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Abstract: Optimizations in compilers are the most error-prone phases in the com-
pilation process. Since correct compilers are a vital precondition to ensure software
correctness, it is necessary to prove their correctness. In this paper, we develop a
formal semantics for static single assignment (SSA) intermediate representations and
prove formally within the Isabelle/HOL theorem prover that a relatively simple form
of code generation preserves the semantics of the transformed programs in SSA form.
This formal correctness proof does not only verify the correctness of a certain class of
code generation algorithms but also gives us a sufficient, easily checkable correctness
requirement characterizing correct compilation results obtained from implementations
(i.e. compilers) of these algorithms.

1 Introduction

Compiler correctness is a necessary prerequisite to ensure software correctness and reli-
ability as most modern software is written in higher programming languages and needs
to be translated into native machine code. In this paper, we address the problem of veri-
fying compiler correctness formally within a theorem prover. Starting from intermediate
representations in static single assignment (SSA) form, we consider optimizing machine
code generation based on bottom-up rewrite systems. To prove the correctness of such
program transformations, a formal semantics of the involved programming languages, i.e.
of the SSA intermediate representation form as well as of the target processor language,
is necessary. Furthermore, a formal proof1 is required that shows that the transformations
preserve the semantics of the compiled programs. Such proofs only deal with transforma-
tion algorithms themselves but not with a given compiler implementing them. To bridge
this gap, we require the formal proofs to deliver sufficient, easily checkable correctness
conditions that classify if a compilation result is correct.

Our solution is based on the observation that SSA programs specify imperative, i.e. state-
based computations. In a preparatory work [Gl04], we have shown that SSA semantics
can be captured elegantly and adequately with abstract state machines [Gu95]. Based on
this work, we develop a formal SSA semantics within the theorem prover Isabelle/HOL
[NPW02]. The imperative semantics transfers control flow from one basic block to its
successor basic block, i.e. the current state is characterized by the currently executed basic

1Throughout this paper, we denote proofs conducted in theorem provers with the termformal proofs, in
contrast to “paper and pencil-proofs”.



block and by the results computed by the previously executed blocks. Within basic blocks,
SSA computations are purely data-flow driven. These computations are typically repre-
sented by acyclic directed graphs representing the data dependences. In our formalization,
we have represented these graphs bytermgraphs[BN98]. Termgraphs represent acyclic
graphs by duplicating common subexpressions. To keep track of the duplicates, we have
assigned a unique identification number to each node in the original graph and kept these
numbers when duplicating common subexpressions in order to be able to identify iden-
tical subexpressions in the termgraphs. Based on this formalization, we define a formal
semantics for SSA basic blocks by stating a function that evaluates term graphs. Our spec-
ification of SSA semantics is well-suited to formally prove correctness of code generation
algorithms. In this paper, we formally prove the correctness of a relatively simple code
generation algorithm. Thereby we prove that every topological sorting of data flow depen-
dencies within a basic block is a correct code generation order because then the generated
machine program preserves the data flow dependencies of the SSA program. Furthermore,
we point out how this proof can be extended to capture also more complex optimization
strategies during code generation. In our work, we have used the Isabelle/HOL system
[NPW02] to specify the SSA language and to carry out our correctness proof. As a by-
product, this formal proof yields an easily checkable criterion classifying correct compi-
lation results. This criterion can easily be integrated into the well-established approach of
program result checking [Gl03] (also known as translation validation [PSS98]) typically
used to ensure correctness of compiler results.

This paper is organized as follows: First, we introduce SSA intermediate representations
in section 2. Then we define their formal semantics within Isabelle/HOL, cf. section 3.
Afterwards, in section 4, we formally prove the correctness of code generation. In section
5, we show how this formal correctness proof can be connected with the program checking
approach used to verify the correctness of individual translated programs. We conclude
this paper with a discussion of related work in section 6 and conclusions and aspects of
future work in section 7.

2 SSA - Based Intermediate Languages

Static single assignment (SSA) form has become the preferred intermediate program rep-
resentation for handling all kinds of program analyses and optimizing program transforma-
tions prior to code generation [CFR+91]. Its main merits comprise the explicit representa-
tion of def-use-chains and, based on them, the ease by which further dataflow information
can be derived.

