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Abstract. The goal of this paper is to study how the logarithmic-polar
mapping affects the spatiotemporal volume and the computation of the
optical flow. We propose two new methods for the estimation of the op-
tical flow and its spatial derivatives in the log-polar plane. We study
analytically and experimentally the effects of the polar deformation and
we qualitatively explain the decimation due to subsampling on the com-
putation of optical flow.

1 Introduction

This paper is concerned with the computation of optical flow in image sequences
obtained with the logarithmic polar transformation. The log-polar transforma-
tion 1s a model for space-variant resolution in the periphery of the image. Space-
variant sensing arises as a necessity in systems which must be able to process
simultaneously a central region of interest (fovea) in detail for recognition tasks
and a wide-angle peripheral view for detecting events and new candidates for
gaze change. Uniform resolution in the peripheral part would result to a com-
putational burden unacceptable for real-time reactive behavior. The biologically
motivated log-polar transformation has a second significant advantage: It 1s a
very rich representation regarding recognition tasks (rotation and scaling invari-
ance) as well as navigational tasks (ego-motion and time to collision estimation,
motion detection).

The goal of this paper is to study what kind of information which can be used
for motion tasks is still preserved after the log-polar transformation . We study
analytically and experimentally the effects of the polar deformation in sec. 3 and
we qualitatively explain the logarithmic subsampling in sec. 4. In particular,

— we prove that the polar transformation introduces fictitious gray-values cur-
vature that leads to an erroneous elimination of the aperture problem,

— we propose two new methods for the optical flow estimation in the log-polar
domain that are superior to methods directly transferred from the cartesian
domain and we experimentally study their performance in a real sequence,

— we propose a basis for an analysis of the logarithmic subsampling that allows
spectral techniques for the design of the necessary low-pass and gradient
filters.
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We use (z,y) for the cartesian coordinates and (p, ) for the polar coordinates
in the plane. We apply the log-polar mapping on the non-foveal part of a reti-
nal image. Therefore, we define as the domain of the mapping the ring-shaped
area py < p < Pmaz Where pg and ppe. are the radius of the fovea and the
half-size of the retinal image, respectively. Furthermore, a hardware CCD-sensor
with the log-polar property or a software implementation of the mapping needs
a discretization of the log-polar plane. By assuming that N, is the number of
cells in the radial direction and N, is the number of cells in the angular direc-
tion the mapping from the polar coordinates (p, ) to the log-polar coordinates
(€,7) reads (see also [8]) &€ = loga(p%), y = %77, where the logarithmic basis
a 1s obtained from the foveal radius pg, the image radius g, and the radial
resolution N,: a = exp(ﬁln(%)). From now on we will use only 5 ranging
from 0 to 27. The mapping of the gray-value function I(x,y) in the cartesian
plane to the gray-value function J(&, ) in the log-plane is by no means trivial.
Every log-polar cell corresponds to a receptive field in the cartesian plane?. The
image J(&,n) is the result of a space-variant filtering that affects all subsequent
computations on the log-polar plane like spatiotemporal filtering appearing later
in this paper. We will not delve in this issue here. It has been extensively studied
in [1] but it still remains an open problem as we will see in section 4. In our im-
plementation we used non-overlapping averaging receptive fields as implemented
in the emulation of the space-variant sensor in [8].

2  Optical flow in the log-polar plane

We will use the notion of optical flow for the apparent velocity of gray-value
structures in the image as opposed to the pure geometric definition of the motion
field as the velocity of the projected scene points on the image. Interpretations
and actions concerning the scene are based on the motion field although only the
optical flow field can be observed. This discrimination becomes more crucial here
than in the cartesian plane due to the polar deformation and the logarithmic
subsampling of the gray-value function. Using the coordinate transformation we
are able to transform exactly the cartesian motion field on the log-polar plane.
However, the deformation of the gray-value function causes new apparent shifts
of the gray-value function or eliminates existing ones.

