the
system. If multiple threads have effects, the effects will be interleaved.

吀�e interleaving of effects can be illustrated with the example

main = forkIO (write ’a’) >> write ’b’

write x = putChar x >> write x

which results in a random interleaving of as and bs for example in the following out-
put.

abbaabababbaaaaaabbaabbbbb…

Note that this interleaving is non-deterministic, so we may sometimes get strings with only
one le琀�er.

In GHC threads are extremely lightweight; typically a thread requires less than a hundred
bytes plus its own stack. 吀�e size of the stack is dynamic rather than static, so it can grow and
shrink with the demand of the thread. While in theory the number of supported threads is in
the millions, practically the number of threads is limited by the available memory, because the
size of a thread’s stack can grow to significant amounts. 吀�is phenomenon leads to problems in
the memory consumption of the fair search strategy, see section 6.3.3.

20

A Haskell system may implement preemptive multitasking or cooperative multitasking; GHC,
the Haskell implementation used in this thesis, does preemptive multitasking. 吀�erefore, it
occasionally stops the running thread and starts a scheduler to decide which thread to run
next. 吀�is happens when a thread does memory allocation.

For cooperative multitasking, where the thread itself has to initiate a context switch, there is
the action yield .

yield ∶∶ IO ()

In case of a cooperative multitasking environment, yield forces another thread to be executed
next if there are other runnable threads. In a preemptive multitasking environment the action
allows a context switch leaving it to the runtime system to actually decide whether it does a
context switch.

Mutable Variables

吀�e most basic communication abstraction in Concurrent Haskell is the mutable variable, an
MVar . An MVar can be thought of a box which may either contain a value or be empty. Its
state is shared between all threads and it has the following interface.

data MVar a
newEmptyMVar ∶∶ IO (MVar a)
putMVar ∶∶MVar a → a → IO ()
takeMVar ∶∶MVar a → IO a

吀�e action newEmptyMVar creates a new empty MVar , putMVar puts a value into the given
MVar , but blocks if it is already filled, and takeMVar takes the value out of the MVar and
blocks if it is empty.

With this interface, it is already a generalisation for various concurrency abstractions:

• A mutable variable of type MVar () is a binary semaphore or a lock with the signal and
wait operations implemented as putMVar () and takeMVar .

• An MVar a can be seen as an one-place channel to be used for asynchronous communi-
cation between threads.

• 吀�e mutable variable may contain a state shared between multiple threads, which can
be modified by a pair of takeMVar and putMVar .

21

Channels

A channel is a synchronisation tool which allows one or multiple threads to write values into
it and one or multiple threads to read these values in the same order. As seen above, an MVar
can already be used as a channel with a limited capacity. Additionally, Concurrent Haskell
provides an unlimited channel Chan with the following interface:

data Chan a
newChan ∶∶ IO (Chan a)
writeChan ∶∶ Chan a → a → IO ()
readChan ∶∶ Chan a → IO a

吀�e action newChan creates a new channel, writeChan writes a value into the channel and
readChan reads a value from the channel. readChan blocks on an empty channel whereas
writeChan does not block and always succeeds.

吀�is unlimited channel is in fact implemented using mutable variables. Its implementation is
described by Peyton Jones et al. [14] or in more detail by Marlow [17].

For this thesis, we use channels to return values of evaluations from other threads to the main
thread. 吀�e main thread collects these values.

Asynchronous Exceptions

An important concurrent language feature is asynchronous exceptions (Marlow et al. 2001 [24]).
Asynchronous exceptions, in contrast to synchronous exceptions, can be thrown by one thread
to another. While the use of such exceptions seems to contradict modularity, it is o昀�en an
useful tool to signal timeouts and to terminate threads which calculate values that are no
longer required by the system (section 5.1).

Exceptions inHaskell are values of typeswhich instantiate the type class Exception.

class (Typeable e, Show e) ⇒ Exception e

Haskell exceptions can be thrown both synchronously and asynchronously. 吀�rowing an
exception synchronously can be done even in pure code, whereas asynchronously throwing
an exception to another thread requires being in the IO monad.

throw ∶∶ Exception e ⇒ e → a
throwIO ∶∶ Exception e ⇒ e → IO a
throwTo ∶∶ Exception e ⇒ 吀�readId → e → IO ()

In contrast to the throwing of exceptions, exceptions can only be caught in the IOmonad.

catch ∶∶ Exception e ⇒
IO a – computation to run

→ (e → IO a) – exception handler
→ IO a

22

When an exception is thrown – either during the evaluation of pure code or during the
execution of an IO action – the running thread either stops completely, or, if the exception is
thrown inside a catch, the exception handler is run. To catch exceptions in the evaluation
of pure code, the module Exception also provides a function to force the evaluation of its
argument to weak head normal form in the IO monad.

evaluate ∶∶ a → IO a

Asynchronous signaling or killing can occur at any point of the target thread’s execution,
even when a lock is held. 吀�e lock will then not be properly released. 吀�is makes it necessary
to mask the receiving of asynchronous exceptions for certain periods.

mask ∶∶ ((forall a ∘ IO a → IO a) → IO b) → IO b
uninterruptibleMask ∶∶ ((forall a ∘ IO a → IO a) → IO b) → IO b

Masking asynchronous exceptions means that threads, a琀�empting to raise an exception in the
masked thread, block until asynchronous exceptions are unmasked again. Masking exceptions
with mask is interruptible, meaning that exceptions may still be received while the execution
is blocked, for instance when blocking on anMVar . As its name suggests, uninterruptibleMask
is not interruptible and therefore guarantees that no asynchronous exception is received in
the evaluated code.

吀�e two masking functions mask and uninterruptibleMask provide a function to restore the
previous masking state to the masked code (type forall a ∘ IO a → IO a). However, this
function does not guarantee that asynchronous exceptions are unmasked again, but rather
restores the state prior to the masking. If the previous state was also masked, it would simply
restore the masked state. 吀�e only possibility to unmask all asynchronous exceptions masked
in the calling code is to start a new thread with forkIOWithUnmask.

forkIOWithUnmask ∶∶ ((forall a ∘ IO a → IO a) → IO ()) → IO 吀�readId

Similarly tomask, it provides a function to the thread which performs its argument in another
mask state. 吀�is time, it completely unmasks all asynchronous exceptions. 吀�us, it is o昀�en
used in library code which throws asynchronous exceptions itself, for example in the code
explained in section 4.5.

So昀�ware Transactional Memory

Concurrent programming, even if we only consider concurrency between threads in the same
process, is extremely difficult. Using programming techniques based on locks easily results
in wrong results, deadlocks, and bad performance. Moreover, lock-based concurrency o昀�en
conflicts with modularity.

Consider the following Haskell interface for bank accounts where both functions, dispose and
withdraw , are individually correct; they are thread-safe and atomic: no intermediate state is
visible to another thread.

23

dispose ∶∶ Account → Amount → IO ()
withdraw ∶∶ Account → Amount → IO ()

However, correctly composing both actions to implement a bank transfer is not possible.
Independent of the order of the composition, an intermediate state would be visible to another
thread. If the second action blocks, this intermediate state could be even visible for a long
time.

More promising is the use of so昀�ware transactional memory (STM) [11], which allows us to
atomically compose memory transactions. Using STM, the type signature of the functions
introduced above is a li琀�le different.

dispose ∶∶ Account → Amount → STM ()
withdraw ∶∶ Account → Amount → STM ()

We want to perform actions, such as dispose and withdraw , atomically.

atomically ∶∶ STM a → IO a

Like IO, STM is a monad, so we are able to actually compose both actions. To implement the de-
sired bank transferwe simply compose both actions in an arbitrary order.

transfer ∶∶ Account → Account → Amount → STM ()
transfer from to amount = withdraw from amount >> dispose to amount

Note that an implementation of withdraw may block when there is no money on the bank
account from and perhaps also dispose may be blocking when the account has been locked
by the bank. In both cases, no action will be performed and the whole transaction will
be retried once the global state changes. Such a retry can be triggered with the action
retry .

retry ∶∶ STM ()

It does not necessarily trigger the execution being run again directly, but stops the evaluation
of the action. When one of the read variables is changed, the transaction will be retried.
吀�e variables, which are managed by the so昀�ware transactional memory system, are called
transactional variable, TVar .

data TVar a
newTVar ∶∶ a → STM (TVar a)
readTVar ∶∶ TVar a → STM a
writeTVar ∶∶ TVar a → a → STM ()

Knowing how to interact with the transactional memory, we are now able to define the
withdraw function declared above. It can be seen in figure 2.3.

Note that the so昀�ware transactional memory system has to restart transactions in two
cases:

• A transaction reaches the retry command.

24

type Amount = Int
data Account = Account (TVar Amount)
withdraw (Account balanceVar) amount = do
balance ← readTVar balanceVar
if balance < amount
then retry
else writeTVar balanceVar (balance − amount)

Figure 2.3.: Implementation of a bank account’s withdraw action using so昀�ware transactional
memory.

• Another transaction changes one of the read values and therefore makes the transaction
invalid.

Because transactions might get aborted, they must not do anything irrevocable; in particular,
IO actions are not allowed.

Using transactional variables, it is possible to implement more sophisticated types like transac-
tional channels (TChan) and transactional mutable variables (TMVar), which are also provided
in the Haskell package stm.

2.2.3. Runtime System

GHC’s runtime system supports thousands of Haskell threads and millions of sparks by mul-
tiplexing them onto a handful of system threads. 吀�ese system threads are called capabilities.
吀�e number of these is set at the start of the runtime system, but it may be increased later.
Benchmarks show that it is best to have roughly one capability for each physical CPU core. A
capability can either execute a Haskell thread, or, if there are no Haskell threads ready to run,
evaluate a spark (see section 2.2.1). More information regarding the multiprocessor support
in Haskell is given by Marlow et al. [22].

2.3. KiCS2

KiCS2 compiles Curry, described in section 2.1, to Haskell. 吀�e non-determinism in KiCS2 is
represented explicitly in the data structures [4]. 吀�ese data structures are explained in sec-
tion 2.3.1. 吀�ese are then translated into search trees explained in section 2.3.2.

2.3.1. Representing Non-Determinism in Data Structures

In a non-deterministic language, an expression can yield multiple values or even no value.
Multiple values are represented by an additional Choice constructor for each type, for instance

25

for the type Bool:

data Bool = True ∣ False ∣ Choice Bool Bool

In section 2.1.5 we introduced the operation aBool, which yields either True or False. It can
now be wri琀�en as:

aBool = Choice True False

Because all data types have an additional constructor, all operations based on pa琀�ern matching
have to be extended so they will not fail on the occurrence of a choice constructor, but move
the choice constructor one level higher. We define the boolean negation ¬ in Curry like in
the following example:

¬ False = True
¬ True = False

吀�e extension to support the choice constructor then moves the constructor one level
higher:

¬ False = True
¬ True = False
¬ (Choice x y) = Choice (¬ x) (¬ y)

While this allows us to introduce non-determinism, it does not reflect Curry’s call-time choice
semantics (see section 2.1.5) correctly. Consider the operation xorSelf , which we used to
explain the call-time choice semantics.

xor True True = False
xor True False = True
xor True (Choice x y) = Choice (xor True x) (xor False y)
xor False y = y
xor (Choice x y) z = Choice (xor x z) (xor y z)
xorSelf x = xor x x

As xorSelf does not depend on pa琀�ern-matching, there is no need to transform it in any way.
Let us again have a look at the expression xorSelf aBool and its evaluation.

xorSelf aBool → xorSelf (Choice True False)
→ xor (Choice True False) (Choice True False)
→ Choice (xor True (Choice True False)) (xor False (Choice True False))
→ Choice (Choice (xor True True) (xor True False)) (Choice True False)
→ Choice (Choice False True) (Choice True False)

吀�e choices in this result represent different possible values. If we want to show all values of
an expression, we have to enumerate all values contained in the choices. In this case, these
are False, True, True, and False. Indeed, these are exactly the results we would get when
interpreting the Curry program as a term rewriting system, but it does not reflect the call-time
choice semantics. Call-time choice semantics does not allow the value True for this expression,

26

because the values of a non-deterministic expression are determined at the time of the function
application. To ensure this, different choice instances are uniquely identified. 吀�erefore, every
choice-constructor gets an additional identification parameter.

data Bool = True ∣ False ∣ Choice ID Bool Bool

吀�e ID could, for example, be an integer.

type ID = Integer

With this additional identifier, the expression xorSelf aBool evaluates in the following
way:

→ ⋅ ‵xor‵ ⋅

aBool
xorSelf aBool

→ xor (Choice 1 True False) (Choice 1 True False)
→ Choice 1 (xor True (Choice 1 True False)) (xor False (Choice 1 True False))
→ Choice 1 (Choice 1 (xor True True) (xor True False)) (Choice 1 True False)
→ Choice 1 (Choice 1 False True) (Choice 1 True False)

To get call-time choice semantics here, we have to make consistent selections: we have to select
the same branch for all choice constructors with the same identifier. In this case, selecting the
le昀� branch in the outer choice means also selecting the le昀� branch in the inner choice resulting
in the desired value False. Selecting the right branch in the outer choice means selecting the
right branch in the inner choice, also resulting in the value False.

吀�is implementation requires the creation of fresh identifiers during the computation, which
is a non-trivial problem in lazy functional languages. In fact, in KiCS2 it is possible to select
from multiple implementations of the identifier supply.

In contrast to evaluations yielding multiple results, there are also those that fail: those do not
yield any result. A failure does not result in an abortion of the whole computation, but can be
considered a part of the computation which does not produce a result. In KiCS2, a failure is
represented as an additional constructor of each data type called Fail.

data Either a b = Le昀� a ∣ Right b ∣ Choice ID (Either a b) (Either a b) ∣ Fail

吀�e implementation of the function le昀� , in Curry

le昀� ∶∶ Either a b → a
le昀� (Le昀� a) = a

can be translated to Haskell using an additional rule matching any values when all other rules
failed.

le昀� (Le昀� x) = x
le昀� (Choice i x y) = Choice i (le昀� x) (le昀� y)
le昀� = Fail

27

Note that le昀� results in a failure if the argument is Right a, or if it already is a failed computa-
tion. 吀�us, it propagates the failed state of its argument.

2.3.2. Search Tree

吀�e operations generated in section 2.3.1 create structures containing choices, failures, and
finally values. To extract the value of a computation, we have to enumerate all values
in the choice tree in some order, either sequentially or in parallel. To provide a com-
mon interface for these enumerations, we provide a simplified data structure of a search-
tree.

data SearchTree a = None ∣ One a ∣ Choice (SearchTree a) (SearchTree a)

吀�e search tree is very similar to the data structure above. It can either be a failure (None), one
value (One), or a choice (Choice). Each occurence of one of these constructors is called node.
Both, None and One constructors are the leaves of the search tree.

In contrast to the structure above, forbidden branches − those with different decisions for
two choices with the same ID − are already eliminated. 吀�us, the ID is not necessary in the
choice constructor. 吀�e function try to compute this search tree is omi琀�ed here, but the
implementation is discussed in [4].

try ∶∶ a → SearchTree a

Note that in the search tree created by try, each expression in a One constructor is already
evaluated to normal form. Normal form means that there is no function application le昀� in the
expression. If it had a function application le昀�, it could introduce a choice operator, ?, and
therefore we would not have just one but possibly multiple results.

吀�ose search trees can very well be infinite, like the search tree of the computation sketched
in figure 2.4.

main = xs ++ [x] where x , xs free

Choice

One Choice

[x] One

[y, x]

Choice

Figure 2.4.: An infinite search tree.

28

Representing non-deterministic results in a data-structure rather than as a computation allows
us to define different strategies to explore the search space. In fact, KiCS2 allows the user to
select a search strategy. It initially comes with depth-first search (section 4.2.1), breadth-first
search (section 4.2.2), iterative deepening, and a simple parallelised depth-first strategy
(section 4.3.1). Additionally, the user is able to choose between different forms of displaying
the values of a computation. 吀�e user may choose either to print all solutions, to print only one
solution, or to print one solution a昀�er the other by the user’s requests.

29

3. Evaluation Criteria

To design search strategies, it is necessary to keep the criteria in mind, which are used in the
evaluation. 吀�is chapter gives a short introduction to those criteria. 吀�e evaluation of the
search strategies is described in chapter 6.

3.1. Resource Consumption

Speeding up the computation of the search results by exploiting multiple processors is a main
goal of this thesis. 吀�us, resource consumption is the most obvious criterion. Apart from
the needed computation time, we also have to keep in mind the memory consumption of the
search strategies.

3.2. Completeness

A huge problem in programming are calculations that diverge and therefore do not terminate.
In Curry, different search strategies may result in different termination behaviours when
being applied to the same program. Programs exposing this behaviour create search trees,
some branches of which converge whereas others diverge. We distinguish between various
possible sources of divergence.

We call a search strategy complete if the strategy finds all available values in all search trees.
It is complete with regard to a certain category of search trees if it finds all available values in
search trees of this category. 吀�e following text presents categories, which are important for
this thesis.

Finite Trees

吀�e most simple category of search trees are finite trees. Because a finite tree is a finite
data structure, it can be evaluated to normal form. 吀�e enumeration of all values in this
search tree is trivial and therefore all presented search strategies are complete regarding finite
trees.

30

Search Trees with Infinite Non-Deterministic Computations

吀�e following example shows that search trees do not have to be finite, but instead may be
infinite:

[] ++ ys = x
(x ∶ xs) ++ ys = x ∶ (x ++ ys)
ending x = xs ++ [x] where xs free

Choice

One Choice

[x] One

[y, x]

Choice

Figure 3.1.: A search tree with an infinite number of choices.

Using this definition, the expression ending 1 would be an arbitrary list ending with the value
1. 吀�e search tree of this expression can be seen in figure 3.1. As there is an infinite number
of lists ending with the value 1, the search tree of this expression has an infinite number of
values and also an infinite number of choices. Evaluating the whole search tree to normal
form would not terminate as its structure is infinite. Because each level in the search tree
has only an finite number of nodes, it is possible to enumerate all values of the search tree
level-wise with breadth-first search (section 4.2.2).

Search Trees with Infinite Deterministic Computations

In addition to search trees with infinite numbers of choice constructors, there are also search
trees in which the computation of a single tree node, for instance a One constructor, does not
terminate. Consider the following minimal example1.

loop = loop
main = loop ? ()

吀�e search tree for the main operation can be seen in figure 3.2. While the result in the le昀�
branch cannot be evaluated to normal form, the value on the right, (), is already in normal
form. A complete search strategy would have to find the value of () at some point in the
calculation.

1In KiCS2, a simple loop function would be detected to be non-terminating by GHC’s runtime system.

31

Choice

One

()

Figure 3.2.: A search tree with a deterministic loop.

Note that the figure does not show the One constructor in the le昀� branch even though loop is
a deterministic computation. 吀�e runtime system of KiCS2 does not detect that the calculation
of loop is deterministic and so it does not know if, at some point, a non-deterministic choice
appears in the calculation. As a result it does not know that there is only one value in the
looping branch.

O昀�en, such infinite deterministic computations create data constructors. One possible com-
putation is the evaluation of an infinite data structure.

ones = 1 ∶ ones
main = ones ? []

Again the value on the right, [], is already in normal form and has to be found by any complete
search strategy. However, most strategies would run into an infinite computation during the
evaluation of ones.

3.3. Stopping the Computation

O昀�en, a programmer only wants to know one value of an expression or just wants to know
about the existence of a value. We already saw such an example with the function hasChild
(section 2.1.6), which returns exactly one success if there the value provided as the argument
has at least one child.

hasChild x ∣ ¬ (isEmpty ((set1 child) x)) = success

When we use hasChild in our code, we don’t want the computation to continue unnecessarily
a昀�er computing the first value.

While this is relatively easy for sequential search strategies, it is not trivial for parallel search
strategies. With a parallel search strategy, we may have started multiple threads to calculate
the values of the expression, but we are not interested in those anymore. Starting a parallel
computation without knowing that we will need its result in the end is called speculative
parallelisation. All those parallel computations have to be stopped once the first result is
available.

32

4. Search Strategies

Having the possibility to choose between multiple search strategies is an important feature
of KiCS2. 吀�e system can easily be extended with additional strategies such as the parallel
strategies we introduce in this thesis. 吀�e next sections describe how these search strategies
are integrated into the complete system (section 4.1), the implementation of the default se-
quential strategies (section 4.2), and the idea and implementation behind the newly developed
parallel search strategies. 吀�ese include deterministic parallel search strategies (section 4.3),
non-deterministic search strategies using a bag of tasks approach (section 4.4), and fair search
strategies (section 4.5).

4.1. Search Strategies as Part of the KiCS2 System

吀�is section describes how sequential and parallel search strategies are integrated with the
rest of KiCS2. Figure 4.1 shows the dependencies between the modules containing the most
important parts of the implementation of non-deterministic search. 吀�e search strategies
provided as part of the runtime system are defined in the module Search. In addition to these
built-in search strategies there are also some search strategies defined in Curry itself as part
of the standard Curry library in the module SearchTree. SetFunctions are based upon this and
thus use the same search strategies.