By definition SSA-form requires that a program and in particular each basic block2 is rep-
resented as a directed graph of elementary operations (jump/branch, memory read/write,
arithmetic operations on data) such that each “variable” is assigned exactly once in the
program text. Only references to such variables may appear as operands in operations.

2A program is divided into basic blocks by determining maximal sequences of instructions that can be entered
only at their first and exited from their last instruction.



Thus, an operand explicitly indicates the data dependency to its point of origin. The di-
rected graph of an SSA-representation is an overlay of the control flow and the data flow
graph of the program. A control node may depend on a value which forces control to
conditionally follow a selected path. Each basic block has one or more such control nodes
as its predecessor. At entry to a basic block,φ nodes, x = φ(x1, . . . , xn), represent the
unique value assigned to variablex. This value is a selection among the valuesx1, . . . , xn

wherexi represents the value ofx defined on the control path through thei-th predecessor
of the basic block.n is the number of predecessors of the basic block. Programs can eas-
ily be transformed into SSA representation, cf. [Mu97], e.g. during a tree walk through
the attributed syntax tree. The standard transformation algorithm subscripts each variable.
At join points,φ nodes sort out multiple assignments to a variable which correspond to
different control flows through the program.
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Example Program:
a:=a+2; if (...) {a:=a+2;} b:=a+2;

const 2

Figure 1: SSA Representation

As example, figure 1 shows the SSA representation for
the program fragment:

a := a+2;

if (..) {a := a+2; } b := a+2;

In the first basic block, the constant 2 is added to a. The
cond node passes control flow to the ‘then’ or to the
‘next’ block, depending on the result of the comparison.
In the ‘then’block, the constant 2 is added to the result
of the previousadd node. In the ‘next’block, the φ
node chooses which reachable definition of variable ‘a’
to use, the one before the if statement or the one of the
‘then’ block. The names of variables do not appear in
the SSA form. Since each variable is assigned statically
only once, variables are identified with their value.

SSA representations describe imperative, i.e. state-
based computations. A virtual machine for SSA rep-
resentations starts execution with the first basic block
of a given program. After execution of the current ba-
sic block, control flow is transferred to the uniquely de-

fined subsequent basic block. Hence, the current state is characterized by the current basic
block and by the outcomes of the operations in the previously executed basic blocks.

Memory accesses need special treatment. In the functional store approach [St95], memory
read/write nodes are considered as accesses to fields of a global state variablememory.
A write access modifies this global variablememoryand requires that the outcome of this
operation yields a new (subscripted) version of thememoryvariable. These duplications of
thememoryvariable are the reason for inefficiencies in practical data flow analyses. As a
solution, one might try to determine which memory accesses address overlapping memory
areas and thus are truly dependent on each other and which address independent parts with
no data dependencies. For this paper, these considerations are irrelevant. It is our goal to
define a formal semantics for SSA representations. The same semantic description can be
used for accesses to only a single as well as to several independent memories.



ADD

ADD ADDMULT

ADD ADD

1

2 3

1 1

2 3

. . . . . . . . . . . . . . . . . . . . . . . . . . .. . .

MULT

==>

Figure 2: SSA DAG=⇒ SSA Tree

3 A Formal SSA Semantics in Isabelle/HOL

In this section we describe the specification of SSA based intermediate languages within
the Isabelle/HOL system: First, in subsection 3.1, we formalize the data flow within basic
blocks. Then, in subsection 3.2, we describe the global control and data flow.

3.1 Formal Semantics of Basic Blocks

Basic blocks in SSA intermediate representations can be regarded as directed acyclic
graphs (DAGs) such that the nodes represent operations (e.g. arithmetic operators, con-
stants, orφ nodes) and the edges represent the data flow in-between. Evaluation of basic
blocks takes place in two steps: First, theφ nodes are evaluated simultaneously. Then, the
results of the remaining operations are determined. We specify the first step, evaluation of
φ nodes, together with the global control flow, cf. subsection 3.2. Therefore we can treat
φ nodes within a given basic block as constants. Hence, constants andφ nodes (within a
given basic block) are nodes with only outgoing edges.

