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Abstract: A frequency analysis assigns to each program value an upper bound on its
change frequency. We define such an analysis and prove its correctness with respect to
a denotational semantics of a tiny web programming language. We sketch its use for
specializing web pages.

1 Introduction

A web site with dynamic content must strike a balance between the update frequency of
the content, the timeliness of the actually displayed material, and the load sustainable by
the underlying application server. Typically, this balance is maintained either manually or
with a dedicated content management system [Ok02]. In both approaches, the current state
of the content is sampled at regular intervals and the resulting static web pages are stored
on a standard web server. This procedure reduces the load of the application server and
increases the effectiveness of web caching mechanisms since the latter are much better
suited for static pages than for dynamic ones [BO00]. Care has to be taken during the
sampling process that intrinsically dynamic content, which depends on user input, is still
delivered through some dynamic execution machinery.

The frequency analysis proposed in this work aims at formalizing and automating the sam-
pling process. Given the change frequency of a value and an up-to-dateness factor for the
displayed material, a sampling frequency can be determined such that all displayed ma-
terial is sufficiently timely. However, high sampling frequencies are not sensible because
each sampling run produces extra load. In addition, the utility of document caching is
reduced because the sampled documents expire too quickly.

Hence, we take a different approach and compute from a reasonable sampling frequency,
an up-to-dateness factor, and the sources of intrinsically dynamic values a traditional
binding-time division from the results of the frequency analysis. Such a binding-time
division annotates each program value with a binding time: either the value is statically
known or it is unknown (dynamic). Then, the sampling procedure reduces to classical
program specialization extended with a backend that turns the specialized web programs
into a network of static and dynamic web pages.

Due to space constraints, the present paper only covers the frequency analysis, proves its
correctness, and sketches the translation to binding times. The specialization algorithm
and the backend are not covered.



main () =
Let today = getDate () in
Show <html><head><title>Greeting</title></head>

<body><p>Today is <%= today %>
<submit action=<% daytime (today) %> /></p>

<p>Enter your name <input name="who" />
<submit action=<% greet %> parm="who" /></p>

</body>
</html>

daytime (date) () =
Let currentTime = getTime () in
Let what = greetingPhrase (currentTime) in
Show <html><head><title>Daytime</title></head>

<body>It’s <%= what %> of <%= date %>!
</body>

</html>

greet (who) =
Show <html><head><title>Greeting</title></head>

<body>Hello, <%= who %>!
</body>

</html>

Figure 1: Example application

In Sec. 2 we give an example of the intended working of the entire translation scheme.
Sec. 3 defines an abstract core language for web programming and Sec. 4 defines its de-
notational semantics. Sec. 5 defines precisely what we mean with timeliness and change
frequency of a value. Sec. 6 presents the frequency analysis phrased as an annotated type
system and Sec. 7 proves its soundness. Sec. 8 discusses related work and Sec. 9 con-
cludes.

2 Specialization of a Web Application

This section presents a small example application that benefits from specialization. The
language we use in this section is an instantiation of the λWEB calculus which is for-
mally introduced in Sec. 3. The syntax is inspired by PHP [PHP03], JSP[PLC99], and
bigwig[BMS02] and should be readable without further explanation.

The example application in Fig. 1 consists of three pages corresponding to the functions
main, daytime, and greeting. Each function ends in a Show statement that termi-
nates execution by displaying a page constructed from XHTML fragments and computed
values (assuming a dynamic type discipline with automatic type conversions). The values
are inserted into the generated XHTML using JSP’s scriptlet notation.