KiCS2 links the main program against Search to use one of the search strategies for its main
goal. Furthermore, themain program can make use of the modules SetFunctions and SearchTree
for encapsulated search. 吀�ough, it is be琀�er to use SetFunctions, because using SearchTree
directly is deprecated.

As part of this thesis, we added parallel search strategies to the module Strategies in KiCS2’s
runtime system. 吀�ese have been made available to the user in two ways: it is possible to use
these strategies as a search strategy for the main goal and there is a Curry interface to these
search strategies in ParallelSearch. In contrast to SetFunctions, the interface in ParallelSearch
can only be used in the IO monad. 吀�us, certain profitable search strategies have been
reimplemented in External_SearchTree, the Haskell implementation for parts of SearchTree, as
well.

吀�e parallel strategies are implemented as search strategies on a search tree data type called
SearchTree.

data SearchTree a = None ∣ One a ∣ Choice (SearchTree a) (SearchTree a)

33

Runtime System

Haskell
Strategies

Haskell
Search

Curry Library

Haskell
External_ParallelSearch

Curry
ParallelSearch

Haskell
External_SearchTree

Curry
SearchTree

Curry
main program

Curry
SetFunctions

deprecated

Figure 4.1.: Dependencies between relevant modules of the KiCS2 with Parallel Search.

All parallel search strategies are defined as a function transforming this search tree into
a list. Some of these are defined in terms of IO actions and others are defined as pure
code.

search ∶∶ SearchTree a → [a]
searchIO ∶∶ SearchTree a → IO [a]

When the search is defined as IO actions, the evaluation of the returned list happens lazily.

All strategies depend on the search tree being generated by searchMSearch or by encapsulatedSearch.
searchMSearch is for the top-level search and encapsulatedSearch is for the encapsulated search;
encapsulatedSearch depends on searchMSearch, itself. 吀�e Curry bindings in ParallelSearch di-
rectly translate the results to Curry for the functions described in section 7.

For each top-level search strategy, there is a function to transform the non-deterministic
expression into a monadic list.

compute ∶∶ NormalForm a ⇒ NonDetExpr a → IO (List IO a)

A monadic list is a list containing nested monadic actions and is defined in the following
way.

data List m a
= Nil – Empty list
∣ Cons a (m (List m a)) – List constructor

It is used to delay IO actions until their results are requested explicitly. 吀�is way, it is possible
to offer different output variants like printing all values, printing just the first value, or
printing the values on the user’s demand.

34

4.2. Sequential Search Strategies

To traverse the search tree (section 2.3.2) and convert it into a sequence, we define different
search strategies. KiCS2 initially provides a set of sequential search strategies, including
depth-first search, breadth-first search, and iterative deepening. Two of these, namely depth-
first search and breadth-first search, have proven to be an useful base for parallel search
strategies and therefore they are described in the following sections.

4.2.1. Depth-First Search

?

?

2

?

?

! !

1

3

Figure 4.2.: A depth-first search over a search tree.

吀�e depth-first strategy is similar to the evaluation strategy of implementations using a back-
tracking approach in the logic language Prolog. It starts traversing the search tree at the root
node, the topmost node in figure 4.2, and then first traverses the le昀� subtree before visiting the
right subtree. Both subtrees are then traversed with the same strategy. As a result the search
follows one branch down to its leaf before vising the next branch.

We define all search strategies as strategies to traverse the tree defined in section 2.3.2.
吀�e constructor None represents a failure, One x represents a single value, and Choice l r
represents a non-deterministic choice between its two subtrees. 吀�erefore, the search strategy
has the following type signature:

dfsSearch ∶∶ SearchTree a → [a]

吀�e simple constructors None and One can be handled easily as those search trees have
only one possible list representation: the empty list and the list containing just one ele-
ment.

dfsSearch None = []
dfsSearch (One x) = [x]

At a non-deterministic choice, the results of the right subtree are appended to the results of
the le昀� subtree. When the list is evaluated, the strategy first searches the le昀� subtree and
then continues with the right subtree.

35

dfsSearch (Choice l r) = dfsSearch l ++ dfsSearch r

As this search follows each branch down to its leaf, it may also follow an infinite branch
before returning an existing leaf in the search tree. 吀�us, the depth-first strategy is only
complete for finite search trees.

4.2.2. Breadth-First Search

?

?

2

?

?

! !

1

3

Figure 4.3.: A breadth-first search through a search tree.

Breadth-first search partly solves the completeness problem of the depth-first search. 吀�is
strategy inspects the search tree level by level and thus does not run into infinite choice
structures before evaluating each leaf. 吀�e order in which the nodes are visited can be seen
in figure 4.3.

To inspect the search tree level by level, the nodes of the current level are stored in a list. In
the first level there is only the root node.

bfsSearch ∶∶ SearchTree a → [a]
bfsSearch t = bfs [t]

吀�e auxiliary function bfs traverses the list on from the current level.

bfs ∶∶ [SearchTree a] → [a]
bfs [] = []
bfs ts = values ts ++ bfs (children ts)

To define the function bfs we need two additional auxiliary functions. values finds all One
constructors in the current level and returns their values. 吀�e other function, children,
looks for all occurrences of a Choice constructor in the current level and returns the corre-
sponding subtrees. 吀�e result list then consists of the values in the first level concatenated
with the list of the values from the levels below. Both auxiliary functions can be seen in
figure 4.4.

36

values ∶∶ [SearchTree a] → [a]
values [] = []
values (One x ∶ ts) = x ∶ values ts
values (∶ ts) = values ts
children ∶∶ [SearchTree a] → [SearchTree a]
children [] = []
children (Choice x y ∶ ts) = x ∶ y ∶ children ts
children (∶ ts) = children ts

Figure 4.4.: Auxiliary functions to implement breadth-first search.

4.3. Order-Preserving Parallel Search Strategies

Haskell’s parallelisation libraries (section 2.2.1) have been developed for deterministic paral-
lelism. 吀�us, the parallel evaluation order has no influence on the results. Search strategies
defined using these libraries return the same result lists as an equivalent sequential strategy.
吀�e order of the elements in the result lists is deterministic and will not change between
multiple runs of the program.

吀�e semi-explicit parallelism libraries are easy to use and implemented with a very small over-
head byGlasgow parallel Haskell compared tomanual parallelisationwith threads.

Based on these libraries, there is an original parallel strategy available with KiCS2, imple-
mented using Haskell’s simple par construct (section 4.3.1). In this thesis, this strategy is
ported to use the new strategies for semi-explicit parallelism (section 4.3.2). Based on this strat-
egy, we try various possible enhancements to decrease the runtime.

4.3.1. Original Approach to Deterministic Parallel Depth-First
Search

吀�is section explains the original parallel search strategy presented by Reck and Fischer [30]
in 2009. It is similar to the depth-first search strategy introduced in section 4.2.1. 吀�is strategy
is called parSearch.

parSearch ∶∶ SearchTree a → [a]
parSearch None = []
parSearch (One x) = [x]
parSearch (Choice l r) =
let rs = parSearch r
in rs ‵par ‵ (parSearch l ++ rs)

Figure 4.5.: Original parallel search strategy of KiCS2 (parSearch).

37

吀�e implementation can be seen in figure 4.5. 吀�e parallelisation happens in the equation
for the Choice constructor. If a Choice constructor appears in the search tree, the evaluation
of its right subtree is sparked for evaluation in parallel. During the evaluation of the first
element of the result list, all right branches are sparked. Once a thread becomes idle, it may
take a spark from the spark pool and evaluate its result list to weak head normal form. 吀�is,
again, creates sparks for all right branches to be evaluated in parallel.

吀�e main thread still evaluates the tree in the same order as depth-first search. If another
thread already evaluated the corresponding spark, it finds already evaluated right branches
in the search tree. As the ordering in the resulting list is unchanged compared to sequential
depth-first search, this strategy also follows infinite branches.

4.3.2. Deterministic Parallel Depth-First Search with Strategies

Since the strategies in the Eval monad provide a higher level interface for parallelism with
sparks (see section 2.2.1), we rewrite the above strategy with this monad. 吀�is makes it more
convenient to implementmore sophisticated strategies based on the original one.

Direct Translation

吀�e direct translation of the above strategy is called splitAll1 as it splits the evaluation at each
choice in one spark and one part being evaluated by the main computation. In comparison to
parSearch only the equation for the Choice constructor is different, as it is the only equation
introducing parallelism.

splitAll1 (Choice l r) = runEval $ do
rs ← rpar (splitAll1 r)
ls ← rseq (splitAll1 l)
return (ls ++ rs)

吀�e code first sparks the evaluation of the right subtree r for its evaluation in parallel before
evaluating the le昀� subtree l sequentially to weak head normal form. 吀�e evaluation of l may
itself create new sparks if l contains Choice constructors. In contrast to the implementation of
parSearch, the strategy rseq enforces the evaluation of ls before appending rs to ls. However,
the implementation of ++ (append) would also immediately force the evaluation of ls, so it
should not make any difference for the evaluation time.

Separation of Evaluation and Traversing

吀�e use of the evaluation monad encourages defining the evaluation of a data-structure
separately from its definition and processing. An evaluation strategy is then expressed with a
value of the type Strategy .

type Strategy a = a → Eval a

38

Above, we always define an evaluation “strategy” of type a → Eval b, or more specific
SearchTree a → Eval [a].

吀�e following strategy to evaluate a search tree in parallel is comparable to the evaluation
order of the previously defined search strategy splitAll1. In contrast to splitAll1 it does not
force the sequential evaluation of the le昀� subtree.

parTree ∶∶ SearchTree a → Eval (SearchTree a)
parTree (Choice l r) = do
r2 ← (rpar ‵dot ‵ parTree) r
l2 ← (rpar ‵dot ‵ parTree) l
return (Choice l2 r2)

parTree t = r0 t

Based on this evaluation strategy, it is possible to write an alternative implementation of
splitAll1. 吀�is is called splitAll2 and is simply defined by the normal, “sequential”, depth-first
search applied to the search tree being evaluated using the strategy parTree.

splitAll2 t = dfsSearch (t ‵using ‵ parTree)

Additionally, it is possible to define other search strategies based on parTree, like a breadth-first
search (section 4.3.4).

Sparking the Evaluation of the Whole List

Let us first consider the definition of splitAll1 again.

splitAll1 (Choice l r) = runEval $ do
rs ← rpar (splitAll1 r)
ls ← rseq (splitAll1 l)
return (ls ++ rs)

rpar sparks the evaluation of its argument to weak head normal form. As this evaluation is
also done using splitAll1, it also sparks the evaluation of all right subtrees. 吀�e spark itself
does not evaluate the whole right subtree but only the head of the list. 吀�ough, the remainder
of the list may be evaluated by the sparks created here. 吀�e evaluation of the spark does
not wait for the result of this computation. In contrast to this, we define splitAll3, in which
all sparks evaluate all results of the right subtree. To evaluate all values in a list, there is a
function that transforms a strategy on a list element into a strategy on the whole list. 吀�is
strategy applies the given strategy to each list element.

evalList ∶∶ Strategy a → Strategy [a]

Using evalList , we can define a strategy evaluating each element of our results to weak head
normal form.

evalList rseq (splitAll3 r)

39

吀�is would evaluate each of the elements of the resulting list in sequence. As we want to evalu-
ate the list in parallel to the le昀� subtree, we use rparWith which transforms a strategy for eval-
uation in sequence into one which evaluates its argument in a spark.

rparWith ∶∶ Strategy a → Strategy a

吀�erefore, the combination of both, rparWith (evalList rseq), sparks the sequential evaluation
of its argument. 吀�us, the parallelising rule of splitAll3 is defined as follows:

splitAll3 (Choice l r) = runEval $ do
rs ← rparWith (evalList rseq) (splitAll3 r)
ls ← rseq (splitAll3 l)
return (ls ++ rs)

4.3.3. Reducing the Number of Sparks for Parallel Depth-First
Search

Depending on the structure of the search tree, the evaluation with one of the strategies
presented so far may result in many sparks being created. Even though the implementation
of sparks is very lightweight, reducing the number of sparks and therefore increasing the
amount of work per spark may be worthwhile. In this section, we describe various techniques
to reduce the number of sparks in depth-first strategies.

Limit the Spli琀�ing Depth

吀�e first approach to reduce the number of sparks is limiting the depth to which the tree is
evaluated in parallel with a certain threshold [3]. 吀�e subtrees below are evaluated with the
sequential depth-first search. Figure 4.6 shows a search tree with the subtrees, which would
be evaluated sequentially when using a depth limit of 2.

?

? 4

2

?

1

3

Figure 4.6.: Limiting the depth of parallelisation for parallel depth-first search with a limit
of 2.

40

吀�is strategy is implemented in the function splitLimitDepth, which takes the depth of paral-
lelisation as an argument in addition to the search tree. Again, the behaviour for the One and
None constructors remains unchanged.

splitLimitDepth ∶∶ Int → SearchTree a → [a]
splitLimitDepth None = []
splitLimitDepth (One x) = [x]
splitLimitDepth 0 c@(Choice) = dfsSearch c
splitLimitDepth i (Choice l r) = runEval $ do
rs ← rpar (splitLimitDepth (i − 1) r)
ls ← rseq (splitLimitDepth (i − 1) l)
return (ls ++ rs)

If the depth limit is zero, we can continue with the sequential depth-first strategy; if the depth
limit is not zero, we do basically the same as for the strategy splitAll1, but we decrease the
depth limit by one.

Similar to splitAll1, splitLimitDepth sparks the evaluation of all right subtrees down to the
depth limit. At i ≡ 1, rpar only sparks the evaluation of the first element from the right
subtree as it only evaluates the list to weak head normal form. Further elements would have
to be requested from the main thread later. Instead of using rpar , all elements have to be
evaluated similar to splitAll3.

splitLimitDepth i (Choice l r) = runEval $ do
rs ← rparWith (evalList rseq) (splitLimitDepth (i − 1) r)
ls ← rseq (splitLimitDepth (i − 1) l)
return (ls ++ rs)

吀�is strategy is most interesting for well-balanced trees, where all subtrees, evaluated with
the sequential search strategy, need a similar evaluation effort. On the other hand, if the tree
is not balanced, the work will be distributed unevenly to the workers, resulting in low overall
parallelisation.

Split Only Right/Le昀� Branches

Having a look at typical search trees shows that most of them are not well-balanced (see
the explanation of the programs used for benchmarking in section 6.3.1). O昀�en search trees
are very similar to degenerate trees with one very long branch with numerous comparingly
small subtrees at one side. Such a nearly degenerate tree can be seen in figure 4.7. As
these subtrees are o昀�en similarly sized, it may be a profitable choice to create one spark per
subtree.

吀�e strategy splitRight is optimised for search trees like the one in figure 4.7 and therefore
splits the evaluation only in the right subtrees, but evaluates all le昀� subtrees in sequence. For
any other aspects, this strategy is similar to splitAll3.

41

Figure 4.7.: An unbalanced tree.

splitRight ∶∶ SearchTree a → [a]
splitRight None = []
splitRight (One x) = [x]
splitRight (Choice l r) = runEval $ do
rs ← rparWith (evalList rseq) (splitRight r)
ls ← rseq (dfsSearch l)
return (ls ++ rs)

Note that splitRight always creates only one spark. 吀�e next spark is then created during the
evaluation of this spark, resulting in a constant number of unprocessed sparks in the spark
pool.

However, this strategy might result in parallelisation that is too coarse. Sometimes there may
be not enough sparks for all threads to work on, especially at the end of the computation.
吀�is would reduce the amount of work being done in parallel. Combining this approach with
the approach of splitLimitDepth fixes this issue by searching fully parallelly at the top of the
search tree and only parallelise computations in the right branches of the bo琀�om part of the
search tree. Again, we introduce an integer parameter for the depth, which results in the
following code:

splitRight ∶∶ Int → SearchTree a → [a]
splitRight None = []
splitRight (One x) = [x]
splitRight 0 (Choice l r) = runEval $ do
rs ← rparWith (evalList rseq) (splitRight 0 r)
ls ← rseq (dfsSearch l)
return (ls ++ rs)

splitRight n (Choice l r) = runEval $ do
rs ← rparWith (evalList rseq) (splitRight (n − 1) r)
ls ← rseq (splitRight (n − 1) l)
return (ls ++ rs)

In addition to splitRight , there is also the strategy splitLe昀� which mirrors splitRight . Note

42

that splitLe昀� also reverses the order of elements in the result list.

Split Alternating

Even if we have no knowledge about the structure of the search tree, there is a technique to
reduce the number of sparks by a linear factor. We create a new spark for every second/third/…
choice constructor. A visualisation of this technique can be seen in figure 4.8. A ‘P‘ in the figure
means that this part of the search tree may be evaluated in parallel and thus being sparked.
An ‘S’ means that this part of the search tree is evaluated sequentially.

?

P?

S?

P?

S?

P…

?

P?

S?

S?

P?

S…

2 3

Figure 4.8.: Alternating parallelisation: at every second/third a spark is created.

吀�e search strategy implementing this behaviour is called splitAlternating. It takes an addi-
tional integer argument and therefore has the following type:

splitAlternating ∶∶ Int → SearchTree a → [a]

吀�eadditional argument is the distance between two choices that will be sparked for evaluation
in parallel. A value of 1 means sparking a subtree at every choice, which makes this strategy
equivalent to splitAll3.

To implement splitAlternating, we need an additional argument to count the distance to
the next node to split at. If its value is 1, we split immediately like we did in splitAll
and reset the counter to n. 吀�e implementation of splitAlternating can be seen in fig-
ure 4.9.

Spli琀�ing with Exponential Distances

While splitAlternating only reduces the number of sparks linearly, it may also be interesting
to reduce the number of created sparks even more. To reach this goal, we chose a strategy

43

splitAlternating n = splitAlternating ′ 1
where
splitAlternating ′ ∶∶ Int → SearchTree a → [a]
splitAlternating ′ None = []
splitAlternating ′ (One x) = [x]
splitAlternating ′ 1 (Choice l r) = runEval $ do
rs ← rparWith (evalList rseq) (splitAlternating ′ n r)
ls ← rseq (splitAlternating ′ n l)
return (ls ++ rs)

splitAlternating ′ i (Choice l r) =
let ls = splitAlternating ′ (i − 1) l
rs = splitAlternating ′ (i − 1) r

in ls ++ rs

Figure 4.9.: Implementation of splitAlternating.

similar to splitAlternating, but with increasing distances between two choice constructors to
create a new spark. For the strategy splitExponential the distance between two sparks starts
with two and is doubled in each step. 吀�e implementation of this strategy is similar to that of
splitAlternating and it is visible in figure 4.10.

splitExponential ∶∶ SearchTree a → [a]
splitExponential = splitExponential ′ 1 2
where
splitExponential ′ None = []
splitExponential ′ (One x) = [x]
splitExponential ′ 1 n (Choice l r) = runEval $ do
rs ← rpar (splitExponential ′ n (n ∗ 2) r)
ls ← rseq (splitExponential ′ n (n ∗ 2) l)
return (ls ++ rs)

splitExponential ′ i n (Choice l r) =
let ls = splitExponential ′ (i − 1) n l

rs = splitExponential ′ (i − 1) n r
in ls ++ rs

Figure 4.10.: Implementation of splitExponential.

4.3.4. Deterministic Parallel Breadth-First Search with Strategies

While depth-first search is o昀�en faster and less memory consuming than breadth-first search,
breadth-first search is more complete (see section 4.2.2) and thus it may be profitable to
parallelise the evaluation with breadth-first search as well. 吀�is section presents different
deterministic strategies based on the parallel strategies in the Eval monad. All these strate-

44

gies share the order and the completeness characteristics with the sequential breadth-first
search.

Naïve Implementation of Parallel Breadth-First Search

For each step of breadth-first search, the constructors of the current level have to be evaluated
to weak head normal form to distinguish between the Choice, One, and None constructors.
To evaluate elements of a list in parallel, there is the function parList .

parList ∶∶ Strategy a → Strategy [a]

parList creates a strategy on a list which applies the given strategy on each argument in
parallel. 吀�erefore, parList rseq evaluates all elements of the list to weak head normal
form.

bfsParallel1 ∶∶ SearchTree a → [a]
bfsParallel1 t = bfs [t]
where
bfs ∶∶ [SearchTree a] → [a]
bfs [] = []
bfs (x ∶ xs) = runEval $ do
rs ← parList rseq xs
r ← rseq x
let rss = r ∶ rs
return (values rss ++ (bfs (children rss)))

Figure 4.11.: 吀�e first approach to the parallel breadth-first search.

For the parallel breadth-first search we thereby spark the evaluation of the tail of the list while
evaluating its head in sequence. 吀�e code of the search strategy can be seen in figure 4.11.
A昀�er this evaluation we continue the search in the same way as we did for the sequential
breadth-first search.

In comparison to the depth-first strategies, the evaluation of the generated sparks is very
inexpensive for bfsParallel1; here, it is only the evaluation of the first constructor of its
subtree. Depending on the degree of non-determinism in a program, these may be very small
portions.