DAGs representing SSA basic blocks contain common subexpressions only once. In our
formalization we have represented such a DAG by transforming it into an equivalent set of
trees by duplicating shared subterms, cf. Figure 2. To enable identification of equivalent
subtrees, we assign a unique number to each operation in the original DAG and duplicate
this identification number whenever duplicating a shared subexpression. We can transform
such a set of trees into a single tree by adding a root node. In Isabelle/HOL, these trees are
formalized in the following manner:

datatype SSATree =

CONST value identifier |
PHI phiargs value identifier |
NODE operat SSATree SSATree value identifier |
LOAD SSATree SSATree value identifier |
STORE SSATree SSATree SSATree memory identifier |
MEMORY memory identifier



Nodes represent constants,φ-nodes with argument lists, arithmetic operations, and mem-
ory accesses. Each node has two associated numbers assigned to it, thevalue number
representing the result of the corresponding operation and theidentifiernumber enabling
identification of identical subterms. Memory operations are specified according to the
functional store approach [St95], cf. section 2.MEMORY memory identifier repre-
sents the state of memory at the beginning of the evaluation of a given basic block.LOAD
andSTORE are the usual operations which load and store values from and in memory.
Result of the load operation is the fetched value, result of the store operation is the updated
memory. SSA basic blocks are evaluated with the evaluation functioneval tree which is
defined inductively on SSA trees. Since memory operations are formalized functionally,
they can be defined in the same format as the purely functional operations:

consts
eval tree :: “SSATree ⇒ SSATree′′

primrec
′′eval tree (LEAF val ident) = (LEAF val ident)′′

. . . . .
′′eval tree (NODE operat tree1 tree2 val ident) =

(NODE operat (eval tree tree1) (eval tree tree2) (operat

(get ssatree val (eval tree tree1))

(get ssatree val(eval tree tree2)))

ident)′′

. . . . .

3.2 Formal Semantics for the Global Control and Data Flow

An SSA program is formalized as a list of basic blocks:

datatype
BASICBLOCK =
NEW identifier identifier “identifier×nat′′ “identifier×nat′′ “SSATree list′′

Each basic block carries four pieces of information which integrates it into the global con-
trol and data flow, specified with these five fields:

1. identifier the value number that determines the next basic block
2. identifier the value number that determines the memory state for the

next basic block
3. identifier × nat successor target 1 and its rang
4. identifier × nat successor target 2 and its rang
5. SSATree list list of SSATrees containing the operations of the basic block

In our formalization, a basic blockb can have only two different successorsb′ (target 1 and



target 2) specified by the third and fourth field of typeidentifier×nat. identifier is the
number characterising the successor block.nat specifies its rang and defines the selection
of the arguments in theφ nodes inb′: If rang is i, then theith argument in the argument
list of aφ node inb′ is chosen.

Execution of SSA programs is state-based. Each single state transition corresponds to
the execution of a single basic block. We define the current state by the values of the
operations executed in previous basic blocks, by the current state of memory, and by the
currently executed basic block. Therefore we specify:

- a table of values formalized as a function (identifier ⇒ value)
indexed by value number

- a memory state (identifier ⇒ value), indexed by memory address
- no. of current basic block

The state transition function (step :: ′′BASICBLOCK list ⇒ state ⇒ state′′) evaulates
basic blocks by performing the following computations:

- it assigns eachφ-node its value
- it assigns the memory function (identifier ⇒ value) to each memory node
- it evaluates the basic block (i.e. calculates and stores values in nodes)
- it collects all calculated values and updates the table of values
- it collects the memory state for the next basic block from a distinct node
- it determines the id of the next basic block with a distinct value number

We have specified the semantics of SSA intermediate languages via this state transition
function, thereby covering all major aspects of SSA based intermediate languages. For a
complete specification with all details, we refer to [Bl04].