In this section, we first apply flow computation methods already existing for
the cartesian plane to a log-polar image sequence. We denote by (u, v) the optical
flow vector in the cartesian plane and by (u',v') the optical flow vector in the
log-polar plane. The motion field vectors in the cartesian and log-polar plane
are denoted by (&, ) and (&, 7), respectively. We first compute the motion field
vectors in the polar plane. The definition of the polar and log-polar coordinates
yields
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2 There is a large amount of results on biological findings the space of this article does
not allow to cite [7; 2]



To compute optical flow we will use methods based on the spatiotemporal deriva-
tives of the image and on the Brightness Change Constraint Equation (BCCE)
on the log-polar image J(&, n):

Jeu' + Jo' + 7, =0, (2)

where J¢, Jy, and J; are the spatiotemporal derivatives of the image. A first
method is the application of the BCCE in the neighborhood (€ + é6&, 1+ én) of
every considered pixel (£, ) assuming that the optical flow is locally constant [3].
We give appropriate weights w(8¢, 67) to the application of BCCE at every pixel
so that the influence is higher in the center of the neighborhood. The solution is
obtained by minimizing
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with respect to (u',v'). The above minimization problem is equivalent to the
weighted minimization of the form ||[W(Au! — b)|| which is solved by singular
value decomposition.

The second method is an extension of the first one. It allows the linear varia-
tion of the flow inside the neighborhood enabling, thus, an estimation of flow as
well as its spatial derivatives [6]. The BCCE equation with linearly varying flow
is applied for every (6¢,8n) inside a neighborhood yielding an overconstrained
system with six unknowns. However, both these already known methods use as-
sumptions about local constancy or affinity of the optical flow that do not reflect
the harmonic variation of both flow components (1) with the angle 5 in the log-
polar plane. We will delve into this problem in the next section. We finish this
section giving abbreviations to the presented methods. As of now we will call
LCT the method based on the Local Constancy of the flow in the Transformed
image (polar or log-polar) and LAT to the method based on the Local Affinity
of the flow in the Transformed image.

3 The polar deformation

The first source of error in the log-polar optical flow field is due to the polar
deformation of the gray-value function. The polar transformation maps straight
edges into curved edges (Fig. 1) enabling thus the computation of both compo-
nents of the optical flow at points without curvature in the original cartesian
image. This superficial elimination of the aperture problem introduces optical
flow values with a large error regarding the expected motion field. In this sec-
tion we will first transform the neighborhood—gradient approach into a second
derivative method in order to study analytically the rank of the resulting linear
system. Then we will prove the expected fact that the linear system in the polar
plane has full rank even if the Hessian matrix in the cartesian plane is singular.
The aperture problem is always eliminated by introducing some assumption on
the local variation of the flow. In this sense, we assume the local constancy of
the back-transformed flow in the cartesian plane. We, thus, treat the aperture



problem in the cartesian plane. The resulting matrix of gray-value derivatives in
the polar plane will be proved to have the same rank as the cartesian Hessian.

We denote by E(p,n) the gray-value function and by (u?,v?) the optical
flow in the polar domain. Using the Brightness Change Constraint Equation
and the assumption that the polar flow 1s locally constant and applying the
Taylor expansion to the derivatives at the positions (p + ép,n + 8n) yields the
overconstrained system

EP +Ej P+ E; =0 E WP +E 0"+ Ey, =0 Epuf +E, " +E, =0 (4)

where we have omitted the resulting weights on each equation. We are interested
in the 2 x 2 coefficient matrix of the second and third equation which is the
Hessian of the polar gray-value function F(p,n). By twice differentiating E(p, n)
it can be easily proved that
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All the matrices with derivatives of (z,y) with respect to (p,n) have full rank
up to two values of 7 for the second derivatives. Hence, the singularity of the
cartesian Hessian does not lead to the singularity of the polar Hessian which also
depends on the cartesian gradient. It is plausible to suppose that the smallest
singular value of the coefficient matrix — used as a confidence measure — will be
higher in the system (4) than in the equivalent system in the cartesian plane.
This fact causes the acceptance of erroneous optical flow values.

We proceed by substituting the assumption of local flow constancy in the
polar plane with local flow constancy before applying the polar transformation.
We differentiate the Brightness Change Constraint Equation assuming that the
spatial derivatives of (u,v) vanish and we obtain a system with new coefficient
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which proves that the singularity of the cartesian Hessian matrix is the necessary
and sufficient condition for the singularity of the new coefficient matrix. Hence,
the coefficient matrix (6) does not introduce erroneous values of the optical flow
like the matrix (5) in the system (4).