Separate Evaluation and Traversion

Similar to the implementation of splitAll2 from section 4.3.2, it is possible to define the
evaluation of the tree structure separately from the traversal of the tree. To define this
strategy we can reuse the implementation of bfsSearch presented in section 4.2.2 and the
parallel evaluation parTree from the definition of splitAll2. 吀�e most important part of
the definition of parTree is the rule for the choice constructor. It sparks both subtrees for

45

evaluation in parallel and then returns the results of these evaluations, which do not have to
be evaluated.

parTree (Choice l r) = do
r2 ← (rpar ‵dot ‵ parTree) r
l2 ← (rpar ‵dot ‵ parTree) l
return (Choice l2 r2)

Using this parallel evaluation strategy for a search tree, we can define a breadth-first search
analogous to splitAll2.

bfsParallel2 ∶∶ SearchTree a → [a]
bfsParallel2 t =
bfsSearch (t ‵using ‵ parTree)

Breadth-First Search Using Depth-First Parallel Evaluation

Another option for implementing a parallel breadth-first search strategy is to do a normal
breadth-first strategy in the main thread a昀�er sparking the evaluation of the tree with depth-
first search for the evaluation in parallel. 吀�e main thread then assures the completeness
known from breadth-first search whereas all other threads do a fast parallel depth-first search.
As the structure of the search tree is shared between both evaluation strategies, the breadth-
first search then partly encounters subtrees, which are already evaluated to weak head normal
form.

A first approach might be implementing this new strategy bfsParallel3 in the following
way.

bfsParallel3 t = splitAll1 t ‵par ‵ bfsSearch t

吀�is would not evaluate the list completely, as rpar only does an evaluation to weak head
normal form. We need to evaluate the whole list skeleton, but we do not care for the elements
of the list. We write a function evalList , which evaluates the list skeleton, but ignores all
elements and in the end always returns ().

evalList [] = ()
evalList (∶ xs) = evalList xs

Since evalList completely ignores the elements, it does not keep the list in memory. 吀�e
parts of the search tree needed for the traversal will be kept in memory by the breadth-first
search.

Applying evalList to the result of splitAll1 gives the wanted result.

bfsParallel3 ∶∶ SearchTree a → [a]
bfsParallel3 t = evalList (splitAll1 t) ‵par ‵ bfsSearch t

46

Implementing this function in the Eval monad would be slightly more difficult. A similar
implementation might look as follows:

bfsParallel3 t = runEval $ do
← rpar (evalList (splitAll1 t))

return (bfsSearch t)

However, this is not equivalent to the definition above. 吀�e result of rpar is ignored and thus
the created spark may be deleted with its evaluation being aborted. 吀�erefore, the result of
the list needs to be kept in memory until the search is completed or itself marked as dead.
One way to achieve this is to change the result of evalList to a list and append the result of
the spark to the end of the list.

evalList [] = []
evalList (∶ xs) = evalList xs
bfsParallel3 t = runEval $ do
d ← rpar (evalList (splitAll1 t))
return (bfsSearch t ++ d)

吀�e evaluation of the spark may not be complete at the end of the evaluation of bfsSearch t , for
instance when the spark is not taken from the spark pool. 吀�en the evaluation of the spark will
still be forced at its result is needed for the evaluation of the result list. 吀�e implementation
above does not have this problem.

吀�e main difference between bfsParallel2 and bfsParallel3 is that bfsParallel2 creates a spark
for each subtree and therefore each spark only evaluates the top level of each choice. In
bfsParallel3 the sparks only create a spark for the right subtree and continue evaluating the
le昀� branch down to its leaf.

4.4. Bag of Tasks

GHC’s Haskell runtime provides support for deterministic parallelism (section 2.2.1), which we
have used successfully to speed up the search (section 4.3). However, the deterministic strate-
gies have certain limitations when we have no need for all values in the search tree. Consider
the following, taken from the implementation of the strategy splitAll1.

splitAll1 ∶∶ SearchTree a → [a]
splitAll1 None = []
splitAll1 (One x) = [x]
splitAll1 (Choice l r) = runEval $ do
rs ← rpar (splitAll1 r)
ls ← rseq (splitAll1 l)
return (ls ++ rs)

someValue ∶∶ SearchTree a → a
someValue = head ∘ splitAll1

47

While the third rule of splitAll1 allows the parallel evaluation of the right subtree, it always
waits for the le昀� subtree to provide a value first. On one hand this ensures that the order
of the elements of the resulting list is identical to the order of the elements returned by the
depth-first search; the value returned by someValue is always the same for a given search tree.
On the other hand we possibly have to wait for a long time on the evaluation of someValue,
even if there are values that already have been evaluated in parallel. O昀�en, non-deterministic
problems do not depend on the order of results, so one would prefer a strategy that returns the
values of an expression as quickly as possible, but in an arbitrary order.

A昀�er describing the general idea (section 4.4.1), we can define multiple search strategies
similar to the sequential strategies from section 4.2. We define strategies analogue to the
depth-first search (section 4.4.2) and the breadth-first search (section 4.4.3) next and present
the implementation of the bag of tasks library in section 5.2.

4.4.1. General idea

waiting tasks task resultsworker threads

Figure 4.12.: A bag of tasks with waiting tasks (blue disks), task results (green disks) and
worker threads (squares).

吀�e solution for this problem is a bag of tasks approach. In this approach, there is a buffer of
tasks and a “gang” of worker threads working on these tasks. Each worker takes a task out of
the buffer and processes it. During the processing, the worker adds additional tasks into the
bag and optionally writes back a task result at the end. A昀�er processing the task, the worker
takes the next task from the buffer of waiting tasks. When no values are required anymore, it
needs to be possible to stop the bag: the threads are terminated and the remaining tasks can
be thrown away.

A high level interface for the bag of tasks provides a function to start a task with a given list
of initial tasks and an action to process the results sequentially:

runTaskBag ∶∶ [Task a (Maybe a)] → IO [a]

48

runTaskBag initialises a new bag of tasks and starts a gang of worker threads as described
above. 吀�e worker threads immediately start to process the given tasks. runTaskBag returns
a lazy list of all thread results. As the list has an arbitrary order, it is returned in the IO
monad. 吀�e number of worker threads started is equal to the number of system threads (see
section 2.2.3) of the Haskell runtime system.

Task instanciates both Monad and MonadIO and therefore has the function li昀�IO to perform
arbitrary IO actions in the Task. Additionally there is a function addTask to add new tasks to
the bag.

addTask ∶∶ Task r (Maybe r) → Task r ()

吀�e action provided as the first argument of runTaskBag may or may not return a value. If it
returns a value, this value is wri琀�en back as a result.

吀�e bag and its threads will be terminated when the list of values becomes garbage col-
lected. However, terminating the running threads may be impossible in rare cases, see
section 5.1.1.

Later we will see that it is profitable to allow different kinds of task buffers. Sometimes we
would like to have the first item added to the buffer to be processed first (first in, first out) and
sometimes the need the last item added to the buffer to be processed first (last in, first out).
吀�erefore, we can choose the buffer type in the initialisation of the task bag with a value of
type BufferType.

data BufferType = 儀�eue ∣ Stack

吀�e value 儀�eue selects tasks buffers with first in, first out order whereas the value Stack
selects a last in, first out order.

吀�is type becomes the additional argument type of runTaskBag.

runTaskBag ∶∶ BufferType → [Task a (Maybe a)] → IO [a]

4.4.2. Depth-First Search

dfsTask ∶∶ SearchTree a → Task a (Maybe a)
dfsTask None = return Nothing
dfsTask (One v) = return (Just v)
dfsTask (Choice l r) = do
addTask (dfsTask r)
dfsTask l

Figure 4.13.: 吀�e depth-first task.

Using a bag of tasks implementation as presented in section 4.4.1, we can now define strate-
gies similar to those defined in section 4.3. 吀�e strategy splitAll1 resembles the sequential
depth-first search and adds a new spark for the right subtree at each choice constructor while

49

evaluating the le昀� subtree. Analogue to splitAll1 we define a task dfsTask with the same
behaviour in figure 4.13. If the task is applied to a None it does not yield a result; if there
is a One constructor in the search tree, we found a result and return this result; at a Choice
constructor, we add a new task for the right subtree, which may be taken by another worker
thread, and continue to evaluate the le昀� subtree immediately.

1
2

1

Figure 4.14.: A dfsTask searching values in a search tree with one worker thread.

Figure 4.14 visualises the processing of a search tree with the dfsTask. Whether or not
the search resembles a real depth-first search, depends on the kind of the task buffer. Us-
ing a stack as task buffer leads to a normal depth-first search; thus, we call this strategy
dfsBag.

dfsBag ∶∶ SearchTree r → IO [r]
dfsBag tree = runTaskBag Stack [dfsTask tree]

When we take a queue for the task buffer, we get a search strategy which follows each branch
to its le昀�most leaf first but then continues with the topmost right subtree. We call this strategy
fdfsBag.

fdfsBag tree = runTaskBag 儀�eue [fdfsTask tree]

Reducing the Number of Tasks

As the custom-built bag of tasks framework will have a more significant overhead in compari-
son to the sparks, which are built-in in GHC’s runtime system, it will be even more important
to minimise the number of tasks. For depth-first search, we use the same techniques as above
in section 4.3.3. 吀�erefore, we get a strategy called dfsBagLimit limiting the depth to which
the evaluation of the search tree is parallelised, a strategy called dfsBagAlternating spli琀�ing
the evaluation at every n-th choice constructor, and the strategies dfsBagRight and dfsBagLe昀�
evaluating only the right/le昀� subtrees in parallel.

50

All these strategies require to return more than one value per task. With the current bag of
tasks, this is not possible, as tasks are expected to have the type Task a (Maybe a). In order
to get tasks with multiple results, it is possible to alter this to tasks having the following
type:

Task a [a]

However, this requires to collect all the results and return it at the end in one list. 吀�us, results
are not returned immediately, which delays further processing. Another approach is to provide
a function writeResult to return results in the middle of a running task.

writeResult ∶∶ r → Task r ()

To illustrate the use ofwriteResult , we consider the implementation of the task for dfsBagLimit .

dfsLimitTask ∶∶ Int → SearchTree a → TaskIO a (Maybe a)
dfsLimitTask n None = return Nothing
dfsLimitTask n (One x) = return (Just x)
dfsLimitTask 0 t@(Choice) = do
mapM_ writeResult (dfsSearch t)
return Nothing

dfsLimitTask n (Choice l r) = do
addTaskIO (dfsLimitTask (n − 1) r)
dfsLimitTask (n − 1) l

Similar to splitLimitDepth, we need an additional integer argument for the split depth. Once
the split depth is zero, we evaluate the search tree sequentially with dfsSearch and write back
the results lazily.

吀�e implementations of dfsAlternatingTask, dfsRightTask, and dfsLe昀�Task are similar and
therefore omi琀�ed here.

4.4.3. Breadth-First Search

吀�e general idea of breadth-first search is to evaluate the search tree level by level. In contrast
to the depth-first search tasks, the tasks for breadth-first search may only evaluate subtrees to
weak head normal form. A昀�er evaluating one subtree, the computation has to continue with
the next subtree of the same level until the complete level has been evaluated. To implement
this behaviour, we can use tasks which only do the evaluation of one subtree to weak head
normal form and then add the possible children as new tasks. 吀�is task is implemented in
figure 4.15.

Figure 4.16 shows the traversal of a search tree with the bfsTask. 吀�e single worker is shown
as a box at the le昀� of the search tree whereas the task buffer is shown at the right of the tree.
吀�e numbers next to the task buffer indicates the order in which the tasks have been added to
the buffer. To obtain a breadth-first search, it is necessary to take a queue for the task buffer.
Having a stack buffer instead would make a significant difference a昀�er the fourth step. 吀�e
worker would then get task 3, which would also result in a depth-first search strategy. As this

51

bfsTask ∶∶ SearchTree a → Task a (Maybe a)
bfsTask None = return Nothing
bfsTask (One v) = return (Just v)
bfsTask (Choice l r) = do
addTask (bfsTask r)
addTask (bfsTask l)

Figure 4.15.: 吀�e breadth-first task.

1
2

1

1
2
3

Figure 4.16.: A bfsTask searching values in a search tree with one worker thread.

52

would generate significantly more accesses to the thread buffer compared to the depth-first
strategy above, we did not implement this depth-first search.

4.5. Fair Search

Most parallel search strategies use parallelism to reduce the time needed for the evaluation
of an expression. In contrast to these, the fair search only focuses on being complete which
o昀�en even leads to a drawback in terms of evaluation time. Total completeness cannot
be achieved with sequential search strategies like breadth-first search. A search tree of a
non-deterministic computation can contain an infinite deterministic computation, for instance
a loop, in each of its branches (see section 3.2). 吀�is leads to the need of evaluating all branches
simultaneously.

All fair search strategies presented in this section are implemented by starting independent
computation threads, similar to the concurrent implementation of Curry in Java presented
1999 by Hanus and Sadre [9]. Preemptive multitasking interrupts all these threads regularly
and selects another thread to be run next. It thereby ensures that each thread runs at some
point, and furthermore that all values in the search tree are computed. 吀�ese strategies are
called fair because they do not favour one of two subtrees. 吀�e presented strategies differ in
the way the computation threads communicate with each other.

4.5.1. Primitive Fair Search

吀�efirst, primitive implementation of a fair search strategy, fairSearch1, evaluates the complete
search tree in parallel using threads as shown in figure 4.17. 吀�e evaluation splits into two
threads each time a choice occurs in the search tree. 吀�e right subtree is then evaluated in the
new thread whereas the old thread continues to evaluate the le昀� subtree. If no value is found
in the search tree, the calculation terminates with no result; any results found are wri琀�en
into a Chan (section 2.2.2).

search吀�read ∶∶MVar ExecutionState → ResultChan → SearchTree a → IO ()
search吀�read threadVar resultChan tree =
case tree of
Choice l r → do
startSearch吀�read threadVar resultChan r
search吀�read threadVar resultChan l

None → return ()
One x → writeChan resultChan (Value x)

Figure 4.17.: Haskell code of the function search吀�read.

As the fair search is especially useful when applied to search trees with infinite deterministic
computations, where no search can find all possible values, the user would demand only a

53

certain number of results and the calculation has to be stopped a昀�erwards. To stop all running
threads when no value is demanded anymore, we need to keep a list of threads working on the
current search tree. 吀�is is stored in theMVar threadVar . 吀�e threads stored in thisMVar may
be stopped later when no other value will be demanded. To prevent that a thread is started
during the killing of the already existing threads, we have to synchronise the killing with the
starting of the threads. 吀�en, this new thread may not be registered in the threadVar yet. To
preclude this, the threadVar contains an additional flag to signal that the evaluation has been
aborted already. 吀�erefore the type of the threadVar is ExecutionState.

data ExecutionState = Stopped
∣ Executing [吀�readId]

If the value stored in the threadVar is Stopped , no new threads are allowed to be started. Being
in the state Executing means that the computation is still ongoing. Its argument is the list of
threads evaluating the tree. Being in the state Executing but having no threads le昀� means,
that all values of the tree have been calculated.

吀�e function startSearch吀�read starts a new thread as shown in figure 4.18. 吀�e function
has to make sure that it is allowed to start a new thread before doing so. A昀�er starting the
thread, it has to be added to the list of new threads in the threadVar . Removing the thread
from this list has to be done a昀�er reading the possible result from this thread, because the
list of threads is used to determine if we can expect further results from the evaluation. 吀�is
is why it is not possible to do this in the thread itself. 吀�e 吀�readStopped is sent at the end
of the execution of the new thread through the result channel. Removing the threads from
the list is done from another thread, a昀�er the message 吀�readStopped is read from the result
channel.

startSearch吀�read ∶∶ MVar ExecutionState
→ Chan (吀�readResult a)
→ SearchTree a
→ IO ()

startSearch吀�read threadVar chan tree = do
executeState ← takeMVar threadVar
case executeState of
Stopped → do
putMVar threadVar executeState

Executing tids → do
newTid ← forkIO $ do
tid ← my吀�readId
search吀�read threadVar chan tree
writeChan chan (吀�readStopped tid)

putMVar threadVar (Executing (newTid ∶ tids))

Figure 4.18.: Haskell code of the function start吀�read.

吀�e code performed in the main search thread can be seen in figure 4.19. 吀�e search thread
beginning at the root of the search tree is started by the main thread a昀�er initializing the

54

threadVar and the result channel resultChan. 吀�is root thread computes all values in the
search tree and forks new threads where necessary. 吀�e results wri琀�en into the result channel
are read by the function handleResults. 吀�e execution of handleResults is deferred lazily using
unsafeInterleaveIO:

unsafeInterleaveIO ∶∶ IO a → IO a

吀�e IO action given as the argument of unsafeInterleaveIO is executed once the value type
a is demanded. Deferring the execution of handleResults makes it possible to return from
fairSearch1 immediately even if no values have been computed yet.

fairSearch1 ∶∶ SearchTree a →
fairSearch1 tree = do
threadVar ← newMVar (Executing i [])
resultChan ← newChan
startSearch吀�read threadVar resultChan tree
unsafeInterleaveIO (handleResults threadVar resultChan)

Figure 4.19.: Haskell code of the main function of the fair search.

吀�e function to read the results from the channel can be seen in figure 4.20. It immedi-
ately tries to read a value from the channel with readChan, which blocks until there are
any values in the channel. Once a value is available, the execution continues and checks
whether the read result is a 吀�readStopped notification or a value. A value is returned as
the head of the value list a昀�er deferring the execution of handleResults. If the 吀�readStopped
notification is read, the given thread identifier has to be removed from the list of threads with
modifyMVar .

modifyMVar ∶∶MVar a → (a → IO (a, b)) → IO b

吀�e function remove吀�read only transforms one ExecutionState into another one that does not
contain the given 吀�readId anymore. modifyMVar takes an IO action with a pair of results.
One of these is wri琀�en back into the mutable variable and the other value is returned by
modifyMVar itself for further inspection. We need the whole ExecutionState and thus return
this two times.

At this point, we need to know if there still are threads le昀� to compute further values. If there
are further threads and the ExecutionState is Executing, we have to continue reading values
from the result channel. If there are no other threads le昀� or the value is Stopped , no value
can be computed anymore and we reached the end of the list.

To make the definition of the fair search strategy complete, we need a function to stop the
evaluation. 吀�is function is called kill吀�reads and is called with the technique explained in
section 5.1. 吀�e implementation of kill吀�reads can be seen in figure 4.21. kill吀�reads first
takes the threadVar so that other threads will not be started in the meantime. If the state is
Stopped , there is nothing le昀� to do. If it is still in the state Executing, there are a number of
threads that have to be killed. 吀�is is being done in separate threads as kill吀�read blocks until
it was possible to terminate the thread. A昀�er stopping the threads, the threadVar is set to

55

Stopped . 吀�erefore, still running threads are not able to start new threads as this requires the
state Executing.

Because of the shared state in the variable threadVar , which has to be changed at each starting
or stopping of a thread, a lot of synchronisation happens between the threads. 吀�e following
sections describe slightly modified search strategies trying to reduce the synchronisation
points.

4.5.2. Fair Search with Chained Threads

吀�e idea to reduce the synchronisation between the threads is not to have a central synchro-
nisation variable which all threads synchronise on. Instead, each thread only communicates
with the thread that started it and the threads having been started by this thread. Figure 4.22
shows the communication during the evaluation of a sample tree. 吀�e arrows pointing at the
beginning of each threads lifetime indicate the forking of a new thread. All other arrows are
asynchronous messages.

In contrast to the fair search strategy above, a thread which discovers a Choice constructor
starts two child threads to evaluate one of the subtrees each. 吀�en, the parent thread starts to
listen on a channel to receive the messages of its children. 吀�ere are two important messages
being sent from the child threads to its parents, Value x and 吀�readStopped . Value x is sent
once a thread discovered a One constructor, whereas 吀�readStopped is sent at the end of its
execution. When a thread receives a Value message, it propagates this value to its own parent.
吀�e life of a thread ends once a thread finds a None leaf in the tree or once it received a
吀�readStopped message from all of its children.

吀�is concept still misses the possibility of stopping the threads when no further values will
be demanded. As there is no central point at which all threads are registered, this can not
be done at once by the main thread; instead, it has to be done via the tree structure of the
threads. At the time of aborting a computation, some threads are waiting on a message
coming through its channel while others are evaluating parts of the search tree. 吀�e message
to stop the computation may be sent to the waiting threads via their message channels. 吀�e
threads evaluating the search tree do this evaluation in pure code and therefore cannot be
reached using a channel. A way to reach these threads in pure code is sending an exception,
similar to the 吀�readKilled exception sent by kill吀�read .