All pages are dynamic to some degree because they contain computed content. However,
a closer look reveals that the page generated by the main function only changes once a
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Specialization with respect to

today = "May 3, 2004"; currentTime = "12:00"; what = "afternoon"

main () =
Show <html><head><title>Greeting</title></head>

<body><p>Today is May 3, 2004
<submit action=<% daytime_May_3_2004 %> /></p>

<p>Enter your name <input name="who" />
<submit action=<% greet %> parm="who" /></p>

</body>
</html>

daytime_May_3_2004 () =
Show <html><head><title>Daytime</title></head>

<body>It’s afternoon of May 3, 2004!
</body>

</html>

greet (who) =
Show <html><head><title>Greeting</title></head>

<body>Hello, <%= who %>!
</body>

</html>

Figure 2: Example application, sampled at noon on May 3, 2004

day and the page corresponding to the daytime function changes perhaps four times per
day. The only genuinely dynamic page is greet because it depends on user input to the
previous page.

If we suppose that pages are regenerated once per day (preferably shortly after midnight),
then the main page may be static while the others remain dynamic. If the regeneration
frequency is higher than four times per day, then the daytime page becomes static, too.
However, the greet page will never become static regardless of the regeneration fre-
quency.

Hence, a web site sampling tool should take a description of a web site in the form of a
program such as the above, for each page an update frequency (how quickly does the infor-
mation in this page change), a sampling frequency (how often are pages regenerated), and
an up-to-dateness factor. The last factor is the probability that a delivered page contains
up-to-date information. The tool should proceed by determining from this information
which pages may become static in the sample. Finally, it creates a correctly linked sample
by specializing the script starting from the main function.

Figure 2 shows a sample which has been specialized as outlined above. In the final step,
a compiler translates the sample into a collection of interlinked static web pages and, say,
CGI scripts. The result of this tedious but straightforward step is omitted.
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e ::= Let d in e
| Show x
| If x then e else e
| x(x . . .)

d ::= x = c
| x = p(x . . .)
| rec x(x . . .) = e

Figure 3: Syntax of λWEB

3 The λWEB Calculus

Many languages are deemed suitable for programming web applications. Some offer spe-
cial support for creating and manipulating HTML or XML documents. Others offer a
plethora of APIs for connecting to external information sources, synchronizing processes,
and session management. Since the present paper is not advocating one language over
another, it presents the essential techniques in terms of an abstract formal calculus that
models common properties of all web programming languages. The calculus abstracts
over the mentioned APIs and the generation of documents so that most web programming
languages can be translated to an instance of the calculus.

To simplify the presentation, the calculus λWEB defined in Fig. 3 is an intermediate lan-
guage which is obtained from a source language by a standard transformation. In particu-
lar, the XHTML fragments are translated to document constructor functions. λWEB has
two syntactic categories, expressions e and declarations d. Essentially, an expression is a
list of let declarations that ends either with Show x, a conditional, or a function invoca-
tion. The expression Show x stops execution and yields the final result x. The result must
be a document suitable for display on a web browser. The conditional works as usual. All
functions are tail recursive so that invocations do not return.

Each kind of declaration defines a new variable and its value. The value may be a constant,
c, the result of running a primitive operation, p, or a recursively defined function. Primitive
operations are expected to have unspecified side effects, e.g., they may perform database
operations. A recursive function is defined by formal parameter list and a body expression.

Besides basic types like integers and strings, λWEB has an abstract type DOC for docu-
ments. Hence, λWEB may be instantiated with an arbitrary format: HTML, PDF, plain
text, etc. The operations on the type DOC are supposed to be free of side effects. The
following primitive operations form the API for DOC.

empty : DOC the empty document
+ : (DOC, DOC) → DOC concatenation of documents

link( ) : CONT→ DOC create a link
value( ) : B → DOC convert a base-type value to a document

The interface abstracts from all layout considerations but allows to keep track of the de-
pendencies of the documents from computed values (VAL ranges over basic type values)
and of the links to other documents. A link is given by a value of type CONT where CONT
is the function type VAL→ DOC. The intended semantics is that clicking the link calls the
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DJx = cKσt = σ[x 7→ JcK]
DJx = p(x1 . . .)Kσt = σ[x 7→ JpK(σ(x1) . . .)t]
DJrec x(x1 . . .) = eKσt = σ[x 7→ fixλf.λ(y1 . . .).EJeKσ[x 7→ f, xi 7→ yi]]
EJLet d in eKσt = EJeK(DJdKσt)t
EJShow xKσt = σ(x)
EJIf x then e1 else e2Kσt = if σ(x) then EJe1Kσt else EJe2Kσt
EJx(x1 . . .)Kσt = σ(x)(σ(x1) . . .)t

Figure 4: Semantic equations

function with the user’s inputs into the document as parameter.