Based on this fact we are going to construct a gradient-sampling method like
(3). We transfer the assumptions about constancy and affinity of the cartesian
flow to the application of the BCCE in the neighborhood pixels (€ + 8¢, 7+ 69)
allowing the log-polar flow to vary

ul 1 cos(177+677) sin(l77+677) u -
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We will call this method the Local Constancy in the Cartesian image (LCC)
method. The next step is straightforward. We allow the cartesian flow to vary




linearly in the local neighborhood. Combining Cartesian local linear variation
with the Log-polar BCCE (2), we get
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We call this method the Local Affinity in the Cartesian image (LAC) method.
By setting £ = 0 and n = 0 we obtain the equations derived in [9] as a special
case.

4 The logarithmic subsampling

In this section we present first steps towards understanding the effects of the
logarithmic subsampling on the computation of the spatiotemporal derivatives.
We restrict our study on a 1D gray-value function g¢(p) on the discrete do-
main p = po..pmar and its logarithmically subsampled version y(¢) defined on
& = 0..N as if both were the radius and its log-polar map of a 2D-image with-
out polar subsampling. We introduce an intermediate function A(£) [5] obtained
by exact coordinate transformation A(€) = g(pob®) where the logarithm’s ba-
sis b is chosen in such a way that the discrete original signal i1s transformed
without loss. This means that the basis b must be less equal than the coordi-
nates ratio b=pmaz/(pmae—1) 80 that even the gray-value of the most peripheral
pixel 1s exactly transformed. The lossless signal is sparse and has a dimension
M = In(pmaz/po)/ Inb much greater than the original signal so we interpolate
for the intermediate valueless pixels. The logarithmic signal v(£) is then obtained
by the three steps of linear shift-invariant low pass filtering, subsampling, and
shrinking as in a layer transition step in a regular pyramid. The subsampling
interval is M/N where M is the dimension of the lossless signal as above and
N = In(pmaz/po)/ Ina is the final resolution of the logarithmic signal y(£).

The introduction of the lossless image enables the study of the decimation
effects with spectral methods. First, we become able to design the appropriate
low-pass filters to suppress the energy above half of the subsampling frequence
(future work). Second, considering the optical flow uy in the lossless signal as the
flow with the lowest error we can use it as the reference for the error introduced by
subsampling in the flow .. If we use a differential technique as in the previous

sections the flow of the 1D lossless and subsampled signals is uy = —i—; and

Uy = —%, respectively.

The temporal gradient 7; of the logarithmic signal is the response of the
lossless temporal gradient to the low-pass filtering step. To study the spatial
gradient we first point out that the gradient is a bandpass e.g. the first derivative
of a Gaussian here. We assume that the low pass filter has the appropriate
antialiasing characteristics. The spectrum of the lossless image is stretched out
by the subsampling and shrinking steps whereas the spectrum of the spatial
gradient is the same before and after subsampling. The error in the spatial
gradient depends on the amplification or attenuation of frequency contributions
according to the contributions under the frequency support of the gradient. We



conjecture that such a decreasing of y; might be the reason for the observed
systematic overestimation of the length of the optical flow ~;/7e.

5 Experimental comparison

In this section we present results that compare the four flow computation meth-
ods described and show the effect of the polar deformation before the logarithmic
subsampling. In all figures the log-polar images are drawn such that the n-axis
is the horizontal axis and the {-axis 1s the vertical axis pointing downwards. To
interpret the log-polar images we note that the angle 1 1s measured beginning
counterclockwise from the y-axis that is pointing downwards. So moving hori-
zontally in the log-polar plane we first see the transformed lower right quadrant,
then the transformed upper right quadrant and so on. The compression rates ob-
tained by the log-polar transformation are about 1:25 for all analyzed sequences.
The spatiotemporal derivatives are computed by convolving with the binomial
differentiation filters. The local constancy and the local affinity assumption are
applied in 5 x 5 neighborhoods. The least squares problems are solved with the
Singular Value Decomposition and a threshold is applied to the smallest singular
value as a reliability criterion.