For the sake of a simple design, we choose to send an exception to all threads. 吀�is search
strategy is called fairSearch2 as it is a variant of the fairSearch1 strategy above. Here, we
are not interested in terminating the threads with a 吀�readKilled exception; threads, which
already started child threads, have to forward this exception to their children to kill the whole
search process. 吀�is is why we define the new exception Stop.

data Stop = Stop
deriving (Typeable, Show)

instance Exception Stop

56

handleResults ∶∶MVar ExecutionState → Chan (吀�readResult a) → IO [a]
handleResults threadVar resultChan = do
result ← readChan resultChan
case result of
Value a → do
as ← unsafeInterleaveIO (handleResults dummyRef threadVar resultChan)
return (a ∶ as)

吀�readStopped tid → do
state ← modifyMVar threadVar (return ∘ (λa → (a, a)) ∘ (remove吀�read tid))
case state of
Executing (∶ _) →
handleResults dummyRef threadVar resultChan
→
return []

remove吀�read ∶∶吀�readId → ExecutionState → ExecutionState
remove吀�read tid Stopped = Stopped
remove吀�read tid (Executing tids) =

Executing (delete tid tids)

Figure 4.20.: Reading results from the value channel.

kill吀�reads ∶∶MVar ExecutionState → IO ()
kill吀�reads threadVar = do
executeState ← takeMVar threadVar
case executeState of
Stopped →
return ()

Executing tids →
mapM_ (forkIO ∘ kill吀�read) tids

putMVar threadVar Stopped

Figure 4.21.: Code to stop the search threads.

57

Value x

ThreadStopped

Value y

ThreadStopped

Value y

ThreadStopped

ThreadStopped

Ti
m

e

?

?

y

x

!

main thread

Value x

Value y

ThreadStopped

Figure 4.22.: Chained communication between search threads.

58

Furthermore, we have to make sure that this exception is not being received at certain points,
like when starting new children. To avoid this, it is possible to mask all exceptions in a part
of the evaluation.

uninterruptibleMask_ ∶∶ IO a → IO a

At certain points, we can safely unmask the exception.

forkIOWithUnmask ∶∶ ((forall a ∘ IO a → IO a) → IO ()) → IO 吀�readId

吀�e function forkIOWithUnmask starts a new thread executing the given IO action, but in
contrast to forkIO it provides an unmasking function to this IO action. 吀�is unmasking
function is used during the evaluation of the search tree and while waiting on possible values
from the channel.

吀�e evaluation of the search tree happens in search吀�read , which has the unmasking function
as its first parameter unmask. 吀�e code of search吀�read can be seen in figure 4.23. To
catch the exception Stop, thrown during the evaluation of pure code, we have to demand
the evaluation of the search tree to weak head normal form explicitly with the function
evaluate.

evaluate ∶∶ a → IO a

吀�e exception can then be caught with catch which takes the IO action to catch the exception
in and the exception handler.

catch ∶∶ Exception e ⇒ IO a → (e → IO a) → IO a

When the exception has been catched during this evaluation, we want to stop the compu-
tation in this thread, which is similar to what we do in the case of a failure in the search
tree.

Having evaluated a choice constructor, the search thread creates the new message channel
and starts its children with forkIO. 吀�e identifiers of these threads have to be saved, since
this thread terminates once all of these children sent their 吀�readStopped message through
the newly created channel.

Listening to children messages happens in the function listenChan, which can be seen in
figure 4.24. listenChan has to perform three tasks: propagating result values back to its parent
thread, forwarding the Stop exception to abort the computation, and waiting for all children
having stopped their execution. Catching the Stop exception is only done while reading values
from the channel. 吀�e result from this reading process is then either Nothing, in the case of
an exception, or Just s with s being the message read from the channel. Forwarding the Stop
exception to the child threads is done by the exception handler itself.

Reading from the parent channel for the read node is all the main thread has to do to collect all
values; all values are forwarded to this in the end. At some point it receives a 吀�readStopped
message. 吀�en, all values have been read from the channel, because Value messages are
always sent before 吀�readStopped and the threads forward these messages in the same order
as they have been sent. Now, killing all threads is easy: it just sends the Stop signal to the
root thread.

59

search吀�read ∶∶ (forall a ∘ IO a → IO a)
→ Chan (吀�readResult b)
→ SearchTree b
→ IO ()

search吀�read unmask parent tree = do
etree ← unmask (evaluate tree) ‵catch‵ (λStop → return None)
tid ← my吀�readId
case etree of
None →
writeChan parent (吀�readStopped tid)

One v → do
writeChan parent (Value v)
writeChan parent (吀�readStopped tid)

Choice l r → do
chan ← newChan
t1 ← forkIO (search吀�read unmask chan l)
t2 ← forkIO (search吀�read unmask chan r)
listenChan unmask [t1, t2] chan parent

Figure 4.23.: 吀�e main search thread function of fairSearch2.

listenChan ∶∶ (forall a ∘ IO a → IO a)
→ [吀�readId]
→ Chan (吀�readResult b)
→ Chan (吀�readResult b)
→ IO ()

listenChan [] parent = do
tid ← my吀�readId
writeChan parent (吀�readStopped tid)

listenChan unmask ts chan parent = do
ans ← unmask (li昀�M Just (readChan chan)) ‵catch‵ (λStop → do
mapM_ (λt → throwTo t Stop) ts
return Nothing)

case ans of
Just (吀�readStopped t) → listenChan unmask (delete t ts) chan parent
Just value → do
writeChan parent value
listenChan unmask ts chan parent

Nothing → return ()

Figure 4.24.: 吀�e code to listen for messages from the children of the search thread.

60

kill吀�reads root = forkIO (throwTo root Stop)

On one hand, using this technique, it is not necessary to have a globally readable state. On the
other hand, we need to create more threads and also more channels for the communication
between the threads. Values have to be sent through a possibly long chain of threads until they
are read from the main thread. However, the idea of using exceptions for the communication
between threads will be picked up again in the next section.

4.5.3. Using Exceptions for Communication between Search Threads

In the fair search strategy fairSearch2 presented above, large parts of time and memory are
spent on forwarding the result values. 吀�is is why the third fair search approach uses a mixture
of the strategies presented above. Values are wri琀�en into a common channel as in fairSearch1,
but the child threads are managed by the threads that started them like in fairSearch2. Rather
than le琀�ing certain threads wait on the results or the stopping of others like fairSearch2, the
threads continue evaluating the le昀� subtree a昀�er finding a choice constructor; only the right
subtree is evaluated by a newly started child thread. Figure 4.25 shows the communication
between the threads during the evaluation of the same search tree that has been used for
fairSearch2 in figure 4.22. In addition to the saved overhead of forwarding the messages, we
also do not have to create half of the threads.

Value x

ThreadStopped

ThreadStopped

Value y

AllStopped

Ti
m

e

?

?

y

x

!

main thread

Figure 4.25.: Chained communication between search threads.

In contrast to fairSearch2, the number of created search threads per thread is not limited
by a fixed number: it depends on the height of the search tree. As a result we will have

61

to wait on a significantly larger number of child threads. 吀�e main problem at managing
the child threads is that the threads can not wait on a channel to receive 吀�readStopped
messages. 吀�is is because they have to continue evaluating their own part of the search tree.
Also looking for values in such a channel is unfeasible, because it would require a function
isEmptyChan.

isEmptyChan ∶∶ Chan a → IO Bool

吀�is function does exist, but it does not work correctly and therefore is deprecated [28]. 吀�e
alternative to receiving the吀�readStopped messages directly or a昀�er a short interval is reading
these messages once the thread would stop itself.

To save memory, we decide against this in favour of communication using exceptions. Excep-
tions can be received directly, even while executing pure code. Furthermore, it is possible
to catch any exception that has been thrown up to a certain point of time while continuing
normally when no exception has been thrown. In figure 4.25 arrows with solid arrow heads
represent communications using exceptions whereas communication through a channel is
represented by arrows with open arrow heads.

When an exception is caught during the evaluation of pure code, the results seem to be lost as
the value of the exception handler is returned instead. However, in Haskell intermediate results
of pure evaluations are o昀�en kept in memory as long as a reference to the expression exists.
吀�us, the time lost for thereby aborted computations is negligible.

Apart from the usage of exception to communicate between the search threads, figure 4.25
shows that there is another significant difference between this strategy and the strategies
presented before: the first search thread, starting at the root of the search tree, has to write
AllStopped into the result channel while all other threads throw the exception 吀�readStopped
to their parent at the end of their execution. Nevertheless, because the rest of the behaviour of
the threads is identical, the code for search吀�read in figure 4.26 is used for all search threads.
In comparison to the other search吀�read implementations, it has an additional parameter
containing the action that has to be performed at the end of its lifetime.

吀�e time frames in which messages, here exceptions, are received are identical to these
of fairSearch2, but here it is always possible to receive two types of exceptions: Stop and
吀�readsStopped . 吀�e function listenExceptions has the same job as listenChan in the imple-
mentation of fairSearch2. It waits for both Stop and 吀�readStopped messages. In comparison
to listenChan, there is no channel to block on. 吀�is makes it necessary to block artificially on
a newly generated MVar .

吀�e implementation of fairSearch3 combines the strengths of both search strategies fairSearch1
and fairSearch3. It needs the minimal number of threads and writes back values directly, like
fairSearch1, but does not have the synchronisation overhead required to manage the threads
centrally.

62

data EvalResult a = Finished (SearchTree a)
∣ ReceivedStop
∣ ReceivedStoppedSearch 吀�readId

search吀�read ∶∶ (forall a ∘ IO a → IO a)
→ IO ()
→ Chan (吀�readResult b)
→ [吀�readId]
→ SearchTree b
→ IO ()

search吀�read unmask end chan threads tree = do
r ← unmask (li昀�M Finished (evaluate tree))

‵catch‵ (λStop → return ReceivedStop)
‵catch‵ (λ(吀�readStopped tid) → return (ReceivedStoppedSearch tid))

case r of
ReceivedStop →
stopChildren end threads

ReceivedStoppedSearch tid →
search吀�read unmask end chan (tid ‵delete‵ threads) tree

Finished t →
case t of
None → listenExceptions unmask end threads
One v → do
writeChan chan (Value v)
listenExceptions unmask end threads

Choice l r → do
tid ← my吀�readId
child ← forkIO (search吀�read unmask (notifyStopped tid) chan [] r)
search吀�read unmask end chan (child ∶ threads) l

notifyStopped tid =
my吀�readId >>= (throwTo tid) ∘吀�readStopped

stopChildren end threads = mapM_ (λt → throwTo t Stop) threads >> end
listenExceptions ∶∶ (forall a ∘ IO a → IO a) → IO () → [吀�readId] → IO ()
listenExceptions end [] = end
listenExceptions unmask end threads = do
m ← newEmptyMVar
unmask (void $ takeMVar m)

‵catch‵ (λStop →
stopChildren end threads)

‵catch‵ (λ(StoppedSearch tid) →
listenExceptions unmask end (tid ‵delete‵ threads))

Figure 4.26.: 吀�e search thread function of fairSearch3.

63

5. Technical Details

吀�is chapter is about pa琀�erns and technologies that are not directly related to Curry and
parallel search strategies. 吀�us, they had to be discovered to implement various strategies.
Techniques to stop parallel evaluation (section 5.1) are used in the implementation of the bag
of tasks (section 5.2) and the fair search strategies (section 4.5).

5.1. Stopping Parallel Evaluation

To evaluate an expression in parallel to the main execution, a simple approach is to fork
another thread and evaluate the operation in the new thread. When the forked operation
has been evaluated to weak head normal form, it may be put into an MVar . When the main
thread requires the value of the expression, it forces its evaluation. 吀�is MVar will be read
and therefore the thread blocks until the evaluation is complete. We call this MVar a future
because it represents a value which will be available in the future. Figure 5.1 shows a function
to start the evaluation of an expression in parallel. However, at the time of calling parallel , it

type Future a = MVar a
newFuture ∶∶ a → IO (Future a)
newFuture e = do
m ← newEmptyMVar

← forkIO (e ‵seq‵ putMVar m e)
return m

force ∶∶ Future a → IO a
force f =
readMVar f

Figure 5.1.: A primitive implementation of a future.

may be unknown if the value of ε will be required later, but we still want to start its evaluation
early to reduce the time of waiting. Using the approach presented above has an important
shortcoming in this use case: the forked thread would continue evaluating the expression
even if we know that its value will not be needed anymore.

64

5.1.1. Stopping Threads Explicitly

A solution for this problem would be to stop the thread explicitly. In Haskell, stopping a
thread can be done using the function kill吀�read .

kill吀�read ∶∶吀�readId → IO ()

吀�is function raises the asynchronous exception 吀�readKilled to the thread specified by the
given 吀�readId . 吀�e 吀�readId is returned by the function forkIO, so we can add it to the type
Future easily.

type Future a = (MVar a,吀�readId)
newFuture ∶∶ NFData a ⇒ a → IO (Future a)
newFuture e = do
m ← newEmptyMVar
tid ← forkIO (e ‵seq‵ putMVar m e)
return (m, tid)

stopFuture ∶∶ Future a → IO ()
stopFuture (, tid) = kill吀�read tid

Figure 5.2.: Stopping the evaluation explicitly with kill吀�read . 吀�e function force is omi琀�ed,
because it can be adapted trivially.

Figure 5.2 shows how to stop the evaluation of the future explicitly with the function
stopFuture. 吀�e implementation of the stoppable future is easy to read and seems to be
correct. Below, we explain some tests of our implementation. 吀�e following function defines
a list of all prime numbers by filtering all multiples of found primes from the list of all greater
natural numbers.

primes = primes′ 2
where
primes′ n = n ∶ filter (λm → m ‵mod ‵ n ≢ 0) (primes′ (n + 1))

As there is an infinite number of primes, the list primes is also infinite. 吀�us, the evaluation of
the expression last primes does not terminate, but this does not keep us from starting a future
to evaluate it to weak head normal form. Unfortunately, this evaluation will never stop, so we
call stopFuture on the future which stops the evaluation immediately.

Now consider the function ones, which defines an infinite list of integers as well: the list
containing an infinite number of the value 1.

ones = 1 ∶ ones

Again, the evaluation of the expression last ones does not terminate and so does the evaluation
of a corresponding future. 吀�ough this time a call of stopFuture does not stop the future and
the call does not terminate itself.

65

In today’s GHC runtime system (version 7.8.1), certain evaluations cannot be stopped. To
stop the thread our implementation uses kill吀�read which is itself using throwTo to throw
an asynchronous exception to the specified thread. In GHC, asynchronous exceptions can
only be received at safe points [26]. A safe point is wherever memory allocation occurs [23].
In general, memory allocation is rather frequent and normal code without memory alloca-
tion is very rare, yet the above example shows that such code exists. We depend on the
informed programmer here to modify her programs with the objective of introducing memory
allocation.

Code which does not do any memory allocation can even lead to further problems. For
instance, preemptive scheduling is only run at safe points, as well. Running the future
evaluating the expression last ones in a Haskell runtime with only one system thread would
cause the future thread to claim this system thread forever. 吀�erefore the main program will
never run again and the call to kill吀�read will never be reached.

Another in our case unwanted behaviour may be that kill吀�read and thus stopFuture blocks
until the signal is received. 吀�is can be fixed easily by forking into another thread to call
kill吀�read .

stopFuture ∶∶ Future a → IO ()
stopFuture (, tid) = forkIO (kill吀�read tid)

5.1.2. Using Finalisers on Weak Pointers

吀�ough the explicit stopping of the thread is a solution to the problem of wasted resources, it
reveals a lot of the implementation of the Future1 and it requires a deep knowledge of the
surrounding program from the programmer.

吀�us, we take another approach into regard. Our implementation uses Haskell’s weak pointers,
which were presented by Jones, Marlow, and Ellio琀� [15]. You can find a more complete
explanation of Haskell’s weak pointers in section 2.2. Haskell’s weak pointers have the
following interface:

data Weak v
mkWeak ∶∶ k → v → Maybe (IO ()) → IO (Weak v)
deRefWeak ∶∶Weak v → IO (Maybe v)

吀�e function mkWeak creates a weak reference from the value given as the second argument.
吀�e first argument is the key to the weak reference. As long as the key is reachable, calling
deRefWeak on the weak reference will return the value. When the key becomes unreachable
the weak reference may be finalised. Finalisation means that deRefWeak is made to return
Nothing and the operation given by the third argument of mkWeak, called the finaliser, will
be run (see [18]).

1For instance that it is implemented using a thread that has to be stopped.

66

In our primitive future implementation of figure 5.1 we may need the result of the evaluation
as long as we keep the future itself, which is anMVar , reachable, so we may use this as our key.
To make sure the MVar becomes unreachable when it is unreachable from the main thread
it has to be the only thread having a direct reference to it. 吀�us, it has to be unreachable
from all other threads including the thread evaluating the expression. To be still able to write
the result back into the MVar , we can use a weak reference to it from the forked thread. 吀�e
finaliser would then have to kill the thread.

type Future a = MVar a
newFuture ∶∶ NFData a ⇒ a → IO (Future a)
newFuture e = do
m ← newEmptyMVar – MVar to hold the resulting value
t ← newEmptyMVar – MVar to hold the 吀�readId
w ← mkWeakMVar m $ do
child ← readMVar t
void (forkIO (kill吀�read child))

child ← forkIO $ do
n ← e ‵seq‵ deRefWeak w
case n of
Nothing → return ()
Just k → putMVar k e

putMVar t child
return m

Figure 5.3.: Using a weak reference to an MVar to stop a thread.

吀�e implementation in figure 5.3 shows two characteristics. We need another MVar t to store
the thread id, because this is not available at the time the weak reference is created and we
need the weak reference in the thread.
Additionallywe do not usemkWeak directly but the functionmkWeakMVar .

mkWeak ∶∶ k → v → Maybe (IO ()) → IO (Weak v)
mkWeakMVar ∶∶MVar a → IO () → IO (Weak (MVar a))

mkWeakMVar is a bit different from mkWeak as the given MVar is, in a certain way, both the
value and the key of the weak reference. 吀�is function exists because mkWeak does not work
as expected for certain built in types like MVar , as explained in the GHC ticket [19]. Using
mkWeak on a MVar would a琀�ach the weak reference to the box MVar and not the primitive
type MVar# underneath. 吀�e optimisation may eliminate this box and therefore the key is
unreachable. mkWeakMVar was introduced in reaction to this ticket and fixes the problem by
a琀�aching the weak reference to the primitive MVar# itself.

Whereas the implementation of figure 5.3 stops the thread correctly, it leads to problems with
GHC’s current deadlock detection. Doing readMVar on the only direct reference to an MVar
results in the runtime system assuming that the MVar will never be filled. 吀�is is a correct
assumption without weak references, but in our case there is still a weak reference on the

67

MVar which can be used to fill the MVar . Because of this wrong assumption, the runtime
system sends the exception BlockedIndefinitelyOnMVar and stops the thread waiting on the
MVar .

Although we are able tomask exceptions and therefore prevent from exceptions being thrown
to this thread, this may not be desired in this case, because it would mask all exceptions.
吀�ere is no way to mask only certain exceptions as desired in our example. Deactivating
the deadlock detection in general is also not desired because it provides an otherwise useful
feature. Another option would be not to use the MVar as the key of the weak reference
but an artificial object which would otherwise not be needed. Because it is the MVar which
has to become unreachable for the thread being unnecessary, we decide not to create an
artificial object. Instead we keep the 吀�readId of the main thread in the thread evaluating the
expression reachable until we dereferenced the weak MVar . Now this thread may still be able
to send asynchronous exceptions to the main thread, so the blocking on the MVar is in no
case indefinite.

type Future a = (MVar a, IORef ())
newFuture ∶∶ NFData a ⇒ a → IO (Future a)
newFuture e = do
m ← newEmptyMVar – MVar to hold the resulting value
t ← newEmptyMVar – MVar to hold the 吀�readId
w ← mkWeakMVar m $ do
child ← readMVar t
kill吀�read child

main ← my吀�readId
child ← forkIO $ do
n ← e ‵seq‵ deRefWeak w
case n of
Nothing → return ()
Just k → main ‵seq‵ putMVar k e

putMVar t child
return m

Figure 5.4.: Using a weak reference on a dummy variable to stop a thread.

吀�e implementation can be seen in figure 5.4. Its pa琀�ern can also be used when multiple
results are wri琀�en into a Chan instead of an MVar and is used in various implementations for
this thesis.

5.2. Bag of Tasks Implementation

A昀�er presenting the general idea of a bag of tasks in section 4.4.1, this section concentrates
on the implementation of this framework. 吀�e idea behind the bag of tasks is simple and

68

comparable to that of thread pools. A small number of worker threads execute an o昀�en much
larger number of tasks.

吀�e Haskell package threads-pool of Ilya Portnov2 implements a similar approach. However,
thread pools, including this implementation, are o昀�en not designed to support choosing
between different kinds of task buffers. Additionally, it is o昀�en not possible to add new tasks
from another task, which has been used to implement the search strategies on trees. Because
of this, we decided to write our own bag of tasks implementation, which is described in this
section.

The Low-Level Interface of the Bag of Tasks

吀�ecentral function provided by the bag of tasks framework is runTaskBag.

runTaskBag ∶∶ BufferType → [Task a (Maybe a)] → IO [a]

吀�is function is used to start the evaluation of a list of tasks with the given task buffer
type and creates a list to be evaluated lazily. Basically runTaskBag has to initialise the bag,
which includes creating the task buffer and starting the worker threads, add the tasks to the
task buffer, and make sure the computation is terminated once the list of results is garbage
collected.