The concrete example in Fig. 1 uses the scriptlet notation <%. . .%> for the function link( )
and the notation <%=. . .%> for embedding a value in the document by value( ). Concate-
nation is implicit in the XHTML notation.

4 Denotational Semantics of λWEB

The semantics of λWEB in this paper is special because its results are time dependent.
Hence, the denotation of an expression is drawn from Comp, i.e., a function from the
current time to a value.1

Val = Const + DOC + Fun

Comp = Time ↪→ Val

Fun = Val∗ ↪→ Comp

Env = Var ↪→ Val

where Const is the set of interpretations of constants, c, DOC is the set of interpretations of
documents, and Time is the set of real numbers. The operator + stands for disjoint union,
↪→ for the partial function space, and X∗ for 1 + X + X × X + . . .. Hence, Comp is a
pointed CPO as required for a denotational semantics.

The semantic equations in Fig. 4 define two functions

D : Decl → Env → Time ↪→ Env

E : Exp → Env → Comp

where D transforms an environment according to a declaration and the current time and E
computes the final value of an expression. The straightforward definition relies on prede-
fined maps JcK and JpK that map a constant to its denotation and the name of a primitive
operation to a function that takes a tuple of base type arguments and returns a time depen-
dent value ∈ Comp.

1That is, we are describing a monadic semantics for the reader monad M(x) = Time → x.
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5 Timeliness

Since timeliness is a soft concept, we first need to define formally what it means for a
document or more generally for a value to be timely.

Definition 1 Let v = v(t) be a time dependent value.

The update frequency is the average number of changes of v per unit of time.

fv = lim
t→∞

|{t0 | 0 < t0 < t, (∃δ > 0) (∀ε < δ) v(t0 − ε) 6= v(t0 + ε)}|

t

The special value fv = ∞ denotes that v changes continually.

The sampling frequency g is the reciprocal of the time span between two snapshots of the
value. The up-to-dateness factor uv = fv/g measures the minimum number of samples
taken per update.

The up-to-dateness factor must be understood with a grain of salt. Even uv = 1 may mean
that the sampled value vs(t) is almost always different from the value v(t). In the worst
case, the probability that vs(t) = v(t) is p = 1 − 1/uv, provided that uv ≥ 1.

In the typical setup, the update frequency fv is available through estimate, measurement,
or analysis and the desired freshness is given as the probability p as defined above. From
these numbers, the sampling frequency may be computed as

g = fv/uv = fv/(1/(1− p)) = fv(1 − p). (1)

The sampling frequency computed according to that formula will usually be too high to
be practical. However, we never intended to take an entirely static sample of the system.
Instead, the goal is to produce a mixture of static and dynamic documents. Hence, we pick
an acceptable sampling frequency g0 and solve the formula (1) for f0 = g0/(1 − p). The
resulting threshold frequency f0 is the maximum update frequency for a value that can be
considered static in the generation run.

The above consideration paves the way for computing a classical binding time from the
update frequency of a value and the threshold frequency. A classical binding time distin-
guishes between static and dynamic values, indicated by S and D.

