
1 CASS: A Generic Curry Analysis Server System

CASS (Curry Analysis Server System) is a tool for the analysis of Curry programs. CASS is generic
so that various kinds of analyses (e.g., groundness, non-determinism, demanded arguments) can be
easily integrated into CASS. In order to analyze larger applications consisting of dozens or hundreds
of modules, CASS supports a modular and incremental analysis of programs. Moreover, it can be
used by different programming tools, like documentation generators, analysis environments, program
optimizers, as well as Eclipse-based development environments. For this purpose, CASS can also
be invoked as a server system to get a language-independent access to its functionality. CASS is
completely implemented Curry as a master/worker architecture to exploit parallel or distributed
execution environments. The general design and architecture of CASS is described in [1]. In the
following, CASS is presented from a perspective of a programmer who is interested to analyze Curry
programs.

1.1 Installation

The current implementation of CASS is a package managed by the Curry Package Manager CPM.
Thus, to install the newest version of CASS, use the following commands:

> cypm update
> cypm install cass

This downloads the newest package, compiles it, and places the executable cass into the directory
$HOME/.cpm/bin. Hence it is recommended to add this directory to your path in order to execute
CASS as described below.

1.2 Using CASS to Analyze Programs

CASS is intended to analyze various operational properties of Curry programs. Currently, it contains
more than a dozen program analyses for various properties. Since most of these analyses are based
on abstract interpretations, they usually approximate program properties. To see the list of all
available analyses, use the help option of CASS:

> cass -h
Usage: . . .
...
Registered analyses names:
. . .

Demand : Demanded arguments
Deterministic : Deterministic operations
...

More information about the meaning of the various analyses can be obtained by adding the short
name of the analysis:

> cass -h Deterministic
. . .

For instance, consider the following Curry module Rev.curry:

1

append :: [a] → [a] → [a]
append [] ys = ys
append (x:xs) ys = x : append xs ys

rev :: [a] → [a]
rev [] = []
rev (x:xs) = append (rev xs) [x]

main :: Int → Int → [Int]
main x y = rev [x .. y]

CASS supports three different usage modes to analyze this program.

1.2.1 Batch Mode

In the batch mode, CASS is started as a separate application via the shell command cass, where
the analysis name and the name of the module to be analyzed must be provided:1

> cass Demand Rev
append : demanded arguments: 1
main : demanded arguments: 1,2
rev : demanded arguments: 1

The Demand analysis shows the list of argument positions (e.g., 1 for the first argument) which are
demanded in order to reduce an application of the operation to some constructor-rooted value. Here
we can see that both arguments of main are demanded whereas only the first argument of append
is demanded. This information could be used in a Curry compiler to produce more efficient target
code.

The batch mode is useful to test a new analysis and get the information in human-readable form
so that one can experiment with different abstractions or analysis methods.

1.2.2 API Mode

The API mode is intended to use analysis information in some application implemented in Curry.
Since CASS is implemented in Curry, one can import the modules of the CASS implementation and
use the CASS interface operations to start an analysis and use the computed results. For instance,
CASS provides an operation (defined in the module AnalysisServer)

analyzeGeneric :: Analysis a → String → IO (Either (ProgInfo a) String)

to apply an analysis (first argument) to some module (whose name is given in the second argument).
The result is either the analysis information computed for this module or an error message in case
of some execution error.

The modules of the CASS implementation are stored in the directory
curryhome /currytools/CASS and the modules implementing the various program analyses are
stored in curryhome /currytools/analysis. Hence, one should add these directories to the Curry
load path when using CASS in API mode.

1More output is generated when the parameter debugLevel is changed in the configuration file
.curryanalysisrc which is installed in the user’s home directory when CASS is started for the first time.