In our implementation, runTaskBag is just a thin abstraction layer delivering a less complex
interface to the basic bag of tasks implementation. 吀�e basic implementation provides a set
of functions implemented mostly based on the IO monad providing the main logic of the bag
of tasks. 吀�e function newBag creates a new empty bag of tasks.

newBag ∶∶ BufferType → IO (Bag a)

It creates the task buffers, some shared variables, and starts the worker threads. 吀�e number
of these is equivalent to the number of system threads of the GHC runtime system. Using
more threads would hardly increase the amount of parallelisation while increasing the syn-
chronisation and context switching overhead. 吀�e bag of tasks returned by newBag can be
used for tasks returning values of only one type, a.

Having created a new bag of tasks, it is possible to add tasks with the function addTask.
吀�e tasks of this implementation level are different from those of the user interface. 吀�ey
are defined in the IO monad and, similarly to the other tasks, either return a value or
not.

addTask ∶∶ Bag a → IO (Maybe a) → IO ()

Tasks can be added from anywhere, from the outside of the bag or from another task.

getResult ∶∶ Bag a → IO (Maybe a)

2http://hackage.haskell.org/package/threads-pool [accessed 25-May-2014]

69

http://hackage.haskell.org/package/threads-pool

吀�ese results can be received with the function getResult . 吀�is function returns a result if there
are any results available. If there are no computed results, it either blocks or returns Nothing.
Whichever happens depends on the current state of the bag of tasks.

Furthermore, it is possible to call noMoreTasks to indicate that no more tasks will be added
from the outside of the bag.

noMoreTasks ∶∶ Bag a → IO ()

However, a昀�er calling noMoreTasks, the worker threads may still add additional tasks during
the execution of another task. 吀�e decision on whether it is still possible to get further results
is easy. It is possible as long as tasks are in the task bag, either being executed by one of the
worker threads or waiting in the task buffer.

Furthermore, it may sometimes be required to stop the computation of the bag, when
there are still tasks, but the user knows that there will not be any results requested with
getResult .

terminateBag ∶∶ Bag a → IO ()

Some search strategies from section 4.4.2 required the possibility to return results in the
middle of the execution of a tasks. 吀�is can be done with writeResult , which writes one result
to the output:

writeResult ∶∶ Bag a → a → IO ()

Based on this interface it is easily possible to define the abstraction layer newTaskBag. In
contrast to the basic bag of tasks interface, the abstraction layer uses another formulation for
tasks. 吀�e implementation of these is straight forward and in the end it provides the interface
seen in figure 5.5

newtype Task r a
instance Monad (Task r)
instance MonadIO (Task r)
type WriteResult = (r → IO ())
type AddTask = (IO (Maybe r) → IO ())
runTask ∶∶ Task r (Maybe r) → AddTask → WriteResult → IO (Maybe r)
addTask ∶∶ Task r (Maybe r) → Task r ()
writeResult ∶∶ r → Task r ()

Figure 5.5.: 吀�e task’s interface.

The Basic Implementation

吀�e bag of tasks is implemented using So昀�ware Transactional Memory, which allowsmodifying
the state of the buffer atomically without having to care about locks and their order. 吀�e
shared state can be seen in figure 5.6. It consist of a channel for the results resultChan,

70

data Bag r = Bag {
resultChan ∶∶ TChan r
, taskBuffer ∶∶ TaskBuffer (IO (Maybe r))
, terminateVar ∶∶ TVar Bool
,moreTasksVar ∶∶ TVar Bool
,workerStates ∶∶Map 吀�readId (TVar Bool)}

Figure 5.6.: 吀�e shared state of the bag of tasks.

getResult ∶∶MonadIO m ⇒ Bag r → m (Maybe r)
getResult bag = atomically $ do
result ← tryReadTChan (resultChan bag)
case result of
Just r → return (Just r)
Nothing → do
terminated ← readTVar (terminateVar bag)
unless terminated $ do
moreTasks ← readTVar (moreTasksVar bag)
when moreTasks retry
noTasks ← and ‵li昀�M ‵ (mapM isEmptyBufferSTM (bufferList bag))
unless noTasks retry
mapM_ (λtvar → readTVar tvar >>= (flip when) retry)

(Map.elems (workerStates bag))
return Nothing

Figure 5.7.: 吀�e shared state of the bag of tasks.

the buffer for waiting tasks taskBuffer , a flag to indicate that the computation has been
terminated terminateVar , a flag to indicate if there will be more tasks added to the task buffer
moreTasksVar , and the states of the worker threads. A state of the worker thread shows if the
corresponding thread is working on a task (True) or if it is idling (False).

How do we know that there are no values le昀�? In STM transactions, we can check if
there are values in the resultChan. If this is not the case, we should first check, whether the
bag has been terminated or whether we got the information that there are no more tasks
being added to the bag indicated by moreTasksVar . In case it is not possible that there will be
new tasks, we have to inspect the workerStates and the taskBuffer . If none of the workers is
working on the task and if there are no tasks in the taskBuffer , there will be no values coming
from the bag. 吀�en, getResult can safely return Nothing. 吀�e code of getResult can be seen in
figure 5.7.

71

data Result a = NoResult ∣ Result a ∣ NoMoreTasks
data Bag r = Bag {
workers ∶∶ [吀�readId]
, taskBuffer ∶∶ TaskBuffer (IO (Maybe r))
, resultChan ∶∶ Chan (Result r)
, taskCountVar ∶∶MVar Int
,moreTasksVar ∶∶MVar Bool
,waitingOnMoreTasksVar ∶∶MVar Int
}

Figure 5.8.: 吀�e shared state of the bag of tasks in the variant without using STM.

Alternative Implementation without Using STM

On one hand, since STM is a rather high level interface, it may be expected to have a certain
overhead compared to using locks manually. On the other hand STM is implemented very
efficiently and allows writing down complex dependencies quickly.

吀�is section defines an alternative implementation of the bag of tasks without using STM to
compare the runtimes with the first implementation.

吀�e interface of this is the same as the basic interface presented above. 吀�e shared state
of the bag of tasks can be seen in figure 5.8. In contrast to the implementation above, this
does not contain a worker state. Instead of this, it stores the number of tasks in the bag with
taskCountVar .

How do we know that there are no values le昀�? On adding a new task in the task
buffer the threadCount is increased. 吀�is has to be done before writing an intermediate
result into the resultChan. 吀�e number of tasks stored in taskCountVar is decreased in
getResult only. Before reading a value from the channel it asks if more values may be added
later.

moreTasks ← readMVar (moreTasksVar bag)

If so, it can assume that there will be a value available later for now. If moreTasksVar is set to
False there will also be a message through the result channel and getResult is restarted once
the message has been put back for other threads which wait on this variable indicated by
waitingOnMoreTasksVar . If moreTasks is False, we just have to read the taskCountVar to find
out if there will be values le昀�.

Multiple Task Buffers

Until now, runTaskBag was said to create only one common buffer of waiting tasks, but this
is not the only option available. It is also possible to use one task buffer per thread, which

72

reduces the synchronisation overhead between the threads. When a task buffer of one thread
is empty, it queries the task buffers of the other threads to hand over one or multiple tasks.
To allow the interaction with a foreign task buffer without involvement of the other task,
these buffers are also accessed via STM actions.

take first split vertical split half

Figure 5.9.: Visualisation of the spli琀�ing strategies.

吀�ere are multiple possibilities of how to decide which tasks from the foreign buffer are taken.
Figure 5.9 shows all strategies implemented here. One way is to just take the first task in the
foreign buffer. We call this method take first.

Following the naming of Vieira et al. [32], the other strategies are called half spli琀�ing and
vertical spli琀�ing. Both strategies divide the task buffer of one thread in halves. 吀�is takes
more time, but it will limit the number of splits.

With vertical spli琀�ing, the task buffer is divided alternately. As a result, the spli琀�ing function
has to read the complete buffer. 吀�is is also the case for half spli琀�ing. Here, the own worker
takes the first half of the task buffer whereas the foreign worker continues to evaluate the
second half.

73

6. Evaluation

吀�is chapter is about the evaluation of certain important criteria of parallel search strate-
gies. 吀�is includes besides the performance (section 6.3) the desired degree of complete-
ness (section 6.1) and the behaviour in case of an abortion of the computation (section 6.2).
吀�ese criteria are verified with the help of the test programs presented in the following
sections.

6.1. Completeness

We described both search strategies being complete for deterministic loops and search strate-
gies which are only complete for infinite non-deterministic search trees.

Search strategies competingwith breadth-first search have to be complete for non-deterministic
loops. 吀�e strategies bfsParallel1, bfsParallel2, bfsParallel3, bfsBag, fairSearch1, fairSearch2,
and fairSearch3 fulfil this requirement. To verify this, we write a function which non-
deterministically yields all natural numbers beginning at n.

f n = f (n + 1) ? n

吀�e call f 0 =∶= 1 should then yield the value success. However, the search tree of this call is
infinite. It can be seen at the le昀� in figure 6.1. A normal depth-first search on this tree would
not find any success in this tree.

We could argue that there is also an incomplete strategy finding this result by searching the
right subtree first. 吀�erefore, we also define g, which is semantically equivalent to f , but
results in a different search tree seen at the right side in figure 6.1:

Figure 6.1.: 吀�e search tree of f 0 =∶= 1 (le昀�) and the search tree of g 0 =∶= 1 (right).

74

g n = n ? g (n + 1)

Incomplete strategies would diverge on trying to get the first result of f 0 =∶= 1 or g 0 =∶= 1.
Strategies fulfilling this completeness criterion return the first result success in both cases
similar to all strategies mentioned above. 吀�is test has to be performed using one thread only;
otherwise the strategies using bag of tasks would start two threads simultaneously and only
one of these would start evaluating the infinite branch.

Even more complete than breadth-first search are fair search strategies from section 4.5.
吀�ese have to return an existing result even if there are deterministic loops in the search
tree. A minimal example would be the goal loop ? () which obviously contains the result ().
Fortunately, simple loops are detected automatically by the GHC runtime system, so loop ? ()
is not a valid test. As a foundation for our test, we define the function fib which returns the
Fibonacci number with the given index:

fib n = case n of
0 → 0
1 → 1
n → fib (n − 1) + fib (n − 2)

Furthermore we define the list of all Fibonacci numbers fibs:

fibs = fibs′ 0
where
fibs′ n = fib n ∶ fibs′ (n + 1)

Because the list of all Fibonacci numbers is infinite, the evaluation of last fibs, the last
element of this list, diverges. We use the following goals to test our fair strategies for
completeness:

last (fibs ? [1])
last ([1] ? fibs)

All fair strategies, fairSearch1, fairSearch2, and fairSearch3, return the existing result 1 while
breadth-first search diverges at the evaluation of the first result of last (fibs ? [1]). Again, this
test has to be evaluated using one system thread only.

6.2. Abortion Behaviour

O昀�en, complete Curry programs perform one or multiple searches during their runtime and
continue with the processing or output of the values. When requesting only one value with
getOneValue, the search does not have to be completed. However, parallel search strategies
o昀�en create sparks or start threads to search parts of the search tree in parallel. Ideally, this
computation should be stopped once the first values have been returned. To ensure this, the
bag of tasks implementation and the fair search strategies implement the termination of the
threads with a technique presented in section 5.1.

75

Figure 6.2.: CPU load during the execution of the test program for two example strategies
splitAll1 and fairSearch3.

To check the behaviour of the search strategies in this case, we define a test program based
on the goal last ([1] ? fibs) from section 6.1:

main strategy = do
Just x ← getOneValue strategy (last ([1] ? fibs))
putStrLn (”Got the value ” ++ show x)
sleep 10

sleep n is an action which suspends the evaluation of the Curry program for n seconds. As
the search strategies except splitLe昀� and dfsBagLe昀� evaluate the le昀� subtree before the one
at the right, all strategies return the result 1 first, but they differ in terms of CPU load during
the phase of sleeping.

吀�e different behaviour a昀�er ge琀�ing the first value can be seen in figure 6.2. 吀�is diagram
compares the CPU load during the evaluation of main for the search strategies splitAll1 and
fairSearch3. fairSearch3 represents search strategies correctly terminating the search in the
rest of the search tree whereas splitAll1 is a strategy that does not terminate the computation of
the last Fibonacci number. Unfortunately, the behaviour of splitAll1 depends on the implemen-
tation of sparks in the GHC runtime system and we have no direct influence on this. Table 6.1
shows that all strategies implemented explicitly with threads fulfil this requirement whereas
the strategies implemented using sparks continue the computation.

76

terminates correctly continues with evaluation
fairSearch1 parSearch
fairSearch2 splitAll1
fairSearch3 splitAll2
dfsBag splitAll3
fdfsBag splitLimitDepth
bfsBag splitAlternating
dfsBagCon splitExponential
fdfsBagCon splitRight
bfsBagCon splitLe昀�
dfsBagLimit bfsParallel1
dfsBagRight bfsParallel2
dfsBagLe昀� bfsParallel3

Table 6.1.: 吀�e abortion behaviour of all presented search strategies.

6.3. Performance Analysis

An important goal of this thesis is to improve the performance with parallel evaluation. In
order to decide for or against a certain search strategy it is necessary to measure and compare
this performance. While some strategies improve the evaluation speed, some offer a higher
level of completeness compared to existing search strategies (section 4.5). 吀�e goal for these
is not to reduce the performance too much, so these strategies can still be used to evaluate
most programs.

6.3.1. Benchmark Programs

To measure the performance of the developed strategies, we select a set of benchmark pro-
grams. Among these are traditional logic programming examples such as Search儀�eens and
PermSort and examples from the praxis like EditSeq. Other benchmarks require a certain level
of completeness (section 3.2) like NDNums, so they cannot be evaluated with every search
strategy.

n 儀�eens Puzzle

吀�e 8 queens puzzle is the problem of placing 8 chess queens on a chess board, without any
queen being able to capture another. 吀�e generalisation of this problem is the n queens puzzle,
in which we have to place n queens on a chess board of n × n squares. As a queen can move
any number of squares on the same rank, file, or diagonal, we cannot place two queens in the
same row, column, or diagonal.

77

To represent possible solutions, we index both rows and columns with numbers from 1 to
n. As two queens cannot be placed in the same column, we can represent the positions of
all queens as the list of rows of the occupied squares. Using this notation, [1, 2, 3, 4, 5, 6, 7, 8]
would mean that eight queens stand on the diagonal from the top le昀� corner to the bo琀�om
right corner of an 8 × 8 board. As two queens are not allowed to occupy a square in the same
row, in a safe placing, each number only appears once in its representation. 吀�erefore, the
safe placements are among the permutations of the list [1 . . n].

吀�e computation of the safe positions is implemented non-deterministically using the generate
and test principle in figure 6.3. 吀�e benchmark is called Search儀�eens. 吀�e operation queens
implements this search and thus enumerates all possible safe placements with permute. 吀�e
placement is safe if and only if there is no pair of queens standing in the same diagonal. 吀�is
is expressed by allSafe with the help of the operation safe.

Note that the implementation of insert is not the naïve implementation, which forces the
evaluation of the given list to weak head normal form, before deciding on where to put the
value x .

insert x [] = [x]
insert x (z ∶ zs) = x ∶ z ∶ xs ? z ∶ (insert x zs)

We consider the first rule to be equal to the le昀� side of the choice of the second rule. Our
implementation seen in figure 6.3 results in the search tree visible in figure 6.4. 吀�is shows
the search tree of the list permutations. At certain points, a beginning of a list is wri琀�en at a
branch. 吀�is is the list which is already evaluated at this point of the search tree. All lists below
start with these values. 吀�e red parts of the tree are parts that do not have to be evaluated,
because the program knows from the already determined beginning of the list, that this
placement will not be safe. 吀�is is detected by the deterministic computation in allSafe which
happens at each point where a new value comes to the prefix of the list.

Permutation Sort

Another classical example for logic programming is permutation sort. Permutation sort is
in no way an efficient algorithm, but its implementation is very close to the typical speci-
fication of sorting functions: a sorting function returns a sorted permutation of the given
list.

Permutation sort is defined with the help of the operation sorted , which takes a list and
returns the same list only if it is sorted. If the given list is not sorted, the operation
fails.

sorted ∶∶ [Int] → [Int]
sorted [] = []
sorted [x] = [x]
sorted (x ∶ y ∶ ys) ∣ x ≤ y = x ∶ sorted (y ∶ ys)

With this simple operation, sort can be defined as:

78

queens ∶∶ Int → [Int]
queens n ∣ allSafe qs = qs where qs = permute [1 . . n]
insert ∶∶ a → [a] → [a]
insert x xs = x ∶ xs

? case xs of
z ∶ zs → z ∶ insert x zs

permute ∶∶ [a] → [a]
permute [] = []
permute (x ∶ xs) = insert x (permute xs)
allSafe ∶∶ [Int] → Bool
allSafe qs = allSafe′ (zip qs [1 . .])
where
allSafe′ ∶∶ [(Int , Int)] → Bool
allSafe′ [] = True
allSafe′ (xy ∶ xys) = all (safe xy) xys ∧ allSafe′ xys

safe ∶∶ (Int , Int) → (Int , Int) → Bool
safe (a, b) (c, d) = abs (a − c) ≢ abs (b − d)
abs ∶∶ Int → Int
abs x ∣ x < 0 = −x

∣ otherwise = x
main = queens 8

Figure 6.3.: 吀�e implementation of Search儀�eens.

?

… 1:?

[1,2,3,4]!

1:2:3:?

1:2:4:?

[1,2,4,3]!

!

?

?

[1,3,2,4]!

1:3:2:?

1:3:4:?

!

!

?

[1,3,4,2]

1:3:?…

Figure 6.4.: A part of the search tree of queens 4.

79

sort xs = sorted (permute xs)

As permutation sort uses the same permutation operation as Search儀�eens, its search tree is
very similar.

Editing Sequences

Comparing genomes is a popular problem in bioinformatics. As genomes can be expressed
sequentially, comparing genomes is equivalent to comparing sequences of le琀�ers. Le琀�ers are
represented by constructors of a special data type.

data Le琀�er = A ∣ C ∣ G ∣ T ∣ I ∣ R ∣ N ∣ E ∣ D ∣ L

Example string can then look like the following.

airline = [A, I , R, L, I ,N , E]
darling = [D,A, R, L, I ,N ,G]

Comparing sequences can be done by editing one sequence to match another. 吀�is editing
can be a replacement, a deletion, or an insertion, and may be followed by further editing
operations.

data Edit = Replace Le琀�er Le琀�er Edit
∣ Delete Le琀�er Edit
∣ Insert Le琀�er Edit
∣ Empty

Not changing anything at the current position is also counted as a replacement like Replace A A.

O昀�en, we are interested in editing operations with a minimal number of changes and some-
times we may only be interested in the minimum number of changes. 吀�us, we specify the
number of changes as value.

value ∶∶ Edit → Int
value (Insert x) = 1 + value x
value (Delete x) = 1 + value x
value (Replace a b x) = value x + if a ≡ b then 0 else 1
value Empty = 0

Both insertion and deletion are counted as a value of 1. A replacement with the same
le琀�er has the value of 0 and a replacement with a different le琀�er also has the value of
1.

吀�e main goal is defined in terms of the generate and test paradigm. 吀�e generator editMax
generates edit operations with a maximum length. simpLR e=∶=(airline, darling) tests whether
the editing operation results in the correct sequences.

goal ∣ simpLR e =∶= (airline, darling)
= (value e, e)

where e = editMax 14

80

In addition to the edit operation itself, goal returns the value of the edit operation.

吀�en, the function simpLR has to calculate both the source and the goal sequence from the
editing operations.

simpLR ∶∶ Edit → ([Le琀�er], [Le琀�er])
simpLR (Replace a b x) = (a ∶ x1, b ∶ x2) where (x1, x2) = simpLR x
simpLR (Delete a x) = (a ∶ x1, x2) where (x1, x2) = simpLR x
simpLR (Insert a x) = (x1, a ∶ x2) where (x1, x2) = simpLR x
simpLR Empty = ([], [])

吀�e replace operation Replace adds a le琀�er to each sequence whereas both the delete operation
Delete and the insert operation Insert only add their argument le琀�er to the le昀� respectively
the right sequence.

editMax creates the sequences then. 吀�e given argument is the sum of the length of both
result sequences.

editMax m =
if m ≤ 0
then Empty
else Replace (editMax (m − 2))

? Delete (editMax (m − 1))
? Insert (editMax (m − 1))
? Empty

To properly compare two sequences, it is necessary to find the shortest of all editing operations.
吀�us, we have to compare the first element of all results of goal . 吀�e function main calculates
all these values lazily with the given search strategy. A昀�er calculating the minimum of the
values, all minimal editing operations are wri琀�en to the output.

main strategy = do
vlist ← getLazyValues strategy goal
let m = minlist (map fst vlist)
putStrLn (”Minimum: ” ++ show m)
putStrLn (unlines (map show (filter (λx → fst x ≡ m) vlist)))

吀�is program is far from being optimal. Due to generating all editing operations up to a given
length limit, a large search space is created. While the size of this search tree is reduced
by the narrowing implementation its size is still vast. Additionally, the number of results is
also comparingly large. 吀�e example goal comparing airline and darling yields 48,639 results.
Benchmarking this shows the effort at parallelising unoptimised Curry programs, which have
been wri琀�en to mostly resemble the problems’ definition.