BT (fv, f0) =

{

S if fv ≤ f0

D otherwise.
(2)

Classical binding time information can be used to drive specialization algorithms in a well-
understood way [JGS93]. One successful approach is to annotate each operation with
its binding time and then specialize a program by using an interpreter that executes all
operations annotated as static and generates specialized code for all operations annotated
as dynamic.
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(const) Γ ` x =0 c ⇒ Γ(x : (Bc, 0))

(prim)
Γ(xi) = (Bi, φi) φ = φ0 + φ1 + . . . + φn Σ(p) = (B1, . . . , Bn) → B

Γ ` x =φ pφ0(x1, . . . , xn) ⇒ Γ(x : (B, φ))

(rec)
Γ(x : ((ρ1, . . . , ρn) → φ, 0))(x1 : ρ1) . . . (xn : ρn) ` e : φ

Γ ` rec x(x1, . . . , xn) = e ⇒ Γ(x : ((ρ1, . . . , ρn) → φ, 0))

(let)
Γ ` d ⇒ Γ′ Γ′ ` e : φ

Γ ` Let d in e : φ
(show)

Γ(x) = (DOC, φ)

Γ ` Showφ x : φ

(if)
Γ(x) = (Bool, φ) Γ ` e1 : φ′ Γ ` e2 : φ′

Γ ` Ifφ x then e1 else e2 : φ + φ′

(call)
Γ(x) = ((ρ1, . . . , ρn) → φ, 0) Γ(xi) = ρi

Γ ` x(x1, . . . , xn) : φ

(sub)
Γ ` e : φ φ ≤ φ′

Γ ` e : φ′

Figure 5: Frequency Analysis

6 Frequency Analysis

The classical way of analyzing binding times is not appropriate for our task because it only
distinguishes the two discrete binding times S and D, which correspond to frequencies 0
and ∞. Instead, we first perform a frequency analysis (the continuous cousin of binding-
time analysis) and map the results to binding times using the function BT later on.

The first question for the frequency analysis is: Where do frequencies other than 0 and ∞
come from? In λWEB, those frequencies come from primitive operations that observe a
changing global state. These operations may depend on the current time and date, they may
be queries against databases, or they may be other operations that depend on the current
state of the machine or the network. We assume that each such operation is annotated with
an update frequency, which indicates the desired granularity of the observation of changes
of the underlying state. Side-effecting operations that change the underlying state must
have an update frequency of ∞ to ensure that they are always executed.

Figure 5 contains the definition of a suitable frequency analysis in terms of an annotated
type system. For simplicity, the type system is based on simple types. An extension with
polymorphism would be useful and would follow the path outlined elsewhere [HT04].
The analysis annotates declarations and expressions with frequencies for the sake of the
succeding specialization phase.

The type language of the system is given by the grammar

ρ ::= (τ, φ) τ ::= B | (ρ, . . . , ρ) → φ B ::= Bool | DOC | . . . (3)
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where ρ ranges over annotated types, which are pairs of a raw type and an update frequency
φ, B ranges over base types, and τ is either a base type B or a function that takes as
arguments a tuple of values of annotated type and terminates with a value of frequency
φ. A separate type assignment Σ maps each name p of a primitive operation to a pair
(B1, . . . Bn) → B where the list B1, . . . , Bn determines the argument base types and B
is the result base type. Type assignments are formed according to the grammar Γ ::= · |
Γ(x : ρ) and are considered as finite functions.

The typing rules define two judgements, Γ ` d ⇒ Γ′, where declaration d transforms type
assignment Γ to Γ′, and Γ ` e : φ, where expression e delivers a final result of frequency
φ under type assignment Γ.

The rule (const) determines the base type of a constant using function TypeOf( ). Since
constants are static, the frequency annotation is 0.

The rule (prim) ensures that the argument types and the result type of primitive operation
p correspond to p’s declaration in Σ. It computes the frequency of the result by taking
the sum of the frequencies of the argument values and φ0, the frequency assigned by the
user to this occurrence of p. The addition yields an upper bound of the actual frequency
because a value vi at frequency φi has a number of changes proportional to φi during a
sufficiently large time interval T . In the absence of further information about the values
and assuming that the value of an operation p depends on all arguments and on the implicit
state v0, the number of changes of v = p(v1, . . . , vn) during T is proportional to a number
smaller than φ0 + φ1 + . . . + φn. The actual frequency of v can be much smaller (even
0), for example, if the values vi change in lockstep and/or the frequencies are multiples
of each other. Since our model does not include such dependencies between values, our
typing rule must assume the worst.