2

The CASS module GenericProgInfo contains operations to access the analysis information com-
puted by CASS. For instance, the operation

lookupProgInfo:: QName → ProgInfo a → Maybe a

returns the information about a given qualified name in the analysis information, if it exists. As a
simple example, consider the demand analysis which is implemented in the module Demandedness

by the following operation:

demandAnalysis :: Analysis DemandedArgs

DemendedArgs is just a type synonym for [Int]. We can use this analysis in the following simple
program:

import AnalysisServer (analyzeGeneric)
import GenericProgInfo (lookupProgInfo)
import Demandedness (demandAnalysis)

demandedArgumentsOf :: String → String → IO [Int]
demandedArgumentsOf modname fname = do

deminfo <- analyzeGeneric demandAnalysis modname >>= return . either id error
return $ maybe [] id (lookupProgInfo (modname,fname) deminfo)

Of course, in a realistic program, the program analysis is performed only once and the computed
information deminfo is passed around to access it several times. Nevertheless, we can use this simple
program to compute the demanded arguments of Rev.main:

. . .> demandedArgumentsOf "Rev" "main"
[1,2]

1.2.3 Server Mode

The server mode of CASS can be used in an application implemented in some language that does not
have a direct interface to Curry. In this case, one can connect to CASS via some socket using a simple
communication protocol that is specified in the file curryhome /currytools/CASS/Protocol.txt and
sketched below.

To start CASS in the server mode, one has to execute the command

> cass --server [-p <port>]

where an optional port number for the communication can be provided. Otherwise, a free port
number is chosen and shown. In the server mode, CASS understands the following commands:

GetAnalysis
SetCurryPath <dir1>:<dir2>:...
AnalyzeModule <analysis name> <output type> <module name>
AnalyzeInterface <analysis name> <output type> <module name>
AnalyzeFunction <analysis name> <output type> <module name> <function name>
AnalyzeDataConstructor <analysis name> <output type> <module name> <constructor name>
AnalyzeTypeConstructor <analysis name> <output type> <module name> <type name>
StopServer

3

The output type can be Text, CurryTerm, or XML. The answer to each request can have two formats:

error <error message>

if an execution error occured, or

ok <n>
<result text>

where <n> is the number of lines of the result text. For instance, the answer to the command
GetAnalysis is a list of all available analyses. The list has the form

<analysis name> <output type>

For instance, a communication could be:

> GetAnalysis
< ok 5
< Deterministic CurryTerm
< Deterministic Text
< Deterministic XML
< HigherOrder CurryTerm
< DependsOn CurryTerm

The command SetCurryPath instructs CASS to use the given directories to search for modules to
be analyzed. This is necessary since the CASS server might be started in a different location than
its client.

Complete modules are analyzed by AnalyzeModule, whereas AnalyzeInterface returns only the
analysis information of exported entities. Furthermore, the analysis results of individual functions,
data or type constructors are returned with the remaining analysis commands. Finally, StopServer
terminates the CASS server.

For instance, if we start CASS by

> cass --server -p 12345

we can communicate with CASS as follows (user inputs are prefixed by “>”);

> telnet localhost 12345
Connected to localhost.
> GetAnalysis
ok 57
Overlapping XML
Overlapping CurryTerm
Overlapping Text
Deterministic XML
...
> AnalyzeModule Demand Text Rev
ok 3
append : demanded arguments: 1
main : demanded arguments: 1,2
rev : demanded arguments: 1
> AnalyzeModule Demand CurryTerm Rev
ok 1

4

[(("Rev","append"),"demanded arguments: 1"),(("Rev","main"),"demanded arguments: 1,2"),(("Rev","rev"),"demanded arguments: 1")]
> AnalyzeModule Demand XML Rev
ok 19
<?xml version="1.0" standalone="yes"?>

<results>
<operation>

<module>Rev</module>
<name>append</name>
<result>demanded arguments: 1</result>

</operation>
<operation>

<module>Rev</module>
<name>main</name>
<result>demanded arguments: 1,2</result>

</operation>
<operation>

<module>Rev</module>
<name>rev</name>
<result>demanded arguments: 1</result>

</operation>
</results>
> StopServer
ok 0
Connection closed by foreign host.

1.3 Implementing Program Analyses

Each program analysis accessible by CASS must be registered in the CASS module Registry. The
registered analysis must contain an operation of type

Analysis a

where a denotes the type of analysis results. For instance, the Overlapping analysis is implemented
as a function

overlapAnalysis :: Analysis Bool

where the Boolean analysis result indicates whether a Curry operation is defined by overlapping
rules.

In order to add a new analysis to CASS, one has to implement a corresponding analysis operation,
registering it in the module Registry (in the constant registeredAnalysis) and compile the modified
CASS implementation.