81

Half

吀�e program half divides a given number by two using guessing:

half y ∣ equal (add x x) y = x where x free

吀�e numbers are thereby defined as peano numbers:

data Peano = Zero ∣ Successor Peano

吀�e functions add and equal are implemented as expected. In addition, to convert a normal
number of type Int to a peano number, we define the function toPeano. 吀�e main goal then
compares the given number 800 with the half of another number 1600, which is obviously
true.

main = equal (toPeano 800) (half (toPeano 1600))

Last

吀�e program last is the simplest of all benchmark programs used here. It does a search for
the last element in a list using free variables.

last ∶∶ [a] → a
last l ∣ xs ++ [x] =∶= l = x where xs, x free

吀�e above code can be read as: when the argument is equal to any list xs with the appendix
[x], then x is the last element.

吀�e search tree, which can be seen for an example list in figure 6.5, results from the implemen-
tation of narrowing in Curry. It has nearly the form of a list while it has failures alternating at
each side. For the benchmarks, we use themain goal last (replicate 10000 True).

NDNums

NDNums is our only benchmark program creating an infinite search tree. From section 6.1,
we already know the function yielding all integers starting at the integer provided as an
argument:

f n = f (n + 1) ? n

吀�e search tree created by f is infinite but very narrow. Each level in this search tree contains
only two tree nodes. 吀�e function h is semantically equivalent to f , but it has a much wider
search tree:

h n = h (n + 1) ? n ? h (n + 1)

吀�e main goal compares the result of h with 19.

main ∣ h 0 ≡ 19 = success

82

?

?

!

!

?

!?

3 ?

!?

! ?

!!

?

!

Figure 6.5.: 吀�e Search Tree resulting from the goal last [1, 2, 3].

Similar to Last , the amount of computation per node is very low here since it only contains
adding two numbers or comparing them. However, this benchmark tests the breadth-first
and fair search strategies on how they handle wide search trees.

6.3.2. Benchmarking System

All benchmarks were run on a system with two Intel Xeon CPU E5-2620 and 16 GiB of RAM
using Debian GNU/Linux 7.3 with Linux Kernel 3.2.51. 吀�e Intel Xeon E5-2620 has been
introduced in the first quarter of 2012 and each has six processing cores. All of these cores
support Hyper-吀�reading Technology; therefore each physical core appears as two logical
cores. All in all, the system has 12 physical and 24 logical cores.

To compile the generated Haskell code, we used a development snapshot of the Glasgow
Haskell Compiler 7.8 from January 9, 2014, because Glasgow Haskell Compiler 7.6 does not
feature a thread-safe version of the unique identifier supply.

6.3.3. Results

吀�is section shows the results of the benchmarks by comparing similar strategies with each
other. Earlier benchmarks showed that, among the id supplies currently delivered with KiCS2,

83

the default supply ioref has the best performance. 吀�erefore, this id supply has been used for
all benchmarks in this section.

As the runtime and the memory consumption of a program depends on the scheduling by the
operating system and by the GHC runtime system, we ran each benchmarkmultiple times. 吀�e
shown values are the mean of these multiple runs. We ran each benchmark at least four times.
吀�e benchmarks computing only one value in the search tree have been run eleven times,
since the scheduling has more influence on the evaluation time here.

Deterministic Parallel Depth-First Strategies

Figure 6.6.: Normalised diagram of the elapsed time on computing one solution of the PermSort
benchmark. Comparing all parallel deterministic depth-first search strategies.

Section 4.3 defines four parallel deterministic depth-first search strategies. 吀�e diagrams in
figure 6.6, 6.8, and 6.7 compare these strategies in terms of runtime of different benchmark
programs. All of these diagrams show, that parSearch (red) and splitAll1 (yellow) are on par
with each other. We expected this, because splitAll1 was meant to be a formulation variant of
parSearch using the Eval monad instead of the simple function par .

splitAll2 implements the approach of separating the parallel evaluation strategy from the
traversal of the tree. As expected, this is slower compared to directly traversing the tree in
parallel. 吀�ough, in PermSort One (figure 6.6), it still reaches a runtime of 18.57s at 12 cores
in comparison to the 41.1s of the sequential depth-first search .

Between the strategies splitAll1 (yellow) and splitAll3 (brown) it is not that clear which one
is the winner. splitAll3 wins in benchmarks yielding many values like EditSeq (figure 6.7)

84

Figure 6.7.: Normalised diagram of the elapsed time on running the EditSeq benchmark. Com-
paring all parallel deterministic depth-first search strategies.

Figure 6.8.: Normalised diagram of the elapsed time on computing all solutions of the Half
benchmark. Comparing all parallel deterministic depth-first search strategies.

85

whereas splitAll1 wins in benchmarks yielding only few values like PermSort (figure 6.6).
However, a huge difference between both can be seen in figure 6.8. 吀�e runtimes of splitAll3
are o昀�en even worse than those of splitAll2.

Figure 6.9.: Normalised diagram of the maximum used memory during the computation of
the EditSeq benchmark. Comparing all parallel deterministic depth-first search
strategies.

Figure 6.9 shows thememory usage of the search strategies compared in this section. All strate-
gies do not differ significantly from the sequential depth-first search.

Figure 6.10 shows an example in which all parallel deterministic search strategies perform
worse than the sequential depth-first search. 吀�is is due to the list-like search tree of Last
with a very li琀�le amount of sequential evaluation.

Interestingly, except from PermSort , no benchmark profits from this parallelisation strategies
on the computation of only one value. 吀�e explanation is simple: if a le昀� subtree already
contains a value, there is no use from having sparked the right subtree. If the le昀� subtree
does not contain a value, the value from the right subtree can not be returned before the le昀�
subtree has been evaluated completely. 吀�is initially led us to the definition of the bag of
tasks search strategies.

A昀�er an overall comparison, splitAll1 performs best. In many benchmarks like EditSeq
and PermSort it quarters the runtime. In EditSeq from 31.11s to 7.15s with 8 threads and
in PermSort from 41.1s to 8.79s with 12 threads. As a result, we choose splitAll1 as the
recommended parallel deterministic depth-first search strategy.

86

Figure 6.10.: Normalised diagram of the elapsed time on computing all solutions of the Last
benchmark. Comparing all parallel deterministic depth-first search strategies.

Deterministic Parallel Breadth-First Strategies

A昀�er having compared the performance of the deterministic parallel depth-first search strate-
gies, this section compares the performance of the breadth-first strategies. bfsParallel1 par-
allelises the evaluation of all nodes in one level whereas both bfsParallel2 and bfsParallel3
traverse the tree sequentially in breadth-first order while the sparks evaluate the tree in a
depth-first order. In bfsParallel3 each spark follows a branch down until it reaches a leaf
whereas bfsParallel2 creates new sparks for each level.

吀�e figures 6.11, 6.12, and 6.13 show the evaluation times for various benchmark programs.
First of all, bfsParallel1 is never faster than the sequential breadth-first search. 吀�erefore, it is
abandoned. As for the parallel depth-first search strategies, no parallel breadth-first search
beats the sequential search strategy in the benchmark Last (figure 6.12).

bfsParallel2 and bfsParallel3 produce different results depending on the benchmark programs.
For some benchmarks like computing one value of the PermSort example, bfsParallel3 takes
18.69s whereas bfsParallel2 takes 32.14s with 12 threads. 吀�ereby both is faster than the
70.04s needed by the sequential search. 吀�e behaviour on computing all values for PermSort is
similar. For other benchmarks, like computing all values of the Half benchmark, bfsParallel2
is faster than bfsParallel3. bfsParallel2 speeds up the computation from 1.51s to 0.48s with 12
threads and bfsParallel3 needs more time than the sequential strategy. Here, the behaviour
on computing only one value is also similar.

87

Figure 6.11.: Normalised diagram of the elapsed time on computing one solution of the
PermSort benchmark. Comparing all parallel deterministic breadth-first search
strategies.

Figure 6.12.: Normalised diagram of the elapsed time on computing one solution of the Last
benchmark. Comparing all parallel deterministic breadth-first search strategies.

88

Figure 6.13.: Normalised diagram of the elapsed time on computing all solutions of the Half
benchmark. Comparing all parallel deterministic breadth-first search strategies.

Figure 6.14.: Normalised diagram of themaximumusedmemorywhile computing all solutions
of the Half benchmark. Comparing all parallel deterministic breadth-first search
strategies.

89

In terms of memory usage bfsParallel3 is o昀�en worse than bfsParallel2 like in the bench-
mark of figure 6.14. When looking at this figure, you have to keep in mind the logarithmic
scale at the bo琀�om axis. For these reasons, we choose bfsParallel2 as the recommended
strategy.

Bag of Tasks Search Strategies with One and Multiple Task Buffers

A昀�er comparing the performance of multiple deterministic parallel search strategies im-
plemented with semi-explicit parallelism, we now compare the search strategies based on
the bag of tasks approach. For the bag of tasks approach, we have three different search
strategies: dfsBag, fdfsBag, and bfsBag. Among these, only bfsBag reaches the completeness
of breadth-first search.

Additionally, we have multiple implementations of the bag of tasks framework. One of these
uses a common buffer for all worker threads and the others use one task buffer per thread.
As long as these have tasks in their own buffer, these implementations do exactly the same.
吀�ey differ in the behaviour once their own task buffer is empty. 吀�e take first variant just
takes the first of the tasks from a foreign task buffer while split vertical and split half split up
the task buffer in two halves.

Figure 6.15.: Diagram of the runtime of the EditSeq benchmark. Comparing depth-first search
strategies based on the bag of tasks approach.

Here, we compare the different implementations of the bag of tasks with each other while
using the same search strategy. Figure 6.15 shows that, independent on which bag of tasks im-
plementation used, dfsBag reaches resonable speedups compared to the sequential depth-first

90

search. However, the variant with a common buffer has obviously a higher synchronisation
overhead than the other variants. dfsBag takeFirst runs the EditSeq benchmark in only 7.37s
compared to 31.11s needed by the sequential strategy. All strategies with multiple task buffers
are approximately at the same level.

Figure 6.16.: Diagram of the runtime of the EditSeq benchmark. Comparing wrong depth-first
search (fdfsBag) strategies based on the bag of tasks approach.

On the contrary, with both fdfsBag (figure 6.16) and bfsBag (figure 6.17) both spli琀�ing strate-
gies can not beat the takeFirst implementation. fdfsBag is not slower compared to dfsBag,
but it o昀�en uses more memory.

Other benchmarks like the Half benchmark (figure 6.18) show no significant difference
between the various bag of tasks implementations, even for bfsBag. Like with all search
strategies from this thesis, the Last benchmark (figure 6.19) does not profit from parallelisa-
tion.

For all strategies with all bag of tasks implementation the memory consumption stays within
the same range with the sequential implementation. All in all, we decide to use the take first
implementation of the bag of tasks, as it produces best results with all bag of tasks search
strategies. As the fdfsBag strategy is never be琀�er compared to dfsBag we choose to prefer
dfsBag.

91

Figure 6.17.: Diagram of the runtime of the EditSeq benchmark. Comparing breadth-first
search strategies based on the bag of tasks approach.

Figure 6.18.: Diagram of the runtime to compute all solutions of the Half benchmark. Com-
paring breadth-first search strategies based on the bag of tasks approach.

92

Figure 6.19.: Diagram of the runtime to compute all solutions of the Last benchmark. Com-
paring depth-first search strategies based on the bag of tasks approach.

Comparing Non-Deterministic Bag Search Using STM with Bag Search without
STM

Even though the bag of tasks search strategies using STM already produce good parallelisation
results for depth-first and breadth-first search, we try another implementation of the bag of
tasks which does not use STM at all. For the benchmarks of the STM implementation, we
always used the variant with a common buffer for all worker threads, since this resembles
the other implementation best. 吀�is variant has been shown to be slower compared to the
variant with multiple task buffers.

In some benchmarks like our Last benchmark, the implementation without STM outperforms
the other implementation (see figure 6.20). However, these are typically benchmarks in which
parallelisation never resulted in be琀�er performance.

For other examples like NDNums (figure 6.21) and PermSort (figure 6.22) the simple imple-
mentation results in worse performance compared to the STM implementation. As this
is the case for most of the benchmarks, we give up the idea of an implementation with-
out STM for now. Our STM implementation seems to be efficient enough for our pur-
poses.

93

Figure 6.20.: Elapsed time on computing one solution of the Last benchmark. Comparing
depth-first bag search using STM (STM DFS) with depth-first bag search without
STM (Con DFS).

Figure 6.21.: Elapsed time on computing one solution of the NDNums benchmark. Comparing
breadth-first bag search using STM (STM BFS) with breadth-first bag search
without STM (Con BFS).

94

Figure 6.22.: Elapsed time on computing all solutions of the PermSort benchmark. Comparing
depth-first bag search using STM (STM DFS) with depth-first bag search without
STM (Con DFS).

Profitability of the Reduction of Created Sparks and Tasks

Even though a large search space with many independent computations seems to support
parallelisation, each spark and each task comes with a certain overhead. Having less but
larger independent computations results in less overhead, but it may also result in having
not enough tasks for all threads. It is important to strike the right balance between fine and
coarse granulation. 吀�is section is about estimating the benefit from reducing the number
of created sparks and tasks respectively as proposed in section 4.3.3 for using sparks and in
section 4.4.2 for the bag of tasks approach.

To benchmark how much speedup can be expected with this reduction, we use a variant of
the permutation sort benchmark. Our variant uses a different definition of permute which is
semantically identical to the implementation above, but results in a different search tree. 吀�is
search tree is be琀�er balanced in comparison to the other definition. 吀�e idea making sure to
get a mostly balanced tree is to make sure that each choice contains subtrees of a similar size.
Here, each choice decides whether the first element of the permuted list is from the first or
from the second half of the list. 吀�e other half is being rejected. Selecting an element of the
remaining elements is being done with the same principle. 吀�is is slower compared to the
normal permutation, but results in a be琀�er balanced list. Figure 6.23 shows the code of the
permutation function.

Furthermore, we benchmark the sorting of the list [1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2], supporting the

95

permute xs =
permute′ xs []

where
permute′ xs ys =
case (xs, ys) of

([], []) → []
([],) → permute′ ys []
([x],) → x ∶ permute′ ys []

→
let xl = length xs

(xs1, xs2) = splitAt (xl ‵div ‵ 2) xs
in permute′ xs1 (xs2 ++ ys) ? permute′ xs2 (xs1 ++ ys)

Figure 6.23.: 吀�e Code of permute creating a more balanced list.

balance of the tree while not making the sorting trivial as for [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]. 吀�e
resulting search tree is verywell-balanced as shown in figure 6.24 for level three.

11.285 s11.447 s 0.027 s 11.423 s 11.380 s11.366 s 11.363 s0.027 s

Figure 6.24.: Measuring the evaluation times of the subtrees at level three for the specially
modified permutation sort. 吀�e radius of the circles increases linearly with the
evaluation time of each subtree.

吀�is program is constructed to provide a good search tree for the use with splitLimitDepth
and dfsBagLimit , which are used in the benchmarks here. 吀�e diagram in figure 6.25 shows
the difference in evaluation time between splitLimitDepth (−1) without a depth limit and the
limited parallelisation strategies. Only spli琀�ing up to level one and two is unprofitable using
8 threads and more, because there are only two respectively four independent sets of work
available. 吀�e best runtime, 32.97s has been achieved using 8 threads and a spli琀�ing depth of
4 which competes against 42.72s for infinite spli琀�ing. 吀�is shows that, choosing the right
strategy, it is possible to decrease the runtime significantly.

Figure 6.26 shows a similar benchmark. We use dfsBagLimit instead of splitLimitDepth here;
it shows the difference in evaluation time between dfsBagLimit (−1) without a depth limit
and dfsBagLimit with a depth limit. 吀�erefore, we benchmark the overhead of creating tasks.
Having a look at the value for 2 threads shows that limiting the depth of parallelisation to 4

96

Figure 6.25.: Reducing the depth of parallelisation with splitLimitDepth evaluating the bal-
anced variant of permutation sort. 吀�e bar numbers are the arguments to
splitLimitDepth specifying the depth of parallelisation.

decreases the elapsed time from 59.31s to 54.01s. 吀�us, it is also profitable when using the
bag of tasks approach.

As the benchmarks for both search strategies show, reducing the number of created sparks or
tasks may sometimes be profitable if all parameters have been adjusted correctly. Further
benchmarks have been made to compare the different strategies for reducing the number
of sparks or tasks on programs, that have not been especially designed to have a balanced
search tree. Even though these do not show encouraging results, it still may be possible to
find other strategies with successful results.

Reducing the Number of Created Sparks and Tasks

We offer three techniques to reduce the number of created sparks and tasks. splitLimitDepth
and dfsBagLimit reduce the depth to which the search strategy introduces parallelisation.
吀�is technique is not successful in any of our benchmarks. 吀�ough, splitAlternating as well
as splitRight and dfsRight have been successful in rare cases. In the following, we have a
closer look at the benchmarks of PermSort and Search儀�eens evaluated with splitRight and
dfsRight .

Figure 6.27 shows the evaluation of Search儀�eens with the deterministic parallel depth-first
search variant splitRight . Especially when spli琀�ing normally up to level 8 (dark green), we

97

Figure 6.26.: Reducing the depth of parallelisation with dfsBagLimit evaluating the bal-
anced permutation sort. 吀�e names of the series are the arguments given to
dfsBagLimit .

Figure 6.27.: Reducing the depth of parallelisation with splitRight evaluating all results of
Search儀�eens. 吀�e names of the series are the arguments given to splitRight .

98

can observe a performance improvement on 24 threads from 0.42s to 0.3s. For all other thread
numbers, splitRight is only on par with the unlimited spli琀�ing strategy.

Figure 6.28.: Reducing the depth of parallelisation with splitRight evaluating all results of
PermSort . 吀�e names of the series are the arguments given to splitRight .

Figure 6.28 shows the results of the evaluation of all PermSort results. Here, splitRight
performs worse with a low limit number. However, we observe a minor runtime improvement
for 2 threads.

吀�e results for dfsBagRight , the bag of tasks variant of splitRight , look similar. Both the
benchmark results of Search儀�eens (figure 6.29) and PermSort (figure 6.30) only show a very
li琀�le reduction improvement for up to 4 threads.

For our benchmark programs, none of the spark and task reduction techniques could be proven
to be useful. To improve the runtime significantly, we probably need more information about
the search tree of the given expression. At this time, we can not recommend any of these
strategies.

Influence of Stack Size on the Memory Consumption of the Fair Search Strategies

First benchmarks of the fair search strategies showed, that all of these used a very large
amount of memory. 吀�is o昀�en resulted in out of memory errors. A昀�er some analysis of the
size of the search tree it was clear, that the size of the search tree was not the reason for
this. Rather, the large demand of memory resulted from the memory each search thread
allocated. With fairSearch1, permutation sorting a list of 12 elements results in around 270,000

99

Figure 6.29.: Reducing the depth of parallelisation with dfsBagRight evaluating all results of
Search儀�eens. 吀�e names of the series are the arguments given to dfsBagRight .

Figure 6.30.: Reducing the depth of parallelisation with dfsBagRight evaluating all results of
PermSort . 吀�e names of the series are the arguments given to dfsBagRight .

100

threads existing at the same time. 吀�e memory needed by one thread consists of its stack
size and a few bytes of information for the runtime system. 吀�e default starting stack size
of GHC’s runtime system is 1024 bytes, which would also not justify the huge memory
consumption. 吀�is is a result of the default stack chunk size of 32,768 bytes. A stack chunk is
the new part of the stack allocated once an existing stack overflows. During the evaluation of
permutation sort, nearly all stacks overflowed, which results in more than 8.2GiB of memory
being allocated.

As a result, we assume that increasing the initial stack size would lower the total memory
consumption. 吀�e following command sets the initial stack size of threads in GHC’s runtime
to 2kiB.

:set rts -ki2048

Stack Search儀�eens PermSort Half Last
Size One All One One All One All
1.00 204 362 1619 52 80 109 107
1.25 206 360 714 51 80 117 109
1.50 114 116 811 18 23 61 51
1.75 121 124 838 19 25 65 60
2.00 126 132 938 22 29 115 126
3.00 158 167 1451 24 31 139 118
4.00 118 134 994 23 30 86 85

Table 6.2.: Benchmarking the maximum memory consumption in MiB for the search strategy
fairSearch1 as a function of the initial stack size in kiB. 12 system threads.

To confirm this assumption and to find a be琀�er default initial stack size, we benchmark the
total memory consumption as a function of the initial stack size for each thread. Table 6.2
shows the results of these benchmarks for the search strategy fairSearch1. For the benchmark
Half All the memory consumption drops from 80MiB for an initial stack size of 1kiB to 23MiB
for an initial stack size of 1.5kiB. All in all, 1.5kiB can be assumed to be a good default stack
size for fairSearch1.