The rule (rec) types the declaration of recursive functions. All functions are statically
present in the program, hence the frequency of a function value is 0. Since functions do
not return, the system need not deal with return types.

The rule (let) just augments the type assignment according to the declaration and types the
body. The rule (show) attaches the frequency of the displayed document to the occurrence
of Show in the program. The rule (if) is standard: the frequency of execution of the con-
ditional depends solely on the frequency of the condition itself. The rules (call) and (sub)
are standard rules for function call and subsumption of frequencies: if a value changes at
frequency φ it is also appropriate to view it as changing at any higher frequency φ′.

7 Soundness of the Analysis

This section shows that the analysis is sound with respect to the semantics given in Sec. 4.
This requires to define a semantics of annotated types, to define relations between value
environments and type environments, and finally to prove that the semantic equations pre-
serve those relations.

The semantics of an annotated type is a set of time dependent values. The semantics is
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approximative in the sense that all frequencies are considered as upper bounds. We will
see below that this approximation is unavoidable. The semantics of unannotated types is
defined in the usual way. For functions, the interesting part is that whenever the frequency
of the arguments conforms to their type, then so does the frequency of the result.

J(τ, φ)K = {v ∈ Comp | fv ≤ φ, (∀t ∈ Time) v(t) ∈ JτK}
JBK = Const + DOC + . . .
J(ρ1, . . . , ρn) → φK = {g ∈ Fun | (∀vi ∈ JρiK) fλt.g(v1(t)...)t ≤ φ}

Type environments relate variable names to annotated types whereas value environments
map variable names to values. These two concepts cannot be related directly because value
environments are constants. Hence, we relate type environments to value environments
abstracted over time.

Definition 2 Let S ∈ Time → Env be a time dependent environment and Γ a type
environment. S |= Γ if ∀(x : ρ) ∈ Γ the function λt.R(t)(x) ∈ JρK.

Thus armed, we can state and prove the soundness of the declaration transformation D
and of the evaluation semantics E . The proof of these two statements is by simultaneous
induction because D is defined in terms of E and vice versa.

Theorem 1 Let S |= Γ.

1. Suppose that Γ ` d ⇒ Γ′ and S′(t) = DJdK(S(t))t. Then S ′ |= Γ′.

2. Suppose that Γ ` e : φ. Then λt.EJeK(S(t))t ∈ J(DOC , φ)K.

The main point of the proof is the justification of the addition of frequencies in the case of
a primitive operation as outlined in the explanation of the typing rule (prim).

8 Related Work

There is no direct precedent to the analysis reported in this work. However, a few papers
have topics which come close and this section attempts to distinguish our work from theirs.

Ramalingam [Ra96] suggests that data flow analysis should be augmented with frequency
information. His frequency information refines the typical Maybe/No answer of a program
analysis by instead computing a probability for the answer. In contrast, our frequencies
are not probabilities but approximations of the actual rate of change.

Ball [Ba99] introduces a frequency spectrum analysis for exploring the structure of pro-
grams. His analysis is dynamic and based on actual runtime counts, whereas ours is a
static analysis.

Wu and Larus [WL94] have a framework for estimating the execution frequency of por-
tions of a program by statically predicting both branch frequencies and a program profile.
A similar framework is put forward by Wagner et al [WMGH94]. In contrast, our analysis
approximates the frequency of change of data.
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9 Conclusion

The present paper introduces frequency analysis as a generalization of binding-time anal-
ysis. The results of the analysis enable the generation of a collection of partially static
web pages from a completely dynamic web site. This partial specialization is desirable be-
cause it reduces the load of the application server and enhances the usefulness of caching
on proxy servers and in web browsers. It thus opens a new application area for program
specialization.

Further work includes the formalization and correctness proof of the timely specialization.
We are also exploring several implementation strategies as well as different points of view
on the frequency of change of primitive operations.
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