We first tested the Local Constancy methods on the polar transform of an
image sequence consisting of black squares on white background moving with
uniform velocity of (1,1). The polar transformed image is shown on the left of
Fig. 1. The images on the middle and left of Fig. 1 show the smallest singular
value of the linear systems using the Local Constancy assumption in the Polar
(LCT) and the Cartesian (LCC) image, respectively. As we already expected
from eq. 7 the LCC method produces a system with lower singular values.

To test the methods we used the real sequence “Marbled Block” 3 [4] with
known ground-truth values for the motion field. The original image of the se-
quence and its log-polar transform are shown in Fig. 2 left and middle, respec-
tively. In Fig. 2 (right) we show the flow field computed with the LAC method.

The error measures used are the relative error and the angle between (u, v, 1)
and (@, 9,1) where (u,v) and (4,0) are the ground-truth and estimated flow,
respectively. Furthermore, we compare not only to the transformed ground-
truth flow (left column in the tables) but also to the transformation of a flow
estimated first in the cartesian plane (right column). The error with respect to
the latter should be considered as a lower bound for the error expected. The
density is the fraction of the estimates with smallest singular value above a
threshold which varies for the four estimation techniques.

We first present (Tab.1) the angle- and relative errors for the polar transform
of the sequence obtained with angular resolution of 512 samples per 360 degrees
and radial resolution equal to the original (256). Regarding the local constancy
assumption applied on the polar (LCT) and the cartesian (LCC) plane the errors
are about the same for the same density. However, this density is achieved for
appropriately chosen high threshold for the LCT method. The superiority of the
LCC method is shown if we compare it to the performance of the LCT method

® Created by Michael Otte at University of Karlsruhe and FhG-IITB, Germany.



with the same threshold (LCT-thr).

Transformed ground truth |Transform of the cartesian estimate
Technique|av. ang. err.|av. rel. err.|density |av. ang. err.|av. rel. er density
LCT| 5.64729 18.74557 (0.54977| 3.68909 12.36976 0.54977
LCT-th| 7.26917 23.65154 |0.77566| 3.78853 13.56477 0.77566
LCC| 6.02655 19.11052 |0.48914| 3.63529 12.04593 0.48914

Table 1. Error statistics for the polar transform of the “Marbled Block” sequence (see
text for explanation).

The log-polar transform of the “Marbled Block” sequence is obtained with an-
gular resolution of 128 samples/360 degrees and radial resolution of 45 samples
for the radial range [32..256]. Tt should be noted that the angular resolution is
one-fourth of the angular resolution of the polar transform, therefore the error is
due to both the logarithmic and the polar subsampling. The errors with respect
to the transformed ground-truth values are not significantly higher than to the
transformed estimates what means that the effects of noise and poor gray-value
structure in the original are inferior to the subsampling effects. The errors are
shown for about the same density in order to compare the performance at points
where the coefficient matrices are regular in all methods. We are thus strict to
the methods using assumptions in the cartesian plane. Even with such a high
relative error we can use the log-polar transform for 3D-analysis: We show in a
companion paper in these proceedings that the 3D-translation direction can be
computed with only 5 degrees error.

Transformed ground truth|Transform of the cartesian estimate
Technique|av. ang. err.|av. rel. er|density |av. ang. err.|av. rel. er density
LCT| 5.34357 34.5392910.71908| 4.26153 32.02543 0.71908
LCC| 5.79178 38.03186 |0.56144| 4.80384 |34.88554 0.56144
LAT| 4.33591 28.5149310.79297| 3.32836 26.21737 0.79297
LAC| 4.30630 26.69212(0.72917| 3.29727 |23.21143 0.72917

Table 2. Error statistics for the log-polar transform of the “Marbled Block” sequence
(see text for explanation).
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Fig.1. The polar transform of an image with black rectangles (left), and the smallest
singular value of the linear system resulting from the LCT (middle) and the LCC (right)
assumptions, respectively. The horizontal axis is the angular axis and the vertical axis
is the radial axis.
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Fig. 2. The cartesian original image 512x512 pixels(left), its log-polar transform 77x128
pixels shown magnified (middle), and the computed optical flow (right) of the “Marbled
Block” sequence. The horizontal axis is the angular axis and the vertical axis is the
logarithmic radial axis.
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