Table 6.3 executes the same benchmarks with fairSearch2 instead of fairSearch1. Here, the
results are less clear. O昀�en using 1.5kiB of initial stack space is the best option, too. Just
in Search儀�eens One using 1.75kiB is significantly be琀�er. We also choose 1.5kiB for further
benchmarks with this strategy.

For fairSearch3 the initial stack size does not seem to have a large influence on the maximum
amount of memory used as shown in table 6.4. Just PermSort drops from 797MiB to 244MiB
when increasing the initial stack size to 1.25kiB. 吀�erefore, we choose 1.25kiB as the initial
stack size here.

101

Stack Search儀�eens PermSort Half Last
Size One All One One All One All
1.00 FAILED 163 825 87 85 155 155
1.25 100 182 166 91 90 170 171
1.50 62 89 186 33 31 128 122
1.75 36 88 199 37 34 140 132
2.00 54 87 213 39 38 167 167
3.00 43 106 370 53 49 233 184
4.00 63 105 303 47 44 143 143

Table 6.3.: Benchmarking the maximum memory consumption in MiB for the search strategy
fairSearch2 as a function of the initial stack size in kiB. 12 system threads.

Stack Search儀�eens PermSort Half Last
Size One All One One All One All
1.00 31 152 797 52 85 130 127
1.25 32 138 244 52 85 139 135
1.50 33 146 323 53 78 134 132
1.75 36 162 267 53 82 143 140
2.00 43 169 354 51 80 169 168
3.00 54 175 366 59 90 180 174
4.00 40 161 337 54 79 150 148

Table 6.4.: Benchmarking the maximum memory consumption in MiB for the search strategy
fairSearch3 as a function of the initial stack size in kiB. 12 system threads.

102

Comparing Fair Search Strategies

A昀�er having chosen a default stack size for each fair search strategy, we compare these
in terms of memory consumption and runtime. 吀�e sequential reference is breadth-first
search, which does not feature the same level of completeness as the fair search strategies.
吀�erefore, being faster than this sequential breadth-first search is not the primary goal
here.

Figure 6.31.: Diagram of the elapsed time on running the EditSeq benchmark. Comparing the
fair search strategies. fairSearch1 fails at this benchmark.

First of all, for some programs like EditSeq and PermSort , fairSearch1 does not complete the
search in 1000 seconds due to an extensive memory usage. One example can be seen in fig-
ure 6.31. 吀�erefore, we consider fairSearch1 to be not usable in praxis.

Having a look at the other strategies fairSearch2 and fairSearch3, both result in be琀�er perfor-
mance than breadth-first search. In EditSeq (figure 6.31), fairSearch3 performs slightly be琀�er
than fairSearch2 with 9.16s in comparison to 11.63s at 12 threads. However, the memory
consumption of fairSearch3 is clearly higher than the memory consumption of fairSearch2 as
shown in figure 6.32.

For the benchmark Half (figures 6.33 and 6.34), fairSearch1 computes results and it is also
not significantly slower for all thread counts. Also the memory usage of fairSearch1 is
comparable to the memory usage of fairSearch2 while the usage of fairSearch3 is significantly
higher.

Figure 6.35 shows the memory usage while computing all values of the Search儀�eens bench-
mark. Here, both fairSearch1 and fairSearch3 show a huge memory usage whereas fairSearch2

103

Figure 6.32.: Diagram of the maximum memory consumption on running the EditSeq bench-
mark. Comparing the fair search strategies. fairSearch1 fails at this benchmark.

Figure 6.33.: Diagram of the elapsed time on computing all values of the Half benchmark.
Comparing the fair search strategies.

104

Figure 6.34.: Diagram of the maximum memory consumption on computing all values of the
Half benchmark. Comparing the fair search strategies.

Figure 6.35.: Diagram of the maximum memory consumption on computing all values of the
Search儀�eens benchmark. Comparing the fair search strategies.

105

is still near to the memory usage of sequential breadth-first search.

All in all, fairSearch2 seems to be the most reasonable fair search strategy. It finishes all
benchmarks with a decent performance and a low memory usage.

6.4. Summary

吀�is section summarises the results of the evaluation. Table 6.5 gives a general overview
of the performance of all implemented parallel search strategies. Because of the different
completeness behaviour, the table is divided into three parts: strategies completing with
depth-first search, strategies competing with breadth-first search, and fair search strate-
gies.

吀�e columns for runtime and memory show the runtime behaviour of the search strategies.
Here, one or multiple “+” symbols indicate, that this strategy achieved an improvement over
the sequential search, the symbol “−” indicates a decline, and “○” indicates no signifant
change. Furthermore, “++” indicates that the strategy can be used reasonably and strategies
marked with a “+++” are among the best of their category. 吀�ese can be thought of as a default
parallel search strategy. 吀�e column abortion shows whether the abortion of the search works
correctly as verified in section 6.2. If the table cell shows the symbol “✓” in the line of a search
strategy, the computation of the values has been aborted successfully.

Complete benchmark results of the most successful strategies can be found in appendix B.
吀�ese compare the sequential strategies with the parallel strategies splitAll1, dfsBag takeFirst ,
fdfsBag takeFirst , bfsParallel2, bfsBag takeFirst , and fairSearch2.

106

Name Runtime Memory Abortion
One All

Strategies Competing with Depth-First Search
splitAll1/parSearch − +++ ○
splitAll2 − + ○
splitAll3 − ++ ○
splitLimitDepth − ○ ○
splitAlternating ○ ○ ○
splitRight − ++ ○
splitLe昀� − ○ ○
dfsBag (common buffer) + + ○ ✓
dfsBag (take first) +++ +++ ○ ✓
dfsBag (split half) +++ +++ ○ ✓
dfsBag (split vertical) +++ +++ ○ ✓
dfsBag w/o STM (common buffer) − − ○ ✓
fdfsBag (common buffer) + + − ✓
fdfsBag (take first) +++ +++ − ✓
fdfsBag (split half) ○ ○ − ✓
fdfsBag (split vertical) ○ ○ − ✓
fdfsBag w/o STM (common buffer) − − − ✓
dfsBagLimit (take first) ○ ○ ○ ✓
dfsBagRight (take first) ○ ++ ○ ✓
dfsBagLe昀� (take first) ○ ○ ○ ✓

Strategies Competing with Breadth-First Search
bfsParallel1 ○ − ○
bfsParallel2 ○ ++ ○
bfsParallel3 ○ ++ −
bfsBag (common buffer) + + ○ ✓
bfsBag (take first) +++ +++ ○ ✓
bfsBag (split half) + + ○ ✓
bfsBag (split vertical) + + ○ ✓
bfsBag w/o STM (common buffer) + + − ✓

Fair Search Strategies
fairSearch1 − − −− ✓
fairSearch2 ++ ++ − ✓
fairSearch3 ++ ++ −− ✓

Table 6.5.: Comparison matrix including all implemented parallel search strategies.

107

7. Usage of Parallel Search

吀�e search strategies presented in this thesis are accessible in multiple ways. All parallel
strategies have been made available through the Curry library ParallelSearch, which allows
the programmer to access parallel search out of the Curry program in IO code. It is also
possible to use these strategies as the top-level search strategy which is used for the main
program. Another way to use some of these parallel search strategies is via the set functions
(see section 2.1.6), which allows using parallel search in pure code.

A昀�er starting KiCS2, it shows a command prompt which allows executing programs and to
set various configuration options. It offers a basic overview over these configuration options
a昀�er entering the command :set.

To exploit multiple processor cores, it is necessary to run the

:set threads [n]

command where [n] has to be substituted by the number of system threads to be used by
the runtime system. O昀�en it is a good idea to set the number of threads to the number of
processor cores in the system. See the results of the benchmarks in section 6.3.3 for more
information. Omi琀�ing the number of threads lets the runtime choose n itself depending on
how many processor cores are in your machine.

A昀�er se琀�ing the desired configuration options, you might want to execute your program by
entering the main goal on the command prompt. To measure the speedup, it is necessary to
see the execution time.

:set +time

Top-Level Search

吀�e top-level search strategy can be set to depth-first search (dfs), breadth-first search (bfs),
or fair search (fair) with the following commands:

:set dfs
:set bfs
:set fair

108

吀�e fair search strategy is parallel by default; otherwise, you need to turn on the parallel
top-level search with the parallel flag.

:set +parallel

Using the flag fixed, it is possible to select between search strategies with a fixed value
order and those with an order which depends on the evaluation order.

:set -fixed

吀�e above command switches off enforcing the fixed order, which is sometimes faster, when
requesting only one value. Switching off the fixed order is equivalent to using a bag of tasks
strategy.

By default, KiCS2 prints out all solutions for the main goal, but it is possible to compute only
one solution or browse though the solutions interactively.

:set +first
:set +interactive

Remember to activate one of these options and a complete search strategy like breadth-
first search or fair search if you want to run a search for solutions in an infinite search
tree.

ParallelSearch Library

O昀�en, you might want to use non-deterministic computations as part of a deterministic main
program. For parallel search strategies, this is possible with the Curry library ParallelSearch.
吀�e interface mostly consists of the following functions.

getOneValue ∶∶ Strategy → a → IO (Maybe a)
getLazyValues ∶∶ Strategy → a → IO [a]
getAllValues ∶∶ Strategy → a → IO [a]

All of these functions are parameterised with a search strategy. Executing these actions
starts the parallel search with the given strategy. While getOneValue only computes the
first result, similar to se琀�ing the option +first of the top-level search, getAllValues and
getLazyValues compute all results. 吀�e difference between getAllValues and getLazyValues is
that getAllValues evaluates the complete list before returning it whereas getLazyValues defers
the evaluation of the list lazily. In most cases getLazyValues is the function of choice as it
allows processing the results in parallel to their computation. For example when we want to
sort the list of results.

main =
vlist ← getLazyValues splitAll1 goal
let sorted = sortBy (≤) vlist
return sorted

109

Set Functions

Set functions allow using encapsulated search in pure code as shown in section 2.1.6. Normally,
search strategies for set functions are defined in Curry itself, but at the moment it is not
possible to write parallel search strategies in Curry. However, since KiCS2 allows defining
Curry functions in Haskell, it is possible to define some of the parallel search strategies for
set functions as well. Among these is a deterministic parallel search strategy parDfsStrategy
similar to splitAll1, parBfsBagStrategy similar to bfsBag, and parDfsBagStrategy which is
similar to dfsBag.

110

8. Future Work

While this thesis already presented viable parallel search strategies, there is still room for
improvement in terms of runtime. 吀�e benchmarks show that both tasks and sparks have
a certain overhead. Reducing the number of created tasks and sparks is not profitable for
realistic example programs. Possible ways to solve this problem are presented in section 8.1.
Certain Prolog implementations use AND-parallelism to decrease evaluation times, which
is presented in section 8.2. Iterative deepening search is another sequential search strategy
that can be implemented in a parallel manner. A first approach of parallel iterative deepening
search is presented in 8.3.

8.1. Manual and Automatic Annotation

While we were successful decreasing the computation time of a specifically designed example
program, using these strategies on real programs did not result in be琀�er runtimes. 吀�ese
strategies limited the creation of threads and tasks by limiting the tree depth of parallelisation,
only using parallelisation in certain hand sides of the search tree, and arbitrarily parallelising
the evaluation of every second subtree. All these strategies tried to reduce the number of
created sparks or tasks without taking the code of the program into account. Ideally, small
parts of the evaluation that do not take much time should be evaluated in sequence while
multiple larger parts could be evaluated in parallel.

O昀�en, while writing a program, the developer already knows that certain parts of the program
would not take much time in the evaluation process. 吀�e programmer could then annotate
those expressions of which he thinks the evaluation in parallel would not be reasonable. Using
SetFunctions, this is already possible.

chooseValue ∶∶ Values a → a

chooseValue chooses an arbitrary value of the given set non-deterministically. In combina-
tion with one of the set functions like set1 and set1With it is possible to annotate that
the non-determinism introduced by a given function should not be evaluated in paral-
lel.

withDfs1 ∶∶ (a → b) → a → b
withDfs1 f x = chooseValue (set1 f x)

Semantically, withDfs1 is the identity on functions with one parameter as it encapsulates the
non-determinism and then returns all these results non-deterministically, but due to the use

111

of set1, the evaluation of these values is done in sequence with depth-first search. However,
the parallelism introduced by chooseValue may then result in a parallel evaluation. Dead ends
with failures are thereby removed.

In contrast to specifying that a certain part of the program should not be evaluated in parallel,
it is also possible do the opposite: specifying that a certain evaluation should be done in
parallel.

withParDfs1 ∶∶ (a → b) → a → b
withParDfs1 f x = chooseValue (set1With parDfsStrategy f x)

Note that using chooseValue on the result of a set function forces the evaluation of the values
to normal form. While this annotation is already possible with the current implementation,
we did not do any benchmarking on it. 吀�is will have to be done by future users of parallel
evaluation in Curry.

Annotating the whole program in this way can be time-consuming and annoying. Possibly,
this annotation can be done automatically either dynamically during the runtime or by
analysing the source code statically. Similar automatic annotation is done by the Ciao Prolog
system [12].

8.2. Prolog’s AND-Parallelism

For other non-deterministic programming languages like Prolog, two types of parallelism
have been identified and successfully exploited: AND-parallelism and OR-parallelism. In this
thesis we implemented OR-parallelism. We describe AND-parallelism with the help of Prolog
programs. Prolog programs consist of clauses of the following form:

h ∶− g1, g2,…, gn.

吀�e above clause means: if all the terms g1, g2,…, gn are true, then h is also true, where the
term on the le昀� hand side of ∶−, h, is called head. 吀�ese terms can either be a simple term
like the atom husain or a compound term like father (gaurav , husain) or parent(X , Y), where
identifiers starting with an uppercase le琀�er are variables. A clause for the parent relation
might be the following:

parent(X , Y) ∶− father (X , Y).
parent(X , Y) ∶−mother (X , Y).

吀�e above clauses are also an example for one head which has multiple clauses, which can
be read as the disjunction of both clauses “X is a parent of Y if it is the father of Y or X is a
parent of Y if it is the mother of Y”. In contrast, the comma between multiple goals of the
same clause is read as the conjunction between these. 吀�e following clause can be read as “X
and Y have children together if there is a Z for which X is the mother of Z and Y is the father
of Z”:

have_children_together (X , Y) ∶−mother (Z ,X), father (Z , Y).

112

Evaluating multiple clauses for one head in parallel and therefore parallelising the evaluation
of different alternatives is called OR-parallelism. 吀�is is equivalent to evaluating two or more
Curry expressions combined with choice operator in parallel.

AND-parallelism, the second type of parallelism exploited by Prolog systems, arises when
a clause contains more than one goal and the resolution of these subgoals is done in paral-
lel.

吀�ere are two distinct classes of AND-parallelism. Independent AND-parallelism only resolves
subgoals in parallel if they do not share any free variables and are therefore independent.
Dependent AND-parallelism resolves all subgoals in parallel, even if two or more of these
subgoals share free variables. 吀�e implementation of dependent AND-parallelism is more
complicated, since the binding of a variable in one branch also affects the binding of the
variable in the other branch.

Unfortunately, Curry’s programs differ from those wri琀�en in Prolog and are more similar to
programs wri琀�en in functional programming languages. However, it is also possible to write
programs similar to those wri琀�en in Prolog. 吀�e following rule is a direct translation of the
rule have_children_together defined in Curry:

have_children_together x y ∣ mother z =∶= x & father z =∶= y = success
where z free

吀�is rule may be parallelised similar to AND-parallelism in Prolog by evaluating the both
rules combined with the & operator in parallel.

Another definition containing a conjunction in Prolog is that of the grandfather relation.

grandfather (X , Y) ∶− father (X ,Z), father (Z , Y).
grandfather (X , Y) ∶−mother (X ,Z), father (Z , Y).

吀�e equivalent Curry code might look like the following code, which may be parallelised
similarly to the Prolog code:

grandfather x ∣ father x =∶= z & father z =∶= y = y
where y , z free

grandfather x ∣ mother x =∶= z & father z =∶= y = y
where y , z free

However, most Curry programmers would write this program in the following way. Note
that this program is equivalent to the above and would look more common to functional
programmers:

grandfather x = father (father x)
grandfather x = father (mother x)

At this point, the approach to evaluate the operands of & in parallel would not be profitable
anymore and the evaluation would fall back to a sequential evaluation.

113

However, it is also possible to understand the functional definition of grandfather in a way
similar to the Prolog-style variant. We could decide to evaluate the argument and its applica-
tion in terms of dependent AND-parallelism. 吀�en, the major difference between Prolog and
Curry is the aspect of laziness. We never know much of the argument has to be evaluated.
Evaluating the argument to normal form in parallel would o昀�en be unnecessary if the value
of the argument is only partly demanded. As a result, we would depend on annotations of
the programmer or of an automatic code-analysis. Further reasoning about AND-parallelism
and its implementation is le昀� for future publications.

8.3. Parallel Iterative Deepening Search

In this thesis, we implemented parallel search strategies similar to depth-first search, those
similar to breadth-first search, and fair search strategies. In contrast to this, we did not take
iterative deepening search into account. Iterative deepening is complete for search trees
without infinite deterministic computation similar to breadth-first search. 吀�is is reached by
searching the tree with depth-first search with an additional depth limit. When the whole
search tree up to the depth limit has been searched but the tree is higher than the given limit,
the search is restarted with a higher depth limit. A sketch of the implementation of iterative
deepening can be seen in figure 8.1.

idsSearch ∶∶ Int → (Int → Int) → SearchTree a → [a]
idsSearch initdepth incr st = iterIDS initdepth (collectBounded 0 initdepth st)
where
iterIDS Nil = []
iterIDS n (Cons x xs) = x ∶ iterIDS n xs
iterIDS n Abort = let newdepth = incr n

in iterIDS newdepth (collectBounded n newdepth st)
collectBounded ∶∶ Int → Int → SearchTree a → AbortList a
collectBounded oldbound newbound st = collectLevel newbound st
where
collectLevel None = Nil
collectLevel d (One x)

∣ d ≤ newbound − oldbound = x ‵Cons‵ Nil
∣ otherwise = Nil

collectLevel d (Choice x y)
∣ d > 0 = collectLevel (d − 1) x +! collectLevel (d − 1) y
∣ otherwise = Abort

Figure 8.1.: Sketching the implementation of iterative deepening search.

Normally, iterative deepening offers a be琀�er space complexity compared to breadth-first
search as it does not have to save a whole level of the search tree at once. However, for

114

the code presented in figure 8.1, the Haskell runtime system keeps the whole search tree in
memory. How to reach the desired space complexity is omi琀�ed here.

…

1 2 3 n

Figure 8.2.: A schematic sketch of parallel iterative deepening search.

吀�e parallel iterative deepening strategy proposed here is similar to that used by Powley and
Korf [29]. Here, each thread does a depth-first search up to a certain depth. At the same time,
the other threads do depth-first search up to higher depth limits. 吀�is is shown schematically
in figure 8.2.

115

9. Conclusion

As part of this thesis, we integrated various parallel search strategies into the Curry system
KiCS2. 吀�ese allow evaluating a non-deterministic program or expression in parallel without
any kind of change or annotation of the source code. While it will still be possible to improve
the strategies, we already reached significant speedups for both depth-first and breadth-first
search strategies. Furthermore, we presented a fair search strategy, whose purpose, instead
of improving the runtime, is to provide a complete search for programs with deterministic
loops.

Basically we implemented three kinds of search strategies. 吀�e deterministic parallel search
strategies preserve the order of values in comparison to their sequential counterparts. 吀�e
strategies using the bag of tasks approach have a similar behaviour in terms of completeness,
but return their values in an arbitrary order depending on the scheduling. Fair search strategies
form the third group.

All these strategies were comparedwith each other in terms ofmemory usage and runtime. Per-
forming benchmarks and analysing their results was very time-consuming; especially, because
li琀�le change to the code o昀�en has large impact on the performance.

吀�e results of these benchmarks are encouraging. 吀�e deterministic parallel depth-first search
strategy splitAll1 usually reaches speedups of factor four with eight threads on computing all
values of an expression. However, it is not profitable on computing only one value of an expres-
sion which yields multiple results. 吀�e deterministic breadth-first search strategy bfsParallel2
reaches a speedup of factor two with eight threads. 吀�e bag of tasks strategies have been
more successful on breadth-first search: bfsBag takeFirst o昀�en reaches a speedup of factor
four with twelve threads. Additionally, using dfsBag takeFirst or fdfsBag takeFirst results in a
similar speedup of factor four compared to depth-first search. Also, all bag of tasks strategies
are profitable when computing only one value of an expression.

吀�ese speedups are smaller than one might expect from the theory. Especially, the perfor-
mance rarely profits from using more than twelve threads. To improve the strategies further,
we tried using alternative work-spli琀�ing approaches. While thereby reducing the number of
parallelisation chunks has been proven to be useful for a specific good-case example. Unfor-
tunately, it was not possible to reach reliable speedups for normal programs. 吀�is has been
identified to be a starting-point for future work.