An analysis is implemented as a mapping from Curry programs represented in FlatCurry into
the analysis result. Hence, to implement the Overlapping analysis, we define the following operation
on function declarations in FlatCurry format:

import FlatCurry.Types
. . .

isOverlappingFunction :: FuncDecl → Bool

5

isOverlappingFunction (Func _ _ _ _ (Rule _ e)) = orInExpr e
isOverlappingFunction (Func f _ _ _ (External _)) = f==("Prelude","?")

-- Check an expression for occurrences of Or:
orInExpr :: Expr → Bool
orInExpr (Var _) = False
orInExpr (Lit _) = False
orInExpr (Comb _ f es) = f==(pre "?") || any orInExpr es
orInExpr (Free _ e) = orInExpr e
orInExpr (Let bs e) = any orInExpr (map snd bs) || orInExpr e
orInExpr (Or _ _) = True
orInExpr (Case _ e bs) = orInExpr e || any orInBranch bs

where orInBranch (Branch _ be) = orInExpr be
orInExpr (Typed e _) = orInExpr e

In order to enable the inclusion of different analyses in CASS, CASS offers several constructor
operations for the abstract type “Analysis a” (defined in the CASS module Analysis). Each analysis
has a name provided as a first argument to these constructors. The name is used to store the analysis
information persistently and to pass specific analysis tasks to analysis workers. For instance, a simple
function analysis which depends only on a given function definition can be defined by the analysis
constructor

simpleFuncAnalysis :: String → (FuncDecl → a) → Analysis a

The arguments are the analysis name and the actual analysis function. Hence, the “overlapping
rules” analysis can be specified as

import Analysis
. . .

overlapAnalysis :: Analysis Bool
overlapAnalysis = simpleFuncAnalysis "Overlapping" isOverlappingFunction

Another analysis constructor supports the definition of a function analysis with dependencies (which
is implemented via a fixpoint computation):

dependencyFuncAnalysis :: String → a → (FuncDecl → [(QName,a)] → a)
→ Analysis a

Here, the second argument specifies the start value of the fixpoint analysis, i.e., the bottom element
of the abstract domain.

For instance, a determinism analysis could be based on an abstract domain described by the
data type

data Deterministic = NDet | Det

Here, Det is interpreted as “the operation always evaluates in a deterministic manner on ground
constructor terms.” However, NDet is interpreted as “the operation might evaluate in different ways
for given ground constructor terms.” The apparent imprecision is due to the approximation of the
analysis. For instance, if the function f is defined by overlapping rules and the function g might
call f, then g is judged as non-deterministic (since it is generally undecidable whether f is actually
called by g in some run of the program).

6

The determinism analysis requires to examine the current function as well as all directly or
indirectly called functions for overlapping rules. Due to recursive function definitions, this analysis
cannot be done in one shot—it requires a fixpoint computation. CASS provides such fixpoint
computations and requires only the implementation of an operation of type

FuncDecl → [(QName,a)] → a

where “a” denotes the type of abstract values. The second argument of type [(QName,a)] represents
the currently known analysis values for the functions directly used in this function declaration.

In our example, the determinism analysis can be implemented by the following operation:

detFunc :: FuncDecl → [(QName,Deterministic)] → Deterministic
detFunc (Func f _ _ _ (Rule _ e)) calledFuncs =

if orInExpr e || freeVarInExpr e || any (==NDet) (map snd calledFuncs)
then NDet
else Det

Thus, it computes the abstract value NDet if the function itself is defined by overlapping rules
or contains free variables that might cause non-deterministic guessing (we omit the definition of
freeVarInExpr since it is quite similar to orInExpr), or if it depends on some non-deterministic
function.

The complete determinism analysis can be specified as

detAnalysis :: Analysis Deterministic
detAnalysis = dependencyFuncAnalysis "Deterministic" Det detFunc

This definition is sufficient to execute the analysis with CASS since the analysis system takes care
of computing fixpoints, calling the analysis functions with appropriate values, analyzing imported
modules, etc. Nevertheless, the analysis must be defined so that the fixpoint computation always
terminates. This can be achieved by using an abstract domain with finitely many values and
ensuring that the analysis function is monotone w.r.t. some ordering on the values.

References

[1] M. Hanus and F. Skrlac. A modular and generic analysis server system for functional logic
programs. In Proc. of the ACM SIGPLAN 2014 Workshop on Partial Evaluation and Program
Manipulation (PEPM’14), pages 181–188. ACM Press, 2014.

7