4 Correctness of Code Generation

In this section, we consider a relatively simple code generation algorithm and prove part
of its correctness by showing that it preserves the obervable behavior of translated basic
blocks. Therefore, as core of the proof, we show that every topological sorting of a basic
block is a correct code generation order. In subsection 4.1, we introduce the simple ma-
chine language. Subsection 4.2 defines the criterion for topological sorting. In subsection
4.3, we summarize the Isabelle/HOL proof.

4.1 Semantics of the Machine Language

Machine code is formalized as a list of CodeElements which operate on values stored in
memory. Memory is specified as a function “(nat ⇒ value)” that mapsidentifiers



to the contents of storage cells. Since we concentrate on the correct translation of basic
blocks, it is sufficent to work with the following machine language:

datatypeCodeElement = L value identifier |
N operator identifier identifier identifier

The “L value identifier”-element has the following semantics: storevalue at storage
cell specified byidentifier. The “N operator identifier identifier identifier”-
element means: get value stored at firstidentifier, get value stored at secondidentifier,
applyoperator on both values and store the result at the thirdidentifier. The function
that evaluates a machine code list updates memory:

eval codelist :: ′′CodeList ⇒ (nat ⇒ value) ⇒ (nat ⇒ value)′′

and is primitive recursive over the code list and evaluates one instruction after the other.

4.2 Proof Prerequisites: Translation Function and Topsort Criterion

Prerequisites for our proof are twofold: First, we need to specify the translation between
SSA form and the machine language. Secondly, we need to define the predicate istopsort
which describes the sequences of machine code that preserve the partial order on the oper-
ations determined by SSA basic blocks. Concerning the first need, the translation function,
we have defined a function ceify that maps an SSATree(node) to a code element. Our for-
malization of topological sortings, the predicate istopsort, covers the following aspects:

- Each element in the tree must have a corresponding element in the code list.
- Each element in the code list must have a corresponding element in the tree.
- If an elementa in the tree is a successor of another elementb, then the correspon-

ding element ceify a must also be a successor to ceify b in the codelist.
- Each Element in the code list has a unique id.

A detailed description of the Isabelle/HOL specification defining these requirements can
be found in [Bl04]. As example, the first requirement is formalized in Isabelle/HOL by:

(∀a.((is in tree a tree) −→ (∃ b.((b ∈ clist) ∧ (ce ify a = b))))).

4.3 The Main Theorem

We claim that if a code list is a topological sorting of an SSA tree, then each value calcu-
lated in the tree must also be calculated in the code list and stored under the same value
number.

theoremmain theorem:
′′(∀ clist. ((is topsort clist tree) −→

(∀ t.(t ∈ (eval tree tree)) −→
(∃ ident val.(val = (eval codelist clist(λ a.(Eps(λ a. False)))) ident)∧
(val = get ssatree val t) ∧ (ident = get ssatree id t)))))′′



We prove this theorem by an induction over the SSATreetree. In the base case we show:

Assume istopsort (clist,LEAF val ident)=⇒ val. Then the result ofLEAFval
ident is also computed by the machine program and is available under value
numberident after the execution ofclist. To prove this, we need an auxiliary
lemma stating that the istopsort criterion (in particular its parts tops1, tops2
and tops4) is only satisfied if clist has the form [L val ident]:

Auxiliary lemma endlist a :
“[|tops1 (l@[x]) T ; tops2 (l@[x]) T ; tops4 (l@[x]) T |] =⇒ x = ce ify T ′′

With this lemma, the proof of the induction base case is trivial. (Note that
LEAF can be either be a CONST or a PHI node).

Proving the induction-step is more difficult. We have the following assumptions:

• ∀ list’.is topsort(list’,kid1)=⇒ every value calculated in kid1 is calculated in list’.

• ∀ list”.is topsort(list”,kid2)=⇒ every value calculated in kid2 is calculated in list”.

and need to show that:

∀ list.is topsort(list,NODE fun kid1 kid2 val ident)=⇒ every value calculated
in (NODE fun kid1 kid2 val ident) is also calculated in list.