Due to problems with the amount of memory allocated by fair search strategies, we thought
that it would not be possible to use these profitably for a long time. Fortunately, we identified,
as the reason for this, the amount of memory allocated for the stack of each thread. As a result,

116

we now have the fair search strategy, fairSearch2, which is not only usable, but sometimes
even faster than sequential breadth-first search.

In the end, the user is able to select from few parallel search strategies that will most likely
perform well for the given program. Depending on the desired degree of completeness,
this is o昀�en dfsBag takeFirst or bfsBag takeFirst . Sometimes it may be necessary to get the
same order of values in every run of the program. In this case, the strategies splitAll1 and
bfsParallel2 are recommended. However, for the bag of tasks strategies both the order of the
results is not fixed and aborting the computation works more reliably. For programs with
deterministic loops, which are o昀�en the result of errors, the strategy fairSearch2 produces
good results. Furthermore, it is possible to use parallel search strategies with encapsulated
search. 吀�is allows the user to select different suitable search strategies for different parts of
the program.

117

Bibliography

[1] Elvira Albert, Michael Hanus, Frank Huch, Javier Oliver, and Germán Vidal. Operational
semantics for declarative multi-paradigm languages . Journal of Symbolic Computation,
40(1):795–829, 2005. Reduction Strategies in Rewriting and Programming special issue.

[2] Sergio Antoy and Michael Hanus. Set functions for functional logic programming. In
António Porto and Francisco Javier López-Fraguas, editors, PPDP, page 73–82. ACM,
2009.

[3] Till Berger and David Sabel. Parallelizing DPLL in Haskell. In Stefan Wagner and Horst
Lichter, editors, So昀�ware Engineering (Workshops), volume 215 of LNI, page 27–42. GI,
2013.

[4] Bernd Braßel, Michael Hanus, Björn Peemöller, and Fabian Reck. KiCS2: ANewCompiler
from Curry to Haskell. In Herbert Kuchen, editor, WFLP, volume 6816 of Lecture Notes
in Computer Science, page 1–18. Springer, 2011.

[5] Ma琀�hias Böhm. Erweiterung von Curry um Typklassen. Master’s thesis, October 2013.

[6] Amadeo Casas, Manuel Carro, and Manuel V. Hermenegildo. A High-Level Implementa-
tion of Non-deterministic, Unrestricted, Independent And-Parallelism. In Maria Garcia
de la Banda and Enrico Pontelli, editors, ICLP, volume 5366 of Lecture Notes in Computer
Science, page 651–666. Springer, 2008.

[7] A. M. Cheadle, A. J. Field, Simon Marlow, Simon L. Peyton Jones, and R. L. While.
Exploring the Barrier to Entry: Incremental Generational Garbage Collection for Haskell.
In Proceedings of the 4th International Symposium on Memory Management, ISMM ’04,
page 163–174, New York, NY, USA, 2004. ACM.

[8] Alonzo Church. An unsolvable problem of elementary number theory. American journal
of mathematics, page 345–363, 1936.

[9] M. Hanus and R. Sadre. An Abstract Machine for Curry and its Concurrent Implementa-
tion in Java. Number 6. MIT Press, 1999.

[10] Michael Hanus (ed.). Curry: An Integrated Functional Logic Language (Vers. 0.8.3).
Available at http://www.curry-language.org, 2012.

[11] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herlihy. Composable
Memory Transactions. 2005.

118

http://www.curry-language.org

[12] Manuel V. Hermenegildo, Francisco Bueno, Manuel Carro, Pedro López-García, Edison
Mera, José F. Morales, and Germán Puebla. An overview of Ciao and its design philosophy.
TPLP, 12(1-2):219–252, 2012.

[13] Heinrich Hussmann. Nondeterministic algebraic specifications and nonconfluent term
rewriting . 吀�e Journal of Logic Programming, 12(3):237–255, 1992.

[14] Simon Peyton Jones, Andrew Gordon, and Sigbjorn Finne. Concurrent Haskell. In
Annual Symposium on Principles of Programming Languages, page 295–308. ACM, 1996.

[15] Simon Peyton Jones, Simon Marlow, and Conal Ellio琀�. Stretching the storage manager:
weak pointers and stable names in Haskell, 1999.

[16] Miran Lipovaĉa. Learn You a Haskell for Great Good. April 2011.

[17] Simon Marlow. Parallel and Concurrent Programming in Haskell. In Viktória Zsók,
Zoltán Horváth, and Rinus Plasmeijer, editors, CEFP, volume 7241 of Lecture Notes in
Computer Science, page 339–401. Springer, 2011.

[18] Simon Marlow et al. Documentation of “System.Mem.Weak”. http://hackage.
haskell.org/package/base-4.6.0.1/docs/System-Mem-Weak.html.
[Online; accessed 22-May-2014].

[19] Simon Marlow et al. GHC ticket “Weak pointer to MVar is finalized, even though
MVar is still accessible”. https://ghc.haskell.org/trac/ghc/ticket/6130.
[Online; accessed 28-February-2014].

[20] Simon Marlow et al. Haskell 2010 language report. http://www.haskell.org/
onlinereport/haskell2010, 2010.

[21] Simon Marlow, Tim Harris, Roshan P. James, and Simon Peyton Jones. Parallel
generational-copying garbage collection with a block-structured heap, 2008.

[22] SimonMarlow, Simon L. Peyton Jones, and Satnam Singh. Runtime support for multicore
Haskell. In Graham Hu琀�on and Andrew P. Tolmach, editors, ICFP, page 65–78. ACM,
2009.

[23] Simon Marlow and Simon Peyton Jones. 吀�e Glasgow Haskell Compiler. 2012.

[24] Simon Marlow, Simon Peyton Jones, Andrew Moran, and John Reppy. Asynchronous
Exceptions in Haskell. In Proceedings of the ACM SIGPLAN 2001 Conference on Program-
ming Language Design and Implementation, PLDI ’01, page 274–285, New York, NY, USA,
2001. ACM.

[25] Simon Marlow, Patrick Maier, Hans-Wolfgang Loidl, Mustafa Aswad, and Philip W.
Trinder. Seq no more: be琀�er strategies for parallel Haskell. In Jeremy Gibbons, editor,
Haskell, page 91–102. ACM, 2010.

[26] Simon Marlow, Austin Seipp, Simon Peyton Jones, et al. Documentation of “Con-
trol.Exception.Base”. http://hackage.haskell.org/package/base-4.6.0.
1/docs/Control-Exception-Base.html. [Online; accessed 22-May-2014].

119

http://hackage.haskell.org/package/base-4.6.0.1/docs/System-Mem-Weak.html
http://hackage.haskell.org/package/base-4.6.0.1/docs/System-Mem-Weak.html
https://ghc.haskell.org/trac/ghc/ticket/6130
http://www. haskell. org/onlinereport/haskell2010
http://www. haskell. org/onlinereport/haskell2010
http://hackage.haskell.org/package/base-4.6.0.1/docs/Control-Exception-Base.html
http://hackage.haskell.org/package/base-4.6.0.1/docs/Control-Exception-Base.html

[27] Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17:348–375, 1978.

[28] Neill Mitchell, Simon Marlow, et al. GHC ticket “Deadlock in Chan module”. https:
//ghc.haskell.org/trac/ghc/ticket/4154. [Online; accessed 6-May-2014].

[29] Curt Powley and Richard E. Korf. Single-agent parallel window search. IEEE Transactions
on Pa琀�ern Analysis and Machine Intelligence, 13(5):466–477, 1991.

[30] Fabian Reck and Sebastian Fischer. Towards a Parallel Search for Solutions of Non-
deterministic Computations. In Stefan Fischer, Erik Maehle, and Rüdiger Reischuk,
editors, GI Jahrestagung, volume 154 of LNI, page 2889–2900. GI, 2009.

[31] Philip W. Trinder, Kevin Hammond, Hans-Wolfgang Loidl, and Simon L. Peyton Jones.
Algorithms + Strategy = Parallelism. J. Funct. Program., 8(1):23–60, 1998.

[32] Rui Vieira, Ricardo Rocha, and Fernando M. A. Silva. On Comparing Alternative Spli琀�ing
Strategies for Or-Parallel Prolog Execution on Multicores. CoRR, abs/1301.7690, 2013.

[33] Philip Wadler. Comprehending Monads. In Mathematical Structures in Computer Science,
page 61–78, 1992.

[34] Philip Wadler and Stephen Blo琀�. How to Make Ad-hoc Polymorphism Less Ad Hoc. In
Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’89, page 60–76, New York, NY, USA, 1989. ACM.

120

https://ghc.haskell.org/trac/ghc/ticket/4154
https://ghc.haskell.org/trac/ghc/ticket/4154

A. Wrong Divisor Implementation as
an Application of Fair Search
Strategies

吀�e modulo operator can be implemented by subtracting the divisor from the divident as long
as it is not smaller.

mod ∶∶ Int → Int → Int
n ‵mod ‵ m ∣ n ≥ m = (n −m) ‵mod ‵ m

∣ otherwise = n

吀�e operation divisor returns a divisor of the given number, but not 1 or the number it-
self.

divisor n ∣ n ‵mod ‵ m =∶= 0 =
if m ≡ n ∨ m ≡ 1
then failed
else m

where m free

Note that divisor does not exclude 0 from the divisors, so 0 is also tested for being a divisor of n.
吀�is is never successful as subtracting 0 from n does not change n at all.

吀�e following function tests if the given number is not a prime using a fair search strat-
egy.

isNotPrime n = do
one ← getOneValue fairSearch (divisor n)
case one of
Nothing → return False
Just → return True

Note that by using the fair search strategy, it returns True for numbers that are not prime.
False is never returned as the computation of whether 0 is a divisor of n does not terminate.
Using breadth-first or depth-first search it does never return anything.

121

B. Benchmark Results of a Selection of
Search Strategies

吀�is appendix gives an overview over the recommended parallel search strategies and their
performance on the presented benchmark programs. For each benchmark, we measure
the wallclock time and the maximum amount of memory consumed. 吀�e wallclock time is
measured in seconds and the memory is measured in MiB. Again, there are three categories:
benchmarks that are incomplete, benchmarks that are complete for infinite search trees, and
the fair strategies. In each category, the best value for a given thread count is highlighted. As
fairSearch2 is in a category of its own, nothing is highlighted here. “oom” indicates that the
computation ran out of memory.

Search儀�eens − One

Elapsed Time (s)

DFS splitAll1 dfsBag fdfsBag BFS bfsParallel2 bfsBag fairSearch2
1 0.11 0.11 0.16 0.33 0.44 0.43 0.51 2.44
2 0.15 0.09 0.31 0.47 0.38 0.68
4 0.13 0.07 0.13 0.36 0.13 0.61
8 0.16 0.04 0.07 0.40 0.08 0.32

12 0.14 0.05 0.07 0.48 0.07 0.32
24 0.16 0.05 0.06 0.47 0.08 0.41

Max. Resident Set Size (MiB)

DFS splitAll1 dfsBag fdfsBag BFS bfsParallel2 bfsBag fairSearch2
1 6 5 7 19 29 28 32 170
2 9 7 21 32 25 100
4 18 9 17 34 19 114
8 20 10 18 38 19 107

12 27 14 20 42 19 103
24 37 19 24 52 26 110

122

Search儀�eens − All

Elapsed Time (s)

DFS splitAll1 dfsBag fdfsBag BFS bfsParallel2 bfsBag fairSearch2
1 1.41 1.41 1.53 1.85 1.89 1.89 2 2.75
2 1.03 1.08 1.35 1.64 1.59 1.94
4 0.54 0.60 0.86 1.00 1.09 1.14
8 0.36 0.41 0.62 0.76 0.80 0.88

12 0.33 0.35 0.53 1.28 0.76 0.94
24 0.50 0.38 0.54 0.66 0.76 1.06

Max. Resident Set Size (MiB)

DFS splitAll1 dfsBag fdfsBag BFS bfsParallel2 bfsBag fairSearch2
1 10 10 10 40 40 41 42 170
2 14 12 34 46 35 143
4 22 15 30 40 34 110
8 25 20 29 45 32 101

12 29 25 33 42 34 127
24 46 34 43 53 42 120

PermSort − One

Elapsed Time (s)

DFS splitAll1 dfsBag fdfsBag BFS bfsParallel2 bfsBag fairSearch2
1 41.07 38.91 44.97 69.52 70.82 70.53 80.75 165.36
2 27.58 30.59 50.79 57.91 75.72 124.14
4 15.55 16.92 33.13 40.32 41.99 78.24
8 9.74 10.89 17.02 31.36 36.66 59.93

12 8.22 10.03 21.98 32.46 34.63 61.62
24 9.51 9.25 21.14 30.34 28.95 74.05

Max. Resident Set Size (MiB)

DFS splitAll1 dfsBag fdfsBag BFS bfsParallel2 bfsBag fairSearch2
1 125 124 125 521 638 643 693 5389
2 143 132 525 570 507 5224
4 140 146 440 577 522 4149
8 128 158 367 581 441 3995

12 149 159 333 472 384 3540
24 157 159 310 534 337 3245

123

PermSort − All

Elapsed Time (s)

DFS splitAll1 dfsBag fdfsBag BFS bfsParallel2 bfsBag fairSearch2
1 43.20 43.20 47.96 68.93 71.16 70.72 79.25 166.68
2 27.85 32.83 53.49 58.71 81.97 124.47
4 16.30 18.28 43.54 40.60 57.78 81.35
8 10.43 11.72 32.40 31.37 44.54 66.98

12 9.84 10.13 35.24 32.15 40.03 72.11
24 10.72 10.06 30.26 30.41 44.04 83.92

Max. Resident Set Size (MiB)

DFS splitAll1 dfsBag fdfsBag BFS bfsParallel2 bfsBag fairSearch2
1 125 124 125 520 638 644 694 5468
2 141 143 524 574 595 5247
4 159 137 442 551 519 4177
8 136 167 408 562 485 3641

12 176 169 341 529 413 3865
24 149 155 339 499 357 3104

Half − One

Elapsed Time (s)

DFS splitAll1 dfsBag fdfsBag BFS bfsParallel2 bfsBag fairSearch2
1 1.12 0.99 0.97 0.79 0.75 0.72 0.79 1.75
2 1.14 0.55 0.55 0.72 0.54 1.97
4 0.90 0.35 0.36 0.37 0.37 1.41
8 1.33 0.25 0.25 0.26 0.24 1.21

12 0.72 0.20 0.23 0.24 0.22 1.01
24 1.67 0.19 0.25 0.32 0.26 0.59

Max. Resident Set Size (MiB)

DFS splitAll1 dfsBag fdfsBag BFS bfsParallel2 bfsBag fairSearch2
1 7 7 7 4 5 4 4 29
2 48 6 6 6 6 29
4 63 6 6 7 7 30
8 228 10 10 10 10 31

12 165 12 12 12 12 33
24 302 20 21 20 21 35

124

Half − All

Elapsed Time (s)

DFS splitAll1 dfsBag fdfsBag BFS bfsParallel2 bfsBag fairSearch2
1 2.17 1.82 1.82 1.51 1.57 1.57 1.49 1.75
2 1.02 1.14 1.11 1.46 1.16 2.05
4 1.81 0.72 0.74 0.76 0.74 1.43
8 0.56 0.46 0.50 0.54 0.50 1.24

12 0.38 0.39 0.41 0.49 0.41 1.07
24 0.22 0.37 0.41 0.64 0.43 0.66

Max. Resident Set Size (MiB)

DFS splitAll1 dfsBag fdfsBag BFS bfsParallel2 bfsBag fairSearch2
1 11 10 11 5 6 5 5 28
2 47 7 7 6 7 29
4 137 8 8 8 8 29
8 176 11 11 11 11 30

12 50 13 13 13 13 31
24 42 21 22 21 21 36

Last − One

Elapsed Time (s)

DFS splitAll1 dfsBag fdfsBag BFS bfsParallel2 bfsBag fairSearch2
1 0.39 0.36 0.44 0.36 0.27 0.26 0.39 0.57
2 0.61 0.78 0.80 0.56 0.84 1.58
4 0.72 0.80 0.91 0.62 0.92 1.60
8 0.91 0.64 0.6 0.74 0.66 2.17

12 0.92 0.60 0.57 0.94 0.70 2.55
24 1.27 0.79 0.72 1.87 0.87 4.12

Max. Resident Set Size (MiB)

DFS splitAll1 dfsBag fdfsBag BFS bfsParallel2 bfsBag fairSearch2
1 37 36 61 21 16 16 21 102
2 31 24 23 20 23 122
4 106 22 23 24 23 120
8 206 22 22 29 23 118

12 157 24 26 32 24 127
24 164 27 33 44 31 116

125

Last − All

Elapsed Time (s)

DFS splitAll1 dfsBag fdfsBag BFS bfsParallel2 bfsBag fairSearch2
1 0.4 0.38 0.46 0.37 0.28 0.27 0.42 0.58
2 0.60 0.74 0.79 0.54 0.91 1.52
4 0.68 0.81 0.86 0.61 0.97 1.66
8 0.98 0.68 0.60 0.74 0.67 1.94

12 1.18 0.63 0.58 0.94 0.70 2.52
24 2.39 0.77 0.71 2.29 0.87 4.20

Max. Resident Set Size (MiB)

DFS splitAll1 dfsBag fdfsBag BFS bfsParallel2 bfsBag fairSearch2
1 38 37 62 21 17 16 22 103
2 34 26 23 19 24 120
4 109 23 23 23 24 112
8 311 22 21 29 23 114

12 350 23 26 32 24 120
24 521 26 32 44 33 101

EditSeq

Elapsed Time (s)

DFS splitAll1 dfsBag fdfsBag BFS bfsParallel2 bfsBag fairSearch2
1 31.18 29.95 29.28 32.08 34.87 33.9 34.08 42.27
2 22.01 19.06 21.25 27.64 22.69 29.21
4 11.62 10.44 11.66 14.8 13 17.27
8 7.25 7.77 7.88 9.96 8.88 12.37

12 7.18 6.94 7.35 8.24 8.63 11.63
24 8.03 8.6 8.35 8.91 8.84 17.11

Max. Resident Set Size (MiB)

DFS splitAll1 dfsBag fdfsBag BFS bfsParallel2 bfsBag fairSearch2
1 829 777 792 1019 1018 1004 1009 1940
2 837 788 961 965 946 1748
4 891 837 907 898 880 1673
8 861 811 878 919 859 1478

12 831 855 841 899 869 1534
24 856 829 866 928 843 1385

126

NDNums

Elapsed Time (s)

BFS bfsParallel2 bfsBag fairSearch2
1 0.80 0.81 0.96 oom
2 1.20 0.52 oom
4 1.35 0.38 oom
8 1.32 0.28 oom

12 1.35 0.17 oom
24 1.14 0.07 oom

Max. Resident Set Size (MiB)

BFS bfsParallel2 bfsBag fairSearch2
1 79 80 90 oom
2 143 61 oom
4 266 79 oom
8 359 84 oom

12 382 56 oom
24 273 30 oom

127

C. Contents of the Data Medium

For further research this thesis includes a datamediumwith the completematerial:

• Complete Benchmark Results Including Diagrams

• Code of the Bag of Tasks Implementations

• Version of KiCS2 with Parallel Search Strategies

128

	Introduction
	Notation of Source Code
	Motivation
	Outline

	Technologies
	Functional Logic Programming with Curry
	Expressions
	Types
	Global Definitions
	Constraints
	Call-Time Choice Semantics
	Set Functions

	Haskell
	Semi-Explicit Parallelism
	Concurrent Haskell
	Runtime System

	KiCS2
	Representing Non-Determinism in Data Structures
	Search Tree

	Evaluation Criteria
	Resource Consumption
	Completeness
	Stopping the Computation

	Search Strategies
	Search Strategies as Part of the KiCS2 System
	Sequential Search Strategies
	Depth-First Search
	Breadth-First Search

	Order-Preserving Parallel Search Strategies
	Original Approach to Deterministic Parallel Depth-First Search
	Deterministic Parallel Depth-First Search with Strategies
	Reducing the Number of Sparks for Parallel Depth-First Search
	Deterministic Parallel Breadth-First Search with Strategies

	Bag of Tasks
	General idea
	Depth-First Search
	Breadth-First Search

	Fair Search
	Primitive Fair Search
	Fair Search with Chained Threads
	Using Exceptions for Communication between Search Threads

	Technical Details
	Stopping Parallel Evaluation
	Stopping Threads Explicitly
	Using Finalisers on Weak Pointers

	Bag of Tasks Implementation

	Evaluation
	Completeness
	Abortion Behaviour
	Performance Analysis
	Benchmark Programs
	Benchmarking System
	Results

	Summary

	Usage of Parallel Search
	Future Work
	Manual and Automatic Annotation
	Prolog's AND-Parallelism
	Parallel Iterative Deepening Search

	Conclusion
	Index
	Bibliography
	Wrong Divisor Implementation as an Application of Fair Search Strategies
	Benchmark Results of a Selection of Search Strategies
	Contents of the Data Medium