In our proof, we have skolemized the∀-quantified variables list’ and list” in the induc-
tion assumptions by instantiating them with “proj (list,kid1)” and “proj (list,kid2)”. “proj
(CodeElement list⇒ SSATree⇒ CodeElement list)” is a function that maps all elements
from the input CodeElement list that have a corresponding element in the SSATree to the
output CodeElement list. In our proof we have defined the proj function via its properties.
From the induction hypotheses and the characteristics of the proj function, we can derive
that every value that gets calculated in kid1 and kid2 will be calculated in the CodeElement
list list.

For every subtree t oftree we have to show that its values will be calculated in the code
list. We prove this by the following case distinction:

1. t is subtree of kid1
2 t is subtree of kid2
3. t is the root node:tree

Cases 1 and 2 can be derived from the induction hypotheses and the characteristics of the
proj function. In order to prove case 3, we show that for every topological sorted list of a
tree the last element corresponds to the root node. From the fact that every child node is
correctly evaluated in the CodeElement list we derive that the root node will be evaluated
correctly as well.

The entire proof has been carried out within the Isabelle/HOL system. Our proof verifies
45 lemmas and the main theorem. In total, our proof theory file contains about 885 lines
of proof code.
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5 Integration into Checker Approach

In recent years, program checking (also known as translation validation) has been estab-
lished as the method of choice to ensure the correctness of compiler implementations:
Instead of verifying a compiler, one only verifies its results. The correctness result pre-
sented in section 4 concerns only the correctness of the code generation algorithm but not
of its implementation. In this section, we show how this formally verified correctness re-
sult can be connected with the program checking approach in order to ensure that a given
compiler implementation produces correct machine code.

Figure 3 demonstrates the principle of program checking. First the compiler computes
the translated program. Then the independent checker evaluates a sufficient condition
which classifies correct results. Our istopsort predicate defined in section 4 is a sufficient
criterion for the correctness of the generated machine code for a given basic block. Its
sufficiency has been formally verified by our main theorem. So to check the correctness
of the generated machine code, the checker checks if the topsort criterion holds for the
SSA basic block and the generated machine code. This check can be efficiently computed.
With a checker implementing this check, we are able to connect the formal proof for the
algorithmic correctness of code generation with a concrete compiler implementing it.

6 Related Work

Related work on formal correctness proofs for compilers has concentrated on transfor-
mations taking place in compiler frontends. [Ni98] describes the verification of lexical
analysis within the Isabelle/HOL system. [WW97] partly proves the correctness of lexical
and syntactic analysis in compilers; because of the complexity of these proofs, she did
not succeed in completing them. The formal verification of the translation from Java to
Java byte code and formal byte code verification have been investigated in [St02, KN03].
Further related work on formal compiler verification has been done in the german Verifix
project [GDG+96] which focuses on correct compiler construction: In [DV01, DvHVG02]
a compiler for a Lisp subset has been partially verified using the theorem prover PVS.

The approach of program checking has been proposed by the Verifix project [GDG+96]
and has also become known as translation validation [PSS98]. For an overview and for
results on program checking in optimizing backend transformations cf. [Gl03].



7 Conclusion

In this paper, we have presented a formal semantics for SSA intermediate representa-
tions in a simple and elegant way within the theorem prover Isabelle/HOL. Thereby we
represented common subexpressions in basic blocks by termgraphs. Based on this for-
malization, we verified the correctness of a relatively simple code generation algorithm by
proving that the semantics of the translated programs is preserved. In particular, we proved
that every topological sorting of the operations in a basic block is a correct code genera-
tion order. We have carried out this proof in Isabelle/HOL. Thereby we have demonstrated
that our SSA specification is a suitable basis for correctness proofs. We also showed how
to connect this formal proof with a concrete compiler implementation by exploiting the
approach of program checking.

In ongoing work, we are using this specification to prove the correctness of data flow anal-
yses (e.g. live variables analysis and dead code elimination). In future work, we also want
to extend the machine language to include very long instruction words (VLIW), predi-
cated instructions, and speculative execution. This also implies that we need to consider
more advanced code generation algorithms which aggressively explore the inherent data
dependencies to generate efficient code for such architectures. We are convinced that the
specification and correctness proof stated in this paper are a good basis to also verify such
advanced algorithms.
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